JP4779807B2 - ICP emission spectrometer - Google Patents

ICP emission spectrometer Download PDF

Info

Publication number
JP4779807B2
JP4779807B2 JP2006149019A JP2006149019A JP4779807B2 JP 4779807 B2 JP4779807 B2 JP 4779807B2 JP 2006149019 A JP2006149019 A JP 2006149019A JP 2006149019 A JP2006149019 A JP 2006149019A JP 4779807 B2 JP4779807 B2 JP 4779807B2
Authority
JP
Japan
Prior art keywords
gas
pressure sensor
differential pressure
flow rate
carrier gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006149019A
Other languages
Japanese (ja)
Other versions
JP2007316039A (en
Inventor
豊 蔵谷
努 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2006149019A priority Critical patent/JP4779807B2/en
Publication of JP2007316039A publication Critical patent/JP2007316039A/en
Application granted granted Critical
Publication of JP4779807B2 publication Critical patent/JP4779807B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

この発明は、ICP(Inductively Coupled Plasma;高周波誘導結合プラズマ)発光分光分析装置に関する。   The present invention relates to an ICP (Inductively Coupled Plasma) emission spectrometer.

ICP発光分光分析装置におけるプラズマトーチ及びその周辺部分は図2に示すように構成されている。図2は三重管プラズマトーチの例を示す。プラズマトーチ20は同心円筒状の三重管構造になっており、その中心に試料ガス管21が配設され、その周囲にプラズマガス管22が、さらにその周りに冷却用のガスを流すためのクーラントガス管23が取り囲む構成になっている。そして、クーラントガス管23の外側に高周波コイル31が2〜3ターン巻き付けられている。   The plasma torch and its peripheral part in the ICP emission spectroscopic analyzer are configured as shown in FIG. FIG. 2 shows an example of a triple tube plasma torch. The plasma torch 20 has a concentric cylindrical triple tube structure, a sample gas tube 21 is disposed at the center thereof, a plasma gas tube 22 around it, and a coolant for flowing a cooling gas therearound. The gas pipe 23 surrounds the structure. A high frequency coil 31 is wound around the outside of the coolant gas pipe 23 for two to three turns.

試料ガス管21には、霧滴化された試料がキャリアガス(アルゴンガス)の流れに乗せられて供給される。詳しくは、キャリアガスが導入されるネブライザ42において、試料液41が霧吹きの原理によって吸い上げられて、霧滴化され、スプレーチェンバ43内に吹き込まれる。エアロゾルとなった試料はキャリアガスにより試料ガス管21内に運ばれ、試料ガス管21の先端ノズルより噴出させられる。   The sample gas pipe 21 is supplied with the atomized sample in a carrier gas (argon gas) flow. Specifically, in the nebulizer 42 into which the carrier gas is introduced, the sample liquid 41 is sucked up by the spraying principle, atomized, and blown into the spray chamber 43. The sample that has become an aerosol is carried into the sample gas pipe 21 by the carrier gas and ejected from the tip nozzle of the sample gas pipe 21.

高周波コイル31が作る高周波電磁界により、プラズマガス管22の先端ノズルから噴出される比較的低速のプラズマガス(アルゴンガス)が電離され、高温のプラズマ炎32が形成される。このプラズマ炎32の外側には、クーラントガス管23の先端ノズルより噴出されるクーラントガス(アルゴンガス)が比較的高速に流れている。   A relatively low-speed plasma gas (argon gas) ejected from the tip nozzle of the plasma gas tube 22 is ionized by the high-frequency electromagnetic field produced by the high-frequency coil 31, and a high-temperature plasma flame 32 is formed. Outside the plasma flame 32, coolant gas (argon gas) ejected from the tip nozzle of the coolant gas pipe 23 flows at a relatively high speed.

試料は、キャリアガスに乗せられて試料ガス管21の先端ノズルから噴出され、プラズマ炎32の中心部に導入され、原子化され発光する。この発光スペクトルが図示しない分光器により分光され、試料中の元素の定性・定量分析がなされる。   The sample is put on a carrier gas and ejected from the tip nozzle of the sample gas tube 21, introduced into the central portion of the plasma flame 32, atomized and emitted. This emission spectrum is dispersed by a spectroscope (not shown), and qualitative and quantitative analysis of elements in the sample is performed.

以上述べたように、ICP発光分光分析装置では、プラズマを形成するために、キャリアガス、プラズマガス、クーラントガスの3系統のアルゴンガスを要し、これらの流量を制御する必要がある。3系統の中で分析試料を運ぶキャリアガスは、精度良く、特に安定性良く流量が制御される必要がある。なお、前記の流量とは体積流量ではなく、質量流量である。従来のICP発光分光分析装置では、前記キャリアガスの流量制御には、ガスの熱伝導を利用して流量を計測する方式のマスフローコントローラ又はマスフローメータ+電磁比例弁が使用されていた。この場合、流量の精密な制御が容易に実現でき、室温の変動の影響を受けない流量制御ができるが、高価であることが難点である。   As described above, the ICP emission spectroscopic analyzer requires three systems of argon gas, carrier gas, plasma gas, and coolant gas, to control the flow rate in order to form plasma. The carrier gas carrying the analysis sample in the three systems needs to be controlled in flow rate with high accuracy, particularly with high stability. The above flow rate is not a volume flow rate but a mass flow rate. In the conventional ICP emission spectroscopic analyzer, the flow rate of the carrier gas is controlled by a mass flow controller or a mass flow meter + electromagnetic proportional valve that measures the flow rate using the heat conduction of the gas. In this case, precise control of the flow rate can be easily realized and the flow rate control can be performed without being affected by fluctuations in the room temperature, but it is difficult to be expensive.

一方、ガスクロマトグラフ分析装置では、下記のように流量を制御する装置がある。キャリアガス供給流路には一次圧を測定する圧力センサと、抵抗管と、その抵抗管の両端の差圧を測定する差圧センサと、制御弁が順次接続され、制御部により、圧力センサおよび差圧センサの信号により制御弁を制御してキャリアガス流量を制御することにより、圧力レギュレータを用いずにキャリアガス流量を制御する。(例えば特許文献1参照)
この場合、ガスの流量の制御は流れる体積を一定に制御しており、キャリアガスの質量流量は、ガス温度の変動や、圧力センサおよび差圧センサの温度特性の影響を受けて変動する。流れるガスの体積を一定にしているため、ガスの質量流量は、ガスの絶対温度に反比例し、ガスの温度が1℃変化するとおよそ0.3%だけ質量流量が変化する。また、圧力センサおよび差圧センサの感度の温度係数は、0.1%/℃程度である。
特開平10−300737号公報
On the other hand, in the gas chromatograph analyzer, there is an apparatus for controlling the flow rate as follows. A pressure sensor for measuring the primary pressure, a resistance tube, a differential pressure sensor for measuring the differential pressure at both ends of the resistance tube, and a control valve are sequentially connected to the carrier gas supply flow path. The carrier gas flow rate is controlled without using a pressure regulator by controlling the control valve by the signal from the differential pressure sensor to control the carrier gas flow rate. (For example, see Patent Document 1)
In this case, the flow rate of the gas controls the flow volume to be constant, and the mass flow rate of the carrier gas fluctuates due to variations in the gas temperature and the temperature characteristics of the pressure sensor and the differential pressure sensor. Since the volume of the flowing gas is constant, the mass flow rate of the gas is inversely proportional to the absolute temperature of the gas. When the gas temperature changes by 1 ° C., the mass flow rate changes by approximately 0.3%. Further, the temperature coefficient of sensitivity of the pressure sensor and the differential pressure sensor is about 0.1% / ° C.
Japanese Patent Laid-Open No. 10-300737

ICP発光分光分析装置において、プラズマを形成するための、キャリアガス、プラズマガス、クーラントガスの流量を、高価なマスフローコントローラ又はマスフローメータ+電磁比例弁を使用することなく、安価で室温の影響を受けない方式で制御する。   In an ICP emission spectroscopic analyzer, the flow rates of carrier gas, plasma gas, and coolant gas for forming plasma are affected by low-temperature and room temperature without using an expensive mass flow controller or mass flow meter + electromagnetic proportional valve. Control with no method.

上記課題を解決するために成された本発明は、キャリアガス供給部と、キャリアガスをプラズマトーチに供給するガス供給流路と、前記ガス供給流路に供給された前記キャリアガスのガス圧を検出する圧力センサと、前記ガス供給流路に接続された抵抗管の両端の差圧を測定する差圧センサと、前記ガス供給流路のうち前記圧力センサ及び前記差圧センサが測定対象とする流路を格納した恒温槽と、前記キャリアガスの流量を制御する制御弁と、前記圧力センサと前記差圧センサの検出値に基づいて前記制御弁を制御する制御装置とを備えたICP発光分光分析装置において、前記恒温槽内の前記ガス供給流路の一部を前記圧力センサ及び前記差圧センサが測定対象とするガスの温度を安定化させるバッファ管とすることを特徴とするICP発光分光分析装置である。 In order to solve the above-mentioned problems, the present invention includes a carrier gas supply unit, a gas supply channel for supplying a carrier gas to a plasma torch, and a gas pressure of the carrier gas supplied to the gas supply channel. A pressure sensor to be detected, a differential pressure sensor that measures a differential pressure across the resistance pipe connected to the gas supply channel, and the pressure sensor and the differential pressure sensor of the gas supply channel are to be measured ICP emission spectroscopy comprising a thermostatic chamber storing a flow path, a control valve for controlling the flow rate of the carrier gas, and a control device for controlling the control valve based on detection values of the pressure sensor and the differential pressure sensor In the analyzer, an ICP characterized in that a part of the gas supply flow path in the thermostatic chamber is a buffer pipe that stabilizes the temperature of a gas to be measured by the pressure sensor and the differential pressure sensor. An optical spectrometer.

本発明によれば、ICP発光分光分析装置において、プラズマを形成するための、キャリアガス、プラズマガス、クーラントガスの流量を、安価で室温の影響を受けない方式で精度良くかつ安定性良く制御することができる。したがって、安価な装置を提供することが期待でき、また、校正頻度を少なくしても精度の高い定量分析ができるため、分析効率を高めることが期待できる。   According to the present invention, in an ICP emission spectroscopic analyzer, the flow rates of carrier gas, plasma gas, and coolant gas for forming plasma are controlled with high accuracy and stability in an inexpensive manner that is not affected by room temperature. be able to. Therefore, it can be expected to provide an inexpensive apparatus, and even if the calibration frequency is reduced, high-accuracy quantitative analysis can be performed, so that the analysis efficiency can be expected to be improved.

光学系恒温槽内に配設されるガス温度安定用バッファ管は、前記光学系恒温槽への入り口近傍では、熱伝導の小さい樹脂製とし、その後方では熱伝導の大きな金属製とし、熱伝導の小さな樹脂製部材で保持される。   The gas temperature stabilizing buffer tube disposed in the optical thermostat is made of a resin having low thermal conductivity in the vicinity of the entrance to the optical thermostatic bath, and is made of metal having high thermal conductivity behind it. It is held by a small resin member.

光学系恒温槽内に配設される圧力センサは、熱伝導の小さな樹脂製部材で保持される。   The pressure sensor disposed in the optical thermostat is held by a resin member having a small thermal conductivity.

本発明の一実施例を、図1と図2を参照しながら説明する。図1は、本発明のICP発光分光分析装置におけるアルゴンガスの流量制御を示す図である。図2は、一般的なICP発光分光分析装置におけるプラズマトーチ及びその周辺部分を示す図である。   An embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a diagram showing the flow rate control of argon gas in the ICP emission spectroscopic analyzer of the present invention. FIG. 2 is a diagram showing a plasma torch and its peripheral part in a general ICP emission spectroscopic analyzer.

1はバッファ管であり、例えば38℃に温度制御された光学系恒温槽13内に配設され、アルゴンガスボンベなどより供給されるアルゴンガスが導入され、その出口の温度を38℃−0.1℃程度に安定化する機能を有する。詳しくは、バッファ管1は、内径4mm外径6mm長さ5mのポリオレフィンチューブで構成され、温度18℃(装置の使用許容周囲温度の下限)流量23l/min(最大使用時の流量)のアルゴンガスが導入された場合、その出口の温度を38℃−0.1℃程度に安定化する能力を有する。   Reference numeral 1 denotes a buffer tube, which is disposed in an optical thermostat 13 whose temperature is controlled to 38 ° C., for example. Argon gas supplied from an argon gas cylinder or the like is introduced, and the outlet temperature is set to 38 ° C.−0.1. It has a function of stabilizing to about ° C. Specifically, the buffer tube 1 is composed of a polyolefin tube having an inner diameter of 4 mm, an outer diameter of 6 mm, and a length of 5 m. Is introduced, it has the ability to stabilize the temperature at its outlet to about 38 ° C-0.1 ° C.

圧力センサ2は、光学系恒温槽13内に配設され、半導体圧力センサなどで構成され、アルゴンガスの一次圧およびガス温度情報を抵抗値で制御装置12に伝達する。   The pressure sensor 2 is disposed in the optical thermostat 13 and is constituted by a semiconductor pressure sensor or the like, and transmits the primary pressure and gas temperature information of the argon gas to the control device 12 as a resistance value.

差圧センサ3は、光学系恒温槽13内に配設され、半導体圧力センサで構成され、キャリアガスの流路に接続された抵抗管6の両端の差圧を測定し制御装置12に伝達する。前記抵抗管6は光学系恒温槽13内に配設される。差圧センサ4は、光学系恒温槽13内に配設され、半導体圧力センサで構成され、プラズマガスの流路に接続された抵抗管7の両端の差圧を測定し制御装置12に伝達する。前記抵抗管7は光学系恒温槽13内に配設される。差圧センサ5は、光学系恒温槽13内に配設され、半導体圧力センサで構成され、クーラントガスの流路に接続された抵抗管8の両端の差圧を測定し制御装置12に伝達する。前記抵抗管8は光学系恒温槽13内に配設される。   The differential pressure sensor 3 is disposed in the optical thermostatic chamber 13 and is composed of a semiconductor pressure sensor. The differential pressure sensor 3 measures the differential pressure at both ends of the resistance tube 6 connected to the carrier gas flow path and transmits it to the control device 12. . The resistance tube 6 is disposed in the optical thermostat 13. The differential pressure sensor 4 is disposed in the optical thermostatic chamber 13 and is composed of a semiconductor pressure sensor. The differential pressure sensor 4 measures the differential pressure at both ends of the resistance tube 7 connected to the plasma gas flow path and transmits it to the control device 12. . The resistance tube 7 is disposed in an optical thermostat 13. The differential pressure sensor 5 is disposed in the optical thermostat 13 and is constituted by a semiconductor pressure sensor. The differential pressure sensor 5 measures the differential pressure at both ends of the resistance tube 8 connected to the coolant gas flow path and transmits it to the control device 12. . The resistance tube 8 is disposed in the optical thermostat 13.

制御弁9は、キャリアガスの流路に接続され、制御装置12の制御信号によりキャリアガスの流量を制御する。制御弁10は、プラズマガスの流路に接続され、制御装置12の制御信号によりプラズマガスの流量を制御する。制御弁11は、クーラントガスの流路に接続され、制御装置12の制御信号によりクーラントガスの流量を制御する。   The control valve 9 is connected to the flow path of the carrier gas, and controls the flow rate of the carrier gas by a control signal from the control device 12. The control valve 10 is connected to the flow path of the plasma gas, and controls the flow rate of the plasma gas by a control signal from the control device 12. The control valve 11 is connected to the coolant gas flow path, and controls the flow rate of the coolant gas by a control signal of the control device 12.

図1に示すキャリアガスは、図2に示すキャリアガスとして使用され、ネブライザ42に導入される。図1に示すプラズマガスは、図2に示すプラズマガスとして使用され、プラズマガス管22に導入される。図1に示すクーラントガスは、図2に示すクーラントガスとして使用され、クーラントガス管23に導入される。   The carrier gas shown in FIG. 1 is used as the carrier gas shown in FIG. 2 and is introduced into the nebulizer 42. The plasma gas shown in FIG. 1 is used as the plasma gas shown in FIG. 2 and is introduced into the plasma gas pipe 22. The coolant gas shown in FIG. 1 is used as the coolant gas shown in FIG. 2 and introduced into the coolant gas pipe 23.

本発明は以上の構成であるから、圧力センサ2より下流のアルゴンガスの温度および制御装置12に伝達される一次圧と差圧は、周囲温度(室温)の変動の影響を受けず、正確で安定性の良好な流量(質量流量)制御ができる。
以下、キャリアガスを例に流量制御の説明をする。キャリアガスの流量、圧力センサ2で測定される一次圧、差圧センサ3で測定される差圧との間には以下の式(1)の関係がある。(例えば特許文献1参照)
Since the present invention has the above configuration, the temperature of the argon gas downstream from the pressure sensor 2 and the primary pressure and the differential pressure transmitted to the control device 12 are not affected by fluctuations in the ambient temperature (room temperature) and are accurate. A stable flow rate (mass flow rate) can be controlled.
Hereinafter, the flow rate control will be described using the carrier gas as an example. The following equation (1) exists among the flow rate of the carrier gas, the primary pressure measured by the pressure sensor 2, and the differential pressure measured by the differential pressure sensor 3. (For example, see Patent Document 1)

Q=K×P1×ΔP………(1)
Q:キャリアガスの流量、K:抵抗管6によって決定される係数、P1:圧力センサ2で測定される一次圧、ΔP:差圧センサ3で測定される差圧、分析者は所望する流量(=QSET)を制御装置12に入力する。制御装置12は式(1)をその内部に記憶しており、かつ常時、圧力センサ2の測定する一次圧P1をその式(1)に入力している。制御装置12は、式(1)より分析者の所望する流量(=QSET)に対応する差圧(=ΔPSET)を求めた後、差圧センサ3によって測定された差圧がΔPSETとなるよう、制御弁9に制御信号を送る。
制御装置12は、圧力センサ2より伝達されるアルゴンガスの微小な温度変化情報を抵抗値の変化として受け、流量の補正をし、さらに高精度の流量制御をする。
プラズマガスおよびクーラントガスについても、同様に流量が制御される。
Q = K × P1 × ΔP (1)
Q: carrier gas flow rate, K: coefficient determined by resistance tube 6, P1: primary pressure measured by pressure sensor 2, ΔP: differential pressure measured by differential pressure sensor 3, flow rate desired by analyst ( = QSET) is input to the controller 12. The control device 12 stores the formula (1) therein, and always inputs the primary pressure P1 measured by the pressure sensor 2 into the formula (1). The control device 12 obtains the differential pressure (= ΔPSET) corresponding to the flow rate desired by the analyst (= QSET) from the equation (1), and then the differential pressure measured by the differential pressure sensor 3 becomes ΔPSET. A control signal is sent to the control valve 9.
The control device 12 receives the minute temperature change information of the argon gas transmitted from the pressure sensor 2 as a change in resistance value, corrects the flow rate, and performs flow rate control with higher accuracy.
The flow rates of plasma gas and coolant gas are similarly controlled.

流量が制御されたキャリアガス、プラズマガスおよびクーラントガスは、それぞれ図2に示すネブライザ42とプラズマトーチ20に導入される。試料は、キャリアガスに乗せられて試料ガス管21の先端ノズルから噴出され、プラズマ炎32の中心部に導入され、原子化され発光する。この発光スペクトルが図示しない分光器により分光され、試料中の元素の定性・定量分析がなされる。   The carrier gas, plasma gas, and coolant gas whose flow rates are controlled are respectively introduced into the nebulizer 42 and the plasma torch 20 shown in FIG. The sample is put on a carrier gas and ejected from the tip nozzle of the sample gas tube 21, introduced into the central portion of the plasma flame 32, atomized and emitted. This emission spectrum is dispersed by a spectroscope (not shown), and qualitative and quantitative analysis of elements in the sample is performed.

図1に示す実施例においては、抵抗管6、7、8と差圧センサ3、4、5が配設されているが、これらを削除してバッファ管1の出口と制御弁9、10、11の各入り口を直接接続しても本発明は適用可能である。
また、図1に示す実施例においては、圧力センサ2からアルゴンガスの温度情報が抵抗値で制御装置12に伝達されているが、これを削除しても本発明は適用可能であり装置は図示例に限定されない。
また、図示例ではバッファ管1は、ポリオレフィンチューブで構成されているが、光学系恒温槽13への入り口近傍では、熱伝導の小さい樹脂製とし、その後方では熱伝導の大きな金属製で構成してもよく、本発明はこれら変形例を包含する。
In the embodiment shown in FIG. 1, resistance tubes 6, 7, and 8 and differential pressure sensors 3, 4, and 5 are disposed, but these are removed and the outlet of the buffer tube 1 and the control valves 9, 10, The present invention can be applied even if the 11 entrances are directly connected.
Further, in the embodiment shown in FIG. 1, the temperature information of the argon gas is transmitted from the pressure sensor 2 to the control device 12 as a resistance value, but the present invention can be applied even if this is deleted. It is not limited to the example shown.
In the illustrated example, the buffer tube 1 is made of a polyolefin tube. However, the buffer tube 1 is made of a resin having a small heat conductivity in the vicinity of the entrance to the optical thermostatic chamber 13, and is made of a metal having a large heat conductivity in the rear thereof. The present invention includes these modifications.

本発明は、ICP発光分光分析装置のアルゴンガスの流量制御に関する。   The present invention relates to a flow control of argon gas in an ICP emission spectroscopic analyzer.

本発明のICP発光分光分析装置におけるアルゴンガスの流量制御を示す図である。It is a figure which shows the flow control of the argon gas in the ICP emission-spectral-analysis apparatus of this invention. 一般的なICP発光分光分析装置におけるプラズマトーチ及びその周辺部分を示す図である。It is a figure which shows the plasma torch and its peripheral part in a general ICP emission-spectral-analysis apparatus.

符号の説明Explanation of symbols

1 バッファ管
2 圧力センサ
3 差圧センサ
4 差圧センサ
5 差圧センサ
6 抵抗管
7 抵抗管
8 抵抗管
9 制御弁
10 制御弁
11 制御弁
12 制御装置
13 光学系恒温槽
20 プラズマトーチ
21 試料ガス管
22 プラズマガス管
23 クーラントガス管
31 高周波コイル
32 プラズマ炎
41 試料液
42 ネブライザ
43 スプレーチェンバ
DESCRIPTION OF SYMBOLS 1 Buffer pipe 2 Pressure sensor 3 Differential pressure sensor 4 Differential pressure sensor 5 Differential pressure sensor 6 Resistance pipe 7 Resistance pipe 8 Resistance pipe 9 Control valve 10 Control valve 11 Control valve 12 Control apparatus 13 Optical system thermostat 20 Plasma torch 21 Sample gas Tube 22 Plasma gas tube 23 Coolant gas tube 31 High-frequency coil 32 Plasma flame 41 Sample liquid 42 Nebulizer 43 Spray chamber

Claims (1)

キャリアガス供給部と、キャリアガスをプラズマトーチに供給するガス供給流路と、前記ガス供給流路に供給された前記キャリアガスのガス圧を検出する圧力センサと、前記ガス供給流路に接続された抵抗管の両端の差圧を測定する差圧センサと、前記ガス供給流路のうち前記圧力センサ及び前記差圧センサが測定対象とする流路を格納した恒温槽と、前記キャリアガスの流量を制御する制御弁と、前記圧力センサと前記差圧センサの検出値に基づいて前記制御弁を制御する制御装置とを備えたICP発光分光分析装置において、前記恒温槽内の前記ガス供給流路の一部を前記圧力センサ及び前記差圧センサが測定対象とするガスの温度を安定化させるバッファ管とすることを特徴とするICP発光分光分析装置。 A carrier gas supply unit; a gas supply channel for supplying the carrier gas to the plasma torch; a pressure sensor for detecting a gas pressure of the carrier gas supplied to the gas supply channel; and the gas supply channel. A differential pressure sensor for measuring a differential pressure across the resistance tube, a thermostatic chamber in which the pressure sensor and the differential pressure sensor among the gas supply channels are stored, and a flow rate of the carrier gas In the ICP emission spectroscopic analysis apparatus comprising: a control valve for controlling the control valve; and a control device for controlling the control valve based on detection values of the pressure sensor and the differential pressure sensor, the gas supply channel in the thermostat An ICP emission spectroscopic analysis apparatus characterized in that a part of the buffer is a buffer tube that stabilizes the temperature of a gas to be measured by the pressure sensor and the differential pressure sensor.
JP2006149019A 2006-05-29 2006-05-29 ICP emission spectrometer Active JP4779807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006149019A JP4779807B2 (en) 2006-05-29 2006-05-29 ICP emission spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006149019A JP4779807B2 (en) 2006-05-29 2006-05-29 ICP emission spectrometer

Publications (2)

Publication Number Publication Date
JP2007316039A JP2007316039A (en) 2007-12-06
JP4779807B2 true JP4779807B2 (en) 2011-09-28

Family

ID=38850012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006149019A Active JP4779807B2 (en) 2006-05-29 2006-05-29 ICP emission spectrometer

Country Status (1)

Country Link
JP (1) JP4779807B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9338871B2 (en) 2010-01-29 2016-05-10 Applied Materials, Inc. Feedforward temperature control for plasma processing apparatus
US8916793B2 (en) 2010-06-08 2014-12-23 Applied Materials, Inc. Temperature control in plasma processing apparatus using pulsed heat transfer fluid flow
US8880227B2 (en) 2010-05-27 2014-11-04 Applied Materials, Inc. Component temperature control by coolant flow control and heater duty cycle control
US10274270B2 (en) 2011-10-27 2019-04-30 Applied Materials, Inc. Dual zone common catch heat exchanger/chiller
CN102565030B (en) * 2011-12-31 2014-07-30 聚光科技(杭州)股份有限公司 ICP spectral analysis system and method
CN103868892B (en) * 2014-02-27 2016-09-14 烟台东方分析仪器有限公司 Spectrogrph argon activating system
JP6373209B2 (en) * 2015-03-20 2018-08-15 株式会社ガスター Leak inspection device Leak inspection method
JP2018179555A (en) * 2017-04-04 2018-11-15 株式会社島津製作所 Emission spectrometer

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1588478A (en) * 1978-05-22 1981-04-23 Perkin Elmer Corp Gas flow control apparatus
JPS58167450A (en) * 1982-03-25 1983-10-03 Seiko Epson Corp Reaction tank for ion exchange
JPS6275334A (en) * 1985-09-30 1987-04-07 Yokogawa Electric Corp High frecquency induction bond plasma emission spectrosope
JP3274187B2 (en) * 1992-09-25 2002-04-15 日本板硝子株式会社 Emission spectroscopy method
JPH06281577A (en) * 1993-03-29 1994-10-07 Yokogawa Electric Corp Gas analyzer
JPH09318540A (en) * 1996-05-29 1997-12-12 Shimadzu Corp Icp analyzer
JPH10189292A (en) * 1996-12-25 1998-07-21 Shimadzu Corp Icp analyzer
JP2002259246A (en) * 2001-02-27 2002-09-13 Takuji Okuno Device, method and program for inputting url

Also Published As

Publication number Publication date
JP2007316039A (en) 2007-12-06

Similar Documents

Publication Publication Date Title
JP4779807B2 (en) ICP emission spectrometer
JP5174032B2 (en) Controller gain scheduling for mass flow controllers
JP3629329B2 (en) Gas chromatograph
US9768004B2 (en) Systems, devices, and methods for connecting a chromatography system to a mass spectrometer
JP6181288B2 (en) Gas injection system for isotope ratio analyzer and method for determining isotope ratio
JP6619792B2 (en) Improved gas flow control
JP2015509250A (en) System and method for real-time monitoring of flow through a mass flow controller
US7911609B2 (en) Evaporative light scattering detector
JP2008089575A5 (en)
JPH10300737A (en) Gas chromatography analyzer
JP4692396B2 (en) ICP analyzer
US20140230910A1 (en) Split-channel gas flow control
JPH04230806A (en) Flow rate sensor
WO2019065611A1 (en) Mass flow rate control system, and semiconductor manufacturing device and vaporizer including said system
JP3793816B2 (en) Plasma control method and plasma control apparatus
US20170336810A1 (en) Wireless flow restrictor of a flowmeter
EP3583897A1 (en) Breath measurement device
WO2018207258A1 (en) Gas chromatograph
US6635885B2 (en) Apparatus for delivering calibration compounds to mass spectrometers and method
JP2008002864A (en) Thermal flowmeter and flow rate controller
CN203772801U (en) Discharge ionization current detector
US10962395B2 (en) Method and apparatus for measuring the flow rate of a shielding gas mixture
JP2009121846A (en) Sample liquid feed pump, and icp emission spectrometer using liquid feed pump
US10852282B2 (en) System and method for determining a concentration of a constituent gas in a gas stream using pressure measurements
US20240136169A1 (en) Ion source nebuliser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4779807

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3