JP4840269B2 - High-strength steel sheet and its manufacturing method - Google Patents

High-strength steel sheet and its manufacturing method Download PDF

Info

Publication number
JP4840269B2
JP4840269B2 JP2007172697A JP2007172697A JP4840269B2 JP 4840269 B2 JP4840269 B2 JP 4840269B2 JP 2007172697 A JP2007172697 A JP 2007172697A JP 2007172697 A JP2007172697 A JP 2007172697A JP 4840269 B2 JP4840269 B2 JP 4840269B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
strength
steel
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007172697A
Other languages
Japanese (ja)
Other versions
JP2009019214A (en
Inventor
泰明 田中
俊郎 富田
規雄 今井
光 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2007172697A priority Critical patent/JP4840269B2/en
Publication of JP2009019214A publication Critical patent/JP2009019214A/en
Application granted granted Critical
Publication of JP4840269B2 publication Critical patent/JP4840269B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、950MPa以上の高い引張強度を有し、良好な形状凍結性、延性および伸びフランジ性有する高強度鋼板およびその製造方法に関する。さらに、本発明の好適態様においては、さらに良好な表面性状を有する高強度熱間圧延鋼板とその製造方法に関するものである。   The present invention relates to a high-strength steel sheet having a high tensile strength of 950 MPa or more and having good shape freezing property, ductility and stretch flangeability, and a method for producing the same. Furthermore, in a preferred embodiment of the present invention, the present invention relates to a high-strength hot-rolled steel sheet having better surface properties and a method for producing the same.

自動車産業界における近年の低燃費化傾向に伴い、車両重量軽減の観点から主たる構造材料である鋼板について薄肉化・高強度化が求められてきている。
軽量化を図るためには旧来の部材に対してのゲージダウンが必要である。現在比較的適用の進んでいる590MPa材に対して、900MPa以上の強度を有する鋼板を使用するとゲージダウンが容易となり、車両重量軽減効果が顕著となる。
With the recent trend toward lower fuel consumption in the automobile industry, steel sheets, which are the main structural material, have been required to be thinner and higher in strength from the viewpoint of reducing vehicle weight.
In order to reduce the weight, it is necessary to reduce the gauge of the old member. When a steel plate having a strength of 900 MPa or more is used with respect to a 590 MPa material that is currently relatively applied, the gauge down is facilitated, and the vehicle weight reduction effect becomes remarkable.

一方、比較的安価な熱間圧延鋼板は、外板ボディや、樹脂製の被覆材により直接視認されない自動車のホイールやアーム類等の部材へ適用されている。通常このような部材には様々な変形モードを主とする成形が施される。したがって車両重量軽減のためには熱間圧延鋼板にも高強度であるとともに延性や伸びフランジ性(局部延性)等といった様々な特性が求められる。多くの場合、特定の部材に適用した場合に優位特性を有する鋼板がそれぞれ提案され使用されてきたが、鋼種統合による効率向上の観点からは、これら種々の特性をいずれも高いレベルで有する鋼板が望ましい。   On the other hand, relatively inexpensive hot-rolled steel sheets are applied to members such as automobile wheels and arms that are not directly visible by an outer plate body or a resin coating material. Usually, such members are molded mainly in various deformation modes. Therefore, in order to reduce the vehicle weight, the hot-rolled steel sheet is required to have various properties such as high strength and ductility and stretch flangeability (local ductility). In many cases, steel sheets having superior characteristics when applied to specific members have been proposed and used, but from the viewpoint of improving efficiency by integrating steel types, steel sheets having all these various characteristics at a high level have been proposed. desirable.

ところで、材料の高強度化に伴いプレスによる成形は困難となり、スプリングバック等に起因する形状歪を抑制するために鋼板の低降伏化が望まれ、フェライト組織中にマルテンサイトを分散したいわゆるデュアルフェイズ鋼(以下、「DP鋼」ともいう。)が用いられている。しかしながらDP鋼はフェライト相とマルテンサイト相間の硬度差に起因して、両者の界面が穴広げ加工時にミクロクラック・ボイドの発生起点となるため、伸びフランジ性に劣り、伸びフランジ性と低降伏化の両立には様々な課題があった。   By the way, forming with a press becomes difficult as the material becomes stronger, so low yielding of the steel sheet is desired in order to suppress the shape distortion caused by springback, etc., so-called dual phase in which martensite is dispersed in the ferrite structure Steel (hereinafter also referred to as “DP steel”) is used. However, DP steel is inferior in stretch flangeability due to the difference in hardness between the ferrite phase and martensite phase, and the interface between the two becomes the starting point of microcracks and voids during hole expansion processing. There were various issues in coexistence.

これを解決する手段として、例えば特許文献1では、フェライト・ベイナイト・マルテンサイトの3相組織とした低降伏比・高穴広げ型鋼板が開示されている。しかしながら、開示技術による強度レベルは900MPaには及ばない。   As means for solving this, for example, Patent Document 1 discloses a low yield ratio / high hole expanding steel sheet having a three-phase structure of ferrite, bainite, and martensite. However, the strength level according to the disclosed technology does not reach 900 MPa.

一方、特許文献2ではε−Cuを微細分散させたフェライト/マルテンサイト組織とした低降伏比かつ、高穴広げ型の鋼板が開示されているが、950MPa以上の強度を有する領域での穴広げ率は十分とは言えず、さらにCu添加に伴うコスト上昇が懸念される。   On the other hand, Patent Document 2 discloses a steel plate having a low yield ratio and a high hole expansion type with a ferrite / martensite structure in which ε-Cu is finely dispersed. However, hole expansion in a region having a strength of 950 MPa or more is disclosed. The rate is not sufficient, and there is a concern that the cost will increase with the addition of Cu.

また、特許文献3では980MPa以上の強度を有する低降伏比高穴広げ型鋼板が提案されているが、焼入れ性および強度を確保するためにCr添加を必須としているため化成処理性に問題がある。   Further, Patent Document 3 proposes a low yield ratio high hole expanding steel sheet having a strength of 980 MPa or more, but there is a problem in chemical conversion treatment because Cr addition is essential to ensure hardenability and strength. .

両者は複雑に噛み合っており、通常のデスケーリングによっては完全に除去することができず、圧延工程中にFeとなって鋼材の表面に不均一に分布するスケール(島状スケール)が発生する。この島状スケールは、仕上げ圧延後の鋼板冷却過程において鋼板の冷却温度ムラの原因となり、コイル内の機械特性の均一性を阻害する。また、この島状スケールは、酸洗後においては凹んだスケール疵(島状スケール疵)として残るので、疲労破壊の起点となりやすい。また、酸洗を施さない鋼板(スケールまま鋼板)では、島状スケールは除去されずに赤スケールとして鋼板表面に残存し表面性状を損ねる。 Both are intricately meshed and cannot be completely removed by normal descaling, and there is a scale (island scale) that becomes Fe 2 O 3 and is unevenly distributed on the surface of the steel material during the rolling process. appear. This island scale causes unevenness in the cooling temperature of the steel sheet in the process of cooling the steel sheet after finish rolling, and hinders the uniformity of the mechanical properties in the coil. Moreover, since this island-shaped scale remains as a concave scale ridge (island-shaped scale ridge) after pickling, it tends to be a starting point of fatigue failure. Moreover, in the steel plate which does not perform pickling (a steel plate with a scale), an island-like scale is not removed but it remains on the steel plate surface as a red scale, and surface properties are impaired.

特許文献4では鋼板に多量のSiを添加することにより、鋼板全面にスケールを均一発生させて表面性状を改善する方法が開示されているが、過度のSi添加は自動車用構造材に施される化成処理性を損なうため耐食性を劣化させるという問題がある。一方、Si添加量が低い場合にはスケールを全面均一発生させることが困難となり表面性状が劣化し、また強度−加工性バランスが低下するという問題があった。
特開平9−41078号公報 特開平5−331591号公報 特開2000−282175号公報 特開平3−79718号公報
Patent Document 4 discloses a method for improving surface properties by uniformly generating scale on the entire surface of the steel sheet by adding a large amount of Si to the steel sheet, but excessive Si addition is applied to the structural material for automobiles. There is a problem that the corrosion resistance is deteriorated because chemical conversion processability is impaired. On the other hand, when the amount of Si added is low, it is difficult to uniformly generate the scale over the entire surface, so that the surface properties deteriorate, and the strength-workability balance decreases.
JP 9-41078 A JP-A-5-315991 JP 2000-282175 A Japanese Patent Laid-Open No. 3-79718

本発明の課題は、950MPa以上の引張強度を有し、良好な形状凍結性、延性および伸びフランジ性を備える高強度鋼板を提供することである。さらには、鋼板表面に実質的に島状スケールを有しない安価な高強度熱間圧延鋼板と、既存設備を使って比較的容易に実施可能な製造方法を提供することである。   An object of the present invention is to provide a high-strength steel sheet having a tensile strength of 950 MPa or more and having good shape freezing property, ductility and stretch flangeability. Furthermore, it is to provide an inexpensive high-strength hot-rolled steel sheet having substantially no island scale on the surface of the steel sheet, and a manufacturing method that can be carried out relatively easily using existing equipment.

本発明らは、まず降伏比(以下、「YR」とも表す。)によって評価される形状凍結性、穴広げ試験で確認される伸びフランジ性などの機械特性については、鋼板組織中のフェライトの体積率を30〜80%とし、残部組織を、マルテンサイトをまったく含まないか、あるいは10%以下にまで低減されたマルテンサイトを含むベイナイトとすることで、低YRを有しつつ伸びフランジ性が大幅に向上し高延性と両立することを見いだした。ここで、ベイナイトにはベイニティックフェライトが含まれる。   The present inventors first described the mechanical properties such as the shape freezing property evaluated by the yield ratio (hereinafter also referred to as “YR”) and the stretch flangeability confirmed by the hole expansion test. 30% to 80%, and the remaining structure contains no martensite or bainite containing martensite that has been reduced to 10% or less. It has been found that it is compatible with high ductility. Here, bainite contains bainitic ferrite.

