JP4228276B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP4228276B2
JP4228276B2 JP2003020612A JP2003020612A JP4228276B2 JP 4228276 B2 JP4228276 B2 JP 4228276B2 JP 2003020612 A JP2003020612 A JP 2003020612A JP 2003020612 A JP2003020612 A JP 2003020612A JP 4228276 B2 JP4228276 B2 JP 4228276B2
Authority
JP
Japan
Prior art keywords
region
groove
compressive stress
semiconductor device
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003020612A
Other languages
Japanese (ja)
Other versions
JP2004235332A (en
Inventor
昌司 島
芳樹 佐久間
哲嗣 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Semiconductor Ltd
Original Assignee
Fujitsu Semiconductor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Semiconductor Ltd filed Critical Fujitsu Semiconductor Ltd
Priority to JP2003020612A priority Critical patent/JP4228276B2/en
Publication of JP2004235332A publication Critical patent/JP2004235332A/en
Application granted granted Critical
Publication of JP4228276B2 publication Critical patent/JP4228276B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7846Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the lateral device isolation region, e.g. STI
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes

Description

【0001】
【発明の属する技術分野】
本発明は半導体装置に関するものであり、特に、半導体におけるバンド構造とトランジスタの電気伝導を人為的に制御するための構成に特徴のある半導体装置に関するものである。
【0002】
【従来の技術】
近年、スケーリング則にしたがって、MOSトランジスタの微細化が進み、研究開発段階においては0.1μmノードのトランジスタ開発が行われるようになった。
【0003】
この世代のトランジスタではゲート長が50nm以下となるため、トランジスタの閾値電圧Vthの低下やDIBL(Drain−induced barrier lowering)などのいわゆる短チャネル効果が顕著になり、これを抑制する目的でポケット注入(斜めからのイオン注入)やSi系半導体基体の不純物濃度を高めるなどの工夫が行われている。
【0004】
しかし、ゲート長をさらに小さくしてトランジスタの高速化を図る場合、いくつかの要因でゲート長を小さくしても、もはや高性能化が得られないことが懸念されている。
【0005】
原因の一つは、チャネル内の縦方向電界が微細化、即ち、酸化膜の薄膜化が進むに従って高まる結果、キャリアの存在確率を示す波動関数がゲート酸化膜との界面方向に強く押し付けられて、SiO2 /Si界面でのラフネス散乱の影響が強くなり、チャネル内での実効的なキャリア移動度が低下することである。
【0006】
また、さらに根本的な問題としてVthなどトランジスタの特性ばらつきを抑えながら微細化を進めること自体が技術的にも困難になってくる。
仮に、技術的にそれをクリアできたとしても、量産を実現するのに必要な製造ラインへの投資コストが大きくなるといった経済的な要因で破綻するというシナリオを描く向きもある。
いずれにしても、長年にわたり金科玉条として追求してきたDennardの単純スケーリングによる特性改善に限界が見えてきたと言わざるを得ない。
【0007】
このような中で、単にトランジスタ寸法をシュリンクするのではなく、トランジスタのチャネルの材料、あるいは物性を変えてキャリア移動度を向上させて特性改善を達成する試みが行われ始めた。
【0008】
特に、2軸性の面内引っ張り応力を加えた歪みSi表面に酸化膜を形成して通常のプロセス技術でMOSトランジスタを作製した場合、電子の移動度が70%程度向上することが実験的に確認されている。
【0009】
この移動度向上は、歪みによって結晶の対称性が崩れて、6重縮退したΔ点のエネルギーバレーの縮退が低エネルギーの2重縮退レベルとエネルギーの高い4重縮退に分裂する結果、サブバレー間散乱が抑制される効果と、2重縮退準位の占有度が高くなって伝導帯電子の平均的な有効質量が小さくなる2つの効果で説明されている(例えば、非特許文献1参照)。
【0010】
具体的には、Si基板上に歪みを緩和させる目的で臨界膜厚を超えて成長したSiGe(Ge組成10〜20%)バッファ層上に、高々10〜20nmの臨界膜厚以下の薄いSiチャネル層をエピタキシャル成長させたウエハを用いてMOSFETトランジスタを作製するものである。
【0011】
n型MOSトランジスタでは既にこの方法を用いて複数の研究機関(Stanford大、東芝、MIT、IBM)で移動度の大幅な向上が実証されており、p型MOSトランジスタについても約2.7倍という理論予測には及ばないものの、同じウエハを用いて数10%の移動度向上が確認されている。
【0012】
また、SOI(Silicon on Insulator)基板を用い、素子形成領域を選択酸化膜囲むことによって素子形成領域に圧縮応力を印加してキャリアの移動度を向上することも提案されている(例えば、特許文献1参照)。
【0013】
【非特許文献1】
Semicond.Sci.Technol.,Vol.12,pp.1515−1549,1997
【特許文献1】
特開平11−54756号公報
【0014】
【発明が解決しようとする課題】
上述のように、ようやく従来の単純スケーリングの枠を外れて等価スケーリングの概念が使われ始めており、特に、歪みSi−MOSFETに限って言えば移動度向上はもはや実験事実としては何ら疑う余地はなく、既にこの特性をいかに上手く実用化技術に展開するかという点に論点や重要性が移っているように思われる。
【0015】
勿論、メカニズムの追求は学術的には重要とは思われるが、必ずしも技術の問題とはリンクしない。
そこで、上記の歪みSi技術の問題点を分析すると、新材料であるSiGe自体は直接チャネルに使われているのではなく、Siに歪みを与えるために間接的に適用されているに過ぎない。
【0016】
即ち、技術のエッセンスは、通常伝導帯側で6重縮退し、価電子帯側で2重に縮退しているSiに歪みを加えることにあり、これらの縮退を解き放ち、散乱頻度を変えることであり、歪みが人為的に制御しながら加えられるのであれば必ずしも素子形成領域を構成しないSiGeを使う必要性はないと考えられる。
【0017】
また、コストやプロセスラインの汚染を考えれば、SiGeを素子形成領域として用いる場合以外は、SiGeのような新材料を使わずにSi基板に対して移動度向上を実現せしめるような手段が達成できるのであれば極めて望ましいと言えよう。
【0018】
また、SOI基板の場合には、新材料を使用していないものの、絶縁膜上に形成するSi層の結晶性を良好にすることは困難であり、且つ、その構成から見て1軸方向の応力を加えることは困難である。
【0019】
したがって、本発明は、従来の構成をそのまま利用して素子形成領域に1軸方向の圧縮応力を印加することを目的とする。
【0020】
【課題を解決するための手段】
図1は本発明の原理的構成図であり、また、図2は歪みによるバンド構造の変化の説明図であり、この図1及び図2を参照して本発明における課題を解決するための手段を説明する。
図1乃至図2参照
上記目的を達成するため、本発明は、半導体装置において、Si系半導体基体に設けた少なくともトランジスタを形成する素子形成領域と、素子形成領域の外周に互いに対向する辺を有して区画された溝と、素子形成領域にゲート絶縁膜を介して形成されたゲート電極とを有し、ゲート電極に直交する辺の溝を完全に熱酸化膜で埋め込み、ゲート電極に平行な溝を熱酸化膜と堆積膜による埋込絶縁膜で埋め込むことで、面内の1軸方向に圧縮応力印加することを特徴とする。
【0021】
従来のMOSFETにおいては、図1(a)に示すように、(001)面を主面とするSi基板を用いて、キャリアの伝導方向を〈110〉方向にしているが、図1(b)に示すように、同じ(001)面を主面とするSi基板に対してx方向である〈100〉方向に沿って両側から1 軸性の圧縮応力を印加すると、Si基板はy方向とz方向に伸びようとする。
【0022】
そうすると、図2(a)及び(b)の左図に示すように、通常のSiではΔ点で6重縮退したバンド構造が、図2(a)及び(b)の右図に示すように、圧縮応力を加えると縮退が解け、〈100〉軸上にある2つのバレー(2重縮退)のエネルギーが下がり、逆に〈010〉軸と〈001〉軸上の4つのバレーのエネルギーが上昇する。
この結果、電子の占有確率は2重縮退したサブバレーで高くなり、よりエネルギーの高い4つのバレーへの散乱頻度が減るため、電子移動度が向上する。
【0023】
また、図1(b)に示すように1軸性圧縮応力の印加方向と直交する〈010〉方向にチャネルを形成した場合には、等エネルギー面の回転楕円体形状が意味するように〈010〉方向の小さい有効質量が主に見えてくるため、この効果も移動度向上に寄与する。
なお、y方向とz方向のエネルギーレベルは、各方向への格子変形量に応じたエネルギー変化が起こるため必ずしも一致はしないが、x方向のエネルギーより高くなることに間違いはない。
【0024】
一方、図2(c)に示すように、価電子帯については、やはり歪みの影響でΓ点(縦軸と横軸の交点)での軽い正孔(1h)と重い正孔(hh)の縮退が解け、バンド間遷移による散乱が減るため、移動度が向上する。
なお、図におけるSOは、spin orbit split−offである。
【0025】
また、正孔では〈010〉方向にチャネル方向を取ることでトランジスタのドレイン電流密度が大きくなることが一般に知られており、この効果も期待できる。
【0026】
したがって、素子形成領域を囲む外周に設けた溝の一対の対向する溝を熱酸化で埋め込むことによって、SOI構造やSiGe応力緩和層等の特殊構造を用いることなく、上述の1軸性応力を素子領域に印加することができ、上述の移動度の向上を実現することができる。
【0027】
即ち、熱酸化を行った場合、溝の両側壁から酸化が進行し、溝を熱酸化膜で完全に埋め込むまで酸化した場合には、増大した熱酸化膜によって素子形成領域が内側に押され、圧縮応力が印加される。
一方、他の一対の辺においては溝が熱酸化膜の完全に埋め込まれないようにすることによって、この部分には圧縮応力が印加されないので、1軸性圧縮応力となる。
【0028】
なお、本発明におけるSi系半導体基体(body)とは、Si系半導体基板及び、半導体基板或いは絶縁性基板等の成長基板上に成長させたSi系半導体層の両者を意味するものであり、また、Si系半導体とは、Si及びSiGeの両者を意味するものであるが、Si系半導体基体としては、(001)面を主面とするSi基板が典型的なものであり、トランジスタとしては、絶縁ゲート型電界効果トランジスタ、即ち、MISFETが典型的なものである。
【0030】
また、トランジスタとしては、ラテラルバイポーラトランジスタも対象とするものであるが、絶縁ゲート型電界効果トランジスタの場合には、圧縮応力は、ソース領域、ドレイン領域、或いは、チャネル領域の少なくとも一つの領域に印加すれば良く、例えば、ソース領域、ドレイン領域、及び、チャネル領域の全て、ソース領域及びドレイン領域のみ、或いは、チャネル領域のみに印加するようにしても良い。
【0031】
また、Si系半導体基体に設けた溝の幅を部分的に変化させることによって、上記圧縮応力の印加部分及び歪み量を任意に制御するようにしても良い。
例えば、Si系半導体基体にキャリアの伝導方向に沿って設けた溝の幅を、チャネル領域近傍で他の領域より狭くして、面内の圧縮応力をキャリアの伝導方向と垂直方向に印加するようにしても良いし、或いは、Si系半導体基体にキャリアの伝導方向に沿って設けた溝の幅を、チャネル領域近傍で他の領域より広くして、上記面内の圧縮応力をキャリアの伝導方向と平行に印加するようにしても良い。
【0032】
また、素子形成領域を複数設ける場合には、各々素子形成領域の少なくとも一対の互いに対向する辺の外周に設けた溝の幅を互いに異なるようにしても良く、それによって、各々素子形成領域に形成するトランジスタの特性を互いに異なるようにすることができる。
【0033】
【発明の実施の形態】
ここで、図3及び図4を参照して、本発明の第1の実施の形態のnチャネル型MOSFETの製造工程を説明する。
なお、各図において「′」の付かない図は概略的平面図であり、「′」の付く図は、平面図におけるA−A′を結ぶ一点鎖線に沿った概略的断面図である。
図3(a)及び(a′)参照
まず、(001)面を主面とするp型シリコン基板11の表面にp型ウエル領域12を形成したのち、SiN膜パターン13をマスクとしてエッチングすることによって、図においては水平方向、即ち、〈010〉方向に延在する溝の幅がaで、垂直方向、即ち、〈100〉に延在する溝の幅がb(≫a)の溝15によって素子形成領域14を区画する。
【0034】
図3(b)及び(b′)参照
次いで、SiN膜パターン13をそのまま選択酸化マスクとして用いて熱酸化を施すことによって、水平方向に延在する幅aの溝15を完全に熱酸化膜16で埋め込む。
【0035】
この時、熱酸化は溝15の両側壁から進行するが、SiがSiO2 になる際に2倍以上の体積膨張が起こり、溝15の中央でSiO2 がぶつかり合うようになると溝の両側を押す力が発生して変形しようとする。
しかし、素子形成領域14と溝15を挟んで対向するp型ウエル領域12は素子形成領域14に比べて広い領域であるので、素子形成領域14側において〈100〉方向に圧縮応力が発生する。
【0036】
一方、幅bの溝15において、熱酸化膜16がぶつからないように幅b及び熱酸化時間を制御することによって、〈010〉方向には圧縮応力が発生しないため、素子形成領域14に印加される圧縮応力は〈100〉方向の1軸性圧縮応力となる。
【0037】
図4(c)及び(c′)参照
次いで、全面にSiO2 膜を堆積したのちエッチングバックを施すことによって、〈100〉方向に延在する溝15の残部を埋込絶縁膜17で埋め込んで平坦化したのち、周辺部のSiN膜パターン13を選択的に除去して、素子形成領域14上に残ったSiN膜パターン13をマスクとして選択酸化を施すことによって、溝15の外周部に素子分離酸化膜18を形成する。
【0038】
図4(d)及び(d′)参照
次いで、SiN膜パターン13を除去したのち、ゲート絶縁膜19及びゲート電極22を設け、次いで、ゲート電極22をマスクとして自己整合的にAsイオンを注入し熱処理することによってn型ソース領域20及びn型ドレイン領域21を形成することによって、nチャネル型MOSFETの基本構成が得られる。
【0039】
この第1の実施の形態においては、素子形成領域14を区画する溝15の幅を〈010〉方向と〈100〉方向とで異なるように設定することによって、〈100〉方向の1軸性圧縮応力を発生させ、〈010〉方向の電子の移動度を向上させているので、〈010〉方向を電流方向とするnチャネル型MOSFETの動作速度を向上することができる。
【0040】
次に、図5を参照して本発明の第2の実施の形態のnチャネル型MOSFETの製造工程を説明するが、各図において「′」の付かない図は概略的平面図であり、「′」の付く図は、平面図におけるA−A′を結ぶ一点鎖線に沿った概略的断面図である。
図5(a)及び(a′)参照
まず、(001)面を主面とするp型シリコン基板11の表面にp型ウエル領域12を形成したのち、SiN膜パターン13をマスクとしてエッチングすることによって、図においては水平方向、即ち、〈010〉方向に延在する溝の幅がチャネル領域となる中央部の近傍においては幅がaで他の部分においてはb(≫a)で、垂直方向、即ち、〈100〉に延在する溝の幅がbの溝15によって素子形成領域14を区画する。
【0041】
次いで、SiN膜パターン13をそのまま選択酸化マスクとして用いて熱酸化を施すことによって、〈010〉方向に延在する溝の中央部を完全に熱酸化膜16で埋め込む。
この場合には、〈010〉方向に延在する溝の中央部においてのみ、〈100〉方向の1軸性圧縮応力が発生する。
【0042】
図5(b)及び(b′)参照
次いで、全面にSiO2 膜を堆積したのちエッチングバックを施すことによって、溝15の残部を埋込絶縁膜17で埋め込んで平坦化したのち、周辺部のSiN膜パターン13を選択的に除去して、素子形成領域14上に残ったSiN膜パターン13をマスクとして選択酸化を施すことによって、溝15の外周部に素子分離酸化膜18を形成する。
【0043】
次いで、SiN膜パターン13を除去したのち、ゲート絶縁膜19及びゲート電極22を設け、次いで、ゲート電極22をマスクとして自己整合的にAsイオンを注入し熱処理することによってn型ソース領域20及びn型ドレイン領域21を形成することによって、nチャネル型MOSFETの基本構成が得られる。
【0044】
この本発明の第2の実施の形態においても、チャネル領域に〈100〉方向の1軸性圧縮応力を印加して、〈010〉方向の電子の移動度を向上しているので、nチャネル型MOSFETの動作速度を向上することができる。
【0045】
また、この場合には、圧縮応力が印加されるチャネル領域近傍でバンド・ギャップの低下が起こるため、n型ソース領域20とゲート電極22直下のチャネル領域の拡散電位が下がり、ホットエレクトロンで発生したチャージによるフローティングボディ効果(動作しきい電圧変動)の抑制なども期待できる。
【0052】
次に、図を参照して、本発明の第の実施の形態のCMOSを説明する。
(a)及び(b)参照
(a)は、本発明の第の実施の形態のCMOSの概略的平面図であり、また、図(b)は図(a)におけるB−B′を結ぶ一点鎖線に沿った概略的断面図であり、この場合には、上述の図4(d)に示した構造のnチャネル型MOSFETと、このnチャネル型MOSFETの同じ構成のpチャネル型MOSFETを隣接して設けてCMOSを構成したものである。
【0053】
即ち、p型シリコン基板11にp型ウエル領域12とn型ウエル領域31を選択的に設けて、p型ウエル領域12に図4(d)に示した構造のnチャネル型MOSFETを設けるとともに、n型ウエル領域31にpチャネル型MOSFETを設けたものである。
【0054】
この第の実施の形態においては、pチャネル型MOSFETとnチャネル型MOSFETの両方に1軸性圧縮応力を印加することができるので、CMOSの動作速度を向上することができる。
【0055】
次に、図を参照して、本発明の第の実施の形態のCMOSを説明するが、基本的製造工程は、上記の各実施の形態と同様であるので、溝パターンと最終構成を平面図として説明する。
(a)及び(b)参照
この本発明の第の実施の形態においては、nチャネル型MOSFETを形成する素子形成領域14を区画する溝15の〈010〉方向に延在する幅をaとし、pチャネル型MOSFETを形成する素子形成領域33を区画する溝34の〈010〉方向に延在する幅をc(<a)としたもので、素子形成領域14を区画する溝15の〈010〉方向に延在する幅aの領域が完全に埋まるように熱酸化を行う。
【0056】
この場合、溝34の幅の狭いcの領域においては熱酸化膜35による体積膨張による圧力は溝15の幅の狭いaの領域より大きくなるので、pチャネル型MOSFETに対する1軸性圧縮応力をより大きくすることができ、それによって、nチャネル型MOSFETとpチャネル型MOSFETの動作速度のバランスをより改善することができる。
【0057】
次に、図を参照して、本発明の第の実施の形態のnpnラテラルバイポーラトランジスタの製造工程を説明するが、各図において「′」の付かない図は概略的平面図であり、「′」の付く図は、平面図におけるA−A′を結ぶ一点鎖線に沿った概略的断面図である。
(a)及び(a′)参照
まず、(001)面を主面とするp型シリコン基板51の表面にp型ウエル領域52を形成したのち、SiN膜パターン54をマスクとしてエッチングすることによって、図においては水平方向、即ち、〈010〉方向に延在する溝の幅がチャネル領域となる中央部の近傍においては幅がb(≫a)で、他の領域における幅がaで、垂直方向、即ち、〈100〉に延在する溝の幅がbの溝55によって素子形成領域54を区画する。
【0058】
次いで、SiN膜パターン53をそのまま選択酸化マスクとして用いて熱酸化を施すことによって、〈010〉方向に延在する溝55の中央部を除く幅がaの部分を完全に熱酸化膜56で埋め込む。
この場合、〈010〉方向に延在する溝の中央部以外の領域において、〈100〉方向の1軸性圧縮応力が発生する結果、素子形成領域54の両側の領域は〈010〉方向に拡大するように変形しようとするので、中央領域においては〈010〉方向の1軸性圧縮応力が印加される。
【0059】
(b)及び(b′)参照
次いで、全面にSiO2 膜を堆積したのちエッチングバックを施すことによって、〈100〉方向に延在する溝55の残部及び〈010〉方向の中央部の溝55の残部を埋込絶縁膜57で埋め込んで平坦化したのち、SiN膜パターン53を除去する。
【0060】
次いで、素子形成領域54及びベース引出領域55を覆うように新たなSiN膜パターン(図示を省略)を設け、このSiN膜パターンをマスクとして選択酸化を施すことによって、溝55の外周部に素子分離酸化膜58を形成する。
【0061】
次いで、SiN膜パターンを除去したのち、素子形成領域54の両側にAsを選択的に注入し熱処理することによってn型エミッタ領域59及びn型コレクタ領域60を形成し、未注入領域をp型ベース領域とすることによって、npnラテラルバイポーラトランジスタの基本構成が得られる。
【0062】
この第の実施の形態においても、1軸性圧縮応力を印加することによって、電子・正孔の移動度を向上することができるので、ラテラルバイポーラトランジスタの動作速度を向上することができる。
【0063】
以上、本発明の各実施の形態を説明したが、本発明は各実施の形態に記載した構成及び条件に限られるものではなく、各種の変更が可能である。
例えば、上記の各実施の形態において、圧縮応力を発生させる熱酸化膜を形成したのち、選択酸化によって素子分離酸化膜を形成しているが、素子分離酸化膜を形成したのち溝を形成して圧縮応力を発生させる熱酸化膜を形成しても良いものである。
【0064】
また、容易に想像できるように、溝幅をチャネル方向でデザインすれば、任意の個所でバンド状態を変えることが可能となり、横方向のバンドギャップエンジニアリングができる。
【0065】
例えば、ソース領域とチャネル領域の接合付近のみに応力印加をすれば、拡散電位が下げられるためソース領域からチャネル領域への電子やホールの注入が促され、電流を多く取れることが期待できる。
さらに、速度オーバーシュート現象やバリスティック伝導などを顕著にして電流増大効果も期待される。
【0067】
また、上記の第及び第の実施の形態においては、CMOSを説明しているが、これは単なる一例に過ぎず、素子形成領域を区画する溝の幅は、目的とする1軸性応力による作用効果に応じて任意のパターンに設計すれば良い。
【0068】
また、上記の第1及び第2の実施の形態においては、一方の導電型のMOSFETを説明しているが、一つの基板に同じ導電型のMOSFETを形成する際に、一部のMOSFETに印加される1軸性圧縮応力が他のMOSFETに印加される1軸性圧縮応力とが異なるように溝の幅を異なるように設けても良いものであり、それによって、同一の工程で異なった特性のMOSFETを同時に形成することができる。
【0069】
また、上記の各実施の形態においては、典型例として(001)面を主面とするシリコン基板を例に説明しているが、(001)面を主面とするシリコン基板に限られるものではなく、(111)面等の他の結晶面を主面とするシリコン基板にも適用されるものである。
【0070】
また、上記の各実施の形態においては、シリコン基板を用いて説明したが、シリコン基板に限られるものではなく、シリコン基板上に設けたSiエピタキシャル層、或いは、SOI基板に設けたSi層にも適用されるものである。
【0071】
また、素子形成領域はSiに限られるものではなく、SiGeを用いても良いものであり、それによって、pチャネル型MOSFETの動作速度を向上することができるので、CMOSの速度を向上することができる。
なお、この場合のSiGe層は能動領域として用いる程度の厚さで良いので、上述の非特許文献1に記載されたような素子動作に直接寄与しない臨界膜厚を越えた厚いSiGe層は必要としなくなる。
【0072】
ここで、再び、図1を参照して、改めて本発明の詳細な特徴を説明する。
再び、図1参照
(付記1) Si系半導体基体に設けた少なくともトランジスタを形成する素子形成領域と、前記素子形成領域の外周に互いに対向する辺を有して区画された溝と、前記素子形成領域にゲート絶縁膜を介して形成されたゲート電極とを有し、前記ゲート電極に直交する辺の溝を完全に熱酸化膜で埋め込み、前記ゲート電極に平行な溝を熱酸化膜と堆積膜による埋込絶縁膜で埋め込むことで、面内の1軸方向に圧縮応力を印加することを特徴とする半導体装置。
(付記2) 上記Si系半導体基体が、(001)面を主面とするSi基板であり、上記トランジスタが、絶縁ゲート型電界効果トランジスタであることを特徴とする付記1記載の半導体装置。
(付記3) キャリアの伝導方向が、上記圧縮応力による歪みを受ける方向に対して直交する方向であることを特徴とする付記1または2に記載の半導体装置。
(付記) 上記トランジスタが絶縁ゲート型電界効果トランジスタであり、上記圧縮応力が、ソース領域、ドレイン領域、或いは、チャネル領域の少なくとも一つの領域に印加されていることを特徴とする付記1乃至のいずれか1に記載の半導体装置。
(付記) 上記Si系半導体基体に設けた溝の幅を部分的に変化させることによって、上記圧縮応力の印加部分及び歪み量を制御することを特徴とする付記1乃至のいずれか1に記載の半導体装置。
(付記) 上記Si系半導体基体にキャリアの伝導方向に沿って設けた溝の幅を、チャネル領域近傍で他の領域より狭くして、上記面内の圧縮応力をキャリアの伝導方向と垂直方向に印加することを特徴とする付記記載の半導体装置。
(付記) 上記素子形成領域を複数設けるとともに、前記各々素子形成領域の少なくとも一対の互いに対向する辺の外周に設けた溝の幅が互いに異なることを特徴とする付記1乃至のいずれか1に記載の半導体装置。
(付記) Si系半導体基体に少なくともトランジスタを形成する素子形成領域を区画するように溝を設けるとともに、前記溝の幅を少なくとも一部において他部より狭くし、少なくとも前記幅を狭くした領域において面内の1軸方向に圧縮応力が印加される程度に熱酸化を行って前記少なくとも幅を狭くした領域における溝を熱酸化膜で埋め込んだことを特徴とする半導体装置の製造方法。
【0073】
【発明の効果】
本発明によれば、簡単な構成により方向を自由に設定できる1軸性圧縮応力を印加することができるので、この1軸性圧縮応力の印加方向に応じて電流方向を決定することによって動作速度を制御性良く向上することができ、シリコン系半導体装置の性能向上に寄与するところが大きい。
【図面の簡単な説明】
【図1】本発明の原理的構成の説明図である。
【図2】歪みによるバンド構造の変化の説明図である。
【図3】本発明の第1の実施の形態のnチャネル型MOSFETの途中までの製造工程の説明図である。
【図4】本発明の第1の実施の形態のnチャネル型MOSFETの図3以降の製造工程の説明図である。
【図5】本発明の第2の実施の形態のnチャネル型MOSFETの製造工程の説明図である。
【図6】 本発明の第3の実施の形態のCMOSの構成説明図である。
【図7】本発明の第4の実施の形態のCMOSの構成説明図である。
【図8】 本発明の第の実施の形態のnpnラテラルバイポーラトランジスタの製造工程の説明図である。
【符号の説明】
11 p型シリコン基板
12 p型ウエル領域
13 SiN膜パターン
14 素子形成領域
15 溝
16 熱酸化膜
17 埋込絶縁膜
18 素子分離酸化膜
19 ゲート絶縁膜
20 n型ソース領域
21 n型ドレイン領域
22 ゲート電極
31 n型ウエル領域
33 素子形成領域
34 溝
35 熱酸化膜
36 埋込絶縁膜
38 ゲート絶縁膜
39 p型ソース領域
40 p型ドレイン領域
41 ゲート電極
51 p型シリコン基板
52 p型ウエル領域
53 SiN膜パターン
54 素子形成領域
55 溝
56 熱酸化膜
57 埋込絶縁膜
58 素子分離酸化膜
59 n型エミッタ領域
60 n型コレクタ領域
61 p型ベース領域
62 ベース引出領域
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor device, and more particularly to a semiconductor device characterized by a configuration for artificially controlling the band structure in a semiconductor and the electrical conduction of a transistor.
[0002]
[Prior art]
In recent years, according to scaling rules, miniaturization of MOS transistors has progressed, and 0.1 μm node transistors have been developed in the research and development stage.
[0003]
Since this generation of transistors has a gate length of 50 nm or less, the threshold voltage V of the transistorthThe so-called short channel effect such as a decrease in the flow rate and DIBL (Drain-Induced Barrier Lowering) becomes prominent, and in order to suppress this, a device such as pocket implantation (inclined ion implantation) or increasing the impurity concentration of the Si-based semiconductor substrate is used. Has been done.
[0004]
However, when the gate length is further reduced to increase the speed of the transistor, there is a concern that even if the gate length is reduced due to several factors, high performance can no longer be obtained.
[0005]
One of the causes is that the longitudinal electric field in the channel becomes finer, that is, as the oxide film becomes thinner, the wave function indicating the existence probability of carriers is strongly pressed toward the interface with the gate oxide film. , SiO2This is because the influence of roughness scattering at the / Si interface becomes stronger, and the effective carrier mobility in the channel is lowered.
[0006]
In addition, as a more fundamental problem, VthIt becomes technically difficult to advance miniaturization while suppressing variations in transistor characteristics.
Even if it can be technically cleared, there is a direction to draw a scenario in which the bankruptcy occurs due to economic factors such as an increase in the investment cost of the production line necessary to realize mass production.
In any case, it must be said that there has been a limit to the improvement in characteristics by Dennard's simple scaling, which has been pursued as a gold sphere for many years.
[0007]
Under such circumstances, an attempt to improve the characteristics by changing the material or physical properties of the channel of the transistor to improve the carrier mobility, rather than simply shrinking the transistor dimensions, has begun.
[0008]
In particular, when a MOS transistor is formed by a normal process technique by forming an oxide film on a strained Si surface to which a biaxial in-plane tensile stress is applied, it is experimentally shown that the electron mobility is improved by about 70%. It has been confirmed.
[0009]
This improvement in mobility results in the symmetry of the crystal breaking due to strain, and the degeneracy of the energy valley at the Δ point that has undergone 6-fold degeneration splits into a low-energy double-degenerate level and a high-energy 4-fold degeneration, resulting in intersubvalley scattering. And the effect of increasing the occupancy of the double degenerate level and reducing the average effective mass of the conduction band electrons (for example, see Non-Patent Document 1).
[0010]
Specifically, a thin Si channel having a critical thickness of 10 to 20 nm or less on a SiGe (Ge composition 10 to 20%) buffer layer grown to exceed the critical thickness for the purpose of relaxing strain on the Si substrate. A MOSFET transistor is manufactured using a wafer on which layers are epitaxially grown.
[0011]
For n-type MOS transistors, this method has already been used, and a number of research institutions (Stanford University, Toshiba, MIT, IBM) have demonstrated significant improvements in mobility, and p-type MOS transistors are also about 2.7 times higher. Although it does not reach the theoretical prediction, using the same wafer, mobility improvement of several tens of percent has been confirmed.
[0012]
  In addition, an SOI (Silicon on Insulator) substrate is used, and an element formation region is selectively oxidized.soIt has also been proposed to improve the mobility of carriers by applying compressive stress to the element formation region by surrounding (see, for example, Patent Document 1).
[0013]
[Non-Patent Document 1]
Semicond. Sci. Technol. , Vol. 12, pp. 1515-1549, 1997
[Patent Document 1]
JP-A-11-54756
[0014]
[Problems to be solved by the invention]
As described above, the concept of equivalent scaling has finally started to be used outside the conventional simple scaling frame. In particular, in terms of strained Si-MOSFETs, mobility improvement is no longer an experimental fact. It seems that the issue and importance have already shifted to how well this characteristic can be applied to practical technology.
[0015]
Of course, the pursuit of the mechanism seems to be important academically, but it does not necessarily link to technical problems.
Therefore, when analyzing the problems of the strained Si technology described above, the new material SiGe itself is not directly used for the channel, but is only indirectly applied to give strain to Si.
[0016]
In other words, the essence of the technology is to add strain to Si, which is normally 6-fold degenerate on the conduction band side and double-degenerate on the valence band side. By releasing these degeneracy and changing the scattering frequency, There is no need to use SiGe which does not necessarily constitute the element formation region if the strain is applied while being artificially controlled.
[0017]
In consideration of cost and process line contamination, a means for improving the mobility of the Si substrate without using a new material such as SiGe can be achieved except when SiGe is used as an element formation region. If so, it would be extremely desirable.
[0018]
In addition, in the case of an SOI substrate, although a new material is not used, it is difficult to improve the crystallinity of the Si layer formed on the insulating film. It is difficult to apply stress.
[0019]
Therefore, an object of the present invention is to apply a uniaxial compressive stress to an element formation region using a conventional configuration as it is.
[0020]
[Means for Solving the Problems]
  FIG. 1 is a diagram illustrating the basic configuration of the present invention, and FIG. 2 is an explanatory diagram of changes in the band structure due to strain. Means for solving the problems in the present invention with reference to FIGS. Will be explained.
  See FIGS. 1 and 2
  In order to achieve the above object, the present invention provides an element formation region for forming at least a transistor provided on a Si-based semiconductor substrate in a semiconductor device.And a groove having a side defined on the outer periphery of the element formation region and a gate electrode formed in the element formation region via a gate insulating film, and having a side perpendicular to the gate electrode. Is completely filled with a thermal oxide film, and a groove parallel to the gate electrode is filled with a buried insulating film made of a thermal oxide film and a deposited film,Compressive stress in one axial direction in the planeTheAppliedDoIt is characterized by that.
[0021]
In the conventional MOSFET, as shown in FIG. 1A, the carrier conduction direction is the <110> direction using the Si substrate having the (001) plane as the main surface. As shown in FIG. 3, when a uniaxial compressive stress is applied from both sides along the <100> direction, which is the x direction, to the Si substrate having the same (001) plane as the main surface, the Si substrate Try to stretch in the direction.
[0022]
Then, as shown in the left diagrams of FIGS. 2A and 2B, in the case of normal Si, the band structure degenerates six times at the Δ point is as shown in the right diagrams of FIGS. 2A and 2B. When compressive stress is applied, the degeneracy is resolved, the energy of the two valleys on the <100> axis (double degeneration) decreases, and conversely, the energy of the four valleys on the <010> axis and the <001> axis increases. To do.
As a result, the occupancy probability of electrons increases in the double degenerated subvalley, and the scattering frequency to four valleys with higher energy decreases, so that the electron mobility is improved.
[0023]
In addition, as shown in FIG. 1B, when a channel is formed in the <010> direction orthogonal to the direction of application of the uniaxial compressive stress, the spheroid shape on the isoenergetic surface means <010 The effective mass in the> direction is mainly visible, so this effect also contributes to improved mobility.
Note that the energy levels in the y direction and the z direction do not necessarily match because energy changes occur in accordance with the amount of lattice deformation in each direction, but there is no doubt that they are higher than the energy in the x direction.
[0024]
On the other hand, as shown in FIG. 2C, in the valence band, light holes (1h) and heavy holes (hh) at the Γ point (intersection of the vertical axis and the horizontal axis) are also affected by strain. Since degeneracy is solved and scattering due to interband transition is reduced, mobility is improved.
In addition, SO in a figure is spin orbit split-off.
[0025]
In addition, it is generally known that the drain current density of the transistor increases by taking the channel direction in the <010> direction for holes, and this effect can also be expected.
[0026]
Therefore, by embedding a pair of opposed grooves provided on the outer periphery surrounding the element formation region by thermal oxidation, the above-described uniaxial stress can be applied to the element without using a special structure such as an SOI structure or a SiGe stress relaxation layer. This can be applied to the region, and the above-described improvement in mobility can be realized.
[0027]
That is, when thermal oxidation is performed, oxidation proceeds from both side walls of the groove, and when the groove is completely filled with the thermal oxide film, the element formation region is pushed inward by the increased thermal oxide film, A compressive stress is applied.
On the other hand, in the other pair of sides, the groove is not completely filled with the thermal oxide film, so that no compressive stress is applied to this portion, so that it becomes a uniaxial compressive stress.
[0028]
The Si-based semiconductor substrate (body) in the present invention means both a Si-based semiconductor substrate and a Si-based semiconductor layer grown on a growth substrate such as a semiconductor substrate or an insulating substrate. The Si-based semiconductor means both Si and SiGe. However, as the Si-based semiconductor substrate, a Si substrate having a (001) plane as a main surface is typical, and as a transistor, Insulated gate field effect transistors, or MISFETs, are typical.
[0030]
As a transistor, a lateral bipolar transistor is also targeted. However, in the case of an insulated gate field effect transistor, compressive stress is applied to at least one of a source region, a drain region, and a channel region. For example, it may be applied to all of the source region, the drain region, and the channel region, only the source region and the drain region, or only the channel region.
[0031]
Further, by applying a partial change in the width of the groove provided in the Si-based semiconductor substrate, the portion to which the compressive stress is applied and the amount of strain may be arbitrarily controlled.
For example, the width of the groove formed in the Si-based semiconductor substrate along the carrier conduction direction is made narrower than other regions in the vicinity of the channel region, and the in-plane compressive stress is applied in the direction perpendicular to the carrier conduction direction. Alternatively, the width of the groove provided in the Si-based semiconductor substrate along the carrier conduction direction is made wider than the other regions in the vicinity of the channel region, and the in-plane compressive stress is increased in the carrier conduction direction. And may be applied in parallel.
[0032]
When a plurality of element formation regions are provided, the widths of grooves provided on the outer periphery of at least a pair of opposing sides of each element formation region may be different from each other, thereby forming each element formation region. The characteristics of the transistors to be made can be made different from each other.
[0033]
DETAILED DESCRIPTION OF THE INVENTION
Here, the manufacturing process of the n-channel MOSFET according to the first embodiment of the present invention will be described with reference to FIGS.
In each of the drawings, a figure without “′” is a schematic plan view, and a figure with “′” is a schematic cross-sectional view along an alternate long and short dash line connecting AA ′ in the plan view.
Refer to FIGS. 3A and 3A.
First, after forming the p-type well region 12 on the surface of the p-type silicon substrate 11 having the (001) plane as the main surface, etching is performed using the SiN film pattern 13 as a mask, so that the horizontal direction in FIG. The element forming region 14 is defined by a groove 15 having a width of a groove extending in the 010> direction and a width of b (>> a) extending in the vertical direction, that is, <100>.
[0034]
See FIGS. 3B and 3B '
Next, by performing thermal oxidation using the SiN film pattern 13 as a selective oxidation mask as it is, the groove 15 having a width a extending in the horizontal direction is completely filled with the thermal oxide film 16.
[0035]
At this time, thermal oxidation proceeds from both side walls of the groove 15, but Si is SiO.2In this case, the volume expansion more than twice occurs, and SiO2When they come into contact with each other, a force that pushes both sides of the groove is generated and tries to deform.
However, since the p-type well region 12 opposed to the element forming region 14 with the groove 15 interposed therebetween is a larger region than the element forming region 14, a compressive stress is generated in the <100> direction on the element forming region 14 side.
[0036]
On the other hand, by controlling the width b and the thermal oxidation time so that the thermal oxide film 16 does not collide with the groove 15 having the width b, no compressive stress is generated in the <010> direction. The compressive stress is a uniaxial compressive stress in the <100> direction.
[0037]
See FIG. 4 (c) and (c ′)
Next, SiO2After the film is deposited, etching back is applied to fill the remaining portion of the groove 15 extending in the <100> direction with the buried insulating film 17 and planarize it, and then selectively remove the SiN film pattern 13 in the peripheral portion. Then, by performing selective oxidation using the SiN film pattern 13 remaining on the element forming region 14 as a mask, an element isolation oxide film 18 is formed on the outer peripheral portion of the groove 15.
[0038]
Refer to FIGS. 4D and 4D
Next, after the SiN film pattern 13 is removed, a gate insulating film 19 and a gate electrode 22 are provided. Then, As ions are implanted in a self-aligned manner using the gate electrode 22 as a mask and heat treatment is performed, whereby the n-type source region 20 and n By forming the type drain region 21, the basic configuration of the n-channel type MOSFET can be obtained.
[0039]
In the first embodiment, uniaxial compression in the <100> direction is performed by setting the width of the groove 15 defining the element forming region 14 to be different between the <010> direction and the <100> direction. Since stress is generated and the mobility of electrons in the <010> direction is improved, the operation speed of the n-channel MOSFET having the <010> direction as the current direction can be improved.
[0040]
Next, the manufacturing process of the n-channel MOSFET according to the second embodiment of the present invention will be described with reference to FIG. 5. In each drawing, the figures without “′” are schematic plan views. The drawing with “′” is a schematic cross-sectional view along the alternate long and short dash line connecting AA ′ in the plan view.
See FIGS. 5 (a) and (a ').
First, after forming the p-type well region 12 on the surface of the p-type silicon substrate 11 having the (001) plane as the main surface, etching is performed using the SiN film pattern 13 as a mask, so that the horizontal direction in FIG. The groove extending in the 010> direction has a width in the vicinity of the central portion serving as the channel region and b (>> a) in the other portion, and the groove extending in the vertical direction, that is, <100>. The element formation region 14 is defined by the groove 15 having a width of b.
[0041]
Next, the central portion of the groove extending in the <010> direction is completely filled with the thermal oxide film 16 by performing thermal oxidation using the SiN film pattern 13 as it is as a selective oxidation mask.
In this case, the uniaxial compressive stress in the <100> direction is generated only in the central portion of the groove extending in the <010> direction.
[0042]
Refer to FIGS. 5B and 5B
Next, SiO2After the film is deposited, etching back is performed to fill the remaining portion of the trench 15 with the buried insulating film 17 and planarize it. Then, the SiN film pattern 13 in the peripheral portion is selectively removed, and the element formation region 14 is formed. The element isolation oxide film 18 is formed on the outer peripheral portion of the trench 15 by performing selective oxidation using the remaining SiN film pattern 13 as a mask.
[0043]
Next, after the SiN film pattern 13 is removed, a gate insulating film 19 and a gate electrode 22 are provided. Then, As ions are implanted in a self-aligned manner using the gate electrode 22 as a mask and heat treatment is performed, whereby the n-type source region 20 and n By forming the type drain region 21, the basic configuration of the n-channel type MOSFET can be obtained.
[0044]
Also in the second embodiment of the present invention, the uniaxial compressive stress in the <100> direction is applied to the channel region to improve the mobility of electrons in the <010> direction. The operating speed of the MOSFET can be improved.
[0045]
In this case, since the band gap is lowered in the vicinity of the channel region to which the compressive stress is applied, the diffusion potential of the channel region immediately below the n-type source region 20 and the gate electrode 22 is lowered and generated by hot electrons. It can also be expected to suppress floating body effect (operation threshold voltage fluctuation) due to charging.
[0052]
  Next, figure6Referring to FIG.3The CMOS of the embodiment will be described.
  Figure6See (a) and (b)
  Figure6(A) is the first of the present invention.32 is a schematic plan view of the CMOS of the embodiment of FIG.6(B) is a figure6FIG. 6 is a schematic cross-sectional view taken along the alternate long and short dash line connecting BB ′ in FIG. 4A. In this case, the n-channel MOSFET having the structure shown in FIG. The p-channel MOSFETs having the same structure are provided adjacent to each other to constitute a CMOS.
[0053]
That is, a p-type well region 12 and an n-type well region 31 are selectively provided on a p-type silicon substrate 11, and an n-channel MOSFET having the structure shown in FIG. A p-channel MOSFET is provided in the n-type well region 31.
[0054]
  This first3In this embodiment, since a uniaxial compressive stress can be applied to both the p-channel MOSFET and the n-channel MOSFET, the operation speed of the CMOS can be improved.
[0055]
  Next, figure7Referring to FIG.4The CMOS of this embodiment will be described. Since the basic manufacturing process is the same as that of each of the above embodiments, the groove pattern and the final configuration will be described as a plan view.
  Figure7See (a) and (b)
  The first aspect of the present invention4In the embodiment, the width extending in the <010> direction of the groove 15 that partitions the element forming region 14 that forms the n-channel MOSFET is a, and the element forming region 33 that forms the p-channel MOSFET is partitioned. The width of the groove 34 extending in the <010> direction is c (<a), and the region of the width a extending in the <010> direction of the groove 15 defining the element forming region 14 is completely filled. Thermal oxidation is performed.
[0056]
In this case, in the region c of the narrow width of the groove 34, the pressure due to the volume expansion by the thermal oxide film 35 becomes larger than the region of the narrow width a of the groove 15, so that the uniaxial compressive stress on the p-channel MOSFET is more Therefore, the balance between the operation speeds of the n-channel MOSFET and the p-channel MOSFET can be further improved.
[0057]
  Next, figure8Referring to FIG.5The manufacturing process of the npn lateral bipolar transistor of this embodiment will be described. In each figure, the figures without “′” are schematic plan views, and the figures with “′” are AA ′ in the plan views. It is a schematic sectional drawing in alignment with the dashed-dotted line which connects.
  Figure8See (a) and (a ')
  First, after forming the p-type well region 52 on the surface of the p-type silicon substrate 51 having the (001) plane as the main surface, etching is performed using the SiN film pattern 54 as a mask, so that the horizontal direction in the drawing, that is, < The width of the groove extending in the 010> direction is b (>> a) in the vicinity of the central portion that becomes the channel region, and the width in the other region is a, extending in the vertical direction, that is, <100>. The element forming region 54 is defined by the groove 55 having a groove width b.
[0058]
  Next, by performing thermal oxidation using the SiN film pattern 53 as it is as a selective oxidation mask, the portion with the width a excluding the central portion of the groove 55 extending in the <010> direction is completely buried with the thermal oxide film 56. .
  This placeIfAs a result of the occurrence of uniaxial compressive stress in the <100> direction in the region other than the central portion of the groove extending in the <010> direction, the regions on both sides of the element formation region 54 are expanded in the <010> direction. Since it tries to deform, a uniaxial compressive stress in the <010> direction is applied in the central region.
[0059]
  Figure8See (b) and (b ')
  Next, after depositing a SiO2 film on the entire surface, etching back is performed to bury the remaining portion of the groove 55 extending in the <100> direction and the remaining portion of the groove 55 in the center portion in the <010> direction with the buried insulating film 57. Then, the SiN film pattern 53 is removed.
[0060]
Next, a new SiN film pattern (not shown) is provided so as to cover the element formation region 54 and the base lead region 55, and selective isolation is performed using this SiN film pattern as a mask, so that element isolation is performed on the outer periphery of the groove 55. An oxide film 58 is formed.
[0061]
Next, after removing the SiN film pattern, As is selectively implanted and heat-treated on both sides of the element formation region 54 to form an n-type emitter region 59 and an n-type collector region 60, and an unimplanted region is formed as a p-type base. By using the region, the basic configuration of the npn lateral bipolar transistor can be obtained.
[0062]
  This first5Also in this embodiment, by applying a uniaxial compressive stress, the mobility of electrons and holes can be improved, so that the operation speed of the lateral bipolar transistor can be improved.
[0063]
Although the embodiments of the present invention have been described above, the present invention is not limited to the configurations and conditions described in the embodiments, and various modifications can be made.
For example, in each of the above-described embodiments, the element isolation oxide film is formed by selective oxidation after the formation of the thermal oxide film that generates the compressive stress. A thermal oxide film that generates compressive stress may be formed.
[0064]
Also, as can be easily imagined, if the groove width is designed in the channel direction, the band state can be changed at an arbitrary position, and lateral band gap engineering can be performed.
[0065]
For example, if stress is applied only in the vicinity of the junction between the source region and the channel region, the diffusion potential is lowered, so that injection of electrons and holes from the source region to the channel region is promoted, and a large amount of current can be expected.
Furthermore, the effect of increasing the current is expected by making the speed overshoot phenomenon and ballistic conduction remarkable.
[0067]
  Also, the above3And the second4In the embodiment, the CMOS is described, but this is merely an example, and the width of the groove defining the element formation region can be set to an arbitrary pattern according to the intended effect of the uniaxial stress. To design.
[0068]
  In addition, the firstAnd secondIn this embodiment, one type of MOSFET is described, but when forming the same type of MOSFET on one substrate, the uniaxial compressive stress applied to some MOSFETs is different The groove widths may be different from each other so that the uniaxial compressive stress applied to the MOSFET is different, whereby MOSFETs having different characteristics can be formed simultaneously in the same process. .
[0069]
In each of the above embodiments, the silicon substrate having the (001) plane as the main surface is described as an example in the typical example. However, the present invention is not limited to the silicon substrate having the (001) plane as the main surface. However, the present invention is also applicable to a silicon substrate whose main surface is another crystal plane such as the (111) plane.
[0070]
In each of the above embodiments, the description has been given using the silicon substrate. However, the present invention is not limited to the silicon substrate, and the Si epitaxial layer provided on the silicon substrate or the Si layer provided on the SOI substrate is also described. Applicable.
[0071]
In addition, the element formation region is not limited to Si, and SiGe may be used. Thereby, the operation speed of the p-channel MOSFET can be improved, so that the speed of the CMOS can be improved. it can.
In this case, since the SiGe layer may be thick enough to be used as an active region, a thick SiGe layer exceeding the critical film thickness that does not directly contribute to device operation as described in Non-Patent Document 1 described above is required. Disappear.
[0072]
  Here, the detailed features of the present invention will be described again with reference to FIG.
  Again see Figure 1
  (Additional remark 1) The element formation area which forms the transistor provided in the Si type semiconductor substrate, the groove | channel partitioned off by the edge which mutually opposes on the outer periphery of the said element formation area, and a gate insulating film in the said element formation area And a groove on a side perpendicular to the gate electrode is completely filled with a thermal oxide film, and a groove parallel to the gate electrode is buried with a thermal oxide film and a deposited film. The semiconductor device is characterized in that a compressive stress is applied in one axial direction in the plane by embedding in (1).
  (Supplementary note 2) The semiconductor device according to supplementary note 1, wherein the Si-based semiconductor substrate is a Si substrate having a (001) plane as a main surface, and the transistor is an insulated gate field effect transistor.
  (Additional remark 3) The semiconductor device of Additional remark 1 or 2 characterized by the conduction direction of a carrier being a direction orthogonal to the direction which receives the distortion by the said compressive stress.
  (Appendix4Note that the transistor is an insulated gate field effect transistor, and the compressive stress is applied to at least one of a source region, a drain region, and a channel region.3The semiconductor device according to any one of the above.
  (Appendix5The additional portion 1 to the compressive stress is applied and the amount of strain is controlled by partially changing the width of the groove provided in the Si-based semiconductor substrate.3The semiconductor device according to any one of the above.
  (Appendix6) The width of the groove formed in the Si-based semiconductor substrate along the carrier conduction direction is made narrower than other regions in the vicinity of the channel region, and the in-plane compressive stress is applied in the direction perpendicular to the carrier conduction direction. Additional notes characterized by5The semiconductor device described.
  (Appendix72) A plurality of the element formation regions are provided, and the widths of the grooves provided on the outer circumferences of at least a pair of opposing sides of the element formation regions are different from each other.6The semiconductor device according to any one of the above.
  (Appendix8) A groove is provided in the Si-based semiconductor substrate so as to partition at least an element formation region for forming a transistor, the width of the groove is at least partly narrower than that of the other part, and at least in the region where the width is narrowed. A method of manufacturing a semiconductor device, comprising performing thermal oxidation to such an extent that compressive stress is applied in a uniaxial direction, and filling a groove in the at least narrow region with a thermal oxide film.
[0073]
【The invention's effect】
According to the present invention, the uniaxial compressive stress whose direction can be freely set can be applied with a simple configuration. Therefore, the operating speed is determined by determining the current direction in accordance with the application direction of the uniaxial compressive stress. Can be improved with good controllability, which greatly contributes to improving the performance of silicon-based semiconductor devices.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a basic configuration of the present invention.
FIG. 2 is an explanatory diagram of a change in band structure due to strain.
FIG. 3 is an explanatory diagram of a manufacturing process to the middle of the n-channel MOSFET according to the first embodiment of the invention.
FIG. 4 is an explanatory diagram of the manufacturing process of the n-channel MOSFET according to the first embodiment of the present invention after FIG. 3;
FIG. 5 is an explanatory diagram of a manufacturing process of the n-channel MOSFET according to the second embodiment of the invention.
FIG. 6 shows a third embodiment of the present invention.It is a configuration explanatory diagram of a CMOS.
FIG. 7 is a configuration explanatory diagram of a CMOS according to a fourth embodiment of the present invention.
FIG. 8 shows the first of the present invention.5It is explanatory drawing of the manufacturing process of the npn lateral bipolar transistor of embodiment.
[Explanation of symbols]
  11 p-type silicon substrate
  12 p-type well region
  13 SiN film pattern
  14 Element formation region
  15 groove
  16 Thermal oxide film
  17 buried insulating film
  18 Device isolation oxide film
  19 Gate insulation film
  20 n-type source region
  21 n-type drain region
  22 Gate electrode
  31 n-type wellregion
  33  Element formation region
  34 groove
  35 Thermal oxide film
  36 ImplantationRim
  38  Gate insulation film
  39 p-type source region
  40 p-type drain region
  41 Gate electrode
  51 p-type silicon substrate
  52 p-type well region
  53 SiN film pattern
  54 Element formation region
  55 groove
  56 Thermal oxide film
  57 buried insulating film
  58 Device isolation oxide film
  59 n-type emitter region
  60 n-type collector region
  61 p-type base region
  62 Base drawer area

Claims (4)

Si系半導体基体に設けた少なくともトランジスタを形成する素子形成領域と、前記素子形成領域の外周に互いに対向する辺を有して区画された溝と、前記素子形成領域にゲート絶縁膜を介して形成されたゲート電極とを有し、前記ゲート電極に直交する辺の溝を完全に熱酸化膜で埋め込み、前記ゲート電極に平行な溝を熱酸化膜と堆積膜による埋込絶縁膜で埋め込むことで、面内の1軸方向に圧縮応力を印加することを特徴とする半導体装置。  Formed on the Si-based semiconductor substrate at least an element forming region for forming a transistor, a groove partitioned by edges facing each other on the outer periphery of the element forming region, and a gate insulating film formed in the element forming region A groove on a side perpendicular to the gate electrode is completely filled with a thermal oxide film, and a groove parallel to the gate electrode is buried with a buried insulating film made of a thermal oxide film and a deposited film. A semiconductor device characterized by applying a compressive stress in one axial direction in the plane. キャリアの伝導方向が、上記圧縮応力による歪みを受ける方向に対して直交する方向であることを特徴とする請求項1記載の半導体装置。  2. The semiconductor device according to claim 1, wherein a carrier conduction direction is a direction orthogonal to a direction of receiving a strain due to the compressive stress. 上記トランジスタが絶縁ゲート型電界効果トランジスタであり、上記圧縮応力が、ソース領域、ドレイン領域、或いは、チャネル領域の少なくとも一つの領域に印加されていることを特徴とする請求項1または2に記載の半導体装置。The transistor is the insulated gate field effect transistor, the compressive stress, the source region, the drain region, or, according to claim 1 or 2, characterized in that it is applied to at least one region of the channel region Semiconductor device. 上記Si系半導体基体に設けた溝の幅を部分的に変化させることによって、上記圧縮応力の印加部分及び歪み量を制御することを特徴とする請求項1乃至のいずれか1項に記載の半導体装置。By varying the width of the groove formed in the Si-based semiconductor substrate partially according to any one of claims 1 to 3, characterized in that controlling the application portion and a strain amount of the compressive stress Semiconductor device.
JP2003020612A 2003-01-29 2003-01-29 Semiconductor device Expired - Fee Related JP4228276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003020612A JP4228276B2 (en) 2003-01-29 2003-01-29 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003020612A JP4228276B2 (en) 2003-01-29 2003-01-29 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2004235332A JP2004235332A (en) 2004-08-19
JP4228276B2 true JP4228276B2 (en) 2009-02-25

Family

ID=32950200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003020612A Expired - Fee Related JP4228276B2 (en) 2003-01-29 2003-01-29 Semiconductor device

Country Status (1)

Country Link
JP (1) JP4228276B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7161199B2 (en) * 2004-08-24 2007-01-09 Freescale Semiconductor, Inc. Transistor structure with stress modification and capacitive reduction feature in a width direction and method thereof
US7274084B2 (en) * 2005-01-12 2007-09-25 International Business Machines Corporation Enhanced PFET using shear stress
JP2006332243A (en) 2005-05-25 2006-12-07 Toshiba Corp Semiconductor device and its manufacturing method
JP2007027194A (en) * 2005-07-12 2007-02-01 Renesas Technology Corp Semiconductor device
US7759739B2 (en) * 2005-10-27 2010-07-20 International Business Machines Corporation Transistor with dielectric stressor elements
US7348638B2 (en) * 2005-11-14 2008-03-25 International Business Machines Corporation Rotational shear stress for charge carrier mobility modification
US7476938B2 (en) * 2005-11-21 2009-01-13 International Business Machines Corporation Transistor having dielectric stressor elements at different depths from a semiconductor surface for applying shear stress
JP4894245B2 (en) * 2005-11-29 2012-03-14 セイコーエプソン株式会社 Manufacturing method of semiconductor device
JP5092751B2 (en) * 2005-12-19 2012-12-05 富士通株式会社 Semiconductor device and method for manufacturing the same
JP2007184418A (en) * 2006-01-06 2007-07-19 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method
US7776695B2 (en) * 2006-01-09 2010-08-17 International Business Machines Corporation Semiconductor device structure having low and high performance devices of same conductive type on same substrate
JP4822857B2 (en) * 2006-02-01 2011-11-24 株式会社東芝 Semiconductor device and manufacturing method thereof
JP2008103607A (en) * 2006-10-20 2008-05-01 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method
KR101026479B1 (en) 2006-12-28 2011-04-01 주식회사 하이닉스반도체 Semiconductor device and manufacturing method of the same
JP2010238722A (en) * 2009-03-30 2010-10-21 Hitachi Ltd Silicon light-emitting element
JP5712984B2 (en) * 2012-08-27 2015-05-07 ソニー株式会社 Semiconductor device

Also Published As

Publication number Publication date
JP2004235332A (en) 2004-08-19

Similar Documents

Publication Publication Date Title
JP4228276B2 (en) Semiconductor device
JP5204763B2 (en) Method for manufacturing SOI transistor having embedded strained layer and reduced floating body effect
TWI424566B (en) Transistor device having an increased threshold stability without drive current degradation and method of fabricating the same
KR100996725B1 (en) A silicon-on-insulator device with strained device film and method for making the same with partial replacement of isolation oxide
CN107045987B (en) Device with diffusion barrier layer in source/drain regions
JP5206668B2 (en) Manufacturing method of semiconductor device
US8728885B1 (en) Methods of forming a three-dimensional semiconductor device with a nanowire channel structure
JP4533855B2 (en) Silicon on nothing metal oxide semiconductor field effect transistor and method of manufacturing the same
TWI524532B (en) Multigate metal oxide semiconductor devices and fabrication methods
WO2011066730A1 (en) Hybrid crystal orientation inversion mode gate-all-around cmos field effect transistor
JP2008147366A (en) Semiconductor device, and manufacturing method thereof
KR20060028575A (en) Mos transistor having strained channel layer and methods of manufacturing thereof
JP2006121074A (en) Semiconductor device and manufacturing method of the same
JP2008060497A (en) Semiconductor device and its manufacturing method
JP2010073869A (en) Semiconductor device and method of manufacturing the same
JPH11243210A (en) Semiconductor device and method for manufacturing the same
TWI414023B (en) Method for making a semiconductor device
CN102124548B (en) Transistor with gain variation compensation
JP5268385B2 (en) Semiconductor device
JP2007088334A (en) Semiconductor device and its manufacturing method
JP3605086B2 (en) Field effect transistor
JP2001291864A (en) Field effect transistor and integrated logic circuit using the same
TWI626694B (en) Methods of forming strained channel regions on finfet devices by performing a heating process on a heat-expandable material
CN107045986B (en) Method of forming a strained channel region on a FinFET device
JP3790238B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080516

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081119

R150 Certificate of patent or registration of utility model

Ref document number: 4228276

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees