JP4228060B2 - Chimney of a pottery kiln - Google Patents

Chimney of a pottery kiln Download PDF

Info

Publication number
JP4228060B2
JP4228060B2 JP31972699A JP31972699A JP4228060B2 JP 4228060 B2 JP4228060 B2 JP 4228060B2 JP 31972699 A JP31972699 A JP 31972699A JP 31972699 A JP31972699 A JP 31972699A JP 4228060 B2 JP4228060 B2 JP 4228060B2
Authority
JP
Japan
Prior art keywords
heat
cylinder
chimney
fire
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31972699A
Other languages
Japanese (ja)
Other versions
JP2001141228A (en
Inventor
克彦 綿貫
Original Assignee
あい工房株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by あい工房株式会社 filed Critical あい工房株式会社
Priority to JP31972699A priority Critical patent/JP4228060B2/en
Publication of JP2001141228A publication Critical patent/JP2001141228A/en
Application granted granted Critical
Publication of JP4228060B2 publication Critical patent/JP4228060B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chimneys And Flues (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、陶芸窯に設けられ、燃焼ガスを排出するための煙突に関する。
【0002】
【従来の技術】
従来、陶芸窯の煙突は、ステンレス等の金属製筒体のみで作られていた。しかし、高温の燃焼ガスが金属製筒体に直接触れるために、金属製筒体の傷みが激しく、短期間で新しい物に交換しなければならなかった。そこで近年は、日本工業炉協会編集「工業炉ハンドブック」1978年7月20日東京テクノセンター発行の第549頁から第554頁に記載されているように、金属製筒体の内側に不定形耐火物を打設した煙突が用いられるようになっている。
【0003】
不定形耐火物を打設した煙突の製造方法を、図9及び図10をもとに説明する。まず、ステンレス等の金属製で、内壁31aにY字状やL字状の支持金具32が突出して溶接された金属製筒体31を形成する。この金属製筒体31を燃焼炉に接続し、内部に円筒状の型33を挿入する。そして、金属製筒体31と型33との間に、耐火断熱性を有する不定形耐火物34を打設する。
【0004】
不定形耐火物34が固化した後、型33を取りはずすことにより、煙突30は完成する。固化した不定形耐火物は、支持金具32により係止され、金属製筒体31に固定されることになる。煙突30の内部を高温の燃焼ガスが通過しても、不定形耐火物34があることにより、燃焼ガスが直接金属製筒体31に接することはなく、金属製筒体31は傷みが急激に進行するような高温に曝されることはない。
【0005】
【発明が解決しようとする課題】
しかしながら、従来の煙突の製造方法では、不定形耐火物を打設する方法を用いているため、不定形耐火物を現場で打設し固化するのを待つ必要があり、煙突の製造に時間を要してしまう。
別の場所で予め不定形耐火物を固化させた後に、完成した煙突を輸送し、現場で燃焼炉に接続することも可能であるが、金属製筒体と不定形耐火物とが一体となっていることから、煙突の重量は大きく、運搬には膨大な労力を必要とする。
【0006】
また、支持金具を金属製筒体の内壁から突出した状態で溶接する必要があることから、金属製筒体を製造する工数およびコストが増大してしまう。
また、支持金具が必要であり、且つ、型の抜き差しを要することから、形成できる煙突の内径をあまり小さくすることができず、煙突の大きさが限定されてしまう。
【0007】
本発明は、このような事情に鑑みてなされたもので、簡単な構造及び簡単な製造方法で煙突の長寿命化を実現し、製造期間を短く抑えることが可能で、運搬が容易な耐火断熱性の高い陶芸窯の煙突を提供することにある。
【0008】
【課題を解決するための手段】
請求項1記載の発明は陶芸窯の排気口に接続され、該排気口から排出される燃焼ガスを外部に排出する筒状の煙突において、該煙突は、その外壁を構成する金属製筒体と、該金属製筒体の内面に挿着した耐火断熱性筒体とからなり、前記耐火断熱性筒体が、耐火断熱材料を筒状に成形した内壁筒体と耐火断熱性繊維からなり前記内壁筒体に捲着した耐火断熱布とを備え、前記耐火断熱布の軸方向端部を内側に折り曲げて形成した裾部により前記内壁筒体の端面を被包した複数の前記耐火断熱性筒体を前記裾部同士が密接するように連接配置したことを特徴とする。
【0009】
請求項2記載の発明は、前記金属製筒体の一端の径を他の部分より大きく形成し、該一端に別の金属製筒体の他端を嵌合させることにより、複数の煙突が連結されることを特徴とする。
【0010】
請求項3記載の煙突は、耐火断熱材料としてセラミックファイバを使用したことを特徴とする。
【0011】
請求項4記載の煙突は、耐火断熱性繊維としてセラミックファイバを使用したことを特徴とする。
【0012】
【発明の実施の形態】
以下、本発明の形態について図面を参照しながら具体的に説明する。図1は本発明に係わる陶芸窯の一例を示す正面図である。図2は部分断面図、図3は図2のII部拡大断面図、図4は図1のI部拡大断面図、図5は図1の煙突の部分断面図である。図6は本発明に係る耐火断熱性筒体の組立方法を示す説明図である。図7は本発明に係る煙突の製造方法を示す説明図である。
【0013】
図1〜図8において、陶芸窯5は陶芸品5aを焼くための燃焼炉1である。陶芸窯5は、耐火断熱レンガにより内部に燃焼室8を形成し、蓋7により燃焼室8を開閉自在としている。燃焼室8の底部には、気体燃料や液体燃料(灯油)により火炎fを発するバーナー6が設けられている。このバーナー6による火炎fにより、陶芸品5aを焼くことになる。陶芸窯5の側面には、燃焼室8から連通して、燃焼室8で発生した燃焼ガスを排出するための排煙路9が陶芸窯5の上方に向かって設けられている。排煙路9の上端には排気口3が設けられている。
【0014】
排気口3には、煙突2を固定するための円筒状で底面に外向きの鍔を有する煙突固定具10が後述する熱シール材11を介して固定されている。燃焼ガスを排出するための煙突2は、この煙突固定具10により、排気口3に固定されて上方に伸びている。
【0015】
煙突2は、外壁がステンレス製の金属製筒体12で、内壁が耐火断熱性筒体20で構成されている。本実施例で示す煙突2は、長さが約1m〜0.3mの金属製筒体12及び後述する耐火断熱性筒体20を複数本つなぎ合わせて所定の長さを確保し、家屋の天井wを貫通して屋外に伸びている。尚、金属製筒体12の直径は、約160mmである。煙突2の先端の屋外に露出している部分には、断面略H字状の排気筒4が設けられており、雨水が煙突2の内部に侵入するのを防いでいる。天井wと煙突2との隙間には耐火断熱性を有するコーキング材である断熱材w1が詰め込まれており、煙突2の熱が天井wに伝わりにくくしている。尚、煙突2が天井wを貫通する場合について記載しているが、壁面を貫通する場合も同様である。
【0016】
次に、本発明に係る耐火断熱性筒体20の製造方法を説明する。まず、耐火断熱性筒体20の組立方法を説明する。図6(b)に示すように、耐火断熱性を有するセラミックファイバを長さ約0.3mの円筒状に形成して固化させた内壁筒体21を3本ならべて、セラミックファイバを繊維状に形成した耐火断熱布22上に置く。そして、3本の内壁筒体21に耐火断熱布22を巻き付ける(矢印h方向)。尚、内壁筒体21の肉厚は約10mmであり、耐火断熱布22の厚みは約6mmである。また、耐火断熱布22の大きさは、図6(c)に示すように、耐火断熱布22の裾部22aが内壁筒体21の端面21aからはみ出す大きさである。また、本実施例では、1枚の耐火断熱布22で3本の内壁筒体21を包んだが、これに限らせるものではなく、煙突2の形状に合わせてもっと多くの内壁筒体21を包んでもいいし、1本の内壁筒体21を包んでもよい。
【0017】
次に、図6(d)に示すように、耐火断熱布22の裾部22aを内側に折り曲げ、内壁筒体21の端面21aを覆うようにする。これにより、耐火断熱性筒体20が完成する。尚、耐火断熱布22を内壁筒体21に接着剤で固定してもよい。また、耐火断熱性筒体20の組立は、燃焼炉1を据え付ける現場で行ってもよいし、別の場所である工場等で行ってもよい。
【0018】
尚、セラミックファイバは、アルミナ(Al)及びシリカ(SiO)を主材料とする、断熱性及び耐火性に特に優れる繊維である。耐久性を保持しつつ使用可能な温度は、約1,300℃程度以下であり、燃焼ガスの温度には十分耐えうる性能を有している。また、本実施例で説明するセラミックファイバを用いた長さ約0.3mの耐火断熱性筒体20は、重さが約250gであり、セラミックファイバを用いることにより、非常に軽い耐火断熱性筒体20を作ることが可能である。耐火断熱性筒体20に、セラミックファイバに換えてガラス繊維やアラミド繊維を用いることも可能であるが、それらの耐火断熱性は約600℃以下であり、好ましくはセラミックファイバを用いる。
【0019】
次に、煙突2本体の製造方法を説明する。まず、図3に示すように、排気口3に固定された煙突固定具10に金属製筒体12を嵌合させ固定する。次に、図7に示すように、固定された金属製筒体12に耐火断熱性筒体20を押し込む。耐火断熱布22は弾性を有することから、縮ながら押し込まれ、金属製筒体12の内部にあっては、拡径するため、金属製筒体12と耐火断熱性筒体20とがより強固に密接し、金属製筒体12による耐火断熱性筒体20のより大きな剛性が確保されることになる。
【0020】
金属製筒体12の下端は径が他の部分よりも大きく、上記のように耐火断熱性筒体20を挿着した一段目の金属製筒体12の上端に別の金属製筒体12を嵌合連結する。そして、一段目と同様に、この別の金属製筒体12に耐火断熱性筒体20を挿着する。このとき、下に位置する耐火断熱布22の裾部22bと上から押し込み耐火断熱布22の裾部22aとが密接するようにする。引き続き次の段を組み立てることにより、図4に示す断面構造としつつ、煙突2を上方に伸ばしていく。
【0021】
