JP4228963B2 - Gas analyzer - Google Patents

Gas analyzer Download PDF

Info

Publication number
JP4228963B2
JP4228963B2 JP2004097349A JP2004097349A JP4228963B2 JP 4228963 B2 JP4228963 B2 JP 4228963B2 JP 2004097349 A JP2004097349 A JP 2004097349A JP 2004097349 A JP2004097349 A JP 2004097349A JP 4228963 B2 JP4228963 B2 JP 4228963B2
Authority
JP
Japan
Prior art keywords
sample
gas
temperature
component
collection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004097349A
Other languages
Japanese (ja)
Other versions
JP2005283317A (en
Inventor
顕一 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2004097349A priority Critical patent/JP4228963B2/en
Publication of JP2005283317A publication Critical patent/JP2005283317A/en
Application granted granted Critical
Publication of JP4228963B2 publication Critical patent/JP4228963B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

本発明は、例えばガスクロマトグラフなどのガス分析装置に関し、更に詳しくは、こうしたガス分析装置における分析部の前段に設置される試料濃縮装置に関する。   The present invention relates to a gas analyzer such as a gas chromatograph, and more particularly to a sample concentrator installed in a stage preceding an analysis unit in such a gas analyzer.

従来より、ガスクロマトグラフにおいて、試料成分を分離するキャピラリカラムの前段に、前処理装置として試料成分濃度を高めるための試料濃縮装置を設置したり(特許文献1など参照)、試料成分の選択性を高めるためのフォーカシング(集着)ユニットを設置したり(特許文献2など参照)することがある。一般に、こうした試料の濃縮やフォーカシング(クラリオフォーカシング)を行う場合に、いわゆる加熱脱着法(サーマルデソープション)が利用されることが多い。加熱脱着法は、試料成分を捕集する捕集部に試料ガスを流す際に捕集部を冷却することにより試料成分を凝縮させて捕集部にトラップし、その後に捕集部にキャリアガスを流しながら急速な加熱を行うことで捕集部にトラップされていた試料成分を一気に気化させ、キャリアガスに乗せて後段へと送るものである。以下、こうした加熱脱着法を利用した試料濃縮装置やフォーカシング装置を総称して試料濃縮装置と呼ぶこととする。   Conventionally, in gas chromatographs, a sample concentrator for increasing the concentration of a sample component is installed as a pretreatment device in front of a capillary column for separating a sample component (see Patent Document 1, etc.), or the selectivity of a sample component is increased. There is a case where a focusing unit for increasing the height is installed (see Patent Document 2 or the like). In general, when such sample concentration or focusing (clario focusing) is performed, a so-called heat desorption method (thermal desorption) is often used. In the thermal desorption method, when the sample gas is allowed to flow through the collection part for collecting the sample component, the sample part is condensed by cooling the collection part and trapped in the collection part, and then the carrier gas is supplied to the collection part. The sample components trapped in the collecting part are vaporized at a stretch by performing rapid heating while flowing the gas, and the sample components are put on a carrier gas and sent to the subsequent stage. Hereinafter, a sample concentrating device and a focusing device using such a heat desorption method will be collectively referred to as a sample concentrating device.

上記のような試料濃縮装置をクロマトグラフのカラムの前段に設けることで、もともとの試料ガスに含まれる試料成分が微量であっても、これを濃縮して濃度を高めてカラムに送り込むことができるので、検出感度が向上するという効果が得られる。   By providing the sample concentrator as described above at the front stage of the chromatographic column, even if the sample component contained in the original sample gas is very small, it can be concentrated to increase the concentration and send it to the column. Therefore, the effect that the detection sensitivity is improved can be obtained.

特許第3006488号公報Japanese Patent No. 3006488 特開平5−126817号公報Japanese Patent Laid-Open No. 5-126817

ガスクロマトグラフではカラムを通過する際に各種試料成分を時間的に分離し、カラムから出てきた試料成分を順次検出器で検出する。したがって、成分の分離性能はガスクロマトグラフにとって非常に重要な要素である。分離性能はカラムの種類などにも依存するが、上記のような試料濃縮装置を前段に設けたガスクロマトグラフでは、試料濃縮装置において予備的に各種試料成分を時間的に分離すれば、カラムでの成分分離が一層容易になり、分析精度の向上が期待できる。   In a gas chromatograph, various sample components are temporally separated when passing through a column, and the sample components coming out of the column are sequentially detected by a detector. Therefore, the separation performance of the components is a very important factor for the gas chromatograph. Although the separation performance depends on the type of column, etc., in a gas chromatograph equipped with a sample concentrator as described above, if various sample components are preliminarily separated in the sample concentrator, Separation of components becomes easier, and improvement in analysis accuracy can be expected.

本発明はこうした点に鑑みて成されたものであり、その目的とするところは、試料成分の吸着・脱着の過程で、極性や沸点が近接した複数の試料成分を良好に分離して分析部に送り込むことができる試料濃縮装置を備えたガス分析装置を提供することにある。   The present invention has been made in view of these points, and an object of the present invention is to satisfactorily separate a plurality of sample components having close polarities and boiling points in the process of adsorption / desorption of sample components. An object of the present invention is to provide a gas analyzer equipped with a sample concentrating device that can be fed into a gas.

上記課題を解決するために成された本発明は、分析対象である試料ガス中の成分を分析する分析部の前段に、冷却・加熱による試料成分の吸着・脱着を利用して試料ガス中の成分濃度を高める試料濃縮部を設けたガス分析装置において、該試料濃縮部は、
a)流通する試料ガスに含まれる試料成分を捕集するために、該試料ガスの流通方向に延伸して設けられた捕集手段と、
b)試料成分を前記捕集手段に吸着させる際に、試料ガスの流通方向に温度分布を生じるように該捕集手段を冷却する冷却手段と、
c)前記捕集手段に吸着されている試料成分を加熱脱着して分析部に送る際に、前記冷却手段により相対的に低温とされている部位に対する温度上昇速度が相対的に高温とされている部位に対する温度上昇速度よりも大きくなるような温度上昇速度の勾配を生じるように前記捕集手段を加熱する加熱手段と、
を備え、前記冷却手段は前記捕集手段の上流側から下流側に向かうに従い温度が低くなるような温度分布が生じるように冷却を行い、前記加熱手段は前記捕集手段の下流側で上流側よりも温度上昇が速くなるように加熱を行うことを特徴としている。
The present invention, which has been made to solve the above problems, uses adsorption / desorption of sample components by cooling / heating before the analysis unit for analyzing the components in the sample gas to be analyzed. In the gas analyzer provided with the sample concentration unit for increasing the component concentration, the sample concentration unit includes:
a) collection means provided to extend in the flow direction of the sample gas in order to collect the sample components contained in the flowing sample gas;
b) a cooling means for cooling the collection means so as to produce a temperature distribution in the flow direction of the sample gas when the sample component is adsorbed on the collection means;
c) When the sample component adsorbed on the collection means is heated and desorbed and sent to the analysis unit, the temperature increase rate with respect to the portion that is relatively low temperature by the cooling means is relatively high. Heating means for heating the collecting means so as to produce a gradient of the temperature rise rate that is greater than the temperature rise rate for the part being present;
The cooling means is cooled so that a temperature distribution is generated such that the temperature decreases as it goes from the upstream side to the downstream side of the collection means, and the heating means is upstream of the collection means on the upstream side. It is characterized by heating so that the temperature rise is faster than that .

試料ガスを捕集手段に流通させつつ、前記冷却手段により、捕集手段の上流側から下流側に向かうに従い温度が低くなるような温度分布が生じるように冷却を行うと、試料ガスに含まれる各種成分の中で、沸点が低い成分ほど下流側つまり捕集手段の出口端に近い位置に吸着され、反対に、沸点が高い成分ほど上流側つまり捕集手段の入口端に近い位置に吸着されることになる。すなわち、沸点の相違する成分は捕集手段の延伸方向に沿って異なる部位に吸着される。 While flowing the sample gas to the collecting means, said by cooling means, when the cooling from the upstream side so that the temperature distribution where the temperature is lowered toward the downstream side results in collecting means, contained in the sample gas Among various components, the component with the lower boiling point is adsorbed at the downstream side, that is, the position near the outlet end of the collecting means, and the component with the higher boiling point is adsorbed at the upstream side, that is, near the inlet end of the collecting means. Will be. That is, components having different boiling points are adsorbed at different sites along the extending direction of the collecting means.

次に、加熱脱着時には、このように試料成分が吸着した状態にある捕集手段に例えば不活性ガス等のキャリアガスを流しつつ、加熱手段により、捕集手段の下流側で上流側よりも温度上昇が速くなるように加熱を行う。仮に捕集手段全体が一様な温度上昇であるとすると沸点の低い成分ほど時間的に速く捕集手段から脱着するが、ここでは、こうした一様な温度上昇ではなく、低沸点の成分が吸着されている捕集手段の出口端に近い部位のほうが温度上昇が速くなっているため、低沸点成分の気化と高沸点成分の気化との時間的なずれが一層大きくなる。さらにこれに加えて、低沸点成分は捕集手段の出口端に近いため、捕集手段から出て分析部に到達する時間でみると、低沸点成分と高沸点成分との時間的な差はさらに一層大きくなる。すなわち、低沸点の成分は加熱開始後から短時間で分析部に到達し、高沸点成分はこれにかなり遅れて分析部に到達するということになり、沸点の相違により良好に成分を分離することができる。   Next, at the time of heat desorption, the carrier means such as an inert gas is allowed to flow through the collection means in which the sample components are adsorbed in this way, while the heating means causes the temperature downstream from the collection means to be higher than the upstream side. Heating is done so that the rise is faster. Assuming that the temperature of the entire collecting means is uniform, the lower boiling point component desorbs from the collecting means faster in time. Here, however, the low boiling point component is not adsorbed. Since the temperature rise is faster at the portion closer to the outlet end of the collecting means, the time lag between the vaporization of the low-boiling component and the vaporization of the high-boiling component is further increased. In addition to this, since the low boiling point component is close to the outlet end of the collecting means, the time difference between the low boiling point component and the high boiling point component is as follows. It gets even bigger. In other words, low-boiling components reach the analysis section in a short time after the start of heating, and high-boiling components reach the analysis section with a considerable delay, and the components are separated well due to differences in boiling points. Can do.

このように本発明に係るガス分析装置によれば、試料濃縮部において複数の試料成分を沸点の相違に応じて適切に分離した上で分析部に導入することができるので、例えばガスクロマトグラフのように分析部で更に試料成分を分離して検出する場合には、全体の分離特性を大きく向上させることができ、従来、分離することが困難であったような試料成分同士も明瞭に分離することができる。これによって、分析の正確性が改善される。また、ガスクロマトグラフ以外に例えばガスセンサなどを用いたガス分析装置でも、試料成分を予め分離してガスセンサに導入することで、ガスの識別性を一層高めることが可能となる。   As described above, according to the gas analyzer of the present invention, a plurality of sample components can be appropriately separated in the sample concentrating unit according to the difference in boiling points and then introduced into the analyzing unit. In addition, when the sample component is further separated and detected by the analyzer, the overall separation characteristics can be greatly improved, and sample components that have been difficult to separate in the past can be clearly separated. Can do. This improves the accuracy of the analysis. In addition to a gas chromatograph, for example, a gas analyzer that uses a gas sensor or the like can further improve the gas identification by separating sample components in advance and introducing them into the gas sensor.

以下、本発明に係るガス分析装置の一実施例であるガスクロマトグラフについて、図面を参照して説明する。図1は本実施例のガスクロマトグラフのガス流路を中心とする全体構成図、図2は本実施例におけるガスクロマトグラフの試料濃縮部の要部の構成図(a)、(b)及びその動作を示す説明図(c)、(d)、(e)である。   Hereinafter, a gas chromatograph which is an embodiment of a gas analyzer according to the present invention will be described with reference to the drawings. FIG. 1 is an overall configuration diagram centering on the gas flow path of the gas chromatograph of this embodiment, and FIG. 2 is a configuration diagram (a), (b) of the main part of the sample concentration section of the gas chromatograph in this embodiment, and its operation. It is explanatory drawing (c), (d), (e) which shows this.

本実施例のガスクロマトグラフは、図1に示すように、大別して試料導入部10と試料濃縮部20と分析部30とから成り、試料導入部10は六方バルブ11と計量管12とを含み、試料濃縮部20は捕集ユニット21とバルブ26、29と加熱電流供給部27とを含み、分析部30はカラムオーブン31とキャピラリカラム32と検出器33とを含む。また、全体を制御するために制御部40が設けられている。   As shown in FIG. 1, the gas chromatograph of the present embodiment is roughly divided into a sample introduction unit 10, a sample concentration unit 20, and an analysis unit 30, and the sample introduction unit 10 includes a hexagonal valve 11 and a measuring tube 12. The sample concentration unit 20 includes a collection unit 21, valves 26 and 29, and a heating current supply unit 27, and the analysis unit 30 includes a column oven 31, a capillary column 32, and a detector 33. Further, a control unit 40 is provided to control the whole.

まず、このガスクロマトグラフの全体の動作を説明する。試料導入部10において、六方バルブ11は制御部40の制御の下に、図1中に実線で示す接続状態(以下、状態S1と呼ぶ)又は点線で示す接続状態(以下、状態S2と呼ぶ)とに択一的に切り替わる。状態S1では、キャリアガスは六方バルブ11を通って試料濃縮部20へと流れ、一方、試料ガスは六方バルブ11により計量管12を通る。これにより計量管12には所定量の試料ガスが保持される。状態S1から状態S2に六方バルブ11が切り替わると、キャリアガスが六方バルブ11により計量管12を通って試料濃縮部20へと流れる。したがって、先に計量管12に保持されていた試料ガスはキャリアガスに押されて試料濃縮部20へと送られる。試料導入部10から試料ガスが送られてくるとき、試料濃縮部20において捕集ユニット21は試料ガス中の各種成分をトラップする。このとき、バルブ29は排出側に切り替えられており、成分が吸着された後の試料ガスは排出される。このとき、バルブ29によりカラム32にはキャリアガスが流される。   First, the overall operation of this gas chromatograph will be described. In the sample introduction unit 10, the hexagonal valve 11 is connected under the control of the control unit 40 in a connection state indicated by a solid line in FIG. 1 (hereinafter referred to as a state S 1) or a connection state indicated by a dotted line (hereinafter referred to as a state S 2). Or alternatively. In the state S 1, the carrier gas flows through the hexagonal valve 11 to the sample concentration unit 20, while the sample gas passes through the measuring tube 12 by the hexagonal valve 11. As a result, a predetermined amount of sample gas is held in the measuring tube 12. When the hexagonal valve 11 is switched from the state S1 to the state S2, the carrier gas flows through the measuring tube 12 to the sample concentrating unit 20 by the hexagonal valve 11. Therefore, the sample gas previously held in the measuring tube 12 is pushed by the carrier gas and sent to the sample concentrating unit 20. When the sample gas is sent from the sample introduction unit 10, the collection unit 21 traps various components in the sample gas in the sample concentration unit 20. At this time, the valve 29 is switched to the discharge side, and the sample gas after the component is adsorbed is discharged. At this time, the carrier gas is caused to flow through the column 32 by the valve 29.

カラム32に試料ガス(濃縮された試料成分を含むガス)を導入する際には、バルブ29により捕集ユニット21をカラム32に接続し、捕集ユニット21では試料成分を気化させキャリアガスに乗せてその試料成分をカラム32に送り込む。カラム32では試料ガスが通過する間に試料成分は分離され、カラム32から出た試料成分が順次検出器33で検出される。   When introducing a sample gas (a gas containing a concentrated sample component) into the column 32, the collection unit 21 is connected to the column 32 by the valve 29, and the collection unit 21 vaporizes the sample component and places it on the carrier gas. The sample components are fed into the column 32. In the column 32, the sample components are separated while the sample gas passes through, and the sample components emitted from the column 32 are sequentially detected by the detector 33.

次に、本実施例の特徴である試料濃縮部20の構成と動作について、図2により詳細に説明する。図2(a)は捕集ユニット21の概略構成図、図2(b)は(a)中のa−a’切断線断面図である。捕集ユニット21は、本発明における捕集手段としての捕集管22と、図2(a)にAで示す範囲で捕集管22の外面に接触して平行に延伸する冷媒導管23と、同じく上記Aの範囲で冷媒導管23及び捕集管22の周囲に巻回されたヒータ24と、を含む。捕集管22としては、例えば中空管の内面に吸着剤を塗布したもの、中空管の管内に適宜の吸着剤を充填したもの、など各種の形態が考えられ、分析対象である試料成分の種類などに応じて適宜のものを選ぶことが好ましい。冷媒導管23には、右方から、つまり試料ガスの下流側から液体窒素などの冷媒が導入される。また、ヒータ24は一様な発熱体であり、図2(a)中、右方向に向かうに従い、つまり試料ガスの上流側から下流側に向かうに従い巻き付けの間隔を狭くしてある。なお、図示していないが、適宜の位置に温度を検出するための温度センサが設置されている。   Next, the configuration and operation of the sample concentrating unit 20 which is a feature of the present embodiment will be described in detail with reference to FIG. 2A is a schematic configuration diagram of the collection unit 21, and FIG. 2B is a cross-sectional view taken along the line a-a 'in FIG. The collection unit 21 includes a collection tube 22 as a collection means in the present invention, a refrigerant conduit 23 that extends in parallel with the outer surface of the collection tube 22 in a range indicated by A in FIG. Similarly, the heater 24 wound around the refrigerant conduit 23 and the collection tube 22 in the range A is included. As the collection tube 22, various forms such as, for example, a hollow tube coated with an adsorbent and a hollow tube filled with an appropriate adsorbent are conceivable, and sample components to be analyzed are included. It is preferable to select an appropriate one according to the type of the material. A refrigerant such as liquid nitrogen is introduced into the refrigerant conduit 23 from the right side, that is, from the downstream side of the sample gas. Further, the heater 24 is a uniform heating element, and the winding interval is narrowed in the right direction in FIG. 2A, that is, from the upstream side to the downstream side of the sample gas. Although not shown, a temperature sensor for detecting the temperature is installed at an appropriate position.

試料成分を捕集管22に吸着する際には、試料ガスを捕集管22内に左方から右方へと流し、バルブ26を開放して冷媒を冷媒導管23に流すことにより捕集管22を冷却する。捕集管22は冷媒導管23を介して冷媒と熱交換し、冷媒は流れに従って徐々に温度が上がるため、捕集管22は冷媒の流れの上流側つまり試料ガスの流れの下流側ほど温度が低く、試料ガスの上流側に向かうに従い温度が高くなるという温度勾配が形成される。すなわち、図2(c)に示すように捕集管22には試料ガスの通過方向に温度勾配が存在するため、試料ガスに含まれる各種成分のうち、低沸点の化合物ほど前方まで進んで捕集管22に吸着され、相対的に高沸点の化合物は手前側で捕集管22に吸着される。このようにして、図2(d)に示すように、低沸点の化合物ほど捕集管22の右方、つまりは出口端に近い位置に片寄って吸着される。   When adsorbing the sample component to the collection tube 22, the sample gas is flowed from the left to the right in the collection tube 22, the valve 26 is opened, and the refrigerant is flowed to the refrigerant conduit 23 to collect the sample tube. Cool 22. The collection tube 22 exchanges heat with the refrigerant through the refrigerant conduit 23, and the temperature of the refrigerant gradually increases according to the flow. Therefore, the temperature of the collection tube 22 is higher on the upstream side of the refrigerant flow, that is, on the downstream side of the sample gas flow. A temperature gradient is formed such that the temperature is low and the temperature increases toward the upstream side of the sample gas. That is, as shown in FIG. 2 (c), since a temperature gradient exists in the collection tube 22 in the direction in which the sample gas passes, among the various components contained in the sample gas, the lower boiling point compound advances to the front and is collected. The relatively high boiling point compound adsorbed by the collecting tube 22 is adsorbed by the collecting tube 22 on the near side. In this way, as shown in FIG. 2D, the lower boiling point compound is adsorbed to the right side of the collection tube 22, that is, closer to the outlet end.

上記のようにして試料成分を十分に捕集管22に吸着させた後、捕集管22にはキャリアガスを流し、所定のタイミングで捕集管22を加熱して試料成分を捕集管22から脱着させる。このときには、加熱電流供給部27からヒータ24に加熱電流を流すが、上述したようにヒータ24は試料ガスの下流側ほど巻き付け間隔が狭くなっているので、下流側ほど捕集管22の単位面積当たりに供給される熱量が大きく加熱が速い。すなわち、加熱時の捕集管22の温度上昇の速度は図2(e)に示すような勾配となる。そのため、仮に捕集管22の加熱前の初期温度が均一であったとしても、試料ガスの下流側ほど目標加熱温度に到達するまでの時間は短く、上流側では下流側よりも遅れて目標加熱温度に到達する。上述した通り、もともと下流側に吸着されている試料成分は低沸点であるため、仮に捕集管22全体が同一の温度上昇であったとしても、下流側に位置する試料成分ほど捕集管22から速く脱着する筈である。これに加えて、この構成では下流側において温度上昇も速いので、下流側に位置する低沸点の試料成分と上流側に位置する高沸点の試料成分との脱着時間の差は一層開くことになる。   After the sample components are sufficiently adsorbed to the collection tube 22 as described above, a carrier gas is passed through the collection tube 22, and the collection tube 22 is heated at a predetermined timing to collect the sample components. Remove from. At this time, a heating current is supplied from the heating current supply unit 27 to the heater 24. As described above, since the winding interval of the heater 24 is narrower toward the downstream side of the sample gas, the unit area of the collection tube 22 is closer to the downstream side. The amount of heat supplied per hit is large and heating is fast. That is, the temperature increase rate of the collecting tube 22 during heating has a gradient as shown in FIG. Therefore, even if the initial temperature before heating of the collection tube 22 is uniform, the time required to reach the target heating temperature is shorter on the downstream side of the sample gas, and the target heating is delayed on the upstream side from the downstream side. Reach temperature. As described above, since the sample components originally adsorbed on the downstream side have a low boiling point, even if the entire collection tube 22 has the same temperature rise, the sample components located on the downstream side are collected in the collection tube 22. It should be removed quickly. In addition, since the temperature rises rapidly on the downstream side in this configuration, the difference in desorption time between the low boiling point sample component located on the downstream side and the high boiling point sample component located on the upstream side is further widened. .

こうして捕集管22から脱着した試料成分はキャリアガス流に乗ってカラム32に導入されることになるが、カラム32に到達する時間でみると、低沸点成分と高沸点成分との時間差はさらに一層広がる。何故なら、低沸点成分ほど捕集管22の出口端に近い位置に吸着しており、カラム32までの移動距離が短いからである。このように、本実施例の試料濃縮部では、冷却時の温度の不均一性による捕集管22内での吸着位置の相違と、加熱時の温度上昇速度の不均一性による脱着時間の相違とを適切に組み合わせることによって、低沸点の化合物と高沸点の化合物とを大きな時間差を以てカラム32に導入することができる。   The sample component thus desorbed from the collection tube 22 is introduced into the column 32 along with the carrier gas flow, but the time difference between the low boiling point component and the high boiling point component is further increased in view of the time to reach the column 32. Further spread. This is because the lower boiling point component is adsorbed at a position closer to the outlet end of the collection tube 22 and the moving distance to the column 32 is short. As described above, in the sample concentrating portion of this embodiment, the difference in the adsorption position in the collection tube 22 due to the temperature non-uniformity during cooling and the difference in the desorption time due to the non-uniform temperature rise rate during heating. Are appropriately combined, a low boiling point compound and a high boiling point compound can be introduced into the column 32 with a large time difference.

捕集管22において試料ガスの流れの方向に冷却温度の勾配を形成したり、加熱時に温度上昇速度の勾配を形成したりするための構成は、上記記載のものに限らず、様々な構成が考え得る。以下にその例を挙げる。   The configuration for forming the gradient of the cooling temperature in the direction of the flow of the sample gas in the collection tube 22 and the gradient of the temperature increase rate during heating are not limited to those described above, and various configurations are possible. I can think. Examples are given below.

図3は冷却手段としてペルチエ素子を用いた場合の構成の一例である。図3(a)は図3(b)中のb−b’切断線での断面図である。この構成では、捕集管22に直接ヒータ23を巻き付け、それをペルチエ素子51に接触して設けた伝熱ブロック52に形成した溝部53の中に配設している。溝部53の内面と捕集管22との距離dは、試料ガスの下流側(図中の右方)にゆくほど短くなっている。この距離dが短いほど捕集管22の冷却効果が高いから、上記実施例と同様に冷却温度の勾配を形成することができる。   FIG. 3 shows an example of a configuration in which a Peltier element is used as the cooling means. FIG. 3A is a cross-sectional view taken along the line b-b ′ in FIG. In this configuration, the heater 23 is wound directly around the collection tube 22 and disposed in a groove 53 formed in a heat transfer block 52 provided in contact with the Peltier element 51. The distance d between the inner surface of the groove 53 and the collection tube 22 becomes shorter as it goes to the downstream side (right side in the drawing) of the sample gas. Since the cooling effect of the collection tube 22 is higher as the distance d is shorter, a gradient of the cooling temperature can be formed as in the above embodiment.

また、捕集管22の温度の安定性を高めるには上記伝熱ブロックのような金属ブロックを設けるとよいが、金属ブロックの熱伝導性が良すぎると温度勾配の傾斜が小さくなってしまう。そこで、こうした場合には、図4に示すように、金属ブロック61において試料ガスの流れの方向に熱伝導を妨げるように、熱伝導性の悪い材料で形成した遮温部62を適宜挿設したり、間隙(スリット)を形成したりするとよい。   Further, in order to increase the temperature stability of the collection tube 22, it is preferable to provide a metal block such as the heat transfer block. However, if the thermal conductivity of the metal block is too good, the gradient of the temperature gradient becomes small. Therefore, in such a case, as shown in FIG. 4, a heat shield 62 made of a material having poor thermal conductivity is appropriately inserted in the metal block 61 so as to prevent thermal conduction in the direction of the sample gas flow. Or forming a gap (slit).

一方、ヒータで温度上昇速度に勾配を持たせるためには、例えばヒータ自体の抵抗値がその長手方向で連続的又は段階的に変わるような構成としたり、ヒータの線径が順次変化するようにして同様の効果を得る構成としたりすることができる。   On the other hand, in order to give a gradient to the temperature rise rate with the heater, for example, the resistance value of the heater itself changes continuously or stepwise in the longitudinal direction, or the wire diameter of the heater changes sequentially. The same effect can be obtained.

もちろん、上記記載以外でも、本発明の趣旨の範囲で適宜に変更、修正又は追加を行っても本願請求項に包含されることは明らかである。例えば、上記実施例はガス分析装置としてガスクロマトグラフについて説明したが、それ以外のガス分析装置、例えばガスセンサを用いたガス分析装置にも本発明を適用し得ることは明白である。   Of course, other than the above description, it is obvious that any change, correction or addition made within the spirit of the present invention is included in the claims of the present application. For example, although the above embodiment has been described with respect to a gas chromatograph as a gas analyzer, it is obvious that the present invention can be applied to other gas analyzers such as a gas analyzer using a gas sensor.

本発明の一実施例によるガスクロマトグラフのガス流路を中心とする全体構成図。The whole block diagram centering on the gas flow path of the gas chromatograph by one Example of this invention. 本実施例におけるガスクロマトグラフの捕集ユニットの要部の構成図(a)、(b)及びその動作を示す説明図(c)、(d)、(e)。The block diagram (a), (b) of the principal part of the collection unit of the gas chromatograph in a present Example, and explanatory drawing (c), (d), (e) which shows the operation | movement. 本発明の他の実施例による捕集ユニットの要部の構成図。The block diagram of the principal part of the collection unit by the other Example of this invention. 本発明の他の実施例による捕集ユニットの要部の構成図。The block diagram of the principal part of the collection unit by the other Example of this invention.

符号の説明Explanation of symbols

10…試料導入部
20…試料濃縮部
21…捕集ユニット
22…捕集管
23…冷媒導管
24…ヒータ
26…バルブ
27…加熱電流供給部
29…バルブ
30…分析部
32…カラム
33…検出器
40…制御部
51…ペルチエ素子
52…伝熱ブロック
53…溝部
61…金属ブロック
62…遮温部
DESCRIPTION OF SYMBOLS 10 ... Sample introduction part 20 ... Sample concentration part 21 ... Collection unit 22 ... Collection pipe 23 ... Refrigerant conduit 24 ... Heater 26 ... Valve 27 ... Heating current supply part 29 ... Valve 30 ... Analysis part 32 ... Column 33 ... Detector 40 ... Control part 51 ... Peltier element 52 ... Heat transfer block 53 ... Groove part 61 ... Metal block 62 ... Thermal insulation part

Claims (1)

分析対象である試料ガス中の成分を分析する分析部の前段に、冷却・加熱による試料成分の吸着・脱着を利用して試料ガス中の成分濃度を高める試料濃縮部を設けたガス分析装置において、該試料濃縮部は、
a)流通する試料ガスに含まれる試料成分を捕集するために、該試料ガスの流通方向に延伸して設けられた捕集手段と、
b)試料成分を前記捕集手段に吸着させる際に、試料ガスの流通方向に温度分布を生じるように該捕集手段を冷却する冷却手段と、
c)前記捕集手段に吸着されている試料成分を加熱脱着して分析部に送る際に、前記冷却手段により相対的に低温とされている部位に対する温度上昇速度が相対的に高温とされている部位に対する温度上昇速度よりも大きくなるような温度上昇速度の勾配を生じるように前記捕集手段を加熱する加熱手段と、
を備え、前記冷却手段は前記捕集手段の上流側から下流側に向かうに従い温度が低くなるような温度分布が生じるように冷却を行い、前記加熱手段は前記捕集手段の下流側で上流側よりも温度上昇が速くなるように加熱を行うことを特徴とするガス分析装置。
In a gas analyzer equipped with a sample concentrator that increases the component concentration in the sample gas using adsorption / desorption of the sample component by cooling / heating before the analyzer that analyzes the component in the sample gas that is the object of analysis The sample concentration unit
a) collection means provided to extend in the flow direction of the sample gas in order to collect the sample components contained in the flowing sample gas;
b) a cooling means for cooling the collection means so as to produce a temperature distribution in the flow direction of the sample gas when the sample component is adsorbed on the collection means;
c) When the sample component adsorbed on the collection means is heated and desorbed and sent to the analysis unit, the temperature increase rate with respect to the portion that is relatively low temperature by the cooling means is relatively high. Heating means for heating the collecting means so as to produce a gradient of the temperature rise rate that is greater than the temperature rise rate for the part being present;
The cooling means is cooled so that a temperature distribution is generated such that the temperature decreases as it goes from the upstream side to the downstream side of the collection means, and the heating means is upstream of the collection means on the upstream side. A gas analyzer characterized in that heating is performed so that the temperature rise is faster than that .
JP2004097349A 2004-03-30 2004-03-30 Gas analyzer Expired - Fee Related JP4228963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004097349A JP4228963B2 (en) 2004-03-30 2004-03-30 Gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004097349A JP4228963B2 (en) 2004-03-30 2004-03-30 Gas analyzer

Publications (2)

Publication Number Publication Date
JP2005283317A JP2005283317A (en) 2005-10-13
JP4228963B2 true JP4228963B2 (en) 2009-02-25

Family

ID=35181870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004097349A Expired - Fee Related JP4228963B2 (en) 2004-03-30 2004-03-30 Gas analyzer

Country Status (1)

Country Link
JP (1) JP4228963B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5648608B2 (en) * 2011-09-06 2015-01-07 株式会社島津製作所 Sample introduction device
DE102014004286B3 (en) * 2014-03-26 2015-04-16 Peter Boeker Flow field induced temperature gradient gas chromatography
US11067548B2 (en) * 2016-04-04 2021-07-20 Entech Instruments Inc. Multi-capillary column pre-concentration system for enhanced sensitivity in gas chromatography (GC) and gas chromatography-mass spectrometry (GCMS)
WO2018207258A1 (en) * 2017-05-09 2018-11-15 株式会社島津製作所 Gas chromatograph
WO2019084039A1 (en) 2017-10-25 2019-05-02 Entech Instruments Inc. Sample preconcentration system and method for use with gas chromatography
US11162925B2 (en) 2017-11-03 2021-11-02 Entech Instruments Inc. High performance sub-ambient temperature multi-capillary column preconcentration system for volatile chemical analysis by gas chromatography
US11549921B2 (en) 2017-11-22 2023-01-10 Entech Instruments Inc. System and method for real time monitoring of a chemical sample
US11169124B2 (en) 2017-11-22 2021-11-09 Entech Instruments Inc. System and method for real time monitoring of a chemical sample
KR102156728B1 (en) * 2019-01-09 2020-09-16 (주)바이오니아 Surface Heater-bonded sample concentration tube, analyzing apparatus including the same and analysis method using the same
US11946912B2 (en) 2020-06-30 2024-04-02 Entech Instruments Inc. System and method of trace-level analysis of chemical compounds

Also Published As

Publication number Publication date
JP2005283317A (en) 2005-10-13

Similar Documents

Publication Publication Date Title
US11067548B2 (en) Multi-capillary column pre-concentration system for enhanced sensitivity in gas chromatography (GC) and gas chromatography-mass spectrometry (GCMS)
US5288310A (en) Adsorbent trap for gas chromatography
KR100212177B1 (en) Thermal modulation inlet system fpr gas chromatography
US5814128A (en) Water management device for gas chromatography sample concentration
US8230719B2 (en) Method for identifying the composition of a sample
JP4228963B2 (en) Gas analyzer
US8613216B2 (en) Dynamic thermal focusing of chromatographic separations
JPH07253421A (en) Gas-chromatographic system
CN102175796B (en) Dynamic headspace-cold focusing-GC (Gas Chromatography)-MS (Mass Spectrometer) tobacco headspace element analysis method
US11169124B2 (en) System and method for real time monitoring of a chemical sample
US11549921B2 (en) System and method for real time monitoring of a chemical sample
JP2018205302A (en) Fluidless column oven for gas chromatography system
JP5184171B2 (en) Sample gas collector and gas chromatograph
JP6857577B2 (en) Gas chromatograph mass spectrometer and gas chromatograph mass spectrometer
JP2005249691A (en) Gas chromatograph unit and exhaust gas analytical method
US7958770B2 (en) Heated transfer line for use in high temperature microwave chromatography
JPH07209272A (en) Gas-chromatograph system
JP2004354332A (en) Enrichment analyzer and method for enrichment analysis
US10989697B2 (en) Breath analyzer
JP2011038994A (en) Gas analyzer
JPH06222048A (en) Gas chromatography system
JPH11258220A (en) Method and device for solid phase extraction
JPH06160364A (en) Gas chromatograph device
JPH11108911A (en) Method and apparatus for introduction of sample in gas chromatograph
JPH10104213A (en) Gas analysis device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081124

R150 Certificate of patent or registration of utility model

Ref document number: 4228963

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees