WO2018207258A1 - Gas chromatograph - Google Patents

Gas chromatograph Download PDF

Info

Publication number
WO2018207258A1
WO2018207258A1 PCT/JP2017/017546 JP2017017546W WO2018207258A1 WO 2018207258 A1 WO2018207258 A1 WO 2018207258A1 JP 2017017546 W JP2017017546 W JP 2017017546W WO 2018207258 A1 WO2018207258 A1 WO 2018207258A1
Authority
WO
WIPO (PCT)
Prior art keywords
supply pipe
column
column oven
refrigerant
gas chromatograph
Prior art date
Application number
PCT/JP2017/017546
Other languages
French (fr)
Japanese (ja)
Inventor
優輝 小森
茂暢 中野
昌之 岡田
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2019516772A priority Critical patent/JP6863457B2/en
Priority to PCT/JP2017/017546 priority patent/WO2018207258A1/en
Priority to CN201780090512.3A priority patent/CN110621994B/en
Publication of WO2018207258A1 publication Critical patent/WO2018207258A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/50Conditioning of the sorbent material or stationary liquid
    • G01N30/52Physical parameters
    • G01N30/54Temperature

Definitions

  • the present invention relates to a gas chromatograph provided with a cooling device for cooling the inside of a column oven.
  • a gas chromatograph equipped with a cooling device that introduces a refrigerant into the column oven and cools the inside of the column oven to a predetermined temperature has been used.
  • the analysis operation is performed, so that the inside of the column oven is heated by the heater to be in a high temperature state. Thereafter, for the next measurement, the inside of the column oven is cooled to a predetermined temperature by the cooling device.
  • the inside of the column oven is appropriately cooled by the cooling device, and the analysis operation is repeatedly performed (for example, see Patent Document 1 below).
  • a cooling gas supply pipe (supply line) is connected to a column oven.
  • the supply pipe is provided with a valve for adjusting the supply amount of the cooling gas. Then, by appropriately opening the valve, the cooling gas is introduced into the column oven through the supply pipe, and the inside of the column oven is cooled.
  • the conventional gas chromatograph described above has a problem that the temperature is difficult to stabilize when the inside of the column oven is cooled.
  • a sensor for detecting the temperature in the column oven is provided. Based on the temperature in the column oven detected by the sensor, cooling is performed in the column oven through the supply pipe. Gas is introduced. In this way, in the cooling device configured to cool the inside of the column oven only by the cooling gas introduced into the interior, the cooling gas is introduced until the ambient temperature around the sensor decreases due to the influence of the gas. There is a time lag between them.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a gas chromatograph capable of accurately adjusting the temperature in a column oven.
  • a gas chromatograph according to the present invention includes a column oven and a cooling device.
  • the column oven contains a column therein.
  • the cooling device cools the inside of the column oven by discharging a refrigerant from the discharge port into the column oven.
  • the cooling device includes a supply pipe that extends to the vicinity of a region where the column is arranged in the column oven and supplies a refrigerant to the discharge port.
  • the inside of the column oven is cooled by the supply pipe containing the refrigerant therein. And the inside of a column oven is further cooled by supplying a refrigerant
  • the gas chromatograph may further include a heater.
  • the heater is provided in the column oven and heats the column oven.
  • the supply pipe may extend to a region between the heater and the column.
  • the region between the heater and the column can be cooled by the supply pipe containing the refrigerant inside.
  • the supply pipe may be formed in a curved shape in the vicinity of a region where the column is arranged.
  • the atmosphere around the column can be efficiently cooled by the supply pipe containing the refrigerant inside.
  • tube may be formed in the curved shape corresponding to the shape of the said column.
  • the column itself can be efficiently cooled by the supply pipe containing the refrigerant inside.
  • the cooling device may include a resistance pipe having a resistance portion having an inner diameter smaller than that of the supply pipe and communicating with the supply pipe on the upstream side of the supply pipe.
  • the refrigerant after passing through the resistance portion, the refrigerant passes through the supply pipe and is supplied into the column oven. Therefore, even if the supply pressure of the refrigerant is large, the flow rate can be adjusted by passing the resistance portion.
  • the gas chromatograph may further include a switching unit.
  • the switching unit switches to a first supply state in which the refrigerant is supplied to the supply pipe via the resistance unit, or a second supply state in which the refrigerant is supplied to the supply pipe without going through the resistance unit.
  • the refrigerant can be supplied into the column oven in an appropriate supply state (supply path) by appropriately switching the supply state by the switching unit.
  • the cooling device may include a flow rate adjusting valve.
  • the flow rate adjusting valve adjusts the flow rate of the refrigerant supplied to the supply pipe on the upstream side of the supply pipe.
  • the flow rate of the refrigerant can be adjusted by the resistance portion after the flow rate of the refrigerant is adjusted by the flow rate adjusting valve. Therefore, the flow rate of the refrigerant can be adjusted appropriately.
  • the inside of the column oven is cooled in stages by the supply pipe itself and the refrigerant supplied from the supply pipe. Therefore, the temperature inside the column oven can be accurately controlled.
  • FIG. 1 is a schematic diagram showing a configuration example of a gas chromatograph 1 according to the first embodiment of the present invention.
  • the gas chromatograph 1 is for performing analysis by supplying a sample gas together with a carrier gas into the column 2.
  • the container 7 and the cooling device 8 are provided.
  • the column 2 is accommodated in the column oven 3.
  • the column 2 is composed of, for example, a capillary column.
  • the column oven 3 is formed in a box shape.
  • the heater 4 is for heating the inside of the column oven 3 and is arranged in the column oven 3.
  • the heater 4 is disposed at a distance from the column 2.
  • a partition plate 9 is provided between the column 2 and the heater 4.
  • the partition plate 9 is formed with a hole through which air passes and a hole through which a part of the cooling device 8 is inserted.
  • the fan 5 is disposed in the column oven 3.
  • the fan 5 is provided on the opposite side of the column 2 with respect to the heater 4.
  • the side on which the fan 5 is provided is the rear side, and the side on which the column 2 is provided is the front side.
  • the sample introduction unit 6 is for introducing a carrier gas and a sample gas into the column 2, and a sample vaporizing chamber (not shown) is formed therein.
  • a liquid sample is injected into the sample vaporization chamber, and the sample vaporized in the sample vaporization chamber is introduced into the column 2 together with the carrier gas.
  • a gas supply channel 11 and a split channel 12 communicate with the sample vaporizing chamber.
  • the gas supply channel 11 is a channel for supplying a carrier gas into the sample vaporization chamber of the sample introduction unit 6.
  • the split flow path 12 is configured so that a part of the gas in the sample vaporization chamber (mixed gas of the carrier gas and the sample gas) is externally supplied at a predetermined split ratio. This is a flow path for discharging the water.
  • the detector 7 is composed of, for example, a flame ionization detector (FID) or a flame photometric detector (FPD). The detector 7 sequentially detects each sample component contained in the carrier gas introduced from the column 2.
  • FID flame ionization detector
  • FPD flame photometric detector
  • the cooling device 8 is a device for cooling the inside of the column oven 3 by discharging a refrigerant into the column oven 3.
  • the refrigerant discharged from the cooling device 8 is, for example, a cooling gas such as N2 gas or CO2 gas.
  • a part of the cooling device 8 is disposed in the column oven 3. The detailed configuration of the cooling device 8 will be described later.
  • the temperature in the column oven 3 is lowered to a set temperature (room temperature or lower) using the cooling device 8.
  • a sample to be analyzed is injected into the sample introduction unit 6.
  • the sample is vaporized in the sample vaporization chamber.
  • a carrier gas is supplied to the sample vaporization chamber of the sample introduction unit 6 via the gas supply channel 11.
  • the sample vaporized in the sample vaporization chamber is introduced into the column 2 together with the carrier gas. After the sample is introduced into the column 2, the heater 4 and the fan 5 are driven to heat the inside of the column oven 3, thereby gradually increasing the temperature in the column oven 3. Each sample component contained in the sample is separated in the process of passing through the column 2 and sequentially introduced into the detector 7.
  • the detector 7 sequentially detects each sample component contained in the carrier gas introduced from the column 2.
  • a chromatogram is generated based on the detection signal of the detector 7.
  • the user confirms the obtained chromatogram and performs various analyses.
  • the inside of the column oven 3 is cooled to the initial temperature by discharging hot air out of the system.
  • the refrigerant is discharged from the cooling device 8 into the column oven 3. Thereby, the inside of the column oven 3 is cooled to a predetermined temperature (target temperature). Then, the above analysis operation is repeated. As described above, in the gas chromatograph 1, when the analysis operation is repeatedly performed, the temperature control by the cooling device 8 is appropriately performed.
  • the cooling device 8 includes a flow rate adjusting valve 80, an external supply pipe 81, a resistance pipe 82, and an internal supply pipe 83.
  • the flow rate adjustment valve 80 is provided on the side wall (rear wall) of the column oven 3.
  • the flow rate adjusting valve 80 is a valve for adjusting the flow rate of the refrigerant.
  • An external supply pipe 81 and a resistance pipe 82 are connected to the flow rate adjusting valve 80. That is, the flow rate adjusting valve 80 is interposed between the external supply pipe 81 and the resistance pipe 82.
  • the opening degree of the flow rate adjusting valve 80 is adjusted by a control unit (not shown). Note that the flow rate adjusting valve 80 may be configured so that its opening degree is manually adjusted.
  • the external supply pipe 81 is disposed outside the column oven 3.
  • the external supply pipe 81 has a downstream end connected to the flow rate adjusting valve 80.
  • the upstream end of the external supply pipe 81 is connected to a reservoir such as a cylinder in which the refrigerant is stored. And a refrigerant
  • coolant is supplied from this storage part.
  • the resistance tube 82 is disposed inside the column oven 3.
  • the resistance tube 82 has an upstream end connected to the flow rate adjusting valve 80.
  • the resistance tube 82 is a tubular member having a flow path resistance corresponding to its length.
  • the inner diameter of the resistance tube 82 is smaller than the inner diameter of the internal supply tube 83.
  • the resistance tube 82 is a detachable member.
  • the resistance tube 82 is an example of a resistance portion.
  • the internal supply pipe 83 is disposed inside the column oven 3. Specifically, the internal supply pipe 83 is disposed (extends) in a region between the column 2 and the heater 4, and more specifically, between the column 2 and the partition plate 9. It is arranged (extends).
  • the internal supply pipe 83 is an example of the supply pipe.
  • FIG. 3 is a front view showing the internal supply pipe 83.
  • the internal supply pipe 83 is formed in a curved shape (arc shape).
  • the internal supply pipe 83 includes a tubular portion 831 and a connection portion 832.
  • the tubular portion 831 is formed in a tubular shape.
  • the tubular portion 831 is curved in an arc shape from the upstream end portion to the central portion, and a portion from the central portion (slightly downstream portion from the central portion) to the downstream end portion is linearly extended. . That is, the tubular portion 831 includes a portion formed in an arc shape and a portion formed in a straight line shape.
  • the inner space of the downstream end portion (the tip portion of the straight portion) of the tubular portion 831 is the discharge port 83A.
  • a central portion of the tubular portion 831 is held by the fixing member 20.
  • a connection portion 832 is attached to the upstream end portion of the tubular portion 831.
  • the connecting portion 832 is formed in a cylindrical shape.
  • the internal space of the connection portion 832 communicates with the internal space of the tubular portion 831.
  • the distal end portion (upstream end portion) of the connection portion 832 has a configuration in which the resistance tube 82 can be attached.
  • the fixing member 20 is attached to the partition plate 9.
  • the internal supply pipe 83 (tubular portion 831) is held by the fixing member 20.
  • the internal supply pipe 83 is held in a state of being arranged between the partition plate 9 and the column 2.
  • the downstream end portion of the internal supply pipe 83 is disposed at a lower portion in the column oven 3.
  • the discharge port 83A of the internal supply pipe 83 is oriented in the horizontal direction.
  • the refrigerant discharged from the discharge port 83 ⁇ / b> A is not directly injected onto the column 2, but hits the inner wall of the column oven 3 and diffuses.
  • the internal supply pipe 83 is provided in the vicinity of the region where the column 2 is arranged in a state where it is held in the column oven 3. Specifically, the internal supply pipe 83 is disposed behind the column 2 with a space therebetween.
  • the shape of the internal supply pipe 83 corresponds to the shape of the column 2. Specifically, the size of the outer shape of the internal supply pipe 83 is approximately the same as the size of the outer shape of the column 2, and the internal supply pipe 83 and the column 2 overlap when viewed in the front-rear direction.
  • a resistance tube 82 having an appropriate length (resistance tube 82 having an appropriate flow path resistance) corresponding to the usage state of the gas chromatograph 1 is selected, and the resistance tube 82 is used.
  • the user selects a resistance tube 82 having a long length (large flow path resistance), and connects the resistance tube 82 to the internal supply tube 83 and the flow rate adjusting valve 80.
  • the supply pressure of the refrigerant becomes small. Therefore, in such a case, the user selects a resistance tube 82 having a short length (low flow path resistance) and connects the resistance tube 82 to the internal supply tube 83 and the flow rate adjustment valve 80.
  • the resistance pipe 82 has a downstream end connected to the connection portion 832 of the internal supply pipe 83 and an upstream end connected to the flow rate adjusting valve 80.
  • the resistance pipe 82 and the internal supply pipe 83 communicate with each other through the connection portion 832, and the resistance pipe 82 and the external supply pipe 81 communicate with each other through the flow rate adjustment valve 80.
  • the resistance tube 82 is disposed on the upstream side with respect to the internal supply tube 83.
  • the flow rate adjusting valve 80 is arranged on the upstream side with respect to the resistance pipe 82 and the internal supply pipe 83.
  • the refrigerant When cooling the inside of the column oven 3, the refrigerant is supplied from the external supply pipe 81 toward the inside of the column oven 3.
  • the refrigerant that has passed through the external supply pipe 81 passes through the flow rate adjustment valve 80 and flows into the resistance pipe 82. Then, after passing through the resistance tube 82, the refrigerant flows into the internal supply tube 83, and is then discharged from the discharge port 83 ⁇ / b> A to the lower part in the column oven 3.
  • the refrigerant is discharged from the discharge port 83A of the internal supply tube 83.
  • the inside of the column oven 3 (column 2) is cooled by the refrigerant.
  • the inside of the column oven 3 is cooled not only by the refrigerant but also by the internal supply pipe 83 that contains the refrigerant inside. That is, the column oven 3 is cooled in stages by the internal supply pipe 83 and the refrigerant.
  • the opening degree of the flow rate adjusting valve 80 is adjusted, and the refrigerant The flow rate is adjusted. Thereby, the flow rate of the refrigerant can be adjusted without changing the type of the resistance tube 82.
  • the flow rate of the refrigerant is adjusted by the resistance tube 82 and the flow rate adjusting valve 80.
  • the cooling device 8 of the gas chromatograph 1 includes the internal supply pipe 83.
  • the internal supply pipe 83 extends to the vicinity of the area where the column 2 is arranged in the column oven 3.
  • the inside of the column oven 3 is cooled by the internal supply pipe 83 containing the refrigerant therein, and further cooled by being supplied with the refrigerant through the internal supply pipe 83. That is, the inside of the column oven 3 is cooled in stages by the internal supply pipe 83 itself and the refrigerant supplied from the internal supply pipe 83. As a result, the inside of the column oven 3 can be accurately controlled by the cooling device 8.
  • the internal supply pipe 83 extends to a region between the heater 4 and the column 2.
  • the region between the heater 4 and the column 2 can be cooled by the internal supply pipe 83 containing the refrigerant inside.
  • the internal supply pipe 83 is formed in a curved shape in the vicinity of the region where the column 2 is disposed.
  • the atmosphere around the column 2 can be efficiently cooled by the internal supply pipe 83 containing the refrigerant inside.
  • the internal supply pipe 83 is formed in a curved shape corresponding to the shape of the column 2.
  • the size of the outer shape of the internal supply pipe 83 is approximately the same as the size of the outer shape of the column 2, and the internal supply pipe 83 and the column 2 overlap when viewed in the front-rear direction.
  • the column 2 itself can be efficiently cooled by the internal supply pipe 83 containing the refrigerant inside.
  • the cooling device 8 includes the resistance tube 82.
  • the resistance tube 82 is disposed upstream of the internal supply tube 83 and communicates with the internal supply tube 83.
  • the refrigerant supplied through the external supply pipe 81 passes through the resistance pipe 82 and then passes through the supply pipe and is discharged into the column oven 3.
  • the flow rate can be adjusted by passing the resistance tube 82.
  • the cooling device 8 includes the flow rate adjusting valve 80.
  • the flow rate adjusting valve 80 adjusts the flow rate of the refrigerant on the upstream side with respect to the internal supply pipe 83 and the resistance pipe 82.
  • the flow rate of the refrigerant can be adjusted by the resistance tube 82 after the flow rate of the refrigerant is adjusted by the flow rate adjusting valve 80. As a result, the flow rate of the refrigerant can be adjusted appropriately.
  • FIG. 3 is a front view showing an internal supply pipe 85 used in the cooling device 8 of the gas chromatograph 1 according to the second embodiment of the present invention.
  • an internal supply pipe 85 is used instead of the internal supply pipe 83 described above.
  • the internal supply pipe 85 has a shape different from the shape of the internal supply pipe 83 of the first embodiment.
  • the internal supply pipe 85 includes a tubular portion 851 and a connection portion 852.
  • the tubular portion 851 is formed in a tubular shape and is formed in a spiral shape. Specifically, the tubular portion 851 is curved so as to turn from the upstream end toward the downstream, and is formed in a shape that becomes farther from the center as it goes downstream. The downstream end of the tubular portion 851 extends linearly downward. An inner space of the downstream end portion (the tip portion of the straight portion) of the tubular portion 851 is the discharge port 85A. An intermediate portion of the tubular portion 851 is held by the fixing member 20. A connecting portion 852 is attached to the upstream end portion of the tubular portion 851.
  • the connecting portion 852 is formed in a long cylindrical shape.
  • the internal space of the connecting portion 852 communicates with the internal space of the tubular portion 851.
  • a resistance tube 82 is attached to the distal end portion (upstream end portion) of the connection portion 852.
  • the fixing member 20 is attached to the partition plate 9 (see FIG. 1) in the column oven 3. Then, the internal supply pipe 85 (tubular portion 851) is held by the fixing member 20. In this state, the discharge port 85A of the internal supply pipe 85 is directed downward. Thereby, the refrigerant discharged from the discharge port 85 ⁇ / b> A is not directly injected to the column 2, but hits the bottom wall of the column oven 3 and diffuses.
  • the internal supply pipe 83 is provided in the vicinity of the region where the column 2 is arranged in a state where it is held in the column oven 3. Specifically, the tubular portion 851 of the internal supply pipe 83 faces the column 2 and is disposed in the column oven 3 along the column 2.
  • the refrigerant that has passed through the external supply pipe 81 passes through the flow rate adjustment valve 80 and the resistance pipe 82, and then passes through the internal supply pipe 83. It passes through and is discharged toward the bottom wall in the column oven 3 from the discharge port 83A.
  • the tubular portion 851 of the internal supply pipe 85 is formed in a spiral shape. Therefore, in the column oven 3, the tubular portion 851 of the internal supply pipe 83 can be disposed along the column 2 so as to face the column 2. As a result, the column 2 can be efficiently cooled by the internal supply pipe 85.
  • FIG. 4 is the schematic which showed the structural example of the gas chromatograph 1 which concerns on 3rd Embodiment of this invention.
  • the third embodiment is different from the first embodiment in that the supply path of the refrigerant supplied to the internal supply pipe 83 can be changed as appropriate.
  • a flow path switching valve 90 and a bypass pipe 91 are provided. Further, the flow rate adjusting valve 80 is provided so as to be interposed slightly upstream of the downstream end of the external supply pipe 81.
  • the flow path switching valve 90 is interposed at the downstream end of the external supply pipe 81. That is, the flow path switching valve 90 is disposed downstream of the flow rate adjustment valve 80. The upstream end of the resistance tube 82 and the upstream end of the bypass tube 91 are connected to the flow path switching valve 90.
  • the flow path switching valve 90 is a valve that can switch the supply path of the refrigerant supplied to the external supply pipe 81 to one of the resistance pipe 82 and the bypass pipe 91.
  • the bypass pipe 91 has an inner diameter larger than the inner diameter of the resistance pipe 82, and the flow path resistance is smaller than that of the resistance pipe 82.
  • the downstream end of the bypass pipe 91 is connected to the connection portion 832.
  • the refrigerant supplied to the external supply pipe 81 flows into the internal supply pipe 83 via the resistance pipe 82 (first supply state), or the resistance pipe 82. Without passing through the bypass pipe 91, it can be discharged into the column oven 3 through one of the paths (second supply state) that flows into the internal supply pipe 83 through the bypass pipe 91.
  • the refrigerant can be supplied into the column oven 3 in an appropriate supply state by appropriately switching the supply state (supply path) by the flow path switching valve 90. 7).
  • the gas chromatograph 1 has been described on the assumption that the resistance pipe 82 is interposed between the internal supply pipe 83 and the flow rate adjustment valve 80.
  • the gas chromatograph 1 may be configured such that the upstream end of the internal supply pipe 83 is connected to the flow rate adjusting valve 80 without providing the resistance pipe 82.
  • the internal supply pipes 83 and 85 are provided in the vicinity of the column 2, and specifically, are provided in the rear of the column 2 (region between the column 2 and the heater 4). As explained. However, the internal supply pipes 83 and 85 may be provided in the vicinity of the column 2 and in front of the column 2 (on the side opposite to the heater 4 with respect to the column 2).

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

This gas chromatograph 1 is provided with a cooling device 8. The cooling device 8 comprises an inner supply pipe 83. The inner supply pipe 83 extends to the vicinity of a region, in which a column 2 is arranged, within a column oven 3. A coolant which is supplied from an external supply pipe 81 toward the inside of the column oven 3 flows into the inner supply pipe 83, and is subsequently ejected into the column oven 3 through an ejection port 83A. At this time, the inside of the column oven 3 is cooled by means of the inner supply pipe 83, which internally contains the coolant, and is further cooled by means of the coolant that is supplied into the column oven 3 through the inner supply pipe 83. In this manner, the inside of the column oven 3 is cooled in stages by means of the inner supply pipe 83 itself and the coolant which is supplied from the inner supply pipe 83. Consequently, the temperature within the column oven 3 is able to be controlled with high accuracy by means of the cooling device 8.

Description

ガスクロマトグラフGas chromatograph
 本発明は、カラムオーブン内を冷却する冷却装置を備えるガスクロマトグラフに関するものである。 The present invention relates to a gas chromatograph provided with a cooling device for cooling the inside of a column oven.
 従来より、カラムオーブン内に冷媒を導入し、カラムオーブン内部を所定温度まで冷却させる冷却装置を備えたガスクロマトグラフが用いられている。ガスクロマトグラフでは、分析動作が行われることにより、カラムオーブン内がヒータによって加熱されて高温状態となる。その後、次回の測定のために、冷却装置によって、カラムオーブン内が所定温度まで冷却される。このように、ガスクロマトグラフでは、カラムオーブン内が、冷却装置によって適宜冷却されて、分析動作が繰り返し行われる(例えば、下記特許文献1参照)。 Conventionally, a gas chromatograph equipped with a cooling device that introduces a refrigerant into the column oven and cools the inside of the column oven to a predetermined temperature has been used. In the gas chromatograph, the analysis operation is performed, so that the inside of the column oven is heated by the heater to be in a high temperature state. Thereafter, for the next measurement, the inside of the column oven is cooled to a predetermined temperature by the cooling device. As described above, in the gas chromatograph, the inside of the column oven is appropriately cooled by the cooling device, and the analysis operation is repeatedly performed (for example, see Patent Document 1 below).
 下記特許文献1に記載のガスクロマトグラフでは、冷却用ガスの供給管(供給ライン)がカラムオーブンに接続されている。供給管には、冷却用ガスの供給量を調整するバルブが設けられている。そして、バルブが適宜開放されることで、供給管を介して冷却用ガスがカラムオーブン内に導入されて、カラムオーブン内が冷却される。 In the gas chromatograph described in Patent Document 1 below, a cooling gas supply pipe (supply line) is connected to a column oven. The supply pipe is provided with a valve for adjusting the supply amount of the cooling gas. Then, by appropriately opening the valve, the cooling gas is introduced into the column oven through the supply pipe, and the inside of the column oven is cooled.
特開平11-44680号公報Japanese Patent Laid-Open No. 11-44680
 上記した従来のガスクロマトグラフでは、カラムオーブン内を冷却させる際に温度が安定しにくいという不具合があった。 The conventional gas chromatograph described above has a problem that the temperature is difficult to stabilize when the inside of the column oven is cooled.
 具体的には、上記のガスクロマトグラフでは、カラムオーブン内の温度を検知するセンサが設けられており、センサが検知するカラムオーブン内の温度に基づいて、供給管を介してカラムオーブン内に冷却用ガスが導入される。このように、内部に導入する冷却用ガスのみによって、カラムオーブン内を冷却する構成の冷却装置では、冷却用ガスが導入されてから、そのガスの影響によってセンサ周囲の雰囲気温度が低下するまでの間にタイムラグが生じる。 Specifically, in the above gas chromatograph, a sensor for detecting the temperature in the column oven is provided. Based on the temperature in the column oven detected by the sensor, cooling is performed in the column oven through the supply pipe. Gas is introduced. In this way, in the cooling device configured to cool the inside of the column oven only by the cooling gas introduced into the interior, the cooling gas is introduced until the ambient temperature around the sensor decreases due to the influence of the gas. There is a time lag between them.
 例えば、必要な量のガスがカラムオーブン内に導入された場合であっても、ガスが導入された直後には、センサ周囲の雰囲気温度は完全には低下しない(安定しない)。そのため、センサの検知温度に基づいて、ガスをカラムオーブン内に導入し続けると、センサの検知温度が目的温度に到達したときには、カラムオーブン内に必要以上のガスが導入されることとなる。その結果、その後にガスの供給を停止したとしても、センサ周囲の雰囲気温度は、さらに低下し、最終的には、目的温度よりも大きく低下してしまう。このように、上記のガスクロマトグラフの構成では、内部温度が安定しにくいという不具合が生じてしまう。
 本発明は、上記実情に鑑みてなされたものであり、カラムオーブン内を精度よく温調できるガスクロマトグラフを提供することを目的とする。
For example, even when a necessary amount of gas is introduced into the column oven, immediately after the gas is introduced, the ambient temperature around the sensor does not decrease completely (is not stable). Therefore, if gas is continuously introduced into the column oven based on the detection temperature of the sensor, more gas than necessary is introduced into the column oven when the detection temperature of the sensor reaches the target temperature. As a result, even if the gas supply is stopped thereafter, the ambient temperature around the sensor is further lowered, and finally it is greatly lowered from the target temperature. Thus, in the configuration of the gas chromatograph described above, there arises a problem that the internal temperature is difficult to stabilize.
The present invention has been made in view of the above circumstances, and an object thereof is to provide a gas chromatograph capable of accurately adjusting the temperature in a column oven.
(1)本発明に係るガスクロマトグラフは、カラムオーブンと、冷却装置とを備える。前記カラムオーブンは、内部にカラムが収容される。前記冷却装置は、吐出口から前記カラムオーブン内に冷媒を吐出することにより、前記カラムオーブン内を冷却する。前記冷却装置には、前記カラムオーブン内における前記カラムが配置される領域の近傍まで延び、前記吐出口へと冷媒を供給するための供給管が含まれる。 (1) A gas chromatograph according to the present invention includes a column oven and a cooling device. The column oven contains a column therein. The cooling device cools the inside of the column oven by discharging a refrigerant from the discharge port into the column oven. The cooling device includes a supply pipe that extends to the vicinity of a region where the column is arranged in the column oven and supplies a refrigerant to the discharge port.
 このような構成によれば、カラムオーブン内は、冷媒を内部に含む供給管によって冷却される。そして、カラムオーブン内に、供給管を介して冷媒が供給されることにより、カラムオーブン内がさらに冷却される。すなわち、カラムオーブン内は、供給管自体、及び、供給管から供給される冷媒によって段階的に冷却される。
 そのため、冷却装置によって、カラムオーブン内を精度よく温調できる。
According to such a configuration, the inside of the column oven is cooled by the supply pipe containing the refrigerant therein. And the inside of a column oven is further cooled by supplying a refrigerant | coolant in a column oven via a supply pipe | tube. That is, the inside of the column oven is cooled in stages by the supply pipe itself and the refrigerant supplied from the supply pipe.
Therefore, the temperature inside the column oven can be accurately controlled by the cooling device.
(2)また、前記ガスクロマトグラフは、ヒータをさらに備えてもよい。前記ヒータは、前記カラムオーブン内に設けられ、当該カラムオーブン内を加熱する。前記供給管は、前記ヒータと前記カラムとの間の領域まで延びていてもよい。 (2) The gas chromatograph may further include a heater. The heater is provided in the column oven and heats the column oven. The supply pipe may extend to a region between the heater and the column.
 このような構成によれば、冷媒を内部に含む供給管によって、ヒータとカラムとの間の領域を冷却できる。 According to such a configuration, the region between the heater and the column can be cooled by the supply pipe containing the refrigerant inside.
(3)また、前記供給管は、前記カラムが配置される領域の近傍において湾曲形状に形成されていてもよい。 (3) Further, the supply pipe may be formed in a curved shape in the vicinity of a region where the column is arranged.
 このような構成によれば、冷媒を内部に含む供給管によって、カラム周辺の雰囲気を効率的に冷却できる。 According to such a configuration, the atmosphere around the column can be efficiently cooled by the supply pipe containing the refrigerant inside.
(4)また、前記供給管は、前記カラムの形状に対応する湾曲形状に形成されていてもよい。 (4) Moreover, the said supply pipe | tube may be formed in the curved shape corresponding to the shape of the said column.
 このような構成によれば、冷媒を内部に含む供給管によって、カラム自体を効率的に冷却できる。 According to such a configuration, the column itself can be efficiently cooled by the supply pipe containing the refrigerant inside.
(5)また、前記冷却装置には、前記供給管よりも内径が小さい抵抗部を有し、前記供給管に対して上流側において当該供給管に連通する抵抗管が含まれてもよい。 (5) The cooling device may include a resistance pipe having a resistance portion having an inner diameter smaller than that of the supply pipe and communicating with the supply pipe on the upstream side of the supply pipe.
 このような構成によれば、冷媒は、抵抗部を通過した後、供給管を通過してカラムオーブン内に供給される。そのため、冷媒の供給圧力が大きい場合であっても、抵抗部を通過させることで、その流量を調整できる。 According to such a configuration, after passing through the resistance portion, the refrigerant passes through the supply pipe and is supplied into the column oven. Therefore, even if the supply pressure of the refrigerant is large, the flow rate can be adjusted by passing the resistance portion.
(6)また、前記ガスクロマトグラフは、切替部をさらに備えてもよい。前記切替部は、前記抵抗部を介して前記供給管に冷媒を供給する第1供給状態、又は、前記抵抗部を介さずに前記供給管に冷媒を供給する第2供給状態に切り替える。 (6) The gas chromatograph may further include a switching unit. The switching unit switches to a first supply state in which the refrigerant is supplied to the supply pipe via the resistance unit, or a second supply state in which the refrigerant is supplied to the supply pipe without going through the resistance unit.
 このような構成によれば、切替部によって適宜供給状態を切り替えることにより、冷媒を適切な供給状態(供給経路)でカラムオーブン内に供給できる。 According to such a configuration, the refrigerant can be supplied into the column oven in an appropriate supply state (supply path) by appropriately switching the supply state by the switching unit.
(7)また、前記冷却装置には、流量調整バルブが含まれてもよい。前記流量調整バルブは、前記供給管に対して上流側において当該供給管に供給する冷媒の流量を調整する。 (7) Further, the cooling device may include a flow rate adjusting valve. The flow rate adjusting valve adjusts the flow rate of the refrigerant supplied to the supply pipe on the upstream side of the supply pipe.
 このような構成によれば、流量調整バルブによって冷媒の流量を調整した上で、さらに、抵抗部によって冷媒の流量を調整できる。
 そのため、冷媒の流量を適切に調整できる。
According to such a configuration, the flow rate of the refrigerant can be adjusted by the resistance portion after the flow rate of the refrigerant is adjusted by the flow rate adjusting valve.
Therefore, the flow rate of the refrigerant can be adjusted appropriately.
 本発明によれば、カラムオーブン内は、供給管自体、及び、供給管から供給される冷媒によって段階的に冷却される。そのため、カラムオーブン内を精度よく温調できる。 According to the present invention, the inside of the column oven is cooled in stages by the supply pipe itself and the refrigerant supplied from the supply pipe. Therefore, the temperature inside the column oven can be accurately controlled.
本発明の第1実施形態に係るガスクロマトグラフの構成例を示した概略図である。It is the schematic which showed the structural example of the gas chromatograph which concerns on 1st Embodiment of this invention. 図1の冷却装置に用いられる内部供給管を示した正面図である。It is the front view which showed the internal supply pipe | tube used for the cooling device of FIG. 本発明の第2実施形態に係るガスクロマトグラフの冷却装置に用いられる内部供給管を示した正面図である。It is the front view which showed the internal supply pipe | tube used for the cooling device of the gas chromatograph which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係るガスクロマトグラフの構成例を示した概略図である。It is the schematic which showed the structural example of the gas chromatograph which concerns on 3rd Embodiment of this invention.
1.ガスクロマトグラフの構成
 図1は、本発明の第1実施形態に係るガスクロマトグラフ1の構成例を示した概略図である。
1. Configuration of Gas Chromatograph FIG. 1 is a schematic diagram showing a configuration example of a gas chromatograph 1 according to the first embodiment of the present invention.
 ガスクロマトグラフ1は、キャリアガスとともに試料ガスをカラム2内に供給することにより分析を行うためのものであり、上記カラム2以外に、カラムオーブン3、ヒータ4、ファン5、試料導入部6、検出器7及び冷却装置8などを備えている。
 カラム2は、カラムオーブン3内に収容されている。カラム2は、例えば、キャピラリカラムからなる。
 カラムオーブン3は、ボックス形状に形成されている。
The gas chromatograph 1 is for performing analysis by supplying a sample gas together with a carrier gas into the column 2. The container 7 and the cooling device 8 are provided.
The column 2 is accommodated in the column oven 3. The column 2 is composed of, for example, a capillary column.
The column oven 3 is formed in a box shape.
 ヒータ4は、カラムオーブン3内を加熱するためのものであり、カラムオーブン3内に配置されている。ヒータ4は、カラム2と間隔を隔てて配置されている。カラムオーブン3内において、カラム2とヒータ4との間には、仕切り板9が設けられている。仕切り板9には、空気が通過するため穴や、冷却装置8の一部を挿通させるための穴が形成されている。 The heater 4 is for heating the inside of the column oven 3 and is arranged in the column oven 3. The heater 4 is disposed at a distance from the column 2. In the column oven 3, a partition plate 9 is provided between the column 2 and the heater 4. The partition plate 9 is formed with a hole through which air passes and a hole through which a part of the cooling device 8 is inserted.
 ファン5は、カラムオーブン3内に配置されている。ファン5は、ヒータ4に対して、カラム2と反対側に設けられている。ガスクロマトグラフ1では、ファン5が設けられる側が後方側であり、カラム2が設けられる側が前方側である。 The fan 5 is disposed in the column oven 3. The fan 5 is provided on the opposite side of the column 2 with respect to the heater 4. In the gas chromatograph 1, the side on which the fan 5 is provided is the rear side, and the side on which the column 2 is provided is the front side.
 試料導入部6は、カラム2内にキャリアガス及び試料ガスを導入するためのものであり、その内部に試料気化室(図示せず)が形成されている。この試料気化室には、液体試料が注入され、試料気化室内で気化された試料が、キャリアガスとともにカラム2内に導入される。また、試料気化室には、ガス供給流路11及びスプリット流路12が連通している。
 ガス供給流路11は、試料導入部6の試料気化室内にキャリアガスを供給するための流路である。
The sample introduction unit 6 is for introducing a carrier gas and a sample gas into the column 2, and a sample vaporizing chamber (not shown) is formed therein. A liquid sample is injected into the sample vaporization chamber, and the sample vaporized in the sample vaporization chamber is introduced into the column 2 together with the carrier gas. A gas supply channel 11 and a split channel 12 communicate with the sample vaporizing chamber.
The gas supply channel 11 is a channel for supplying a carrier gas into the sample vaporization chamber of the sample introduction unit 6.
 スプリット流路12は、スプリット導入法によりカラム2内にキャリアガス及び試料ガスを導入する際に、試料気化室内のガス(キャリアガス及び試料ガスの混合ガス)の一部を所定のスプリット比で外部に排出するための流路である。 When the carrier gas and the sample gas are introduced into the column 2 by the split introduction method, the split flow path 12 is configured so that a part of the gas in the sample vaporization chamber (mixed gas of the carrier gas and the sample gas) is externally supplied at a predetermined split ratio. This is a flow path for discharging the water.
 検出器7は、例えば、水素炎イオン化検出器(FID)や、炎光光度検出器(FPD)により構成される。検出器7は、カラム2から導入されるキャリアガスに含まれる各試料成分を順次検出する。 The detector 7 is composed of, for example, a flame ionization detector (FID) or a flame photometric detector (FPD). The detector 7 sequentially detects each sample component contained in the carrier gas introduced from the column 2.
 冷却装置8は、カラムオーブン3内に冷媒を吐出することにより、カラムオーブン3内を冷却するための装置である。冷却装置8から吐出される冷媒は、例えば、N2ガスやCO2ガスなどの冷却用ガスである。冷却装置8は、その一部がカラムオーブン3内に配置されている。冷却装置8の詳細な構成については、後述する。 The cooling device 8 is a device for cooling the inside of the column oven 3 by discharging a refrigerant into the column oven 3. The refrigerant discharged from the cooling device 8 is, for example, a cooling gas such as N2 gas or CO2 gas. A part of the cooling device 8 is disposed in the column oven 3. The detailed configuration of the cooling device 8 will be described later.
 ガスクロマトグラフ1において試料の測定が行われる場合には、まず、冷却装置8を用いてカラムオーブン3内の温度が設定温度(室温以下)まで下げられる。この状態において、分析対象となる試料が試料導入部6に注入される。試料は、試料気化室において気化される。また、試料導入部6の試料気化室には、ガス供給流路11を介してキャリアガスが供給される。 When a sample is measured in the gas chromatograph 1, first, the temperature in the column oven 3 is lowered to a set temperature (room temperature or lower) using the cooling device 8. In this state, a sample to be analyzed is injected into the sample introduction unit 6. The sample is vaporized in the sample vaporization chamber. A carrier gas is supplied to the sample vaporization chamber of the sample introduction unit 6 via the gas supply channel 11.
 試料気化室内で気化された試料は、キャリアガスとともにカラム2内に導入される。カラム2内に試料が導入された後、ヒータ4及びファン5が駆動されて、カラムオーブン3内が加熱されることにより、カラムオーブン3内の温度が徐々に上昇する。試料に含まれる各試料成分は、カラム2内を通過する過程で分離されて、検出器7に順次導入される。 The sample vaporized in the sample vaporization chamber is introduced into the column 2 together with the carrier gas. After the sample is introduced into the column 2, the heater 4 and the fan 5 are driven to heat the inside of the column oven 3, thereby gradually increasing the temperature in the column oven 3. Each sample component contained in the sample is separated in the process of passing through the column 2 and sequentially introduced into the detector 7.
 そして、検出器7において、カラム2から導入されるキャリアガスに含まれる各試料成分が順次検出される。ガスクロマトグラフ1では、検出器7の検出信号に基づいてクロマトグラムが生成される。ユーザは、得られたクロマトグラムを確認して、各種分析を行う。クロマトグラムの確認後、高温空気が系外に排出されることにより、カラムオーブン3内が初期温度まで冷却される。 The detector 7 sequentially detects each sample component contained in the carrier gas introduced from the column 2. In the gas chromatograph 1, a chromatogram is generated based on the detection signal of the detector 7. The user confirms the obtained chromatogram and performs various analyses. After confirmation of the chromatogram, the inside of the column oven 3 is cooled to the initial temperature by discharging hot air out of the system.
 その後、冷却装置8からカラムオーブン3内に冷媒が吐出される。これにより、カラムオーブン3内が所定温度(目的温度)まで冷却される。そして、上記の分析動作が繰り返される。このように、ガスクロマトグラフ1において、分析動作が繰り返し行われる際には、冷却装置8による温調が適宜行われる。 Thereafter, the refrigerant is discharged from the cooling device 8 into the column oven 3. Thereby, the inside of the column oven 3 is cooled to a predetermined temperature (target temperature). Then, the above analysis operation is repeated. As described above, in the gas chromatograph 1, when the analysis operation is repeatedly performed, the temperature control by the cooling device 8 is appropriately performed.
2.冷却装置の構成
 冷却装置8は、流量調整バルブ80と、外部供給管81と、抵抗管82と、内部供給管83とを備えている。
 流量調整バルブ80は、カラムオーブン3の側壁(後壁)に設けられている。流量調整バルブ80は、冷媒の流量を調整するためのバルブである。流量調整バルブ80には、外部供給管81と、抵抗管82とが接続されている。すなわち、流量調整バルブ80は、外部供給管81と、抵抗管82との間に介在されている。流量調整バルブ80は、図示しない制御部によって、その開度が調整される。なお、流量調整バルブ80は、手動により、その開度が調整される構成であってもよい。
2. Configuration of Cooling Device The cooling device 8 includes a flow rate adjusting valve 80, an external supply pipe 81, a resistance pipe 82, and an internal supply pipe 83.
The flow rate adjustment valve 80 is provided on the side wall (rear wall) of the column oven 3. The flow rate adjusting valve 80 is a valve for adjusting the flow rate of the refrigerant. An external supply pipe 81 and a resistance pipe 82 are connected to the flow rate adjusting valve 80. That is, the flow rate adjusting valve 80 is interposed between the external supply pipe 81 and the resistance pipe 82. The opening degree of the flow rate adjusting valve 80 is adjusted by a control unit (not shown). Note that the flow rate adjusting valve 80 may be configured so that its opening degree is manually adjusted.
 外部供給管81は、カラムオーブン3の外部に配置されている。外部供給管81は、その下流側端部が、流量調整バルブ80に接続されている。図示しないが、外部供給管81の上流側端部は、冷媒が貯留されたボンベなどの貯留部に接続されている。そして、この貯留部から冷媒が供給される。 The external supply pipe 81 is disposed outside the column oven 3. The external supply pipe 81 has a downstream end connected to the flow rate adjusting valve 80. Although not shown, the upstream end of the external supply pipe 81 is connected to a reservoir such as a cylinder in which the refrigerant is stored. And a refrigerant | coolant is supplied from this storage part.
 抵抗管82は、カラムオーブン3の内部に配置されている。抵抗管82は、その上流側端部が、流量調整バルブ80に接続されている。抵抗管82は、その長さに応じた流路抵抗を有する管状の部材である。抵抗管82の内径は、内部供給管83の内径よりも小さい。後述するように、抵抗管82は、着脱可能な部材である。抵抗管82が、抵抗部の一例である。 The resistance tube 82 is disposed inside the column oven 3. The resistance tube 82 has an upstream end connected to the flow rate adjusting valve 80. The resistance tube 82 is a tubular member having a flow path resistance corresponding to its length. The inner diameter of the resistance tube 82 is smaller than the inner diameter of the internal supply tube 83. As will be described later, the resistance tube 82 is a detachable member. The resistance tube 82 is an example of a resistance portion.
 内部供給管83は、カラムオーブン3の内部に配置されている。具体的には、内部供給管83は、カラム2と、ヒータ4との間の領域に配置されており(延びており)、より具体的には、カラム2と、仕切り板9との間に配置されている(延びている)。内部供給管83が供給管の一例である。
 図3は、内部供給管83を示した正面図である。
 内部供給管83は、湾曲形状(円弧状)に形成されている。内部供給管83は、管状部831と、接続部832とを備えている。
The internal supply pipe 83 is disposed inside the column oven 3. Specifically, the internal supply pipe 83 is disposed (extends) in a region between the column 2 and the heater 4, and more specifically, between the column 2 and the partition plate 9. It is arranged (extends). The internal supply pipe 83 is an example of the supply pipe.
FIG. 3 is a front view showing the internal supply pipe 83.
The internal supply pipe 83 is formed in a curved shape (arc shape). The internal supply pipe 83 includes a tubular portion 831 and a connection portion 832.
 管状部831は、管状に形成されている。管状部831は、上流側端部から中央部にかけて円弧状に湾曲しており、中央部(中央部からやや下流側部分)から下流側端部までの部分が直線状に延びる形状となっている。すなわち、管状部831は、円弧状に形成される部分と、直線状に形成される部分とを含んでいる。管状部831の下流側端部(直線部分の先端部)の内部空間が吐出口83Aである。管状部831の中央部は、固定部材20に保持されている。管状部831の上流側端部には、接続部832が取り付けられている。 The tubular portion 831 is formed in a tubular shape. The tubular portion 831 is curved in an arc shape from the upstream end portion to the central portion, and a portion from the central portion (slightly downstream portion from the central portion) to the downstream end portion is linearly extended. . That is, the tubular portion 831 includes a portion formed in an arc shape and a portion formed in a straight line shape. The inner space of the downstream end portion (the tip portion of the straight portion) of the tubular portion 831 is the discharge port 83A. A central portion of the tubular portion 831 is held by the fixing member 20. A connection portion 832 is attached to the upstream end portion of the tubular portion 831.
 接続部832は、円筒状に形成されている。接続部832の内部空間は、管状部831の内部空間に連通している。接続部832の先端部(上流側端部)は、抵抗管82を取り付けることができる構成となっている。 The connecting portion 832 is formed in a cylindrical shape. The internal space of the connection portion 832 communicates with the internal space of the tubular portion 831. The distal end portion (upstream end portion) of the connection portion 832 has a configuration in which the resistance tube 82 can be attached.
 図1では、図示を省略しているが、固定部材20は、仕切り板9に取り付けられている。そして、その固定部材20によって内部供給管83(管状部831)が保持されている。これにより、内部供給管83は、仕切り板9とカラム2との間に配置された状態で保持される。この状態において、内部供給管83の下流側端部は、カラムオーブン3内における下方部分に配置されている。また、内部供給管83の吐出口83Aは、水平方向に向いている。これにより、吐出口83Aから吐出される冷媒は、カラム2に直接噴射されず、カラムオーブン3の内壁に当たって拡散するようになっている。 Although not shown in FIG. 1, the fixing member 20 is attached to the partition plate 9. The internal supply pipe 83 (tubular portion 831) is held by the fixing member 20. Thereby, the internal supply pipe 83 is held in a state of being arranged between the partition plate 9 and the column 2. In this state, the downstream end portion of the internal supply pipe 83 is disposed at a lower portion in the column oven 3. Further, the discharge port 83A of the internal supply pipe 83 is oriented in the horizontal direction. Thereby, the refrigerant discharged from the discharge port 83 </ b> A is not directly injected onto the column 2, but hits the inner wall of the column oven 3 and diffuses.
 内部供給管83は、カラムオーブン3内で保持された状態において、カラム2が配置される領域の近傍に設けられる。具体的には、内部供給管83は、カラム2の後方に間隔を隔てて配置されている。また、内部供給管83の形状は、カラム2の形状に対応している。具体的には、内部供給管83の外形の大きさは、カラム2の外形の大きさとほぼ同程度であり、前後方向に見たときに、内部供給管83とカラム2とは重なっている。 The internal supply pipe 83 is provided in the vicinity of the region where the column 2 is arranged in a state where it is held in the column oven 3. Specifically, the internal supply pipe 83 is disposed behind the column 2 with a space therebetween. The shape of the internal supply pipe 83 corresponds to the shape of the column 2. Specifically, the size of the outer shape of the internal supply pipe 83 is approximately the same as the size of the outer shape of the column 2, and the internal supply pipe 83 and the column 2 overlap when viewed in the front-rear direction.
3.冷却装置の動作
 ガスクロマトグラフ1では、ガスクロマトグラフ1の使用状況に応じた適切な長さの抵抗管82(適切な流路抵抗を有する抵抗管82)が選択され、その抵抗管82が用いられる。
3. Operation of Cooling Device In the gas chromatograph 1, a resistance tube 82 having an appropriate length (resistance tube 82 having an appropriate flow path resistance) corresponding to the usage state of the gas chromatograph 1 is selected, and the resistance tube 82 is used.
 例えば、冷媒の残量が多い場合などには、冷媒の供給圧が大きくなるため、流量調整バルブ80の開度が同一であっても、その供給量が大きくなる。このような場合には、ユーザは、長さの長い(流路抵抗の大きい)抵抗管82を選択し、その抵抗管82を内部供給管83及び流量調整バルブ80に接続する。また、例えば、冷媒の残量が少ない場合などには、冷媒の供給圧が小さくなる。そのため、このような場合には、ユーザは、長さの短い(流路抵抗の小さい)抵抗管82を選択し、その抵抗管82を内部供給管83及び流量調整バルブ80に接続する。 For example, when the remaining amount of the refrigerant is large, the supply pressure of the refrigerant increases, so that the supply amount increases even if the flow rate adjustment valve 80 has the same opening degree. In such a case, the user selects a resistance tube 82 having a long length (large flow path resistance), and connects the resistance tube 82 to the internal supply tube 83 and the flow rate adjusting valve 80. Further, for example, when the remaining amount of the refrigerant is small, the supply pressure of the refrigerant becomes small. Therefore, in such a case, the user selects a resistance tube 82 having a short length (low flow path resistance) and connects the resistance tube 82 to the internal supply tube 83 and the flow rate adjustment valve 80.
 抵抗管82は、その下流側端部が内部供給管83の接続部832に接続されるとともに、その上流側端部が流量調整バルブ80に接続される。これにより、抵抗管82と内部供給管83とが接続部832を介して連通するとともに、抵抗管82と外部供給管81とが流量調整バルブ80を介して連通する。このように、抵抗管82は、内部供給管83に対して上流側に配置される。また、流量調整バルブ80は、抵抗管82及び内部供給管83に対して上流側に配置される。 The resistance pipe 82 has a downstream end connected to the connection portion 832 of the internal supply pipe 83 and an upstream end connected to the flow rate adjusting valve 80. Thereby, the resistance pipe 82 and the internal supply pipe 83 communicate with each other through the connection portion 832, and the resistance pipe 82 and the external supply pipe 81 communicate with each other through the flow rate adjustment valve 80. As described above, the resistance tube 82 is disposed on the upstream side with respect to the internal supply tube 83. Further, the flow rate adjusting valve 80 is arranged on the upstream side with respect to the resistance pipe 82 and the internal supply pipe 83.
 カラムオーブン3内を冷却する際には、外部供給管81からカラムオーブン3内に向けて冷媒が供給される。外部供給管81を通過した冷媒は、流量調整バルブ80を通過して、抵抗管82に流入する。そして、冷媒は、抵抗管82を通過した後、内部供給管83に流入し、その後、吐出口83Aからカラムオーブン3内における下方部分に吐出される。 When cooling the inside of the column oven 3, the refrigerant is supplied from the external supply pipe 81 toward the inside of the column oven 3. The refrigerant that has passed through the external supply pipe 81 passes through the flow rate adjustment valve 80 and flows into the resistance pipe 82. Then, after passing through the resistance tube 82, the refrigerant flows into the internal supply tube 83, and is then discharged from the discharge port 83 </ b> A to the lower part in the column oven 3.
 このように、冷媒は、抵抗管82によって流量の調整がされた後、内部供給管83の吐出口83Aから吐出される。そして、カラムオーブン3内(カラム2)が冷媒によって冷却される。このとき、カラムオーブン3内は、冷媒のみならず、冷媒を内部に含む内部供給管83によっても冷却される。すなわち、カラムオーブン3内は、内部供給管83及び冷媒によって、段階的に冷却される。 Thus, after the flow rate is adjusted by the resistance tube 82, the refrigerant is discharged from the discharge port 83A of the internal supply tube 83. The inside of the column oven 3 (column 2) is cooled by the refrigerant. At this time, the inside of the column oven 3 is cooled not only by the refrigerant but also by the internal supply pipe 83 that contains the refrigerant inside. That is, the column oven 3 is cooled in stages by the internal supply pipe 83 and the refrigerant.
 また、ガスクロマトグラフ1において、冷却装置8によるカラムオーブン3内の冷却が繰り返し行われた結果、冷媒の供給圧が小さくなった場合などには、流量調整バルブ80の開度が調整されて、冷媒の流量が調整される。これにより、抵抗管82の種類を変えることなく、冷媒の流量の調整を行うことができる。このように、ガスクロマトグラフ1の冷却装置8では、抵抗管82及び流量調整バルブ80によって、冷媒の流量が調整される。 In the gas chromatograph 1, when the refrigerant supply pressure is reduced as a result of repeated cooling of the column oven 3 by the cooling device 8, the opening degree of the flow rate adjusting valve 80 is adjusted, and the refrigerant The flow rate is adjusted. Thereby, the flow rate of the refrigerant can be adjusted without changing the type of the resistance tube 82. As described above, in the cooling device 8 of the gas chromatograph 1, the flow rate of the refrigerant is adjusted by the resistance tube 82 and the flow rate adjusting valve 80.
4.作用効果
(1)本実施形態によれば、図1に示すように、ガスクロマトグラフ1の冷却装置8には、内部供給管83が含まれる。内部供給管83は、カラムオーブン3内におけるカラム2が配置される領域の近傍まで延びている。
4). Action Effect (1) According to the present embodiment, as shown in FIG. 1, the cooling device 8 of the gas chromatograph 1 includes the internal supply pipe 83. The internal supply pipe 83 extends to the vicinity of the area where the column 2 is arranged in the column oven 3.
 そのため、カラムオーブン3内は、冷媒を内部に含む内部供給管83によって冷却されるとともに、内部供給管83を介して冷媒が供給されることにより、さらに冷却される。すなわち、カラムオーブン3内は、内部供給管83自体、及び、内部供給管83から供給される冷媒によって段階的に冷却される。
 その結果、冷却装置8によって、カラムオーブン3内を精度よく温調できる。
Therefore, the inside of the column oven 3 is cooled by the internal supply pipe 83 containing the refrigerant therein, and further cooled by being supplied with the refrigerant through the internal supply pipe 83. That is, the inside of the column oven 3 is cooled in stages by the internal supply pipe 83 itself and the refrigerant supplied from the internal supply pipe 83.
As a result, the inside of the column oven 3 can be accurately controlled by the cooling device 8.
(2)また、本実施形態によれば、図1に示すように、内部供給管83は、ヒータ4とカラム2との間の領域まで延びている。 (2) Also, according to the present embodiment, as shown in FIG. 1, the internal supply pipe 83 extends to a region between the heater 4 and the column 2.
 そのため、冷媒を内部に含む内部供給管83によって、ヒータ4とカラム2との間の領域を冷却できる。 Therefore, the region between the heater 4 and the column 2 can be cooled by the internal supply pipe 83 containing the refrigerant inside.
(3)また、本実施形態によれば、図1に示すように、内部供給管83は、カラム2が配置される領域の近傍において湾曲形状に形成されている。 (3) Further, according to the present embodiment, as shown in FIG. 1, the internal supply pipe 83 is formed in a curved shape in the vicinity of the region where the column 2 is disposed.
 そのため、冷媒を内部に含む内部供給管83によって、カラム2周辺の雰囲気を効率的に冷却できる。 Therefore, the atmosphere around the column 2 can be efficiently cooled by the internal supply pipe 83 containing the refrigerant inside.
(4)また、本実施形態によれば、図1及び図2に示すように、内部供給管83は、カラム2の形状に対応する湾曲形状に形成されている。具体的には、内部供給管83の外形の大きさは、カラム2の外形の大きさとほぼ同程度であり、前後方向に見たときに、内部供給管83とカラム2とは重なっている。 (4) According to the present embodiment, as shown in FIGS. 1 and 2, the internal supply pipe 83 is formed in a curved shape corresponding to the shape of the column 2. Specifically, the size of the outer shape of the internal supply pipe 83 is approximately the same as the size of the outer shape of the column 2, and the internal supply pipe 83 and the column 2 overlap when viewed in the front-rear direction.
 そのため、冷媒を内部に含む内部供給管83によって、カラム2自体を効率的に冷却できる。 Therefore, the column 2 itself can be efficiently cooled by the internal supply pipe 83 containing the refrigerant inside.
(5)また、本実施形態によれば、図1に示すように、冷却装置8には、抵抗管82が含まれる。抵抗管82は、内部供給管83に対して上流側に配置されており、内部供給管83に連通している。 (5) According to the present embodiment, as shown in FIG. 1, the cooling device 8 includes the resistance tube 82. The resistance tube 82 is disposed upstream of the internal supply tube 83 and communicates with the internal supply tube 83.
 そのため、外部供給管81を介して供給される冷媒は、抵抗管82を通過した後、供給管を通過してカラムオーブン3内に吐出される。
 その結果、冷媒の供給圧力が大きい場合であっても、抵抗管82を通過させることで、その流量を調整できる。
Therefore, the refrigerant supplied through the external supply pipe 81 passes through the resistance pipe 82 and then passes through the supply pipe and is discharged into the column oven 3.
As a result, even if the supply pressure of the refrigerant is large, the flow rate can be adjusted by passing the resistance tube 82.
(6)また、本実施形態によれば、図1に示すように、冷却装置8には、流量調整バルブ80が含まれる。流量調整バルブ80は、内部供給管83及び抵抗管82に対して上流側において冷媒の流量を調整する。 (6) Moreover, according to this embodiment, as shown in FIG. 1, the cooling device 8 includes the flow rate adjusting valve 80. The flow rate adjusting valve 80 adjusts the flow rate of the refrigerant on the upstream side with respect to the internal supply pipe 83 and the resistance pipe 82.
 そのため、流量調整バルブ80によって冷媒の流量を調整した上で、さらに、抵抗管82によって冷媒の流量を調整できる。
 その結果、冷媒の流量を適切に調整できる。
Therefore, the flow rate of the refrigerant can be adjusted by the resistance tube 82 after the flow rate of the refrigerant is adjusted by the flow rate adjusting valve 80.
As a result, the flow rate of the refrigerant can be adjusted appropriately.
5.第2実施形態
 図3及び図4を用いて、本発明の他の実施形態に係るガスクロマトグラフ1について説明する。なお、第1実施形態と同様の構成については、上記と同様の符号を用いることにより説明を省略する。
 図3は、本発明の第2実施形態に係るガスクロマトグラフ1の冷却装置8に用いられる内部供給管85を示した正面図である。
5). Second Embodiment A gas chromatograph 1 according to another embodiment of the present invention will be described with reference to FIGS. 3 and 4. In addition, about the structure similar to 1st Embodiment, description is abbreviate | omitted by using the code | symbol similar to the above.
FIG. 3 is a front view showing an internal supply pipe 85 used in the cooling device 8 of the gas chromatograph 1 according to the second embodiment of the present invention.
 第2実施形態では、冷却装置8において、上記した内部供給管83に代えて、内部供給管85が用いられる。内部供給管85は、第1実施形態の内部供給管83の形状とは異なる形状を有している。
 具体的には、内部供給管85は、管状部851と、接続部852とを備えている。
In the second embodiment, in the cooling device 8, an internal supply pipe 85 is used instead of the internal supply pipe 83 described above. The internal supply pipe 85 has a shape different from the shape of the internal supply pipe 83 of the first embodiment.
Specifically, the internal supply pipe 85 includes a tubular portion 851 and a connection portion 852.
 管状部851は、管状に形成されており、かつ、渦巻き状に形成されている。具体的には、管状部851は、上流側端部から下流に向かって、旋回するように湾曲しており、かつ、下流に向かうにつれて中心から遠ざかる形状に形成されている。管状部851の下流側端部は、直線状に下方に向かって延びている。管状部851の下流側端部(直線部分の先端部)の内部空間が吐出口85Aである。管状部851の中間部は、固定部材20に保持されている。管状部851の上流側端部には、接続部852が取り付けられている。 The tubular portion 851 is formed in a tubular shape and is formed in a spiral shape. Specifically, the tubular portion 851 is curved so as to turn from the upstream end toward the downstream, and is formed in a shape that becomes farther from the center as it goes downstream. The downstream end of the tubular portion 851 extends linearly downward. An inner space of the downstream end portion (the tip portion of the straight portion) of the tubular portion 851 is the discharge port 85A. An intermediate portion of the tubular portion 851 is held by the fixing member 20. A connecting portion 852 is attached to the upstream end portion of the tubular portion 851.
 接続部852は、長尺な円筒状に形成されている。接続部852の内部空間は、管状部851の内部空間に連通している。接続部852の先端部(上流側端部)には、抵抗管82が取り付けられる。 The connecting portion 852 is formed in a long cylindrical shape. The internal space of the connecting portion 852 communicates with the internal space of the tubular portion 851. A resistance tube 82 is attached to the distal end portion (upstream end portion) of the connection portion 852.
 固定部材20は、カラムオーブン3内において仕切り板9(図1参照)に取り付けられる。そして、その固定部材20によって内部供給管85(管状部851)が保持される。この状態において、内部供給管85の吐出口85Aは、下方に向いている。これにより、吐出口85Aから吐出される冷媒は、カラム2に直接噴射されず、カラムオーブン3の底壁に当たって拡散するようになっている。 The fixing member 20 is attached to the partition plate 9 (see FIG. 1) in the column oven 3. Then, the internal supply pipe 85 (tubular portion 851) is held by the fixing member 20. In this state, the discharge port 85A of the internal supply pipe 85 is directed downward. Thereby, the refrigerant discharged from the discharge port 85 </ b> A is not directly injected to the column 2, but hits the bottom wall of the column oven 3 and diffuses.
 内部供給管83は、カラムオーブン3内で保持された状態において、カラム2が配置される領域の近傍に設けられる。具体的には、内部供給管83の管状部851は、カラム2と対向しており、かつ、カラム2に沿うようにして、カラムオーブン3内に配置されている。 The internal supply pipe 83 is provided in the vicinity of the region where the column 2 is arranged in a state where it is held in the column oven 3. Specifically, the tubular portion 851 of the internal supply pipe 83 faces the column 2 and is disposed in the column oven 3 along the column 2.
 そして、外部供給管81からカラムオーブン3内に向けて冷媒が供給されると、外部供給管81を通過した冷媒は、流量調整バルブ80及び抵抗管82を通過し、その後、内部供給管83を通過して、吐出口83Aからカラムオーブン3内の底壁に向かって吐出される。 When the refrigerant is supplied from the external supply pipe 81 into the column oven 3, the refrigerant that has passed through the external supply pipe 81 passes through the flow rate adjustment valve 80 and the resistance pipe 82, and then passes through the internal supply pipe 83. It passes through and is discharged toward the bottom wall in the column oven 3 from the discharge port 83A.
 このように、第2実施形態によれば、冷却装置8において、内部供給管85の管状部851は、渦巻き状に形成される。そのため、カラムオーブン3内において、内部供給管83の管状部851を、カラム2と対向させて、カラム2に沿うように配置させることができる。
 その結果、内部供給管85によって、カラム2を効率的に冷却できる。
Thus, according to the second embodiment, in the cooling device 8, the tubular portion 851 of the internal supply pipe 85 is formed in a spiral shape. Therefore, in the column oven 3, the tubular portion 851 of the internal supply pipe 83 can be disposed along the column 2 so as to face the column 2.
As a result, the column 2 can be efficiently cooled by the internal supply pipe 85.
6.第3実施形態
 図4は、本発明の第3実施形態に係るガスクロマトグラフ1の構成例を示した概略図である。第3実施形態では、内部供給管83に供給される冷媒の供給経路を適宜変更できる点が第1実施形態と異なる。
6). 3rd Embodiment FIG. 4: is the schematic which showed the structural example of the gas chromatograph 1 which concerns on 3rd Embodiment of this invention. The third embodiment is different from the first embodiment in that the supply path of the refrigerant supplied to the internal supply pipe 83 can be changed as appropriate.
 具体的には、第3実施形態では、流路切替バルブ90と、バイパス管91とが設けられる。また、流量調整バルブ80は、外部供給管81の下流側端部のやや上流側に介在されるように設けられる。 Specifically, in the third embodiment, a flow path switching valve 90 and a bypass pipe 91 are provided. Further, the flow rate adjusting valve 80 is provided so as to be interposed slightly upstream of the downstream end of the external supply pipe 81.
 流路切替バルブ90は、外部供給管81の下流側端部に介在されている。すなわち、流路切替バルブ90は、流量調整バルブ80よりも下流側に配置されている。流路切替バルブ90には、抵抗管82の上流側端部と、バイパス管91の上流側端部が接続されている。流路切替バルブ90は、外部供給管81に供給された冷媒の供給経路を、抵抗管82及びバイパス管91のいずれか一方に切替えることのできるバルブである。
 バイパス管91は、抵抗管82の内径よりも大きい内径を有しており、流路抵抗が抵抗管82よりも小さい。バイパス管91は、その下流側端部が、接続部832に接続されている。
The flow path switching valve 90 is interposed at the downstream end of the external supply pipe 81. That is, the flow path switching valve 90 is disposed downstream of the flow rate adjustment valve 80. The upstream end of the resistance tube 82 and the upstream end of the bypass tube 91 are connected to the flow path switching valve 90. The flow path switching valve 90 is a valve that can switch the supply path of the refrigerant supplied to the external supply pipe 81 to one of the resistance pipe 82 and the bypass pipe 91.
The bypass pipe 91 has an inner diameter larger than the inner diameter of the resistance pipe 82, and the flow path resistance is smaller than that of the resistance pipe 82. The downstream end of the bypass pipe 91 is connected to the connection portion 832.
 これにより、流路切替バルブ90を切り替えることで、外部供給管81に供給された冷媒を、抵抗管82を介して内部供給管83に流入する経路(第1供給状態)、又は、抵抗管82を介さずにバイパス管91を通過して内部供給管83に流入する経路(第2供給状態)のいずれか一方の経路を通過させて、カラムオーブン3内に吐出させることができる。 Thereby, by switching the flow path switching valve 90, the refrigerant supplied to the external supply pipe 81 flows into the internal supply pipe 83 via the resistance pipe 82 (first supply state), or the resistance pipe 82. Without passing through the bypass pipe 91, it can be discharged into the column oven 3 through one of the paths (second supply state) that flows into the internal supply pipe 83 through the bypass pipe 91.
 このように、第3実施形態のガスクロマトグラフ1によれば、流路切替バルブ90によって適宜供給状態(供給経路)を切り替えることにより、冷媒を適切な供給状態でカラムオーブン3内に供給できる。
7.変形例
Thus, according to the gas chromatograph 1 of the third embodiment, the refrigerant can be supplied into the column oven 3 in an appropriate supply state by appropriately switching the supply state (supply path) by the flow path switching valve 90.
7). Modified example
 以上の実施形態では、ガスクロマトグラフ1において、内部供給管83と流量調整バルブ80との間には、抵抗管82が介在するとして説明した。しかし、ガスクロマトグラフ1において、抵抗管82を設けずに、内部供給管83の上流側端部を流量調整バルブ80に接続する構成であってもよい。 In the above embodiment, the gas chromatograph 1 has been described on the assumption that the resistance pipe 82 is interposed between the internal supply pipe 83 and the flow rate adjustment valve 80. However, the gas chromatograph 1 may be configured such that the upstream end of the internal supply pipe 83 is connected to the flow rate adjusting valve 80 without providing the resistance pipe 82.
 また、以上の実施形態では、内部供給管83,85は、カラム2の近傍に設けられており、具体的には、カラム2の後方(カラム2とヒータ4との間の領域)に設けられるとして説明した。しかし、内部供給管83,85は、カラム2の近傍として、カラム2の前方(カラム2に対してヒータ4と反対側)に設けられてもよい。 Further, in the above embodiment, the internal supply pipes 83 and 85 are provided in the vicinity of the column 2, and specifically, are provided in the rear of the column 2 (region between the column 2 and the heater 4). As explained. However, the internal supply pipes 83 and 85 may be provided in the vicinity of the column 2 and in front of the column 2 (on the side opposite to the heater 4 with respect to the column 2).
   1    ガスクロマトグラフ
   2    カラム
   3    カラムオーブン
   4    ヒータ
   8    冷却装置
   80   流量調整バルブ
   82   抵抗管
   83   内部供給管
   83A  吐出口
   85   内部供給管
   85A  吐出口
   90   流路切替バルブ
DESCRIPTION OF SYMBOLS 1 Gas chromatograph 2 Column 3 Column oven 4 Heater 8 Cooling device 80 Flow control valve 82 Resistance pipe 83 Internal supply pipe 83A Discharge port 85 Internal supply pipe 85A Discharge port 90 Flow path switching valve

Claims (7)

  1.  内部にカラムが収容されるカラムオーブンと、
     吐出口から前記カラムオーブン内に冷媒を吐出することにより、前記カラムオーブン内を冷却する冷却装置とを備え、
     前記冷却装置には、前記カラムオーブン内における前記カラムが配置される領域の近傍まで延び、前記吐出口へと冷媒を供給するための供給管が含まれることを特徴とするガスクロマトグラフ。
    A column oven in which the column is housed,
    A cooling device that cools the inside of the column oven by discharging a refrigerant from the outlet into the column oven;
    The gas chromatograph, wherein the cooling device includes a supply pipe that extends to the vicinity of a region where the column is arranged in the column oven and supplies a refrigerant to the discharge port.
  2.  前記カラムオーブン内に設けられ、当該カラムオーブン内を加熱するためのヒータをさらに備え、
     前記供給管は、前記ヒータと前記カラムとの間の領域まで延びていることを特徴とする請求項1に記載のガスクロマトグラフ。
    A heater provided in the column oven for heating the inside of the column oven;
    The gas chromatograph according to claim 1, wherein the supply pipe extends to a region between the heater and the column.
  3.  前記供給管は、前記カラムが配置される領域の近傍において湾曲形状に形成されていることを特徴とする請求項1に記載のガスクロマトグラフ。 The gas chromatograph according to claim 1, wherein the supply pipe is formed in a curved shape in the vicinity of a region where the column is arranged.
  4.  前記供給管は、前記カラムの形状に対応する湾曲形状に形成されていることを特徴とする請求項3に記載のガスクロマトグラフ。 The gas chromatograph according to claim 3, wherein the supply pipe is formed in a curved shape corresponding to the shape of the column.
  5.  前記冷却装置には、前記供給管よりも内径が小さい抵抗部を有し、前記供給管に対して上流側において当該供給管に連通する抵抗管が含まれることを特徴とする請求項1に記載のガスクロマトグラフ。 2. The cooling device includes a resistance pipe having a resistance portion having an inner diameter smaller than that of the supply pipe and communicating with the supply pipe on an upstream side with respect to the supply pipe. Gas chromatograph.
  6.  前記抵抗部を介して前記供給管に冷媒を供給する第1供給状態、又は、前記抵抗部を介さずに前記供給管に冷媒を供給する第2供給状態に切り替えるための切替部をさらに備えることを特徴とする請求項5に記載のガスクロマトグラフ。 A switching unit configured to switch to a first supply state in which the refrigerant is supplied to the supply pipe through the resistance unit, or a second supply state in which the refrigerant is supplied to the supply pipe without going through the resistance unit; The gas chromatograph according to claim 5.
  7.  前記冷却装置には、前記供給管に対して上流側において当該供給管に供給する冷媒の流量を調整するための流量調整バルブが含まれることを特徴とする請求項5に記載のガスクロマトグラフ。 6. The gas chromatograph according to claim 5, wherein the cooling device includes a flow rate adjusting valve for adjusting a flow rate of a refrigerant supplied to the supply pipe on an upstream side of the supply pipe.
PCT/JP2017/017546 2017-05-09 2017-05-09 Gas chromatograph WO2018207258A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019516772A JP6863457B2 (en) 2017-05-09 2017-05-09 Gas chromatograph
PCT/JP2017/017546 WO2018207258A1 (en) 2017-05-09 2017-05-09 Gas chromatograph
CN201780090512.3A CN110621994B (en) 2017-05-09 2017-05-09 Gas chromatograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/017546 WO2018207258A1 (en) 2017-05-09 2017-05-09 Gas chromatograph

Publications (1)

Publication Number Publication Date
WO2018207258A1 true WO2018207258A1 (en) 2018-11-15

Family

ID=64104603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017546 WO2018207258A1 (en) 2017-05-09 2017-05-09 Gas chromatograph

Country Status (3)

Country Link
JP (1) JP6863457B2 (en)
CN (1) CN110621994B (en)
WO (1) WO2018207258A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111693637A (en) * 2019-03-13 2020-09-22 株式会社岛津制作所 Tubular column oven and chromatograph
CN113702528A (en) * 2021-08-27 2021-11-26 深圳市华科达检测有限公司 Gas chromatograph

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63156068U (en) * 1987-03-31 1988-10-13
JPH02290551A (en) * 1988-12-22 1990-11-30 Univ Dayton Improved gas chromatographic method and equipment for the same
JPH1144680A (en) * 1997-07-28 1999-02-16 Horiba Ltd Cooling apparatus for oven
JP2005283317A (en) * 2004-03-30 2005-10-13 Shimadzu Corp Gas analyzer
JP2007183252A (en) * 2005-12-09 2007-07-19 Taiyo Nippon Sanso Corp Cooling system for analyzer, and device and method of gas chromatography
JP2009121937A (en) * 2007-11-14 2009-06-04 Fuji Xerox Co Ltd Chromatographic system and sensor
WO2011099079A1 (en) * 2010-02-12 2011-08-18 ジーエルサイエンス株式会社 Method for collecting sample and device for collecting same
JP2017509904A (en) * 2014-03-26 2017-04-06 ブーカー, ペーターBOEKER, Peter Flow field induced temperature gradient gas chromatography

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3305000A (en) * 1965-02-08 1967-02-21 Barber Colman Co Temperature control system for chromatographs
GB2248318B (en) * 1990-09-06 1994-11-02 Perkin Elmer Ltd Temperature control systems
JPH05126817A (en) * 1991-10-31 1993-05-21 Shimadzu Corp Gas chromatograph
JP3200787U (en) * 2015-08-25 2015-11-05 株式会社島津製作所 Gas chromatograph

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63156068U (en) * 1987-03-31 1988-10-13
JPH02290551A (en) * 1988-12-22 1990-11-30 Univ Dayton Improved gas chromatographic method and equipment for the same
JPH1144680A (en) * 1997-07-28 1999-02-16 Horiba Ltd Cooling apparatus for oven
JP2005283317A (en) * 2004-03-30 2005-10-13 Shimadzu Corp Gas analyzer
JP2007183252A (en) * 2005-12-09 2007-07-19 Taiyo Nippon Sanso Corp Cooling system for analyzer, and device and method of gas chromatography
JP2009121937A (en) * 2007-11-14 2009-06-04 Fuji Xerox Co Ltd Chromatographic system and sensor
WO2011099079A1 (en) * 2010-02-12 2011-08-18 ジーエルサイエンス株式会社 Method for collecting sample and device for collecting same
JP2017509904A (en) * 2014-03-26 2017-04-06 ブーカー, ペーターBOEKER, Peter Flow field induced temperature gradient gas chromatography

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CONTRERAS A JESSE: "PEAK SWEEPING AND GATING USING THERMAL GRADIENT GAS CHROMATOGRAPHY", JOURNAL OF CHROMATOGRAPHY A, vol. 1278, 9 January 2013 (2013-01-09), pages 160 - 165, XP055200232 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111693637A (en) * 2019-03-13 2020-09-22 株式会社岛津制作所 Tubular column oven and chromatograph
CN113702528A (en) * 2021-08-27 2021-11-26 深圳市华科达检测有限公司 Gas chromatograph

Also Published As

Publication number Publication date
CN110621994A (en) 2019-12-27
JPWO2018207258A1 (en) 2019-12-26
CN110621994B (en) 2023-03-10
JP6863457B2 (en) 2021-04-21

Similar Documents

Publication Publication Date Title
JP4495215B2 (en) Interface from thermal desorption unit to chromatography column
US7911609B2 (en) Evaporative light scattering detector
US20160103105A1 (en) Thermal conductivity detector and gas chromatograph
JP5930049B2 (en) Headspace sample introduction device and gas chromatograph equipped with the same
WO2018207258A1 (en) Gas chromatograph
TWI687685B (en) Generated gas analysis device and generated gas analysis method
JP4779807B2 (en) ICP emission spectrometer
JP6332550B2 (en) Supercritical fluid device
CN109283266B (en) Refrigerant introducing device and gas chromatograph
JP4626616B2 (en) Analytical method and apparatus by mass injection into gas chromatograph
US11754583B2 (en) Methods and apparatuses for generating trace vapors
JP6406358B2 (en) Sample recovery mechanism and supercritical fluid apparatus equipped with the sample recovery mechanism
JP4179189B2 (en) Gas chromatograph
JP2009236586A (en) Sample gas collecting device and gas chromatograph device
US11213650B2 (en) Process as well as gas heater for heating a carrier gas stream
WO2021224613A1 (en) A control system
JP2007024781A (en) Gas chromatograph device
JP6281450B2 (en) Gas chromatograph and flow control device used therefor
JP2005300189A (en) Liquid chromatograph
CN104637778B (en) A kind of mass spectrograph blowback gas method
WO2021224616A1 (en) An atmospheric pressure ionisation source
WO2019053887A1 (en) Supercritical fluid device
JP2007263670A (en) Concentration separator and concentration/separation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17908828

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019516772

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17908828

Country of ref document: EP

Kind code of ref document: A1