ところで、すでに述べたように、今日では高強度鋼板が求められており、具体的には、950MPa以上の高強度鋼板が求められている。しかしながら、そのような高強度材においても上述のようなフェライト+マルテンサイト+ベイナイトの組織割合とすることによりその課題が実現されるとは考えられなかった。   By the way, as already stated, today, a high strength steel plate is required, and specifically, a high strength steel plate of 950 MPa or more is required. However, even in such a high-strength material, it has not been considered that the problem can be realized by setting the above-described ferrite + martensite + bainite structure ratio.

そこで、基本的には、上述のような組織割合を備えながら、本来軟質なポリゴナルフェライト単相組織を高強度化する手段である金属炭化物の微細分散による析出強化に注目し、950MPa以上の強度を安定的に確保しつつ延性ならびに伸びフランジ性との両立を実現する成分系ならびに製造条件についてさらに検討した。   Therefore, basically, focusing on precipitation strengthening by fine dispersion of metal carbide, which is a means for increasing the strength of the originally soft polygonal ferrite single phase structure while having the above-described structure ratio, the strength of 950 MPa or more Further study was made on the component system and manufacturing conditions that realize both the ductility and stretch flangeability while ensuring the stability.

その結果、V、TiならびにNbを含む鋼材について、熱間仕上圧延後の冷却中および/または600〜780℃の温度域で30〜80%のフェライトを形成させ、さらにその後の冷却中および/または巻き取り過程において残部を0%以上10%以下のマルテンサイトを含むベイナイトからなる組織を形成させると、内部にV、TiおよびNbの単独あるいは複合炭化析出物が微細分散して950MPa以上の強度を有しつつ、延性および伸びフランジ性のバランスに優れた鋼板が得られるという知見を得た。   As a result, for steel materials containing V, Ti and Nb, 30-80% ferrite is formed during cooling after hot finish rolling and / or in the temperature range of 600 to 780 ° C., and further during subsequent cooling and / or When a structure composed of bainite containing martensite of 0% or more and 10% or less is formed in the winding process, V, Ti and Nb alone or a composite carbonized precipitate is finely dispersed inside and a strength of 950 MPa or more is obtained. It has been found that a steel sheet having an excellent balance between ductility and stretch flangeability can be obtained.

ただし、Vは、Siと同様に鋼板の化成処理性に影響する元素であり、実用的見地からは、SiおよびVの合計量を一定値以下に制限することが必要であることも見出した。
またこの過程において、Vを積極的に含有させることでフェライト形成が促進され、既存設備の熱間圧延ラインにおいても比較的容易に目標の組織が得られ、特性の安定化ならびに製造効率の向上が可能であることが見出された。
However, V is an element that affects the chemical conversion property of a steel sheet as in the case of Si, and from a practical standpoint, it has also been found that the total amount of Si and V must be limited to a certain value or less.
In addition, in this process, the formation of ferrite is promoted by positively containing V, and the target structure can be obtained relatively easily in the hot rolling line of the existing equipment, thereby stabilizing the characteristics and improving the production efficiency. It has been found possible.

さらに鋼板の表面性状については、鋼中のP、Si、Alの含有量に応じて適切な再加熱処理を行うことで、比較的容易にデスケーリング効果を最大限に引き出すことが可能となり、その結果950MPa以上の強度を有しつつ、延性および伸びフランジ性のバランスに優れた、鋼板表面に実質的に島状スケールを有しない低降伏比鋼板を得ることが可能であるという知見を得た。   Furthermore, with regard to the surface properties of the steel sheet, it is possible to extract the descaling effect to the maximum extent relatively easily by performing an appropriate reheating treatment according to the contents of P, Si, and Al in the steel. As a result, it was found that it is possible to obtain a low yield ratio steel sheet having a strength of 950 MPa or more and having an excellent balance between ductility and stretch flangeability and having substantially no island scale on the steel sheet surface.

本発明は次の通りである。
(1)質量%で、C:0.08〜0.30%、Si:0.05〜1.5%、Mn:0.2〜2.0%、P:0.10%以下、S:0.007%以下、Al:0.1%超〜2.0%以下、N:0.01%以下を含有し、さらにTi:0.01〜0.5%、Nb:0.01〜0.1%、V:0.05〜0.5%を下記式(1)〜(3)を満足するように含有し、残部Feおよび不純物からなる化学組成を備え、面積割合で、30%以上80%以下のフェライトおよび、0%以上10%以下のマルテンサイトを含有し、残部がベイナイトからなる鋼組織を備え、引張強度(TS)が950MPa以上、降伏比(YR)が0.75以下、引張強度(TS)×全伸び(El)が15000MPa%以上かつ引張強度(TS)×穴広げ率(HER)が50000MPa・%以上である機械特性を備えることを特徴とする高強度鋼板。
The present invention is as follows.
(1) By mass%, C: 0.08 to 0.30%, Si: 0.05 to 1.5%, Mn: 0.2 to 2.0%, P: 0.10% or less, S: 0.007% or less, Al: more than 0.1% to 2.0% or less, N: 0.01% or less, further Ti: 0.01-0.5%, Nb: 0.01-0 0.1%, V: 0.05 to 0.5% is contained so as to satisfy the following formulas (1) to (3), the chemical composition is composed of the remaining Fe and impurities, and the area ratio is 30% or more. 80% or less of ferrite and 0% or more and 10% or less of martensite, the balance comprising a steel structure consisting of bainite, tensile strength (TS) of 950 MPa or more, yield ratio (YR) of 0.75 or less, Tensile strength (TS) x total elongation (El) is 15000 MPa% or more and tensile strength (TS) x hole expansion ratio (HER) is 500 A high-strength steel sheet having mechanical properties of 00 MPa ·% or more.

Figure 0004840269
Figure 0004840269

Figure 0004840269
Figure 0004840269

Figure 0004840269
Figure 0004840269

ここで、各式中の元素記号は鋼中の各元素の含有量(単位:質量%)を示す。
(2)前記化学組成が、質量%で、さらにCr:1.0%以下および/またはMo:0.5%以下を含有する上記(1)に記載の高強度鋼板。
Here, the element symbol in each formula shows content (unit: mass%) of each element in steel.
(2) The high-strength steel plate according to the above (1), wherein the chemical composition is mass% and further contains Cr: 1.0% or less and / or Mo: 0.5% or less.

(3)前記化学組成が、質量%で、さらにMg:0.02%以下および/またはCa:0.02%以下を含有する上記(1)または(2)に記載の高強度鋼板。   (3) The high-strength steel sheet according to the above (1) or (2), wherein the chemical composition is mass% and further contains Mg: 0.02% or less and / or Ca: 0.02% or less.

(4)前記鋼板が、幅方向両端部からそれぞれ100mmの領域および長手方向両端部からそれぞれ30mの領域を除く領域における島状スケール疵もしくは赤スケールの被覆率が3%以下である長尺熱間圧延鋼板であることを特徴とする上記(1)〜(3)のいずれかに記載の高強度鋼板。   (4) A long hot strip in which the steel sheet has a coverage of island scale ridges or red scales of 3% or less in a region excluding a region of 100 mm from both ends in the width direction and a region of 30 m from each end in the longitudinal direction. The high-strength steel plate according to any one of (1) to (3) above, which is a rolled steel plate.

(5)下記工程(A)〜(D)を備えることを特徴とする高強度鋼板の製造方法:
(A)上記(1)〜(3)のいずれかに記載の化学組成を備える鋼塊または鋼片を1200℃以上の温度としたのちに粗熱間圧延を施して粗バーとする工程;
(B)前記粗バーを下記式(4)を満足する温度TBRT(℃)としたのちにデスケーリングを施す工程;
(C)デスケーリングを施した前記粗バーにAr点温度以上の温度域で仕上熱間圧延を施して熱間圧延鋼板とする工程;および
(D)前記熱間圧延鋼板を仕上熱間圧延後30℃/秒以上の平均冷却速度で600℃以上780℃以下の温度域まで冷却し、ついで該温度域で2秒間以上20秒間以下の滞留させたのち、30℃/秒以上の平均冷却速度で350℃以下の温度域まで冷却して巻取る工程。
(5) A method for producing a high-strength steel sheet comprising the following steps (A) to (D):
(A) A step of subjecting the steel ingot or steel slab having the chemical composition according to any one of the above (1) to (3) to a temperature of 1200 ° C. or more and then subjecting it to rough hot rolling to obtain a rough bar;
(B) A step of performing descaling after setting the coarse bar to a temperature T BRT (° C.) that satisfies the following formula (4);
(C) A step of subjecting the coarse bar subjected to descaling to finish hot rolling in a temperature range of Ar 3 point temperature or more to obtain a hot rolled steel sheet; and (D) finishing hot rolling the hot rolled steel sheet. After cooling to a temperature range of 600 ° C. or higher and 780 ° C. or lower at an average cooling rate of 30 ° C./second or higher, and then retaining in the temperature range for 2 seconds or longer and 20 seconds or shorter, an average cooling rate of 30 ° C./second or higher Step of cooling to 350 ° C. or lower and winding up.

Figure 0004840269
Figure 0004840269

ここで、式中の元素記号は鋼中の各元素の含有量(単位:質量%)を示す。    Here, the element symbol in a formula shows content (unit: mass%) of each element in steel.

本発明によれば950MPa以上の高強度であってもプレス成形時の形状凍結性にすぐれ、延性および伸びフランジ性も良好な高強度鋼板が安価な手段で得られ、例えば自動車用鋼材として車輌重量の大巾な軽減に寄与する。   According to the present invention, a high-strength steel sheet having excellent shape freezing property during press molding, excellent ductility and stretch flangeability even at a high strength of 950 MPa or more can be obtained by an inexpensive means. Contributes to the drastic reduction of

本発明において化学組成を上述のように限定した理由を述べる。なお、本明細書では化学組成はいずれも「質量%」で示す。また、化学組成を規定する各式における元素記号は各元素の含有量(質量%)を示す。   The reason why the chemical composition is limited as described above in the present invention will be described. In this specification, all chemical compositions are indicated by “mass%”. Moreover, the element symbol in each formula which prescribes | regulates a chemical composition shows content (mass%) of each element.

C:0.08〜0.30%
C含有量が0.08%を下回ると950MPa以上の引張強度が得られない場合があり、また0.30%を上回ると溶接性を阻害すると共にパーライトの発生により伸びフランジ性などの機械特性が損なわれる場合がある。したがって、C含有量を0.08〜0.30%とする。好ましくは0.09〜0.20%である。
C: 0.08 to 0.30%
If the C content is less than 0.08%, a tensile strength of 950 MPa or more may not be obtained, and if it exceeds 0.30%, weldability is impaired and mechanical properties such as stretch flangeability are caused by the occurrence of pearlite. It may be damaged. Therefore, the C content is set to 0.08 to 0.30%. Preferably it is 0.09 to 0.20%.

V:0.05〜0.5%
Vは本発明において重要な元素の一つである。Vを含有させることにより、フェライト変態が促進されて鋼板の延性が向上するとともに、Cと結合した微細炭化物の析出により鋼板が高強度化される。V含有量が0.05%未満では、鋼組織において30面積%以上のフェライトが得られない場合や、950MPa以上の引張強度が得られない場合がある。一方、0.5%を超えて含有させても上記効果が飽和して製造コストの上昇を招く。したがって、V含有量は0.05〜0.5%とする。好ましくは0.1〜0.3%である。なお、Vは後述するようにSiと同様に化成処理性に影響を与えることから、Siとの合計量が1.5%以下となるように制限される。
V: 0.05-0.5%
V is one of the important elements in the present invention. By containing V, ferrite transformation is promoted and the ductility of the steel sheet is improved, and the steel sheet is strengthened by precipitation of fine carbides combined with C. If the V content is less than 0.05%, ferrite of 30 area% or more may not be obtained in the steel structure, or tensile strength of 950 MPa or more may not be obtained. On the other hand, even if the content exceeds 0.5%, the above effects are saturated and the manufacturing cost is increased. Therefore, the V content is 0.05 to 0.5%. Preferably it is 0.1 to 0.3%. V, as will be described later, affects the chemical conversion treatment similarly to Si, so that the total amount with V is limited to 1.5% or less.

Ti:0.01〜0.5%
Tiは本発明において重要な元素の一つである。Tiを含有させることにより、鋼中のNが固定され伸びフランジ性が向上する。したがって、Ti含有量を0.01%以上とする。Tiは、さらにCと結合した微細な炭化物の析出により鋼板を高強度化する作用を有する。このような観点からは、Ti含有量を0.05%以上とすることが好ましい。さらに好ましくは0.08%以上である。一方、Ti含有量が過剰であるとオーステナイト中に粗大な炭窒化物を形成して鋼板の機械特性を劣化させる場合がある。したがって、Ti含有量を0.5%以下とする。好ましくは0.3%以下である。
Ti: 0.01 to 0.5%
Ti is one of the important elements in the present invention. By containing Ti, N in the steel is fixed and stretch flangeability is improved. Therefore, the Ti content is 0.01% or more. Ti further has the effect of increasing the strength of the steel sheet by the precipitation of fine carbides combined with C. From such a viewpoint, the Ti content is preferably 0.05% or more. More preferably, it is 0.08% or more. On the other hand, if the Ti content is excessive, coarse carbonitrides may be formed in austenite and the mechanical properties of the steel sheet may be deteriorated. Therefore, the Ti content is 0.5% or less. Preferably it is 0.3% or less.

Nb:0.01〜0.1%
Nbは本発明において重要な元素の一つである。Nbを含有させることにより、鋼中に炭窒化物が形成され、オーステナイト粒を微細化してフェライトの核生成サイトを増やし最終的な鋼組織の粗大化を抑制すると共に、VおよびTiとの複合添加により微細な析出物の形成により鋼板を高強度化する作用を有する。したがって、Nb含有量を0.01%以上とする。一方、Nb含有量が過剰であるとフェライト変態の遅延を招いて鋼組織において30面積%以上のフェライトが得られない場合がある。したがってNb含有量を0.1%以下とする。好ましくは0.05%以下である。
Nb: 0.01 to 0.1%
Nb is one of the important elements in the present invention. By containing Nb, carbonitrides are formed in the steel, the austenite grains are refined to increase the nucleation sites of ferrite and suppress the final coarsening of the steel structure, and the combined addition of V and Ti Thus, it has the effect of increasing the strength of the steel sheet by forming fine precipitates. Therefore, the Nb content is 0.01% or more. On the other hand, if the Nb content is excessive, ferrite transformation may be delayed and 30% by area or more of ferrite may not be obtained in the steel structure. Therefore, the Nb content is 0.1% or less. Preferably it is 0.05% or less.

上記、C、V、Ti、Nbは各元素について定める範囲内で次式(1)を満足するように含有させることで本発明が目的とする引張強度950MPa以上を確保したうえで、優れた形状凍結性、伸びフランジ性、そして延性を効果的に発現することができる。   The above C, V, Ti, and Nb are contained so as to satisfy the following formula (1) within the range determined for each element, and an excellent shape is obtained after securing the tensile strength of 950 MPa or more as intended by the present invention. Freezing property, stretch flangeability, and ductility can be effectively expressed.

Figure 0004840269
Figure 0004840269

すなわち(2)式の中辺の値が0.9を下回ると第2相の硬度の低下によると思われるYRの上昇が顕著となり、また延性が劣化する。この理由は必ずしも明らかではないが、(2)式の下限を下回ると、変態中にTi、V、NbによりCがトラップされ、未変態オーステナイトへのC濃化が抑制されるため、変態後の第二相の硬度が十分に高くならないことに起因すると考えられる。一方で中辺の値が2.0を上回ると粗大なセメンタイトの形成により穴広げ性が低下する。YRと延性および穴広げ率をより優位にバランスさせるには、(1)式の左辺が1.0、(1)式の右辺が1.5であることが好ましい。  That is, if the value of the middle side of the formula (2) is less than 0.9, the increase in YR, which seems to be due to the decrease in the hardness of the second phase, becomes remarkable, and the ductility deteriorates. The reason for this is not necessarily clear, but if the value falls below the lower limit of equation (2), C is trapped by Ti, V, and Nb during transformation, and C enrichment to untransformed austenite is suppressed. It is considered that the hardness of the second phase is not sufficiently high. On the other hand, when the value of the middle side exceeds 2.0, the hole expandability is lowered due to the formation of coarse cementite. In order to balance YR, ductility, and hole expansion ratio more preferentially, it is preferable that the left side of equation (1) is 1.0 and the right side of equation (1) is 1.5.

Mn:0.2〜2.0%
Mnは強度確保に有効な元素であり、目的とする強度を得るために含有量を0.2%以上とする。Mnは、さらにオーステナイトからフェライトへの変態温度を低下させるため、仕上げ温度を低下させることを可能とし、フェライト粒径の微細化が期待出来るので、このような観点からも含有させることが望ましい。一方、Mn含有量が過剰であると仕上げ圧延後のフェライト変態を遅延し、製造安定性を損なう。このためMn含有量を2.0%以下とする。強度、YR、延性および穴広げ率のバランスの観点から、好ましくは0.8〜1.5%である。
Mn: 0.2 to 2.0%
Mn is an element effective for securing the strength, and the content is made 0.2% or more in order to obtain the desired strength. Mn further lowers the transformation temperature from austenite to ferrite, so that the finishing temperature can be lowered and the ferrite grain size can be expected to be reduced. Therefore, Mn is preferably contained from this viewpoint. On the other hand, if the Mn content is excessive, ferrite transformation after finish rolling is delayed, and the production stability is impaired. For this reason, Mn content shall be 2.0% or less. From the viewpoint of the balance of strength, YR, ductility, and hole expansion rate, it is preferably 0.8 to 1.5%.

Si:0.05〜1.5%
Siは強度上昇に伴う延性の劣化が比較的小さい有用な固溶強化元素として知られており、さらにフェライト変態を促進させるとともに、鋼中のセメンタイトの粗大化を抑制する作用を有する。このような作用による効果を得るためにSi含有量を0.05%以上とする。強度・延性バランスの観点からはSi含有量を0.2%以上とすることが望ましい。一方、Si含有量が過剰となると、製品表面に施されるリン酸〜リン酸亜鉛による化成処理性が損なわれる。このため、Si含有量を1.5%以下とする。強度と延性のバランスの観点から、さらに好ましくは0.1〜1.0%である。
Si: 0.05 to 1.5%
Si is known as a useful solid solution strengthening element that has a relatively small ductility deterioration due to an increase in strength, and further has an action of promoting ferrite transformation and suppressing the coarsening of cementite in steel. In order to acquire the effect by such an effect | action, Si content shall be 0.05% or more. From the viewpoint of strength / ductility balance, the Si content is preferably 0.2% or more. On the other hand, when the Si content is excessive, chemical conversion treatment with phosphoric acid to zinc phosphate applied to the product surface is impaired. For this reason, Si content shall be 1.5% or less. From the viewpoint of balance between strength and ductility, it is more preferably 0.1 to 1.0%.

また、SiはVと同様に化成処理性に影響を与えることから、化成処理性の観点から、Si+Vの合計含有量は下記(2)式を満足するようにする。   Further, since Si affects the chemical conversion treatment similarly to V, the total content of Si + V satisfies the following formula (2) from the viewpoint of chemical conversion treatment.

Figure 0004840269
Figure 0004840269

(2)式の左辺の値を1.0以下とすると化成処理性の顕著な向上が見られることから、好ましくは(2)式の右辺を1.0とする。  When the value of the left side of the formula (2) is 1.0 or less, the chemical conversion property is remarkably improved. Therefore, the right side of the formula (2) is preferably set to 1.0.

Al:0.10%超2.0%以下
Alは本発明において重要な元素の一つである。Alを含有させることにより、フェライト変態が促進され、析出物粗大化による伸びフランジ性の劣化がおこりにくい低温でも十分なフェライト相を得ることが容易となる。このためAl含有量を0.10%超とする。好ましくは0.12%以上である。一方、Al含有量が過剰であると、オーステナイトからフェライトへの変態温度が著しく上昇し、仕上げ温度の上昇を招いて製造安定性を損なう。したがって、Al含有量を2.0%以下とする。好ましくは0.5%以下である。
Al: more than 0.10% and not more than 2.0% Al is one of the important elements in the present invention. By containing Al, ferrite transformation is promoted, and it becomes easy to obtain a sufficient ferrite phase even at a low temperature at which deterioration of stretch flangeability due to coarsening of precipitates hardly occurs. For this reason, Al content is made more than 0.10%. Preferably it is 0.12% or more. On the other hand, if the Al content is excessive, the transformation temperature from austenite to ferrite is remarkably increased, and the finishing temperature is increased to deteriorate the production stability. Therefore, the Al content is set to 2.0% or less. Preferably it is 0.5% or less.

P:0.10%以下
Pは一般に不純物として含有されるが、強度向上にも寄与するため、添加しても良い。しかし、P含有量が過剰であると、粒界にPが偏析して脆化を生じるため、P含有量を0.10%以下とする。
P: 0.10% or less P is generally contained as an impurity, but may contribute to improving the strength. However, if the P content is excessive, P segregates at the grain boundaries to cause embrittlement, so the P content is 0.10% or less.

ここで、Siは、熱間圧延に供する鋼塊または鋼片の加熱時においてFeO−FeSiOの生成を助長して島状スケールを誘発する原因となる。一方、AlおよびPは、FeSiOの融点を低下させ、スケール剥離性を向上させてデスケーリングを容易にする作用を有するので、鋼板表面における島状スケールの形成を抑制するのに有効である。そこで、実操業時のデスケーリング温度を考慮して、Si、AlおよびPの含有量については上記記載の範囲内で Here, Si contributes to the formation of FeO—Fe 2 SiO 4 and induces island scales during heating of the steel ingot or steel slab to be subjected to hot rolling. On the other hand, Al and P have the effect of reducing the melting point of Fe 2 SiO 4 and improving the scale peelability to facilitate descaling, and are therefore effective in suppressing the formation of island scales on the steel sheet surface. is there. Therefore, considering the descaling temperature during actual operation, the contents of Si, Al and P are within the ranges described above.

Figure 0004840269
Figure 0004840269

の関係式を満たすように含有させる。さらに好ましくは It is contained so as to satisfy the relational expression. More preferably

Figure 0004840269
Figure 0004840269

である。
上記関係式を満足させることにより、実質的に島状スケールを有しない鋼板を得ることが可能となる。ここで、「実質的に島状スケールがない」とは、鋼板の幅方向両端部からそれぞれ100mmおよび長手方向両端部からそれぞれ30mの領域を除いた部分における島状スケールの被覆率が3%以下であることをさす。このように幅方向および長手方向におけるそれぞれの端部を除くのは、そのような領域は最終製品では通常切断・除去されて出荷されるからである。換言すれば、上述のような島状スケール被覆率は、製品としての鋼板の表面での平均値を意味するのであるから、実際には製品の表面領域のすべてにおいて計測する必要はなく、いわゆる平均値としての上述のスケール被覆率が推測できるだけの領域であれば十分である。
It is.
By satisfying the above relational expression, it is possible to obtain a steel sheet having substantially no island scale. Here, “substantially no island scale” means that the coverage of the island scale is 3% or less in the portion excluding the area of 100 mm from both ends in the width direction and 30 m from each end in the longitudinal direction. I point to that. The reason why the respective end portions in the width direction and the longitudinal direction are excluded in this way is that such regions are usually cut and removed in the final product before shipment. In other words, the island-shaped scale coverage as described above means an average value on the surface of the steel plate as a product, so in practice it is not necessary to measure in all the surface areas of the product, so-called average It is sufficient if the above-mentioned scale coverage as a value can be estimated.

Cr:1.0%以下
Crは焼入れ性を高め、伸びフランジ性を損なうパーライトの形成を抑制する作用を有するので含有させても良い。上記作用による効果を確実に得るにはCr含有量を0.05%以上とすることが好ましい。一方、Cr含有量が1.0%を上回ると、フェライト変態が抑制されて製造安定性が損なわれるので、Cr含有量を1.0%以下とする。またCrはリン酸〜リン酸亜鉛による化成処理性を低下させるので作用も有するので、Cr含有量を0.8%以下とすることが好ましい。
Cr: 1.0% or less Cr may be contained because it has an effect of suppressing the formation of pearlite which improves hardenability and impairs stretch flangeability. In order to surely obtain the effect by the above action, the Cr content is preferably 0.05% or more. On the other hand, if the Cr content exceeds 1.0%, ferrite transformation is suppressed and production stability is impaired, so the Cr content is set to 1.0% or less. Further, since Cr has an effect because it lowers the chemical conversion treatment with phosphoric acid to zinc phosphate, the Cr content is preferably 0.8% or less.

Mo:0.5%以下
Moは焼入れ性を高め、伸びフランジ性を損なうパーライトの形成を抑制する作用および複合添加による金属炭窒化物の粗大化を抑制する作用を有するので含有させてもよい。上記作用による効果を確実に得るにはMo含有量を0.05%以上とすることが好ましい。一方、Mo含有量が0.5%を上回るとリン酸〜リン酸亜鉛による化成処理性を損なうため、Mo含有量を0.5%以下とする。好ましくは0.3%以下である。
Mo: 0.5% or less Mo may be contained because it has an effect of suppressing the formation of pearlite which enhances hardenability and impairs stretch flangeability and an effect of suppressing coarsening of metal carbonitride due to composite addition. In order to surely obtain the effect by the above action, the Mo content is preferably 0.05% or more. On the other hand, when the Mo content exceeds 0.5%, chemical conversion treatment with phosphoric acid to zinc phosphate is impaired, so the Mo content is set to 0.5% or less. Preferably it is 0.3% or less.

Mg:0.02%以下
MgはMgOを形成し、機械特性を損なう原因となる粗大なTiNの形成を抑制して微細分散化するため穴広げ性を向上させる作用を有し、かつ同様の作用を有するCaよりも添加効率が高いことから、含有させてもよい。上記作用による効果を確実に得るには、Mg含有量を0.001%以上とすることが好ましい。一方、Mg含有量が0.02%を超えると効果が飽和するのでMg含有量を0.02%以下とする。さらに好ましいMg含有量はは0.0010〜0.0050%である。
Mg: 0.02% or less Mg forms MgO and has the effect of improving the hole expanding property to suppress the formation of coarse TiN, which causes the mechanical properties to be impaired and to finely disperse, and the same effect Since the addition efficiency is higher than Ca having Ca, it may be contained. In order to surely obtain the effect by the above action, the Mg content is preferably 0.001% or more. On the other hand, if the Mg content exceeds 0.02%, the effect is saturated, so the Mg content is set to 0.02% or less. A more preferable Mg content is 0.0010 to 0.0050%.

Ca:0.02%以下
CaはCaOを形成し、機械特性を損なう原因となる粗大なTiNの形成を抑制して微細分散化するため穴拡げ性を向上させる作用を有するため含有させても良い。上記作用による効果を確実に得るには、Ca含有量を0.001%以上とすることが好ましい。一方、Ca含有量が0.02%を超えると効果が飽和するのでCa含有量の上限を0.02%以下とする。
Ca: 0.02% or less Ca forms CaO, and suppresses the formation of coarse TiN that causes mechanical properties to be impaired, so that fine dispersion is achieved. . In order to surely obtain the effect by the above action, the Ca content is preferably 0.001% or more. On the other hand, if the Ca content exceeds 0.02%, the effect is saturated, so the upper limit of the Ca content is set to 0.02% or less.

尚、鋼中の不純物とはS、N、Sn等が挙げられるが、例えばS、Nについては含有量を以下のように規制するのが好ましい。
S:0.007%以下
Mn等と結合し、粗大な硫化物系の介在物を形成して加工性を著しく損なうため、その含有量は0.007%以下とすることが好ましい。より好ましくは0.003%以下である。
Examples of impurities in steel include S, N, and Sn. For example, the content of S and N is preferably regulated as follows.
S: 0.007% or less The content is preferably 0.007% or less in order to combine with Mn or the like to form coarse sulfide inclusions and significantly impair the workability. More preferably, it is 0.003% or less.

N:0.01%以下
過剰に含有されると伸びフランジ性などの加工性を損なう不純物元素であり、その含有量は0.01%以下とすることが好ましい。より好ましくは0.006%以下である。
N: 0.01% or less An impurity element that impairs workability such as stretch flangeability when contained excessively, and its content is preferably 0.01% or less. More preferably, it is 0.006% or less.

(組織)
本発明に係る鋼板は、フェライトが、面積割合で、組織全体の30%以上80%以下でありかつ残部が0%以上10%以下のマルテンサイトを含むベイナイトからなる。
(Organization)
In the steel sheet according to the present invention, ferrite is composed of bainite containing martensite in an area ratio of 30% or more and 80% or less of the entire structure and the balance is 0% or more and 10% or less.

フェライトが組織全体の30%を下回ると延性が著しく損なわれ、また80%を超えるとYRが上昇して形状凍結性が損なわれる。強度、YR、延性、伸びフランジ性をより高い次元でバランスするためにフェライトを組織全体の50〜70%とすることが好ましい。
フェライトを除いた部分の組織を0%以上10%以下のマルテンサイトを含有するベイナイトとするのは、これら以外組織、例えばパーライト組織が含まれた場合には伸びフランジ性が著しく損なわれるためである。一方でマルテンサイトが10%を上回ると伸びフランジ性の劣化が顕著となるからである。したがってマルテンサイトは含有されなくてもよい。
When ferrite is less than 30% of the entire structure, ductility is remarkably impaired, and when it exceeds 80%, YR is increased and shape freezeability is impaired. In order to balance the strength, YR, ductility, and stretch flangeability at a higher level, it is preferable to make ferrite 50 to 70% of the entire structure.
The reason why the structure of the portion excluding ferrite is bainite containing martensite of 0% or more and 10% or less is that when a structure other than these, for example, a pearlite structure is included, stretch flangeability is significantly impaired. . On the other hand, if the martensite exceeds 10%, the stretch flangeability deteriorates significantly. Therefore, martensite may not be contained.

(製造条件)
まず上記化学組成を備える鋼塊または鋼片を1200℃以上の温度としたのちに粗熱間圧延を施す。これは伸びフランジ性を阻害する粗大な炭窒化物を完全に固溶させ、強度低下や伸びフランジ性の低下といった機械特性の劣化を回避するためである。なお、連続鋳造により得られた鋼塊や分塊圧延後の鋼片が、幅方向もしくは板厚方向に機械的な圧縮加工を受ける際に、少なくとも鋼塊または鋼片の中心部から板厚方向1/4にかけての温度が1200℃以上であるならば、加熱を行わずともよい。
(Production conditions)
First, a steel ingot or steel slab having the above chemical composition is brought to a temperature of 1200 ° C. or higher and then subjected to rough hot rolling. This is because a coarse carbonitride that inhibits stretch flangeability is completely dissolved to avoid deterioration of mechanical properties such as strength reduction and stretch flangeability. In addition, when the steel ingot obtained by continuous casting and the steel slab after the partial rolling are subjected to mechanical compression processing in the width direction or the plate thickness direction, at least the center of the steel ingot or the steel slab in the plate thickness direction If the temperature over 1/4 is 1200 ° C. or higher, heating is not necessary.

粗熱間圧延に供する際の鋼塊または鋼片の温度の上限は特に限定する必要はないが、炉内耐熱壁の耐久性およびスケールロスによる歩留まりの低下を考慮し、前記温度は1400℃以下とすることが好ましい。   The upper limit of the temperature of the steel ingot or steel slab when subjected to rough hot rolling is not particularly limited, but the temperature is 1400 ° C. or less in consideration of durability of the heat resistant wall in the furnace and a decrease in yield due to scale loss. It is preferable that

ついで粗熱間圧延により得られた粗バーを、鋼中のSi、Al、Pの含有量に応じて   Next, depending on the content of Si, Al, P in the steel, the coarse bar obtained by rough hot rolling

Figure 0004840269
Figure 0004840269

を満たすTBRT(℃)以上の温度としたのちにデスケーリングを施す。Siを含有する鋼の高温加熱時にはFeO−FeSiO共晶化合物層が形成され、その後の冷却により島状スケールの原因となるが、粗バーを、上記TBRT(℃)を満足する温度とすることにより、FeOとFeSiOが半溶融状態となり、この剥離除去(デスケーリング)が容易となる。 Descaling is performed after setting the temperature to be equal to or higher than T BRT (° C.). A FeO—Fe 2 SiO 4 eutectic compound layer is formed during the high-temperature heating of the steel containing Si, and the subsequent cooling causes island scales. However, the rough bar has a temperature that satisfies the above T BRT (° C.). By doing so, FeO and Fe 2 SiO 4 are in a semi-molten state, and this peeling and removal (descaling) becomes easy.

粗バーを上記のTBRT(℃)とする手段については特に限定をしないが、工業的には例えば粗熱間圧延用ロールスタンド群と仕上熱間圧延用ロールスタンド群の間に設置された誘導加熱装置等の使用が適する。なお、鋼塊または鋼片の温度を高温とすることにより粗熱間圧延後の粗バーの温度をTBRT(℃)とすることができる場合には加熱を施さずともよい。デスケーリングを行う手段・設備についても特に限定しないが、実用的にはスプレーによる高圧水の噴射が適当である。 There is no particular limitation on the means for setting the coarse bar to the above T BRT (° C.), but industrially, for example, an induction installed between a roll stand group for rough hot rolling and a roll stand group for finishing hot rolling Use of a heating device is suitable. When the temperature of the rough bar after rough hot rolling can be set to T BRT (° C.) by increasing the temperature of the steel ingot or steel slab, heating may not be performed. There are no particular limitations on the means / equipment for descaling, but in practice, injection of high-pressure water by spraying is appropriate.

仕上熱間圧延は、オーステナイト温度域で行い、仕上熱間圧延の終了温度はAr点温度以上であればよい。尚、仕上熱間圧延の終了温度はAr点温度にできるだけ近い方がより好ましい。これは圧延中に導入された加工歪みによるフェライト変態の促進効果が高まるためである。本発明で規定される鋼のAr点は概ね750℃から980℃である。 The finish hot rolling is performed in the austenite temperature range, and the finish hot rolling finish temperature may be not less than the Ar 3 point temperature. The finish hot rolling finish temperature is more preferably as close as possible to the Ar 3 point temperature. This is because the effect of accelerating ferrite transformation due to processing strain introduced during rolling is enhanced. The Ar 3 point of the steel defined in the present invention is approximately 750 ° C. to 980 ° C.

仕上熱間圧延を終了後、30℃/秒以上の平均冷却速度で600〜780℃まで冷却し、次いでその温度で5秒間以上20秒間以下の時間滞留させたのち、30℃/秒以上の平均冷却速度で350℃以下まで冷却し巻き取る。以下の説明においては、このときの冷却および冷却速度を便宜的にそれぞれ第一、第二冷却および第一、第二冷却速度ともいう。   After finishing hot rolling, after cooling to 600-780 ° C. at an average cooling rate of 30 ° C./second or more, and then retaining at that temperature for 5 seconds to 20 seconds, the average of 30 ° C./second or more Cool down to 350 ° C. or lower at a cooling rate and wind up. In the following description, the cooling and cooling rate at this time are also referred to as first, second cooling, and first and second cooling rates, respectively, for convenience.

第一冷却速度が30℃/秒よりも低いと、フェライト相の過剰形成により強度不足となったり、あるいは高YRとなり形状凍結性がそこなわれたり、さらには冷却中のパーライト析出により伸びフランジ性が低下したりする。このため、第一冷却速度を30℃/秒以上とする。   If the first cooling rate is lower than 30 ° C./second, the strength becomes insufficient due to the excessive formation of the ferrite phase, or the shape freezeability is impaired due to the high YR, and further, stretch flangeability due to pearlite precipitation during cooling. Or drop. For this reason, a 1st cooling rate shall be 30 degrees C / sec or more.

第一冷却の冷却停止温度が780℃より高いと、フェライト中に析出する金属炭化物が急激に粗大化し、強度と伸びフランジ性のバランスが劣化する。一方、第一冷却の冷却停止温度が600℃未満では、フェライトの形成不足により強度と延性および伸びフランジ性のバランスが劣化する。このため、第一冷却の冷却停止温度を600〜780℃とする。強度、YR、延性および伸びフランジ性のバランスの観点から630〜730℃とすることがさらに好ましい。   When the cooling stop temperature of the first cooling is higher than 780 ° C., the metal carbide precipitated in the ferrite is rapidly coarsened, and the balance between strength and stretch flangeability is deteriorated. On the other hand, if the cooling stop temperature of the first cooling is less than 600 ° C., the balance between strength, ductility and stretch flangeability deteriorates due to insufficient formation of ferrite. For this reason, the cooling stop temperature of 1st cooling shall be 600-780 degreeC. It is more preferable to set it as 630-730 degreeC from a viewpoint of a balance of intensity | strength, YR, ductility, and stretch flangeability.

上記第一冷却の冷却停止温度における滞留時間が2秒間未満では、十分な量のフェライトが得られず、延性および伸びフランジ性が低下する。一方、上記第一冷却の冷却停止温度における滞留時間が20秒間超では、過剰なフェライト相の成長と、析出物の粗大成長によると思われる強度低下を招く。このため、第一冷却の冷却停止温度における滞留時間は2秒間以上20秒間以下とする。好ましくは5秒間以上15秒間以下である。   If the residence time at the cooling stop temperature of the first cooling is less than 2 seconds, a sufficient amount of ferrite cannot be obtained, and ductility and stretch flangeability deteriorate. On the other hand, if the residence time at the cooling stop temperature of the first cooling exceeds 20 seconds, the strength is reduced due to excessive ferrite phase growth and coarse growth of precipitates. For this reason, the residence time at the cooling stop temperature of the first cooling is 2 seconds or more and 20 seconds or less. Preferably, it is 5 seconds or more and 15 seconds or less.

第二冷却速度が30℃/秒よりも低いと、冷却中のフェライト変態により第2相の割合が低下してYRが上昇し形状凍結性が損なわれること、あるいはパーライトの形成により伸びフランジ性が損なわれる。このため、第二速度を30℃/秒以上とする。好ましくは50℃/秒以上である。   When the second cooling rate is lower than 30 ° C./second, the ratio of the second phase is decreased due to the ferrite transformation during cooling, the YR is increased and the shape freezing property is impaired, or the stretch flangeability is deteriorated by the formation of pearlite. Damaged. For this reason, the second speed is set to 30 ° C./second or more. Preferably, it is 50 ° C./second or more.

引き続いて行なわれる巻き取り過程において、巻き取りを行う温度が350℃超ではYRが上昇し形状凍結性を損なう。したがって、巻取温度は350℃以下とする。巻取温度をさらに低下させると、マルテンサイトの形成が容易となり一層YRを低下させることが可能となるので、好ましくは巻取温度を300℃以下とすることが好ましい。   In the subsequent winding process, if the temperature at which the winding is performed exceeds 350 ° C., the YR increases and the shape freezing property is impaired. Therefore, the coiling temperature is set to 350 ° C. or lower. If the coiling temperature is further reduced, martensite can be easily formed and YR can be further lowered. Therefore, the coiling temperature is preferably 300 ° C. or lower.

かくして本発明によれば、引張強度(TS)が950MPa以上、降伏比(YR)が0.75以下、引張強度(TS)×全伸び(El)が15000MPa%以上かつ引張強度(TS)×穴広げ率(HER)が50000MPa・%以上である機械特性を備える高強度鋼板が得られる。   Thus, according to the present invention, the tensile strength (TS) is 950 MPa or more, the yield ratio (YR) is 0.75 or less, the tensile strength (TS) × total elongation (El) is 15000 MPa% or more, and the tensile strength (TS) × hole. A high-strength steel sheet having mechanical properties with a spreading ratio (HER) of 50000 MPa ·% or more is obtained.

表1に示す化学組成を有する鋼の内、発明の範囲内の成分を含有する鋼種および本発明範囲外のN、Q鋼をそれぞれ連続鋳造によりスラブとした後、スラブ中心付近より鋼片を採取し、熱間鍛造を行い厚さ30mmとした。得られた鋼片を再加熱し、鋼片に試験用小型タンデムミルにて熱間圧延を施して板厚2.6mmの熱間圧延鋼板を得た。熱間圧延に際して、鋼片の加熱温度、仕上温度、第一冷却速度、第一冷却停止温度およびその温度での滞留時間、第二冷却速度、巻取温度について様々な検討を行った。   Of steels having the chemical composition shown in Table 1, steel types containing components within the scope of the invention and N and Q steels outside the scope of the present invention were each made into slabs by continuous casting, and then a steel slab was collected from the vicinity of the slab center. Then, hot forging was performed to a thickness of 30 mm. The obtained steel slab was reheated, and the steel slab was hot-rolled with a small test tandem mill to obtain a hot-rolled steel plate having a thickness of 2.6 mm. During the hot rolling, various investigations were made on the heating temperature, finishing temperature, first cooling rate, first cooling stop temperature, residence time at that temperature, second cooling rate, and coiling temperature of the steel slab.

冷却については水スプレー装置を用い、巻取過程については、実際の製造ラインにおいて見られる熱延コイル巻取後の熱履歴を模擬した徐冷炉を用いて巻取シミュレーションを実施し、熱間圧延鋼板を得た。   For cooling, a water spray device is used, and for the winding process, a winding simulation is performed using a slow cooling furnace that simulates the heat history after winding the hot-rolled coil found in an actual production line. Obtained.

得られた鋼板の機械的性質について、引張強度と伸びフランジ性について以下の方法で調査した。
引張強度はJIS5号試験片にて行い、伸びフランジ性は、100mm四方の試験片を採取し、その中央にクリアランス15%で直径10mmの打ち抜き穴をあけ、先端角60°の円錐ポンチにてこの穴を押し広げ、穴の縁部に発生するクラックが板厚方向に貫通したときの穴直径より算出される限界穴広げ率で評価した。また、圧延方向断面をレペラー腐食処理し、顕微鏡により組織観察を行った。
About the mechanical property of the obtained steel plate, the following methods were investigated about tensile strength and stretch flangeability.
Tensile strength is measured with a JIS No. 5 test piece. For stretch flangeability, a 100 mm square test piece is sampled, a punched hole with a clearance of 15% and a diameter of 10 mm is formed in the center, and a conical punch with a tip angle of 60 ° is used. The hole was expanded and evaluated by the limiting hole expansion rate calculated from the hole diameter when the crack generated at the edge of the hole penetrated in the plate thickness direction. Further, the section in the rolling direction was treated with a repeller corrosion, and the structure was observed with a microscope.

Figure 0004840269
Figure 0004840269

表2は、実施における鋼種と熱間圧延条件の詳細を示したもので、さらに表3はそれにより得られた鋼板の特性を示す。本発明で規定する範囲内の鋼種および熱間圧延条件を適用した鋼板は、TS≧950MPa、YR≦0.75を満たすと共に本発明で定める強度×延性および強度×穴広げ率値の範囲を満足し、高強度、低降伏比、高延性、高穴広げ率、つまりすぐれた伸びフランジ性をバランスよく有する鋼板が得られている。  Table 2 shows the details of the steel types and hot rolling conditions in the implementation, and Table 3 shows the properties of the steel sheets obtained thereby. A steel sheet to which the steel grade and hot rolling conditions within the ranges specified in the present invention are applied satisfies TS ≧ 950 MPa, YR ≦ 0.75, and satisfies the ranges of strength × ductility and strength × hole expansion ratio values defined by the present invention. In addition, a steel sheet having a high balance of high strength, low yield ratio, high ductility, high hole expansion ratio, that is, excellent stretch flangeability is obtained.

一方、試番10、17に示す本発明範囲外の鋼種を用いた鋼は、粗大な介在物および炭窒化物の形成によると思われる強度×穴広げ率の値の大幅な低下がみられる。また、鋼片の加熱温度を本発明の範囲外で実施した試番11は炭化物が粗大析出すると共にフェライト量が過多となり、本発明に定める強度規定に満たない。さらに冷却停止温度およびその温度における滞留時間について本発明の範囲外の熱間圧延条件を適用した試番12、13では、本発明の規定する組織を得られず、本発明に定める機械的性質を達成しない。   On the other hand, the steels using the steel types outside the scope of the present invention shown in Test Nos. 10 and 17 show a significant decrease in the value of strength × hole expansion rate, which seems to be due to the formation of coarse inclusions and carbonitrides. Further, in the sample No. 11 in which the heating temperature of the steel slab is outside the range of the present invention, carbides are coarsely precipitated and the amount of ferrite is excessive, which does not satisfy the strength specification defined in the present invention. Further, in trial numbers 12 and 13 in which hot rolling conditions outside the scope of the present invention were applied for the cooling stop temperature and the residence time at that temperature, the structure defined by the present invention could not be obtained, and the mechanical properties defined in the present invention were Not achieved.

また、冷却速度について本発明の範囲外を実施した試番14、15については、試番14のように、第一冷却速度が本発明の範囲外の場合、析出物の粗大化およびフェライト相過多によると思われる規定強度未達および強度×伸びの値の低下、そして強度×穴広げ率の値の低下が見られ、試番15のように、第二冷却速度が本発明の範囲外の場合、第2相硬度が十分に得られないためと予想されるYRの上昇が見られ、本発明で規定する特性を得られない。また、焼入れ性を向上する元素を含んだ鋼を本発明の範囲外の比較的低温で長時間滞留させ他の後室温まで焼きいれた試番16はマルテンサイトが本発明の規定よりも過剰に形成され、強度×穴広げ率の値が低下する。   Further, for the trial numbers 14 and 15 in which the cooling rate was outside the range of the present invention, as in the case of the trial number 14, when the first cooling rate was outside the range of the present invention, the coarsening of precipitates and excessive ferrite phase were observed. When the specified cooling strength is not achieved and the value of strength x elongation is decreased, and the value of strength x hole expansion rate is decreased, and the second cooling rate is outside the range of the present invention as shown in test number 15. The increase in YR, which is expected because the second phase hardness is not sufficiently obtained, is observed, and the characteristics defined in the present invention cannot be obtained. Further, in the test No. 16 in which the steel containing the element for improving the hardenability was retained for a long time at a relatively low temperature outside the scope of the present invention and then quenched to room temperature, the martensite was excessively more than the provisions of the present invention. As a result, the value of strength × hole expansion rate decreases.

Figure 0004840269
Figure 0004840269

Figure 0004840269
Figure 0004840269

表1に示す化学組成を有する鋼の内、本発明の成分範囲内の鋼種A、F、Iおよび本発明の範囲外の鋼種L、M、K、O、Pをそれぞれ連続鋳造によりスラブとした後、実際の製造ラインにて鋼板の製造を実施した。1200℃よりも高い温度でスラブ加熱を行った後、加熱炉より抽出されたスラブをタンデムミルにより粗圧延を実施し粗バーを得た。この粗バーを粗圧延ミル群と仕上げ圧延ミル群との間に設置された加熱装置にて所定の温度(粗バー温度)に再加熱を行った後、仕上熱間圧延を実施して2.6mm厚、1000mm幅を有する熱間圧延鋼板を得た。仕上熱間圧延後の鋼板を本発明の範囲内の冷却速度で水冷し、所定の温度(冷却停止温度)とした後、直ちにこの温度で所定の時間滞留し、その後再び本発明の範囲内の冷却速度で本発明の範囲内の温度でダウンコイラーにて巻き取り、鋼板コイルを得た。   Of the steels having the chemical composition shown in Table 1, steel types A, F, I within the component range of the present invention and steel types L, M, K, O, P outside the range of the present invention were each made into slabs by continuous casting. Later, steel sheets were produced on an actual production line. After slab heating at a temperature higher than 1200 ° C., the slab extracted from the heating furnace was roughly rolled by a tandem mill to obtain a coarse bar. 1. The rough bar is reheated to a predetermined temperature (rough bar temperature) by a heating device installed between the rough rolling mill group and the finish rolling mill group, and then finish hot rolling is performed. A hot rolled steel sheet having a thickness of 6 mm and a width of 1000 mm was obtained. The steel sheet after finish hot rolling is water-cooled at a cooling rate within the range of the present invention, set to a predetermined temperature (cooling stop temperature), immediately retained at this temperature for a predetermined time, and then again within the range of the present invention. The steel sheet coil was obtained by winding with a down coiler at a cooling rate at a temperature within the range of the present invention.

得られた鋼板の機械的性質について、引張強度と伸びフランジ性について以下の方法で調査した。引張強度はJIS5号試験片にて求め、伸びフランジ性は、100mm四方の試験片を採取し、その中央にクリアランス15%で直径10mmの打ち抜き穴をあけ、先端角60°の円錐ポンチにてこの穴を押し広げ、穴の縁部に発生するクラックが板厚方向に貫通したときの穴直径より算出される限界穴広げ率で評価した。また、圧延方向断面をレペラー腐食処理し、顕微鏡により組織観察を行った。   About the mechanical property of the obtained steel plate, the following methods were investigated about tensile strength and stretch flangeability. Tensile strength is obtained from JIS No. 5 test piece, and stretch flangeability is obtained by taking a 100 mm square test piece, drilling a punched hole with a clearance of 15% and a diameter of 10 mm at the center, and using a conical punch with a tip angle of 60 °. The hole was expanded and evaluated by the limiting hole expansion rate calculated from the hole diameter when the crack generated at the edge of the hole penetrated in the plate thickness direction. Further, the section in the rolling direction was treated with a repeller corrosion, and the structure was observed with a microscope.

さらに島状スケール疵および赤スケールの被覆率については、赤スケールの被覆率でもって決定した。島状スケール疵は鋼板酸洗後に赤スケールが除去されて出来る凹んだ押し込み疵であるから、酸洗前鋼板の赤スケールと酸洗後の島状スケール疵の位置および面積率はほぼ一致し、従って酸洗前の赤スケール面積率を調査すれば酸洗後の島状スケール疵の面積率が得られることから、実際の熱延ラインにより製造した鋼板の酸洗前表面の赤スケールの被覆率を調査し、島状スケール疵および赤スケールの被覆率を得た。   Furthermore, the island scale scales and the red scale coverage were determined by the red scale coverage. Since the island scale ridge is a depressed indentation ridge that is formed by removing the red scale after the steel plate pickling, the position and area ratio of the red scale of the steel plate before pickling and the island scale basin after pickling are almost the same, Therefore, if the red scale area ratio before pickling is investigated, the area ratio of the island scale ridge after pickling can be obtained. Therefore, the red scale coverage of the surface before pickling of the steel sheet manufactured by the actual hot rolling line. The coverage of island scale ridges and red scales was obtained.

得られた酸洗前の熱間圧延鋼板において圧延幅方向両端部よりそれぞれ100mmの領域を除く部分と、長手方向圧延開始端および終了端よりそれぞれ30mを除く領域よりなる鋼板表面の赤スケールによる被覆率が3%以下である場合を良好(表4において表面性状○)とし、3%を超える場合は不良(表4において表面性状×)とした。調査は圧延表・裏面で実施し、赤スケールの被覆率が高い方の面で表面性状を判定した。   In the obtained hot-rolled steel sheet before pickling, the surface of the steel sheet consisting of a portion excluding the region of 100 mm from both ends in the rolling width direction and the region excluding 30 m from the start end and the end end in the longitudinal direction is coated with red scale. When the rate was 3% or less, it was judged as good (surface property ○ in Table 4), and when it exceeded 3%, it was judged as poor (surface property x in Table 4). The survey was conducted on the rolling front and back surfaces, and the surface properties were judged on the surface with the higher red scale coverage.

さらに酸洗後の鋼板より50mm×70mmサイズのサンプルを採取し、日本パーカライジング社製バルボンドWL35化成処理液により化成処理を施した。常温で化成液に120秒浸漬したサンプル鋼板表面の化成結晶の付着量を調査すると共に化成結晶の被覆形態を走査型電子顕微鏡により観察し、付着量が3.0g/m以上でかつサンプル鋼板表面の化成結晶被覆に空けがない場合を良好(表4において化成処理性○)、付着量が3.0g/mを下回るかあるいはサンプル鋼板表面において化成結晶に被覆されない部分がある場合には不良(表4において化成処理性×)とし、化成処理性を評価した。 Further, a 50 mm × 70 mm size sample was taken from the pickled steel sheet, and subjected to chemical conversion treatment with VALBOND WL35 chemical conversion solution manufactured by Nippon Parkerizing Co., Ltd. The amount of chemical crystals deposited on the surface of the sample steel sheet immersed in the chemical solution for 120 seconds at room temperature was investigated, and the coating form of the chemical crystals was observed with a scanning electron microscope. The amount of deposited crystals was 3.0 g / m 2 or more. When the surface has no gap in the chemical conversion crystal coating (Chemical conversion treatment ○ in Table 4), the amount of adhesion is less than 3.0 g / m 2 or there is a portion that is not covered with the chemical conversion crystal on the sample steel plate surface The chemical conversion processability was evaluated as bad (chemical conversion processability x in Table 4).

表4によると本発明の範囲内で製造した試番18〜21はTS≧950MPa、YR≦0.75を満たすと共に本発明で定める強度×延性および強度×穴広げ率値の範囲を満足し、高強度、低降伏、高穴広げ率をバランスする鋼が得られている。   According to Table 4, samples 18 to 21 produced within the scope of the present invention satisfy TS ≧ 950 MPa, YR ≦ 0.75, and satisfy the range of strength × ductility and strength × hole expansion ratio values defined by the present invention, Steels that balance high strength, low yield, and high hole expansion ratio have been obtained.

しかし、本発明の範囲外の鋼種で製造した試番22、23は、本発明の範囲内の熱間圧延条件を実施しているにもかかわらず、強度が規定を満足しないか、あるいは規定組織を得られず強度と延性および穴広げ性のバランスが低い。またさらに本発明の範囲外の熱間圧延条件で製造した試番24は同じく本で規定する組織を得られず、強度と延性および穴広げ率のバランスに乏しいばかりか、VとSiの含有量について本発明の範囲を外れる鋼種Kを用いることから、この鋼板の化成処理性は不芳である。   However, the trial numbers 22 and 23 manufactured with the steel types outside the scope of the present invention do not satisfy the specified strength or have the specified structure despite the hot rolling conditions within the scope of the present invention. The balance between strength, ductility and hole expandability is low. Furthermore, sample 24 produced under hot rolling conditions outside the scope of the present invention cannot obtain the structure defined by the book, and the balance between strength, ductility and hole expansion ratio is poor, as well as the contents of V and Si. Since the steel type K outside the scope of the present invention is used, the chemical conversion property of this steel sheet is unsatisfactory.

一方で粗バー加熱温度を本発明の範囲に定めるTBRT以下の温度で実施した試番25〜27は鋼板表面に赤スケールが3%を超えて残存し、表面性状に劣る一方で、本発明の範囲内で製造された試番18〜21では鋼板表面に赤スケールが実質的に無く、化成処理性にも問題なく、良好な表面性状を有すると共に、本発明で規定する機械特性を実現する。 On the other hand, the test numbers 25 to 27 carried out at a temperature equal to or lower than the T BRT that sets the rough bar heating temperature within the range of the present invention remain on the steel plate surface with a red scale exceeding 3%, and the surface properties are inferior. Nos. 18 to 21 produced within the range of No. 1 have substantially no red scale on the steel sheet surface, no problem with chemical conversion treatment, have good surface properties, and realize the mechanical properties defined in the present invention. .

Figure 0004840269
Figure 0004840269

Claims (5)

質量%で、C:0.08〜0.30%、Si:0.05〜1.5%、Mn:0.2〜2.0%、P:0.10%以下、S:0.007%以下、Al:0.10%超2.0%以下、N:0.01%以下を含有し、さらにTi:0.01〜0.5%、Nb:0.01〜0.1%、V:0.05〜0.5%を下記式(1)〜(3)を満足するように含有し、残部Feおよび不純物からなる化学組成を備え、面積割合で、30%以上80%以下のフェライトおよび、0%以上10%以下のマルテンサイトを含有し、残部がベイナイトからなる鋼組織を備え、引張強度(TS)が950MPa以上、降伏比(YR)が0.75以下、引張強度(TS)×全伸び(El)が15000MPa%以上かつ引張強度(TS)×穴広げ率(HER)が50000MPa・%以上である機械特性を備えることを特徴とする高強度鋼板。
Figure 0004840269

Figure 0004840269

Figure 0004840269

ここで、各式中の元素記号は鋼中の各元素の含有量(単位:質量%)を示す。
In mass%, C: 0.08 to 0.30%, Si: 0.05 to 1.5%, Mn: 0.2 to 2.0%, P: 0.10% or less, S: 0.007 %: Al: Over 0.10% and 2.0% or less, N: 0.01% or less, Ti: 0.01-0.5%, Nb: 0.01-0.1%, V: 0.05 to 0.5% is contained so as to satisfy the following formulas (1) to (3), the chemical composition is composed of the remaining Fe and impurities, and the area ratio is 30% to 80%. It has a steel structure containing ferrite and 0% to 10% martensite with the balance being bainite, the tensile strength (TS) is 950 MPa or more, the yield ratio (YR) is 0.75 or less, and the tensile strength (TS ) X total elongation (El) is 15000 MPa% or more and tensile strength (TS) x hole expansion rate (HER) is 50,000 MP High-strength steel sheet, characterized in that it comprises the mechanical properties is -% or more.
Figure 0004840269

Figure 0004840269

Figure 0004840269

Here, the element symbol in each formula shows content (unit: mass%) of each element in steel.
前記化学組成が、質量%で、さらにCr:1.0%以下および/またはMo:0.5%以下を含有する請求項1に記載の高強度鋼板。 The high-strength steel sheet according to claim 1, wherein the chemical composition further includes, by mass%, Cr: 1.0% or less and / or Mo: 0.5% or less. 前記化学組成が、質量%で、さらにMg:0.02%以下および/またはCa:0.02%以下を含有する請求項1または2に記載の高強度鋼板。 The high-strength steel sheet according to claim 1 or 2, wherein the chemical composition further includes, by mass%, Mg: 0.02% or less and / or Ca: 0.02% or less. 前記鋼板が、幅方向両端部からそれぞれ100mmの領域および長手方向両端部からそれぞれ30mの領域を除く領域における島状スケール疵もしくは赤スケールの被覆率が3%以下である長尺熱間圧延鋼板であることを特徴とする請求項1〜3のいずれかに記載の高強度鋼板。 The steel sheet is a long hot-rolled steel sheet in which the coverage of island scale ridges or red scales is 3% or less in a region excluding a region of 100 mm from both ends in the width direction and a region of 30 m from both ends in the longitudinal direction. The high-strength steel sheet according to any one of claims 1 to 3, wherein the high-strength steel sheet is provided. 下記工程(A)〜(D)を備えることを特徴とする高強度鋼板の製造方法:
(A)請求項1〜3のいずれかに記載の化学組成を備える鋼塊または鋼片を1200℃以上の温度としたのちに粗熱間圧延を施して粗バーとする工程;
(B)前記粗バーを下記式(4)を満足する温度TBRT(℃)としたのちにデスケーリングを施す工程;
(C)デスケーリングを施した前記粗バーにAr点温度以上の温度域で仕上熱間圧延を施して熱間圧延鋼板とする工程;および
(D)前記熱間圧延鋼板を仕上熱間圧延後30℃/秒以上の平均冷却速度で600℃以上780℃以下の温度域まで冷却し、ついで該温度域で2秒間以上20秒間以下の滞留させたのち、30℃/秒以上の平均冷却速度で350℃以下の温度域まで冷却して巻取る工程。
Figure 0004840269

ここで、式中の元素記号は鋼中の各元素の含有量(単位:質量%)を示す。
A method for producing a high-strength steel sheet comprising the following steps (A) to (D):
(A) A step of subjecting the steel ingot or steel slab having the chemical composition according to any one of claims 1 to 3 to a temperature of 1200 ° C. or higher and then subjecting the steel ingot or steel slab to a rough bar;
(B) A step of performing descaling after setting the coarse bar to a temperature T BRT (° C.) that satisfies the following formula (4);
(C) A step of subjecting the coarse bar subjected to descaling to finish hot rolling in a temperature range of Ar 3 point temperature or more to obtain a hot rolled steel sheet; and (D) finishing hot rolling the hot rolled steel sheet. After cooling to a temperature range of 600 ° C. or higher and 780 ° C. or lower at an average cooling rate of 30 ° C./second or higher, and then retaining in the temperature range for 2 seconds or longer and 20 seconds or shorter, an average cooling rate of 30 ° C./second or higher Step of cooling to 350 ° C. or lower and winding up.
Figure 0004840269

Here, the element symbol in a formula shows content (unit: mass%) of each element in steel.
JP2007172697A 2007-06-15 2007-06-29 High-strength steel sheet and its manufacturing method Active JP4840269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007172697A JP4840269B2 (en) 2007-06-15 2007-06-29 High-strength steel sheet and its manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007158922 2007-06-15
JP2007158922 2007-06-15
JP2007172697A JP4840269B2 (en) 2007-06-15 2007-06-29 High-strength steel sheet and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2009019214A JP2009019214A (en) 2009-01-29
JP4840269B2 true JP4840269B2 (en) 2011-12-21

Family

ID=40359116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007172697A Active JP4840269B2 (en) 2007-06-15 2007-06-29 High-strength steel sheet and its manufacturing method

Country Status (1)

Country Link
JP (1) JP4840269B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110465546A (en) * 2019-07-03 2019-11-19 邯郸钢铁集团有限责任公司 It solves compressor and welds the method that iron scale peeling falls off with acid-cleaning plate

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5915435B2 (en) * 2011-07-28 2016-05-11 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in stretch flangeability and manufacturing method thereof
KR101412286B1 (en) 2012-06-28 2014-06-25 현대제철 주식회사 Ultra high strength steel sheet and method of manufacturing the steel sheet
JP6244844B2 (en) * 2013-11-15 2017-12-13 新日鐵住金株式会社 High tensile hot rolled steel sheet
CN105925887B (en) * 2016-06-21 2018-01-30 宝山钢铁股份有限公司 A kind of 980MPa levels hot-rolled ferrite-bainite dual-phase steel and its manufacture method
EP3521475A4 (en) 2016-10-03 2020-03-18 Nippon Steel & Sumitomo Metal Corporation Electric resistance-welded steel pipe for torsion beam
KR101988765B1 (en) 2017-12-21 2019-06-12 주식회사 포스코 Hot rolled steel sheet with excellent durability and method for manufacturing thereof
CN108504958B (en) * 2018-05-15 2020-08-25 首钢集团有限公司 690 MPa-grade hot-rolled thick-specification low-yield-ratio automobile spoke steel and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4304421B2 (en) * 2002-10-23 2009-07-29 住友金属工業株式会社 Hot rolled steel sheet
JP4232545B2 (en) * 2003-06-11 2009-03-04 住友金属工業株式会社 High-strength hot-rolled steel sheet and its manufacturing method
JP4424185B2 (en) * 2004-12-08 2010-03-03 住友金属工業株式会社 Hot rolled steel sheet and its manufacturing method
JP4581665B2 (en) * 2004-12-08 2010-11-17 住友金属工業株式会社 High-strength hot-rolled steel sheet and its manufacturing method
JP4404004B2 (en) * 2005-05-11 2010-01-27 住友金属工業株式会社 High-tensile hot-rolled steel sheet and manufacturing method thereof
JP4605100B2 (en) * 2006-06-07 2011-01-05 住友金属工業株式会社 High strength hot rolled steel sheet and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110465546A (en) * 2019-07-03 2019-11-19 邯郸钢铁集团有限责任公司 It solves compressor and welds the method that iron scale peeling falls off with acid-cleaning plate
CN110465546B (en) * 2019-07-03 2021-02-09 邯郸钢铁集团有限责任公司 Method for solving peeling and falling of oxide scales welded by acid washing plate for compressor

Also Published As

Publication number Publication date
JP2009019214A (en) 2009-01-29

Similar Documents

Publication Publication Date Title
TWI406966B (en) High tensile strength galvanized steel sheet excellent in workability and method for manufacturing the same
JP6210175B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
TWI542708B (en) High strength galvanized steel sheet excellent in formability
KR102000854B1 (en) High-strength cold-rolled steel sheet and method for manufacturing the same
CN108431264B (en) High-strength steel sheet and method for producing same
KR101621639B1 (en) Steel sheet, plated steel sheet, method for producing steel sheet, and method for producing plated steel sheet
JP5206244B2 (en) Cold rolled steel sheet
JP5402191B2 (en) Ultra-high-strength cold-rolled steel sheet with excellent stretch flangeability and manufacturing method thereof
JP5251208B2 (en) High-strength steel sheet and its manufacturing method
JP4840269B2 (en) High-strength steel sheet and its manufacturing method
JP2008291304A (en) High-strength cold-rolled steel sheet and high strength hot-dip galvanized steel sheet both excellent in deep-drawability and strength-ductility balance, and producing method of the both
JP6308334B2 (en) High strength cold-rolled steel sheet
KR101986640B1 (en) High-strength cold-rolled steel sheet and method for manufacturing the same
EP2792762B1 (en) High-yield-ratio high-strength cold-rolled steel sheet and method for producing same
CN113348259B (en) High-strength hot-dip galvanized steel sheet and method for producing same
JP5878829B2 (en) High-strength cold-rolled steel sheet excellent in bendability and manufacturing method thereof
CN115244200A (en) High-strength steel sheet and method for producing same
JP5141235B2 (en) High-strength hot-dip galvanized steel sheet with excellent formability and manufacturing method thereof
JP2004027249A (en) High tensile hot rolled steel sheet and method of producing the same
JP4710558B2 (en) High-tensile steel plate with excellent workability and method for producing the same
JP4438614B2 (en) High-strength hot-rolled steel sheet and manufacturing method thereof
CN110402298B (en) High-strength cold-rolled steel sheet and method for producing same
JP2004052071A (en) High tensile strength cold rolled steel sheet with composite structure having excellent stretch flanging property, strength-ductility balance and strain age hardenability, and method of producing the same
JP2005256141A (en) Method for manufacturing high-strength steel sheet superior in hole expandability
JP4877099B2 (en) Hot-rolled steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110919

R150 Certificate of patent or registration of utility model

Ref document number: 4840269

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350