天井wから屋外に突出する金属製筒体12に挿着する耐火断熱性筒体20には、長さが金属製筒体12よりも短い物を使用する。そして、天井wよりも約0.5m程度上方まで耐火断熱性筒体20を入れ、それ以上は、金属製筒体12のみとする。このような構造にすることにより、燃焼ガスが放熱性の高い金属性筒体12に直接触れることになり冷やされ、燃焼ガスによる火炎が煙突2の先端から噴出しにくくなる。尚、煙突2の先端に到達した燃焼ガスが冷やされていることから、金属製筒体12の表面温度は約200℃以下であり、熱により金属製筒体12が大きく傷つけられることはない。煙突2の先端に、排気筒4を固定することで、煙突2は完成する。
【0022】
燃焼室8を出た燃焼ガスは(図2の矢印a)、排煙路9を通過し(図2の矢印b)、排気口3を通って煙突2に入る。ここでの燃焼ガスの温度は、1,000℃前後である。燃焼ガスは煙突2内を通過して上方に移動する(図3及び図4における矢印c)。燃焼ガスは上昇しつつ少しずつ冷やされていく。尚、耐火断熱性筒体20の断熱性により、金属製筒体12の表面温度は約200℃以下に抑えられる。即ち、金属製筒体12に耐火断熱性筒体20を挿入しただけの簡単な構造であっても、高温の燃焼ガスが直接金属製筒体12に触れることはなく、また内壁を形成する耐火断熱性筒体20によって外壁をなす金属製筒体12が高温に曝されにくいことから、煙突2の耐火断熱性は確保され長寿命となる。
【0023】
また、金属製筒体12の表面温度が抑えられていることから、金属製筒体12と天井wとの間に断熱材w1を詰めただけの簡易な断熱構造であっても、天井wが発火するほどには加熱されにくく、煙突2の施工を容易に行うことができる。
【0024】
また、本実施例によれば、あらかじめ煙突2を組み立てず、耐火断熱性筒体20と金属製筒体12とを別々に運搬することが可能であることから、運搬の労力を軽減することができる。尚、この場合においても、燃焼炉1の製造現場での作業は、金属製筒体12に耐火断熱性筒体20を挿入するのみでよく、製造期間を短く抑えることが可能である。
【0025】
また、金属製筒体12と耐火断熱性筒体20とを別々の工程で製造することが可能であることから、径の小さな耐火断熱性筒体20を製造することが可能であり、また、金属製筒体12の内周に直接加工を施す必要がないことから、径の小さな金属製筒体12を用いることが可能であり、煙突の径の大きさに制限されにくい。
【0026】
また、耐火断熱性筒体20を支持金具や接着剤で金属製筒体12に固定していないので、耐火断熱性筒体20が傷んで交換する場合は、容易に金属製筒体12から耐火断熱性筒体20を抜き取ることができる。
【0027】
また、耐火断熱布22の裾部22a,22bにより内壁筒体21の端面21aを被包した複数の耐火断熱性筒体20を、裾部22a,22b同士が密接するように連接配置している。このため、複数の耐火断熱性筒体20を金属製筒体12に挿入配置した場合、耐火断熱性筒体20同士の隙間はなく、高温の燃焼ガスが直接金属製筒体12に触れることがなく金属製筒体12は傷みにくい。尚、図8に示すように、耐火断熱性筒体20同士の間に、発泡性セラミックファイバ等の耐火断熱材で作られた熱シール材11を挟むことも出来る。
【0028】
また、本実施例で用いたセラミックファイバは、化学的安定性にも優れていることから、ゴミを燃焼した場合に発生するダイオキシン等の物質による侵蝕にも強い。
【0029】
【発明の効果】
請求項1又は請求項2の発明によれば、耐火断熱性筒体を金属製筒体の内面に挿着し金属製筒体の内面に当接配置している。このため、金属製筒体に耐火断熱性筒体を挿入しただけの簡単な構造であっても、高温の燃焼ガスが直接金属製筒体に触れることはなく、また内壁を形成する耐火断熱性筒体によって外壁をなす金属製筒体が高温に曝されにくいことから、煙突の耐火断熱性は確保され長寿命となる。
また、耐火断熱性筒体をあらかじめ成形してあることから、燃焼炉製造現場での作業は、金属製筒体に耐火断熱性筒体を挿入するのみでよく、耐火断熱性筒体を形成するための時間を省き、製造期間を短く抑えることが可能である。
また、金属製筒体内に支持金具を設けたり、型を挿入する必要が無いことから、形成できる煙突の内径を小さくすることができる。
また、あらかじめ成形された耐火断熱性筒体と金属製筒体とを別々に運搬することが可能であることから、運搬の労力を軽減することができる。
また、金属製筒体と耐火断熱性筒体とが密接していることから、耐火断熱性筒体に振動や揺れなどの外力が加わっても、金属製筒体の支持力により耐火断熱性筒体の剛性は確保される。
【0030】
また、耐火断熱性筒体は、耐火断熱布を内壁筒体に捲着して形成されており、耐火断熱性筒体の外周面は弾力性を有し、耐火断熱性筒体をスムーズに金属製筒体に挿入することができる。また、金属製筒体の内部にあっては、耐火断熱布が拡径するため、金属製筒体と耐火断熱性筒体とがより強固に密接し、金属製筒体により耐火断熱性筒体のより大きな剛性が確保されることになる。
【0031】
さらに、耐火断熱布の裾部により内壁筒体の端面を被包した複数の耐火断熱性筒体を、裾部同士が密接するように連接配置している。このため、複数の耐火断熱性筒体を金属製筒体に挿入配置した場合であっても、耐火断熱性筒体同士の隙間はなく、高温の燃焼ガスが直接金属製筒体に触れることがなく金属製筒体は傷みにくい。
【0032】
請求項3の発明によれば、耐火断熱材料として、セラミックファイバを使用していることから、耐火断熱性筒体は特に耐火断熱性に優れると共に、耐火断熱性筒体自体は長時間高温に曝されても変質劣化しにくく長寿命である。
【0033】
請求項4の発明によれば、耐火断熱性繊維として、セラミックファイバを使用していることから、耐火断熱性筒体は特に耐火断熱性に優れると共に、耐火断熱性筒体自体は長時間高温に曝されても変質劣化しにくく長寿命である。
【図面の簡単な説明】
【図1】 本発明に係わる陶芸窯の一例を示す正面図である。
【図2】 図1の部分断面図である。
【図3】 図2のII部拡大断面図である。
【図4】 図1のI部拡大断面図である。
【図5】 図1の煙突の部分断面図である。
【図6】 本発明に係る耐火断熱性筒体の組立方法を示す説明図である。
【図7】 本発明に係る煙突の製造方法を示す説明図である。
【図8】 本発明に係わる煙突の他の製造方法を示す説明図である。
【図9】 従来の煙突の製造方法を示す断面図である。
【図10】 従来の煙突の断面図である。
【符号の説明】
1・・・・・・・・・・燃焼炉
2・・・・・・・・・・煙突
5・・・・・・・・・・陶芸窯
6・・・・・・・・・・バーナー
10・・・・・・・・・熱シール材
12・・・・・・・・・金属製筒体
20・・・・・・・・・耐火断熱性筒体
21・・・・・・・・・内壁筒体
22・・・・・・・・・耐火断熱布
[0001]
BACKGROUND OF THE INVENTION
The present invention is provided in pottery kiln relates to a chimney for discharging the combustion gases.
[0002]
[Prior art]
Conventionally, the chimney of a ceramic pottery kiln was made only of a metal cylinder such as stainless steel. However, since the high-temperature combustion gas directly touched the metal cylinder, the metal cylinder was severely damaged and had to be replaced with a new one in a short period of time. Therefore, in recent years, as described in "Industrial Furnace Handbook" edited by the Japan Industrial Furnace Association, July 20th, 1978, pages 549 to 554, the irregular refractory is formed inside the metal cylinder. Chimneys with objects are used.
[0003]
A method for manufacturing a chimney in which an irregular refractory is placed will be described with reference to FIGS. First, a metal cylinder 31 made of a metal such as stainless steel and having a Y-shaped or L-shaped support fitting 32 protruding and welded to the inner wall 31a is formed. This metal cylinder 31 is connected to a combustion furnace, and a cylindrical mold 33 is inserted therein. Then, an amorphous refractory 34 having fire resistance and heat insulation is placed between the metal cylinder 31 and the mold 33.
[0004]
After the amorphous refractory 34 is solidified, the chimney 30 is completed by removing the mold 33. The solidified amorphous refractory is locked by the support fitting 32 and fixed to the metal cylinder 31. Even if high-temperature combustion gas passes through the chimney 30, the presence of the irregular refractory 34 prevents the combustion gas from directly contacting the metal cylinder 31, and the metal cylinder 31 is rapidly damaged. There is no exposure to the high temperatures that advancing.
[0005]
[Problems to be solved by the invention]
However, since the conventional chimney manufacturing method uses a method of placing an irregular refractory, it is necessary to wait for the amorphous refractory to be cast on site and solidify, and it takes time to produce the chimney. I need it.
It is possible to transport the finished chimney after solidifying the refractory in advance in another place and connect it to the combustion furnace on site, but the metal cylinder and the refractory in a single unit are integrated. Therefore, the chimney is heavy and requires a lot of labor for transportation.
[0006]
Moreover, since it is necessary to weld a support metal fitting in the state which protruded from the inner wall of the metal cylinder, the man-hour and cost which manufacture a metal cylinder will increase.
Moreover, since a support metal fitting is required and the mold needs to be inserted and removed, the inner diameter of the chimney that can be formed cannot be made too small, and the size of the chimney is limited.
[0007]
The present invention has been made in view of such circumstances, and realizes a long life of the chimney with a simple structure and a simple manufacturing method, can reduce the manufacturing period, and is easy to carry. The purpose is to provide a chimney for ceramic pottery .
[0008]
[Means for Solving the Problems]
The invention according to claim 1 is a cylindrical chimney that is connected to an exhaust port of a ceramic pottery and exhausts combustion gas discharged from the exhaust port to the outside, and the chimney is a metal cylinder that forms the outer wall thereof And a fire-resistant and heat-insulating cylinder inserted into the inner surface of the metal cylinder , and the fire-resistant and heat-insulating cylinder is made of a fire-resistant and heat-insulating material formed into a cylindrical shape and a fire-resistant and heat-insulating fiber. A plurality of the fire-resistant and heat-insulating cylinders, wherein the end faces of the inner-wall cylinders are encapsulated by skirts formed by bending the end portions in the axial direction of the fire-resistant heat-insulating cloths inward. The body is connected and arranged so that the skirts are in close contact with each other.
[0009]
According to a second aspect of the present invention , a plurality of chimneys are connected by forming one end of the metal cylinder larger than the other part and fitting the other end of another metal cylinder to the one end. It is characterized by being.
[0010]
The chimney according to claim 3 is characterized in that a ceramic fiber is used as a refractory heat insulating material.
[0011]
The chimney according to claim 4 is characterized in that a ceramic fiber is used as a fireproof and heat insulating fiber.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. FIG. 1 is a front view showing an example of a ceramic pottery according to the present invention. 2 is a partial cross-sectional view, FIG. 3 is an enlarged cross-sectional view of a portion II in FIG. 2, FIG. 4 is an enlarged cross-sectional view of a portion I in FIG. 1, and FIG. FIG. 6 is an explanatory view showing a method for assembling the fireproof and heat insulating cylinder according to the present invention. FIG. 7 is an explanatory view showing a method of manufacturing a chimney according to the present invention.
[0013]
1 to 8, a pottery kiln 5 is a combustion furnace 1 for baking a pottery product 5a. The pottery kiln 5 has a combustion chamber 8 formed therein with fireproof and heat insulating bricks, and the combustion chamber 8 can be freely opened and closed by a lid 7. At the bottom of the combustion chamber 8, a burner 6 that emits a flame f with gaseous fuel or liquid fuel (kerosene) is provided. The ceramics 5a is baked by the flame f by the burner 6. On the side surface of the ceramic pottery 5, there is provided a smoke exhaust passage 9 that communicates with the combustion chamber 8 and discharges the combustion gas generated in the combustion chamber 8 toward the upper side of the pottery kiln 5. An exhaust port 3 is provided at the upper end of the smoke exhaust passage 9.
[0014]
A cylindrical stack for fixing the chimney 2 and a chimney fixture 10 having an outward ridge on the bottom surface are fixed to the exhaust port 3 via a heat sealing material 11 described later. The chimney 2 for discharging the combustion gas is fixed to the exhaust port 3 by the chimney fixture 10 and extends upward .
[0015]
The chimney 2 is composed of a metal cylinder 12 having an outer wall made of stainless steel and a fireproof and heat insulating cylinder 20 having an inner wall. The chimney 2 shown in this embodiment secures a predetermined length by connecting a plurality of metal cylinders 12 having a length of about 1 m to 0.3 m and fire-resistant and heat-insulating cylinders 20 to be described later, thereby ensuring the ceiling of the house. It extends outside through w. The diameter of the metal cylinder 12 is about 160 mm. An exhaust pipe 4 having a substantially H-shaped cross section is provided at a portion of the chimney 2 that is exposed to the outside to prevent rainwater from entering the chimney 2. A space between the ceiling w and the chimney 2 is filled with a heat insulating material w1 which is a caulking material having fireproof heat insulation properties, and the heat of the chimney 2 is hardly transmitted to the ceiling w. In addition, although described about the case where the chimney 2 penetrates the ceiling w, it is the same also when penetrating a wall surface.
[0016]
Next, the manufacturing method of the fireproof heat insulation cylinder 20 which concerns on this invention is demonstrated. First, a method for assembling the fireproof and heat insulating cylinder 20 will be described. As shown in FIG. 6B, three inner wall cylinders 21 formed by solidifying ceramic fibers having fire resistance and heat insulation into a cylindrical shape having a length of about 0.3 m are arranged, and the ceramic fibers are formed into fibers. It puts on the formed fireproof insulation cloth 22. And the fireproof heat insulation cloth 22 is wound around the three inner wall cylinders 21 (arrow h direction). The wall thickness of the inner wall cylinder 21 is about 10 mm, and the thickness of the refractory heat insulating cloth 22 is about 6 mm. Further, the size of the refractory heat insulating cloth 22 is such that the skirt portion 22a of the refractory heat insulating cloth 22 protrudes from the end face 21a of the inner wall cylinder 21 as shown in FIG. Further, in this embodiment, the three inner wall cylinders 21 are wrapped with one fireproof heat insulating cloth 22, but this is not restrictive, and more inner wall cylinders 21 are wrapped according to the shape of the chimney 2. However, one inner wall cylinder 21 may be wrapped.
[0017]
Next, as shown in FIG. 6 (d), the skirt 22 a of the fireproof heat insulating cloth 22 is bent inward so as to cover the end surface 21 a of the inner wall cylinder 21. Thereby, the fireproof heat insulating cylinder 20 is completed. In addition, you may fix the fireproof heat insulation cloth 22 to the inner wall cylinder 21 with an adhesive agent. Moreover, the assembly of the fireproof and heat insulating cylinder 20 may be performed at the site where the combustion furnace 1 is installed, or may be performed at a factory or the like at another location.
[0018]
The ceramic fiber is a fiber that is particularly excellent in heat insulation and fire resistance, mainly composed of alumina (Al 2 O 3 ) and silica (SiO 2 ). The temperature that can be used while maintaining the durability is about 1,300 ° C. or less, and has a performance that can sufficiently withstand the temperature of the combustion gas. Further, the fireproof and heat insulating cylinder 20 having a length of about 0.3 m using the ceramic fiber described in the present embodiment has a weight of about 250 g, and the use of the ceramic fiber makes it a very light fireproof and heat insulating cylinder. It is possible to make a body 20. Although glass fibers or aramid fibers can be used for the fire-resistant and heat-insulating cylindrical body 20 instead of ceramic fibers, their fire-resistant and heat-insulating properties are about 600 ° C. or less, and ceramic fibers are preferably used.
[0019]
Next, a method for manufacturing the chimney 2 main body will be described. First, as shown in FIG. 3, the metal cylinder 12 is fitted and fixed to the chimney fixture 10 fixed to the exhaust port 3. Next, as shown in FIG. 7, the fireproof and heat insulating cylinder 20 is pushed into the fixed metal cylinder 12. Since the fireproof heat insulating cloth 22 has elasticity, it is pushed in while being contracted, and the inside of the metal cylinder 12 is expanded in diameter, so that the metal cylinder 12 and the fireproof heat insulating cylinder 20 are stronger. In close contact, the greater rigidity of the fire-resistant and heat-insulating cylinder 20 by the metal cylinder 12 is ensured.
[0020]
The lower end of the metal cylinder 12 is larger in diameter than the other parts, and another metal cylinder 12 is attached to the upper end of the first-stage metal cylinder 12 with the fireproof and heat insulating cylinder 20 inserted as described above. Mating and connecting. Then, as in the first stage, the fire-resistant and heat-insulating cylinder 20 is inserted into the other metal cylinder 12. At this time, the bottom part 22b of the fireproof heat insulating cloth 22 positioned below and the bottom part 22a of the fireproof heat insulating cloth 22 pushed in from the top are brought into close contact with each other. By continuing to assemble the next stage, the chimney 2 is extended upward with the cross-sectional structure shown in FIG.
[0021]
As the fire-resistant and heat-insulating cylinder 20 that is inserted into the metal cylinder 12 projecting from the ceiling w to the outside, an object having a shorter length than the metal cylinder 12 is used. Then, the fire-resistant and heat-insulating cylinder 20 is inserted up to about 0.5 m above the ceiling w, and the metal cylinder 12 is the only part beyond that. By adopting such a structure, the combustion gas comes into direct contact with the metal cylinder 12 with high heat dissipation and is cooled, and the flame due to the combustion gas is less likely to be ejected from the tip of the chimney 2. In addition, since the combustion gas which reached the front-end | tip of the chimney 2 is cooled, the surface temperature of the metal cylinder 12 is about 200 degrees C or less, and the metal cylinder 12 is not damaged greatly by heat. The chimney 2 is completed by fixing the exhaust pipe 4 to the tip of the chimney 2.
[0022]
The combustion gas exiting the combustion chamber 8 (arrow a in FIG. 2) passes through the smoke exhaust passage 9 (arrow b in FIG. 2) and enters the chimney 2 through the exhaust port 3. The temperature of the combustion gas here is around 1,000 ° C. The combustion gas passes through the chimney 2 and moves upward (arrow c in FIGS. 3 and 4). The combustion gas rises and is gradually cooled. In addition, the surface temperature of the metal cylinder 12 is suppressed to about 200 ° C. or less by the heat insulating property of the fireproof heat insulating cylinder 20. That is, even with a simple structure in which the fire-resistant and heat-insulating cylinder 20 is simply inserted into the metal cylinder 12, the high-temperature combustion gas does not directly touch the metal cylinder 12, and the fire-resistance forms an inner wall. Since the metal cylinder 12 that forms the outer wall by the heat insulating cylinder 20 is not easily exposed to high temperatures, the fireproof heat insulation of the chimney 2 is ensured and the life becomes long.
[0023]
Moreover, since the surface temperature of the metal cylinder 12 is suppressed, even if the heat insulation material w1 is simply packed between the metal cylinder 12 and the ceiling w, the ceiling w is It is hard to be heated so as to ignite, and the construction of the chimney 2 can be easily performed.
[0024]
Moreover, according to the present Example, since the chimney 2 is not assembled beforehand, it is possible to convey the fireproof heat insulation cylinder 20 and the metal cylinder 12 separately, so that the labor for transportation can be reduced. it can. Even in this case, the work at the manufacturing site of the combustion furnace 1 may be performed only by inserting the fireproof and heat insulating cylinder 20 into the metal cylinder 12, and the manufacturing period can be shortened.
[0025]
Moreover, since it is possible to manufacture the metal cylinder 12 and the fire-resistant and heat-insulating cylinder 20 in separate steps, it is possible to manufacture the fire-resistant and heat-insulating cylinder 20 having a small diameter, Since it is not necessary to directly process the inner periphery of the metal cylinder 12, it is possible to use the metal cylinder 12 having a small diameter, and it is difficult to be limited by the size of the chimney diameter.
[0026]
In addition, since the fire-resistant and heat-insulating cylinder 20 is not fixed to the metal cylinder 12 with a support fitting or an adhesive, when the fire-resistant and heat-insulating cylinder 20 is damaged and replaced, the fire-resistant and heat-insulating cylinder 20 is easily fire-resistant from the metal cylinder 12. The heat insulating cylinder 20 can be extracted.
[0027]
Further, a plurality of fire-resistant and heat-insulating cylinders 20 enclosing the end face 21a of the inner wall cylinder 21 with the skirts 22a and 22b of the fire-resistant and heat-insulating cloth 22 are arranged so as to be in close contact with each other. . For this reason, when a plurality of fire-resistant and heat-insulating cylinders 20 are inserted into the metal cylinder 12, there is no gap between the fire-resistant and heat-insulating cylinders 20, and high-temperature combustion gas can directly touch the metal cylinder 12. The metal cylinder 12 is not easily damaged. In addition, as shown in FIG. 8, the heat-seal material 11 made from fireproof heat insulating materials, such as a foamable ceramic fiber, can also be pinched | interposed between the fireproof heat insulating cylinders 20 mutually .
[0028]
Further, since the ceramic fiber used in this example is excellent in chemical stability, it is also resistant to corrosion by substances such as dioxins generated when dust is burned.
[0029]
【The invention's effect】
According to invention of Claim 1 or Claim 2 , the fireproof heat insulation cylinder is inserted in the inner surface of a metal cylinder, and is contact | abutted and arrange | positioned at the inner surface of a metal cylinder. For this reason, even with a simple structure in which a fire-resistant and heat-insulating cylinder is simply inserted into a metal cylinder, high-temperature combustion gas does not directly touch the metal cylinder, and fire-resistant and heat-insulating which forms an inner wall Since the metal cylinder that forms the outer wall of the cylinder is not easily exposed to high temperatures, the fireproof and heat insulating properties of the chimney are ensured and the life is extended.
In addition, since the fire-resistant and heat-insulating cylinder is molded in advance, the work at the combustion furnace manufacturing site only needs to insert the fire-resistant and heat-insulating cylinder into the metal cylinder, thereby forming the fire-resistant and heat-insulating cylinder. It is possible to save time and shorten the manufacturing period.
Moreover, since it is not necessary to provide a support fitting in the metal cylinder or insert a mold, the inner diameter of the chimney that can be formed can be reduced.
Further, since the fire-resistant and heat-insulating cylindrical body and the metal cylindrical body that are molded in advance can be separately transported, the labor for transportation can be reduced.
In addition, since the metal cylinder and the fire-resistant and heat-insulating cylinder are in close contact with each other, even if an external force such as vibration or vibration is applied to the fire-resistant and heat-insulating cylinder, the fire-resistant and heat-insulating cylinder is supported by the support force of the metal cylinder. Body rigidity is ensured.
[0030]
In addition, the fire-resistant and heat-insulating cylinder is formed by attaching a fire-resistant and heat-insulating cloth to the inner wall cylinder, and the outer peripheral surface of the fire-resistant and heat-insulating cylinder has elasticity so that the fire-resistant and heat-insulating cylinder can be made of metal smoothly. It can be inserted into a cylinder. Also, in the interior of the metal cylinder, since the fireproof heat insulating cloth expands, the metal cylinder and the fireproof and heat insulating cylinder are more closely in contact with each other, and the fireproof and heat insulating cylinder is made by the metal cylinder. The greater rigidity is ensured.
[0031]
Further, a plurality of fire-resistant and heat-insulating cylinders enclosing the end face of the inner wall cylinder by the skirts of the refractory heat-insulating cloth are connected and arranged so that the skirts are in close contact with each other. For this reason, even when a plurality of fire-resistant and heat-insulating cylinders are inserted and arranged in a metal cylinder, there is no gap between the fire-resistant and heat-insulating cylinders, and high-temperature combustion gas can directly touch the metal cylinder. The metal cylinder is not easily damaged.
[0032]
According to the invention of claim 3 , since the ceramic fiber is used as the refractory heat insulating material, the refractory heat insulating cylinder is particularly excellent in refractory heat insulation, and the refractory heat insulating cylinder itself is exposed to a high temperature for a long time. Even if it is, it is difficult to deteriorate and has a long life.
[0033]
According to the invention of claim 4 , since the ceramic fiber is used as the fire-resistant and heat-insulating fiber, the fire-resistant and heat-insulating cylindrical body is particularly excellent in fire-resistant and heat-insulating, and the fire-resistant and heat-insulating cylinder itself is kept at a high temperature for a long time. Even if exposed, it is difficult to deteriorate and has a long life.
[Brief description of the drawings]
FIG. 1 is a front view showing an example of a pottery kiln according to the present invention.
FIG. 2 is a partial cross-sectional view of FIG.
FIG. 3 is an enlarged cross-sectional view of a portion II in FIG.
FIG. 4 is an enlarged cross-sectional view of a portion I in FIG.
FIG. 5 is a partial cross-sectional view of the chimney of FIG.
FIG. 6 is an explanatory view showing a method for assembling a fireproof and heat insulating cylinder according to the present invention.
FIG. 7 is an explanatory view showing a method of manufacturing a chimney according to the present invention.
FIG. 8 is an explanatory view showing another method of manufacturing a chimney according to the present invention.
FIG. 9 is a cross-sectional view showing a conventional method of manufacturing a chimney.
FIG. 10 is a cross-sectional view of a conventional chimney.
[Explanation of symbols]
1 ... combustion furnace 2 ... chimney 5 ... ceramic kiln 6 ... burner 10 ········· Heat seal material 12 ·················································································· .... Inner wall cylinder 22 ... Fireproof insulation cloth

Claims (4)

陶芸窯の排気口に接続され、該排気口から排出される燃焼ガスを外部に排出する筒状の煙突において
該煙突は、その外壁を構成する金属製筒体と、該金属製筒体の内面に挿着した耐火断熱性筒体とからなり、前記耐火断熱性筒体が、耐火断熱材料を筒状に成形した内壁筒体と耐火断熱性繊維からなり前記内壁筒体に捲着した耐火断熱布とを備え、前記耐火断熱布の軸方向端部を内側に折り曲げて形成した裾部により前記内壁筒体の端面を被包した複数の前記耐火断熱性筒体を前記裾部同士が密接するように連接配置したことを特徴とする陶芸窯の煙突。
In the cylindrical chimney that is connected to the exhaust port of the pottery kiln and discharges the combustion gas discharged from the exhaust port to the outside ,
The chimney is composed of a metal cylinder constituting the outer wall thereof and a fire-resistant and heat-insulating cylinder inserted into the inner surface of the metal cylinder , and the fire-resistant and heat-insulating cylinder is formed of a fire-resistant and heat-insulating material in a cylindrical shape. The inner wall cylinder includes a molded inner wall cylinder and a fireproof heat insulating cloth made of a fireproof heat insulating fiber and attached to the inner wall cylinder, and is formed by bending an axial end of the fireproof heat insulating cloth inward. A chimney of a pottery kiln, characterized in that a plurality of the fire-resistant and heat-insulating cylinders enclosing the end faces of the pottery are arranged so as to be in close contact with each other.
前記金属製筒体の一端の径を他の部分より大きく形成し、該一端に別の金属製筒体の他端を嵌合させることにより、複数の煙突が連結されることを特徴とする請求項1記載の陶芸窯の煙突。A plurality of chimneys are connected by forming a diameter of one end of the metal cylinder larger than the other part and fitting the other end of another metal cylinder to the one end. Item 1. A chimney of a ceramic pottery according to item 1. 前記耐火断熱材料として、セラミックファイバを使用したことを特徴とする請求項1又は請求項2記載の陶芸窯の煙突The ceramic fire chimney according to claim 1 or 2 , wherein a ceramic fiber is used as the fireproof heat insulating material. 前記耐火断熱性繊維として、セラミックファイバを使用したことを特徴とする請求項1ないし請求項3のいずれかに記載の陶芸窯の煙突The ceramic fire chimney according to any one of claims 1 to 3, wherein a ceramic fiber is used as the fireproof and heat insulating fiber.
JP31972699A 1999-11-10 1999-11-10 Chimney of a pottery kiln Expired - Fee Related JP4228060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31972699A JP4228060B2 (en) 1999-11-10 1999-11-10 Chimney of a pottery kiln

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31972699A JP4228060B2 (en) 1999-11-10 1999-11-10 Chimney of a pottery kiln

Publications (2)

Publication Number Publication Date
JP2001141228A JP2001141228A (en) 2001-05-25
JP4228060B2 true JP4228060B2 (en) 2009-02-25

Family

ID=18113497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31972699A Expired - Fee Related JP4228060B2 (en) 1999-11-10 1999-11-10 Chimney of a pottery kiln

Country Status (1)

Country Link
JP (1) JP4228060B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002364997A (en) * 2001-06-11 2002-12-18 Fuji Enterprise:Kk Heat exchange system for combustion gas
KR100637266B1 (en) 2005-06-17 2006-10-23 임성규 Heat-energy of large furnace for industry
CN114954834B (en) * 2022-04-12 2023-10-31 江苏扬子三井造船有限公司 Seaweed roll-type construction method of oval chimney

Also Published As

Publication number Publication date
JP2001141228A (en) 2001-05-25

Similar Documents

Publication Publication Date Title
US5590526A (en) Burner for stirling engines
JPH0379531B2 (en)
CN102241995B (en) Dry quenching expansion joint firebrick structure construction technology
US3645092A (en) Temperature compensating connection between exhaust purifier and pipe
JP5851404B2 (en) Osako ceiling structure
JP4228060B2 (en) Chimney of a pottery kiln
IE52042B1 (en) Insulated domestic chimney pipes
JPH09504072A (en) Exhaust pipe for catalyst exhaust system
JP4942964B2 (en) Drainage piping structure
KR20200024172A (en) Fire door with vacuum insulation panel
CN2363161Y (en) Non-metal expansion joint
CN207865406U (en) A kind of combustion chamber refractory lining structure and combustion chamber
FI126488B (en) Exhaust system for multi-cylinder gas and diesel engines
ITTO981047A1 (en) METAL SUPPORT FOR A CATALYST.
RU213432U1 (en) Chimney sandwich pipe
JPS5910973B2 (en) hot stove wall structure
CN213835403U (en) Hot-blast furnace three-fork mouth restores ceramic wear-resisting material anti-seepage device
JP3586599B2 (en) Waste incinerator with boiler
JPS5849461Y2 (en) Combustion furnace inner wall
JP2010203256A (en) High temperature duct
CN209371274U (en) A kind of exhaust-gas treatment thermal oxidation furnace
KR890005072Y1 (en) Assembling chimney
JPH1054530A (en) Path wall structure of heat exchanger and manufacture of path wall
JPH0740832Y2 (en) Burner tiles
JP2001182912A (en) Triple layered single ended radiant tube and method of heating therewith

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081105

R150 Certificate of patent or registration of utility model

Ref document number: 4228060

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141212

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees