JP2002364997A - Heat exchange system for combustion gas - Google Patents

Heat exchange system for combustion gas

Info

Publication number
JP2002364997A
JP2002364997A JP2001175375A JP2001175375A JP2002364997A JP 2002364997 A JP2002364997 A JP 2002364997A JP 2001175375 A JP2001175375 A JP 2001175375A JP 2001175375 A JP2001175375 A JP 2001175375A JP 2002364997 A JP2002364997 A JP 2002364997A
Authority
JP
Japan
Prior art keywords
heat transfer
heat
combustion gas
transfer tube
exchange system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001175375A
Other languages
Japanese (ja)
Inventor
Osamu Yamamoto
修 山本
Shinichi Miyazaki
眞一 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Enterprise KK
Original Assignee
Fuji Enterprise KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Enterprise KK filed Critical Fuji Enterprise KK
Priority to JP2001175375A priority Critical patent/JP2002364997A/en
Publication of JP2002364997A publication Critical patent/JP2002364997A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Chimneys And Flues (AREA)

Abstract

PROBLEM TO BE SOLVED: To exchange heat efficiently between a combustion gas flowing through heat transfer tubes such as heat pipes and the like by natural convection and a liquid contacting the outer peripheries of the heat transfer tubes and uniformly over the whole contact surfaces thereof. SOLUTION: In a heat exchange system for exchanging heat between a combustion gas flowing through heat transfer tubes by natural convection and a liquid contacting the outer peripheries of the heat transfer tubes, each heat transfer tube comprises a heat insulating cylindrical sleeve fitted to the inner surface thereof and a heat insulating spiral mixer provided therein to adjust the temperature thereof. In addition, the heat transfer tubes respectively comprises flue ducts at least partially made of a heat insulating member provided at the outlets thereof to suppress the reduction of chimney effect due to the temperature drop of the combustion gas and adjust the residence time of the combustion gas in the heat transfer tubes. These sleeves, the spiral mixers and the heat insulating members can be partially or entirely made of a ceramic material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃焼ガスの熱交換
システムに関し、より詳しくはヒートパイプ等の管状伝
熱面を有する熱交換器において、被加熱液体を優しく加
熱し、かつ効率的な熱交換システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combustion gas heat exchange system, and more particularly, to a heat exchanger having a tubular heat transfer surface such as a heat pipe, which gently heats a liquid to be heated and efficiently heats the liquid. Regarding the exchange system.

【0002】[0002]

【従来の技術】従来、熱交換器の熱交換効率を上げる目
的でスタティックミキサーエレメントを円筒形の管であ
る伝熱管の内部に配置したものが使用されている。図3
は従来の典型的な熱交換器であって、伝熱管13の内側
に、180°右捻り羽根11と180°左捻り羽根12
の螺旋状エレメントからなるスタティックミキサーが相
互に直交に交差する形で配置された二重管式熱交換器の
長手方向の概略断面図である。スタティックミキサーを
通過する流体は、エレメントにより次の4つの混合作用
を受け混合される。まず、流体は第1エレメントで2つ
に分割され、エレメントの形状に沿って流れ、次のエレ
メントでさらにそれぞれ2分割され、合計4分割され
る。こうして流体はエレメントを通過するごとに指数関
数的に分割され混合される。次に、エレメントが右捻
り、左捻りと交互に配列されているため流体はエレメン
トを通過するごとに流れが反転する。第3に、流体はエ
レメントのねじれ面に沿って、中心部より壁部へ、壁部
より中心部へと連続的に異動する。これは混合効果を高
めるだけでなく、管壁面と流体間の熱交換性能に大きな
効果を与える。最後に、連続的に流れが分割、反転、転
換され、半径方向の混合が行われるために、混合効果が
良くなり、軸方向に速度分布が生じず、ピストン流に近
い理想的な流れが得られる。このように伝熱管の内側を
通過する流体は、スタティックミキサーエレメントによ
り分割・混合・撹拌されつつ加熱又は冷却されて熱交換
が行われる。
2. Description of the Related Art Conventionally, an aim is to increase the heat exchange efficiency of a heat exchanger.
The static mixer element is a cylindrical tube.
Used inside a heat transfer tube. FIG.
Is a typical heat exchanger of the related art, and the inside of the heat transfer tube 13
180 ° right-handed blade 11 and 180 ° left-handed blade 12
Static mixer consisting of spiral elements
Of double-pipe heat exchangers arranged at right angles to each other
It is a schematic sectional drawing of a longitudinal direction. Static mixer
The passing fluid is subject to the following four mixing actions by the element:
And mixed. First, two fluids in the first element
And flows along the shape of the element.
Is further divided into two, and the total is divided into four
You. Thus, each time the fluid passes through the element,
Numerically divided and mixed. Next, turn the element right
Fluid is arranged alternately with left-handed
The flow reverses each time it passes through the port. Third, the fluid is d
From the center to the wall, along the twisted surface of the
Moves more continuously to the center. This enhances the mixing effect
Not only the heat exchange performance between the pipe wall and the fluid
Give effect. Finally, the flow is continuously split, inverted,
Is mixed and radial mixing occurs, thus reducing the mixing effect.
Better, no velocity distribution in the axial direction, close to piston flow
The ideal flow is obtained. In this way, the inside of the heat transfer tube
The passing fluid is passed through a static mixer element.
Heat exchange while being divided, mixed and stirred
Is performed.

【0003】このようなスタティックミキサーエレメン
トは、例えばステンレス等の金属板をその長手方向の中
心軸の回りにねじって形成することができる。前記右捻
りの螺旋状エレメントと左捻りの螺旋状エレメント間
は、例えばろう付により溶接されている。なお、図3に
おいて14はジャケット管(外管)であり、伝熱管13
をその長手方向に包囲するように伝熱管13の外側に設
けられている。伝熱管13とジャケット管14の隙間に
熱媒体流、例えば冷媒を通過させることにより、熱交換
を行い、伝熱管内を流れる流体を冷却する。
[0003] Such a static mixer element can be formed by twisting a metal plate such as stainless steel around a central axis in the longitudinal direction. The right-handed spiral element and the left-handed spiral element are welded by, for example, brazing. In FIG. 3, reference numeral 14 denotes a jacket tube (outer tube).
Is provided outside the heat transfer tube 13 so as to surround the heat transfer tube in the longitudinal direction. Heat exchange is performed by passing a heat medium flow, for example, a refrigerant, through the gap between the heat transfer tube 13 and the jacket tube 14 to cool the fluid flowing in the heat transfer tube.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな流体の熱交換器は、専ら液体又は粘性流体の熱交換
用に用いられており、また、熱交換しようとする流体が
伝熱管内を流れるためにはポンプ等により強制的に流動
させることが必要である。
However, such a fluid heat exchanger is used exclusively for heat exchange of a liquid or viscous fluid, and the fluid to be exchanged flows through the heat transfer tube. For this purpose, it is necessary to force the fluid to flow using a pump or the like.

【0005】そこで、本発明はヒートパイプ等の伝熱管
内を自然対流により流動する燃焼ガスと、該伝熱管外部
と接触する液体との熱交換を接触面全体で均一化し、か
つ効率よく行うことを課題とする。
Therefore, the present invention is to uniformly and efficiently perform heat exchange between a combustion gas flowing in a heat transfer tube such as a heat pipe by natural convection and a liquid in contact with the outside of the heat transfer tube over the entire contact surface. As an issue.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に本発明者らは鋭意検討を行った結果、セラミックスス
等の断熱性材料を用いた円筒状のスリーブ及び螺旋状の
混合器を伝熱管の内部に配置することにより、伝熱管内
を自然対流により流動する燃焼ガスから、該伝熱管への
熱伝導を均一化して伝熱管の温度を調節することができ
ることを見出した。また、更に該伝熱管の出口に煙道を
設けることによって、燃焼ガスの滞留時間を調節するこ
とができ、これらによって燃焼ガスの熱交換率が著しく
向上することを見出して本発明を完成した。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have made intensive studies and as a result, transmitted a cylindrical sleeve and a helical mixer using a heat insulating material such as ceramics. By arranging the heat transfer tube inside the heat transfer tube, it has been found that the heat transfer from the combustion gas flowing by natural convection in the heat transfer tube to the heat transfer tube can be uniformed to adjust the temperature of the heat transfer tube. Further, by providing a flue at the outlet of the heat transfer tube, it was possible to adjust the residence time of the combustion gas, and it was found that the heat exchange rate of the combustion gas was remarkably improved, thereby completing the present invention.

【0007】すなわち本発明は、伝熱管内部を自然対流
により流動する燃焼ガスと、該伝熱管外部と接触する液
体との熱交換システムにおいて、該伝熱管の内壁に装着
した断熱性を有する円筒状のスリーブ、及び該伝熱管の
内部に配設した断熱性を有する螺旋状の混合器、を備え
ることにより、該伝熱管の温度を調節することを特徴と
する燃焼ガスの熱交換システムを提供する。
That is, the present invention relates to a heat exchange system between a combustion gas flowing inside a heat transfer tube by natural convection and a liquid coming into contact with the outside of the heat transfer tube. A heat exchange system for combustion gas, characterized in that the temperature of the heat transfer tube is adjusted by providing a sleeve and a helical mixer having heat insulation provided inside the heat transfer tube. .

【0008】好ましい態様において、前記燃焼ガスの熱
交換システムにおいて、該伝熱管の出口に少なくとも一
部が断熱材からなる煙道を設けることにより、該燃焼ガ
スの温度低下による煙突効果の減少を抑制し、該燃焼ガ
スの該伝熱管内における滞留時間を調節することを特徴
とする。
In a preferred embodiment, in the heat exchange system for combustion gas, a decrease in the chimney effect due to a decrease in the temperature of the combustion gas is suppressed by providing a flue at least partly made of a heat insulating material at the outlet of the heat transfer tube. The residence time of the combustion gas in the heat transfer tube is adjusted.

【0009】さらに別の好ましい態様において、前記螺
旋状の混合器は、1又は2以上のねじり羽根からなるこ
とを特徴とする。
[0009] In still another preferred embodiment, the spiral mixer comprises one or more torsion blades.

【0010】本発明の一実施形態において、前記螺旋状
の混合器は、2以上のねじり羽根をつなぎ合わせたもの
であって、該混合器を構成するねじり羽根の形状及び/
又は材質が、2以上の異なる組合せであることを特徴と
する。
[0010] In one embodiment of the present invention, the helical mixer is formed by connecting two or more torsional blades, and the shape and / or shape of the torsional blades constituting the mixer are combined.
Alternatively, the material is a combination of two or more different materials.

【0011】これらのスリーブ、混合器及び/又は断熱
材は、その一部又は全部をセラミックスを用いて製造す
ることができる。
[0011] These sleeves, mixers and / or heat insulating materials can be manufactured partially or entirely using ceramics.

【0012】[0012]

【発明の実施の形態】以下、本発明の一実施形態につい
て図面を参照しながら説明する。図1は本形態の燃焼ガ
スの熱交換システムを説明するための概略図である。図
1では伝熱管21の内壁にほぼ密着するように円筒状の
スリーブ23が装着され、伝熱管21の内側に螺旋状の
混合器22が配置され、伝熱管21の燃焼ガスの出口に
煙道27が設けられる。この伝熱管21とジャケット管
30の隙間に液体を通過させることにより熱交換を行
う。液体は水、油等、通常加熱して用いられるものであ
ればどのようなものでも良い。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram for explaining a combustion gas heat exchange system of the present embodiment. In FIG. 1, a cylindrical sleeve 23 is mounted so as to be substantially in close contact with the inner wall of the heat transfer tube 21, a spiral mixer 22 is disposed inside the heat transfer tube 21, and a flue 27 are provided. Heat exchange is performed by passing the liquid through the gap between the heat transfer tube 21 and the jacket tube 30. The liquid may be water, oil, or any other liquid that is usually used after heating.

【0013】伝熱管21内に流入した燃焼ガスは、伝熱
管21の内壁にほぼ密着させて装着した円筒状のスリー
ブ23の断熱効果によって伝熱管21の入り口付近の過
加熱が防止される。隙間があると燃焼ガスが流れ込んで
断熱効果が損なわれるから好ましくない。更に、伝熱管
21の内部に配設された螺旋状の混合器22に沿って旋
回しながら煙道27に向かって流れるので燃焼ガスは径
方向に混合しやすくなり、熱交換率が良好となる。混合
器22により生じた圧力損失は、燃焼ガスの滞留時間を
長くするが、煙道27の断熱及び/又は長さを調節する
ことによって燃焼ガスの滞留時間を最適化することがで
きる。
The combustion gas flowing into the heat transfer tube 21 is prevented from being overheated in the vicinity of the entrance of the heat transfer tube 21 by the heat insulating effect of the cylindrical sleeve 23 which is attached almost in close contact with the inner wall of the heat transfer tube 21. If there is a gap, the combustion gas flows in and the heat insulation effect is impaired, which is not preferable. Further, the combustion gas flows toward the flue 27 while swirling along the spiral mixer 22 disposed inside the heat transfer tube 21, so that the combustion gas is easily mixed in the radial direction, and the heat exchange rate is improved. . The pressure drop created by the mixer 22 increases the residence time of the combustion gases, but the insulation time and / or the length of the flue 27 can be adjusted to optimize the residence time of the combustion gases.

【0014】ここで使用される伝熱管21、スリーブ2
3及び混合器22はどのような大きさでも良く、伝熱管
21の内径に合わせてスリーブ23の外径及び混合器の
羽根の直径が調節される。スリーブ23の厚みは燃焼ガ
スの温度又はエネルギー消費量によって、断熱性を調節
するために種々の厚みのものを使用することができる。
スリーブ23及び混合器22は燃焼ガスの入り口側及び
出口側の何れに配置しても良い。また、伝熱管21の内
壁と混合器22との間には隙間があっても良い。伝熱管
21は目的性能に応じた伝熱面積を満足するように直列
又は並列に複数備えることができる。また、目的に応じ
て水平、垂直又は斜めに配置することもできる。
The heat transfer tube 21 and the sleeve 2 used here
3 and the mixer 22 may be of any size, and the outer diameter of the sleeve 23 and the diameter of the blades of the mixer are adjusted according to the inner diameter of the heat transfer tube 21. The thickness of the sleeve 23 can be varied depending on the temperature of the combustion gas or energy consumption to adjust the heat insulation.
The sleeve 23 and the mixer 22 may be arranged on either the inlet side or the outlet side of the combustion gas. Further, a gap may be provided between the inner wall of the heat transfer tube 21 and the mixer 22. A plurality of heat transfer tubes 21 may be provided in series or in parallel so as to satisfy a heat transfer area according to the target performance. Further, they can be arranged horizontally, vertically or diagonally according to the purpose.

【0015】本形態の螺旋状の混合器22は、1又は2
以上のねじり羽根からなり、これらは相互に直交に交差
してもよく、また連続的に螺旋形を形成しても良い。ま
た、本形態のスリーブ23及び螺旋状の混合器22は、
金属、セラミックス等種々の材料をもちいて製造するこ
とができるが、その一部又は全部がセラミックスからな
ることが好ましく、特に耐火性セラミックスであること
がより好ましい。
The helical mixer 22 of the present embodiment has 1 or 2
It consists of the above-mentioned torsion blades, which may cross each other at right angles, or may form a continuous spiral. In addition, the sleeve 23 and the spiral mixer 22 of the present embodiment,
Although it can be manufactured using various materials such as metals and ceramics, it is preferable that a part or all of the material is made of ceramics, and it is more preferable that the material is refractory ceramics.

【0016】セラミックスは耐火性セラミックスであれ
ばどのようなものでも良いが、好ましくは多孔質で断熱
性があり、さらに急な温度変化にも抵抗性のある耐衝撃
性セラミックスが特に好ましい。このようなセラミック
スの例としては、珪藻土質、コーディエライト質、β−
スポデュメン質、アルミナ質、ムライト質、炭化珪素質
等を挙げることができる。
The ceramics may be any ceramics as long as they are fire-resistant ceramics, but are preferably impact-resistant ceramics which are porous, have heat insulation properties, and are resistant to sudden temperature changes. Examples of such ceramics include diatomaceous earth, cordierite, β-
Examples include spudumene, alumina, mullite, and silicon carbide.

【0017】混合器22の羽根の形状はどのようなもの
でもよく、羽根の溝を深くすると伝熱管21内の空間占
有率を小さくすることができ、溝を浅くすると伝熱管2
1内の空間占有率を大きくすることができる。これらの
空間占有率を調整することによって、用いられる伝熱管
21に最適な混合器22を適宜選択する。また、種々の
材質のセラミックスを用いて製作することにより、比熱
が小さく熱慣性の小さいものから、蓄熱性の高いものま
で種々の性質のねじり羽根を作ることができる。
The shape of the blades of the mixer 22 may be any shape. The deeper the grooves of the blades, the smaller the space occupancy in the heat transfer tube 21.
1 can be increased. By adjusting these space occupancies, the most appropriate mixer 22 for the heat transfer tube 21 to be used is appropriately selected. Further, by manufacturing using ceramics of various materials, torsional blades having various properties can be manufactured from those having a small specific heat and a small thermal inertia to those having a high heat storage property.

【0018】混合器22を構成するねじり羽根は一体型
として製造しても良いし、各ユニットごとに製造したも
のをつなぎ合わせて使用することもできる。好ましく
は、伝熱管21の長手方向の中心軸をねじり軸とし、径
方向に伸びた羽根が伝熱管21の内壁面に略接する。こ
の羽根を該ねじり軸を中心として右又は左にひねってね
じり羽根を形成する。
The torsion blades constituting the mixer 22 may be manufactured as an integral type, or those manufactured for each unit may be connected and used. Preferably, the central axis in the longitudinal direction of the heat transfer tube 21 is a torsion axis, and the blade extending in the radial direction substantially contacts the inner wall surface of the heat transfer tube 21. The blade is twisted right or left about the torsion axis to form a torsion blade.

【0019】さらに好ましくは、上記ねじり軸を中心と
して反対の2方向に伸びた羽根をねじったねじり羽根で
あるか、又は上記ねじり軸を中心に適当な角度で3方向
以上の方向に伸びた羽根をねじったねじり羽根である。
羽根の厚さは該ねじり軸から伝熱管21の径方向に向か
って同じか、又はねじり軸部分が厚く、伝熱管21の径
方向に向かって徐々に薄くしたものが好ましい。
More preferably, the blade is a torsion blade obtained by twisting blades extending in two opposite directions about the torsion axis, or a blade extending in three or more directions at an appropriate angle about the torsion axis. Twisted blades.
It is preferable that the blades have the same thickness in the radial direction of the heat transfer tube 21 from the torsion shaft, or that the thickness of the torsion shaft portion is thicker and gradually reduced in the radial direction of the heat transfer tube 21.

【0020】このように、形状及び/又は材質の異なる
ねじり羽根の各ユニットを組み合わせて使用することに
より、熱交換を行う液体の量や温度等の目的に応じて、
自由に燃焼ガスの熱交換システムを構築することができ
る。
As described above, by using the units of the torsion blades having different shapes and / or materials in combination, it is possible to adjust the amount of liquid to be subjected to heat exchange, the temperature, etc.
A combustion gas heat exchange system can be freely constructed.

【0021】ねじりの回転数は1回転以上が好ましく、
更に好ましくは燃焼ガス入り口側のねじりを弱くし、燃
焼ガス出口側のねじりを強くしたものが良い。ねじり羽
根をユニット毎に製造してつなぎ合わせる場合は全て同
じ捻りのものをつなぎ合わせても良いが、燃焼ガス入り
口側にねじりの弱いものを出口側にねじりの強いものを
つなぐことが好ましい。
The number of rotations of the torsion is preferably one or more,
More preferably, the torsion on the combustion gas inlet side is reduced and the torsion on the combustion gas outlet side is increased. When the torsion blades are manufactured and connected for each unit, they may all be connected with the same twist, but it is preferable to connect a weakly twisted one to the combustion gas inlet side and a strongly torsioned one to the outlet side.

【0022】本発明の他の一実施形態を図2に示す。図
2は、油槽29内に並列して設けた伝熱管21と、該伝
熱管21の入り口側にガスバーナー等の燃焼器具から燃
焼ガスを送り出す燃焼室26と、該伝熱管21の出口側
で燃焼ガスを排出するための煙道27とを備えたガス式
フライヤーにおいて、前記伝熱管の燃焼ガス入り口側の
内壁に直接燃焼ガスが当たらないようにして、伝熱管の
部分的な過加熱を防止するための円筒状のスリーブ23
と、前記伝熱管21の内部に配設され、伝熱管内を流動
する燃焼ガスの混合と滞留時間を長くして熱交換効率を
高めるための螺旋状の混合器22と、燃焼ガスを伝熱管
21内に導入するための入り口ガイド24と、燃焼ガス
入り口側の油槽壁面と燃焼室26との間に配設した断熱
材25と、前記煙道27の上部に設けられ、その高さを
調節することによって燃焼ガスの流動時間を最適化する
ための調節煙道28とを備える。
FIG. 2 shows another embodiment of the present invention. FIG. 2 shows a heat transfer tube 21 provided in parallel in an oil tank 29, a combustion chamber 26 for sending out a combustion gas from a combustion device such as a gas burner to an entrance side of the heat transfer tube 21, and a heat transfer tube 21 at an outlet side of the heat transfer tube 21. In a gas fryer having a flue 27 for discharging combustion gas, the combustion gas does not directly hit the inner wall of the heat transfer tube on the side of the combustion gas inlet, thereby preventing partial overheating of the heat transfer tube. Cylindrical sleeve 23
A helical mixer 22 disposed inside the heat transfer tube 21 for increasing the heat exchange efficiency by increasing the mixing time and residence time of the combustion gas flowing through the heat transfer tube; An inlet guide 24 for introduction into the inside 21, a heat insulating material 25 arranged between the combustion chamber 26 and the oil tank wall on the inlet side of the combustion gas, and a height provided at the upper part of the flue 27, the height of which is adjusted. And a conditioning flue 28 for optimizing the flow time of the combustion gases.

【0023】[0023]

【実施例】以下に本発明の実施例として、図2に概略図
で示した装置を試作し、これを用いて油を加熱したとき
の燃焼テスト結果について説明するが、本発明はこれら
の結果に限定されるものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As an embodiment of the present invention, an apparatus schematically shown in FIG. 2 is manufactured as a prototype, and the results of a combustion test when oil is heated using the apparatus will be described. However, the present invention is not limited to this.

【0024】図2に油槽29として示した形状のステン
レス製槽(390 mm x 325 mm x 265mm)内に3本(左、
右、中央)の伝熱管(外径89.1 mm、板厚1.2 mm、長さ3
25 mm)を設けた。槽内のそれぞれの伝熱管の上部に接
着させて燃焼ガスの入り口側と出口側の油の温度を測定
するための熱電対を設置した。この油槽に大豆油を22L
加え、油の表面から約65 mm下部に伝熱管の上部が浸る
ようにした。各伝熱管の燃焼ガス入り口側に4本又は6
本のバーナーを設置した。ガス流量を測定してエネルギ
ー消費量を計算した。油の温度は、油槽内のほぼ中央で
伝熱管上部から15 mm上部の油の温度を熱電対で測定し
た。排気温度は、燃焼ガスの出口の温度を熱電対で測定
した。
In a stainless steel tank (390 mm x 325 mm x 265 mm) having the shape shown as the oil tank 29 in FIG.
Heat transfer tube (outside diameter 89.1 mm, thickness 1.2 mm, length 3)
25 mm). A thermocouple for measuring the oil temperature on the inlet side and the outlet side of the combustion gas was attached to the upper part of each heat transfer tube in the tank. 22 liters of soybean oil in this oil tank
In addition, the upper part of the heat transfer tube was immersed about 65 mm below the oil surface. Four or six tubes on the combustion gas inlet side of each heat transfer tube
A book burner was installed. The energy consumption was calculated by measuring the gas flow rate. The temperature of the oil was measured at about the center of the oil tank, 15 mm above the heat transfer tube and 15 mm above the heat transfer tube using a thermocouple. The exhaust gas temperature was measured at the outlet of the combustion gas with a thermocouple.

【0025】この3本の伝熱管内のほぼ中央部に、軸方
向の長さ約260 mmの珪藻土質(商品名イソライト)で作
製したセラミック製のねじり羽根(長さ65 mm、ねじり
軸を中心として反対の2方向に伸びた羽根を持ち、略9
0度右回転に捻ったねじり羽根を4個金属ボルトで連結
したもの)を置いた。左の伝熱管にはみぞが深く空間占
有率の小さいものを、中央の伝熱管にはみぞが浅く空間
占有率の大きいものを、右の伝熱管にはみぞが深くかつ
燃焼ガスの入り口付近のはねを削って空気抵抗を小さく
したものを配置した。いずれも羽根の径方向の長さは最
大で84 mmと伝熱管内径よりやや小さなものを用いた。
また、燃焼ガスの入り口側伝熱管内にほぼ密着するよう
に厚さ6 mm、長さ65 mmのイソライトで製作した円筒状
のスリーブと、燃焼ガス入り口側周辺の油槽壁面と燃焼
室との間にイソライトで製作した断熱材を装着した。さ
らに燃焼ガス出口側に耐火ブロックを3段積み上げた煙
道を設けてそのうえにセラミックス製のボードで高さ45
0 mmの調節煙道を製作した。また、断熱効果を高めると
共に、燃焼ガスが該伝熱管内へスムーズに流入するよう
に、耐火ブロックを削って入り口ガイド兼用の燃焼室を
製作した。
A ceramic torsion blade made of diatomaceous earth (trade name: Isolite) having an axial length of about 260 mm (length: 65 mm, centered on the torsion axis) is provided at a substantially central portion in the three heat transfer tubes. With wings extending in two opposite directions, approximately 9
Twenty torsion blades twisted clockwise by 0 ° were connected by four metal bolts). The left heat transfer tube has a deep groove and small space occupancy, the central heat transfer tube has a shallow groove and large space occupancy, and the right heat transfer tube has a deep groove and near the combustion gas inlet. The thing which reduced the air resistance by cutting the splash was arranged. In each case, the length of the blade in the radial direction was 84 mm at the maximum and was slightly smaller than the inner diameter of the heat transfer tube.
Also, a cylindrical sleeve made of 6 mm thick and 65 mm long isolite so as to be in close contact with the combustion gas inlet side heat transfer tube, and the oil tank wall around the combustion gas inlet side and the combustion chamber Was fitted with a thermal insulator made of Isolite. In addition, a flue stack of three refractory blocks is provided on the combustion gas outlet side, and a ceramic board with a height of 45 m
A 0 mm controlled flue was constructed. In addition, a refractory block was cut off to form a combustion chamber also serving as an entrance guide so that the heat insulating effect was enhanced and the combustion gas flowed smoothly into the heat transfer tube.

【0026】この装置を用いて、表1に示した各実験条
件に従って、油の温度が180℃になるようにガスを燃焼
させ、排気温度、復帰時間(油の温度が170℃から180℃
に復帰するのに要した時間)伝熱管最大温度(伝熱管上
部温度の最大値)及び伝熱管前後の温度差(伝熱管の燃
焼ガス入り口付近と出口付近の温度差)を測定した。
Using this apparatus, the gas was burned so that the oil temperature would be 180 ° C. according to the experimental conditions shown in Table 1, and the exhaust temperature and the return time (the oil temperature was from 170 ° C. to 180 ° C.)
The time required to return to the above condition) was measured for the maximum temperature of the heat transfer tube (the maximum value of the upper temperature of the heat transfer tube) and the temperature difference between the front and rear of the heat transfer tube (the temperature difference near the combustion gas inlet and the outlet near the heat transfer tube).

【0027】[0027]

【表1】 [Table 1]

【0028】表1の実験番号1と2を比較すると、スリ
ーブ及び混合器を設置することによって、伝熱管前後の
温度差が略1/2〜1/10に、復帰時間が略1/2に
なった。即ち、スリーブ及び混合器を組み合わせて使用
することによって伝熱管の温度分布が均一化し、併せて
熱交換効率が略2倍になった。実験番号2から5まで
は、ガスバーナーの本数及び強度を変えて、異なるエネ
ルギー消費量のときの測定結果を示した。これらの結果
より、左側伝熱管、即ち左側のスリーブ及び混合器の組
合せはガスバーナーが変わると伝熱管前後の温度差が多
少多めにばらつく傾向が見られたが、中央伝熱管、即ち
中央のスリーブ及び混合器の組合せは比較的安定してい
た。また、10℃復帰するまでの印加カロリーを計算する
と、それぞれのバーナーで、8,200 kcal/hが405 kcal
で、9,430 kcal/hが380 kcalで、10,950 kcal/hが338 k
calで、14,200 kcal/hが331 kcalで10℃温度復帰してお
り、ガスバーナーが強力なほど効率よく復帰する傾向が
あった。
Comparing Experiment Nos. 1 and 2 in Table 1, the temperature difference before and after the heat transfer tube was reduced to about 1/2 to 1/10 and the recovery time was reduced to about 1/2 by installing the sleeve and the mixer. became. That is, by using the sleeve and the mixer in combination, the temperature distribution of the heat transfer tubes was made uniform, and the heat exchange efficiency was almost doubled. Experiment Nos. 2 to 5 show measurement results at different energy consumptions by changing the number and strength of gas burners. From these results, the left heat transfer tube, that is, the combination of the left sleeve and the mixer, had a tendency that the temperature difference before and after the heat transfer tube varied slightly when the gas burner was changed, but the central heat transfer tube, that is, the center sleeve And the combination of mixers was relatively stable. Also, when calculating the applied calories until the temperature returns to 10 ° C, 8,200 kcal / h is 405 kcal for each burner.
9,430 kcal / h is 380 kcal and 10,950 kcal / h is 338 k
In cal, 14,200 kcal / h returned to 10 ° C at 331 kcal, and the stronger the gas burner, the more efficient the return.

【0029】また、実験番号6と7は、煙道の長さによ
る効果について検討したところ、復帰時間は変わらない
が、伝熱管前後の温度差が短縮した。さらに、実験番号
8と9は混合器の効果について検討したところ、混合器
の有無は復帰時間の短縮に大きな影響を与えることが分
かる。
In Experiment Nos. 6 and 7, when the effect of the length of the flue was examined, the return time was not changed, but the temperature difference before and after the heat transfer tube was reduced. Further, in Experiment Nos. 8 and 9, the effect of the mixer was examined, and it was found that the presence / absence of the mixer had a great effect on shortening the recovery time.

【0030】実験番号9と10は、スリーブの効果につ
いて検討したところ、スリーブは復帰時間を長くするこ
となく、伝熱管前後の温度差を小さくして、伝熱管最大
温度を40℃も下げていることが分かる。このことは混合
器の特性に合わせてスリーブを製作することによって、
復帰時間を長くすることなく、伝熱管前後の温度差を十
分に小さくできる可能性を示す。
Experiment Nos. 9 and 10 examined the effect of the sleeve. The sleeve reduced the temperature difference between the front and rear of the heat transfer tube and reduced the maximum temperature of the heat transfer tube by 40 ° C. without increasing the recovery time. You can see that. This is achieved by making the sleeve according to the characteristics of the mixer.
This shows the possibility that the temperature difference before and after the heat transfer tube can be reduced sufficiently without lengthening the recovery time.

【0031】次に3本の該伝熱管内に設置したねじり羽
根の形状を同じにして、温度測定を実施したところ、中
央伝熱管の温度が左右伝熱管の温度より高くなる傾向が
認められた。また、ガスバーナーから出る炎を観察する
と中央に集まる傾向があった。このためスリーブの肉厚
を変え、伝熱管の燃焼ガス入り口部分の開口断面積を変
えた試験を行った。実験条件は、燃焼ガスエネルギーが
9,430 kcal/h、ねじり羽根は長さ約130mm(長さ65 m
m、ねじり軸を中心として反対の2方向に伸びた羽根を
持ち、略180度右回転に捻ったねじり羽根を2個、金
属ボルトで連結したもの)のものをねじり羽根の後端と
伝熱管の燃焼ガス出口端とが一致するように設置した。
その他は表1の実験条件と同じである。その結果を表2
に示した。
Next, when the temperature of the torsion blades installed in the three heat transfer tubes was made the same, the temperature of the central heat transfer tube tended to be higher than the temperature of the left and right heat transfer tubes. . In addition, when the flame from the gas burner was observed, it tended to gather at the center. Therefore, a test was conducted in which the thickness of the sleeve was changed and the opening cross-sectional area of the combustion gas inlet portion of the heat transfer tube was changed. The experimental conditions were that the combustion gas energy was
9,430 kcal / h, twisting blades are about 130mm long (65m long
m, two torsion blades twisted clockwise approximately 180 degrees clockwise, with blades extending in two opposite directions about the torsion axis, connected by metal bolts) to the rear end of the torsion blades and the heat transfer tube Was installed in such a manner that the end of the combustion gas coincided with the end of the combustion gas.
Others are the same as the experimental conditions in Table 1. Table 2 shows the results.
It was shown to.

【0032】[0032]

【表2】 [Table 2]

【0033】表2の実験番号11〜13は、バーナーの
温度ムラに対してスリーブの厚さを調整して伝熱管へ入
る燃焼ガスの開口断面積を調整することによって、伝熱
管温度を自由に調整でき、最終的に伝熱管の温度差がほ
とんど無くなることが分かる。
Experiment Nos. 11 to 13 in Table 2 show that the temperature of the heat transfer tube can be freely adjusted by adjusting the thickness of the sleeve and adjusting the opening cross-sectional area of the combustion gas entering the heat transfer tube with respect to the temperature unevenness of the burner. It can be seen that the temperature can be adjusted, and finally, the temperature difference between the heat transfer tubes almost disappears.

【0034】[0034]

【発明の効果】本発明の燃焼ガスの熱交換システムによ
れば、自然対流による燃焼ガスの滞留時間の最適化と、
伝熱管内の温度分布の均一化等により、過加熱を抑制し
て被加熱液体の劣化を低減し、かつ効率的な熱交換シス
テムが提供される。本システムは種々の液体の加熱シス
テムに利用することができ、被加熱液体に優しく、かつ
エネルギー効率の極めて優れた加熱機器が提供される。
According to the combustion gas heat exchange system of the present invention, it is possible to optimize the residence time of the combustion gas by natural convection,
By making the temperature distribution in the heat transfer tube uniform or the like, overheating is suppressed, deterioration of the liquid to be heated is reduced, and an efficient heat exchange system is provided. The present system can be used for various liquid heating systems, and provides a heating device that is friendly to the liquid to be heated and that is extremely excellent in energy efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の燃焼ガスの熱交換システムの一実施形
態を示す概略図である。
FIG. 1 is a schematic view showing an embodiment of a combustion gas heat exchange system of the present invention.

【図2】本発明の燃焼ガスの熱交換システムの別の一実
施形態を示す概略図である。
FIG. 2 is a schematic view showing another embodiment of the combustion gas heat exchange system of the present invention.

【図3】従来の燃焼ガスの熱交換システムの一実施形態
を示す概略図である。
FIG. 3 is a schematic view showing one embodiment of a conventional combustion gas heat exchange system.

【符号の説明】[Explanation of symbols]

11 右捻り羽根 12 左捻り羽根 13、21 伝熱管 14、30 ジャケット管 22 混合器 23 スリーブ 24 入り口ガイド 25 燃焼室油槽間断熱材 26 燃焼室 27 煙道 28 調節煙道 29 油槽 DESCRIPTION OF SYMBOLS 11 Right twisting blade 12 Left twisting blade 13, 21 Heat transfer tube 14, 30 Jacket tube 22 Mixer 23 Sleeve 24 Entrance guide 25 Insulation material between combustion chamber oil tanks 26 Combustion chamber 27 Flue 28 Control flue 29 Oil tank

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F28F 1/00 F28F 1/00 C 21/04 21/04 (72)発明者 宮崎 眞一 愛知県豊川市萩山町2−15 Fターム(参考) 3K070 BA03 BA15 3L103 AA39 BB03 CC08 CC27 DD08 DD38 DD98 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) F28F 1/00 F28F 1/00 C 21/04 21/04 (72) Inventor Shinichi Miyazaki Hagiyama, Toyokawa City, Aichi Prefecture 2-15 Machi F-term (reference) 3K070 BA03 BA15 3L103 AA39 BB03 CC08 CC27 DD08 DD38 DD98

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】伝熱管内部を自然対流により流動する燃焼
ガスと、該伝熱管外部と接触する液体との熱交換システ
ムにおいて、 該伝熱管の内壁に装着した断熱性を有する円筒状のスリ
ーブ、及び 該伝熱管の内部に配設した断熱性を有する螺旋状の混合
器、を備えることにより、該伝熱管の温度を調節するこ
とを特徴とする燃焼ガスの熱交換システム。
1. A heat exchange system between a combustion gas flowing inside a heat transfer tube by natural convection and a liquid in contact with the outside of the heat transfer tube, comprising: a heat-insulating cylindrical sleeve mounted on an inner wall of the heat transfer tube; A heat exchange system for combustion gas, comprising: a spiral mixer having a heat insulating property disposed inside the heat transfer tube to adjust the temperature of the heat transfer tube.
【請求項2】請求項1記載の燃焼ガスの熱交換システム
において、 該伝熱管の出口に少なくとも一部が断熱材からなる煙道
を設けることにより、該燃焼ガスの該伝熱管内における
滞留時間を調節することを特徴とする燃焼ガスの熱交換
システム。
2. The heat exchange system for a combustion gas according to claim 1, wherein a flue at least partially made of a heat insulating material is provided at an outlet of the heat transfer tube, so that a residence time of the combustion gas in the heat transfer tube. A combustion gas heat exchange system, characterized in that:
【請求項3】前記螺旋状の混合器は、1又は2以上のね
じり羽根からなることを特徴とする請求項1又は2記載
の燃焼ガスの熱交換システム。
3. The combustion gas heat exchange system according to claim 1, wherein said spiral mixer comprises one or more torsion blades.
【請求項4】前記螺旋状の混合器は、2以上のねじり羽
根をつなぎ合わせたものであって、該混合器を構成する
ねじり羽根の形状及び/又は材質が、2以上の異なる組
合せであることを特徴とする請求項1〜3何れか記載の
燃焼ガスの熱交換システム。
4. The spiral mixer in which two or more torsion blades are connected, wherein the shape and / or material of the torsion blades constituting the mixer are two or more different combinations. The combustion gas heat exchange system according to claim 1, wherein:
【請求項5】前記スリーブ、混合器及び/又は断熱材
は、一部又は全部がセラミックスからなることを特徴と
する請求項1〜4何れか記載の燃焼ガスの熱交換システ
ム。
5. The heat gas exchange system according to claim 1, wherein the sleeve, the mixer, and / or the heat insulating material are partially or entirely made of ceramics.
JP2001175375A 2001-06-11 2001-06-11 Heat exchange system for combustion gas Pending JP2002364997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001175375A JP2002364997A (en) 2001-06-11 2001-06-11 Heat exchange system for combustion gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001175375A JP2002364997A (en) 2001-06-11 2001-06-11 Heat exchange system for combustion gas

Publications (1)

Publication Number Publication Date
JP2002364997A true JP2002364997A (en) 2002-12-18

Family

ID=19016523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001175375A Pending JP2002364997A (en) 2001-06-11 2001-06-11 Heat exchange system for combustion gas

Country Status (1)

Country Link
JP (1) JP2002364997A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102954728A (en) * 2011-08-31 2013-03-06 中国石油化工股份有限公司 Tubular heat exchanger and heat exchange pipe thereof
KR101298238B1 (en) 2010-10-12 2013-08-22 이인태 manufacturing device for twist tape of heat exchanger
CN106288875A (en) * 2016-10-19 2017-01-04 朱友东 A kind of energy-conservation depositing dust chimney
JP2020115080A (en) * 2020-04-24 2020-07-30 丸越工業株式会社 Heat transfer enhancement body, installation method of heat transfer enhancement body, and method of manufacturing heat transfer enhancement body
EP3587987A4 (en) * 2017-06-07 2020-11-04 Nanjing Tech University Pipe-type mixer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227534U (en) * 1985-08-02 1987-02-19
JPH0979785A (en) * 1995-09-08 1997-03-28 Wab Hitachi Eng Service Kk Tube end part protecting structure
JPH09243048A (en) * 1996-03-08 1997-09-16 Wada Sumiko Chimney structure of refuse incinerator
JP2001141228A (en) * 1999-11-10 2001-05-25 Hamamatsu Heat Tec Kk Chimney and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227534U (en) * 1985-08-02 1987-02-19
JPH0979785A (en) * 1995-09-08 1997-03-28 Wab Hitachi Eng Service Kk Tube end part protecting structure
JPH09243048A (en) * 1996-03-08 1997-09-16 Wada Sumiko Chimney structure of refuse incinerator
JP2001141228A (en) * 1999-11-10 2001-05-25 Hamamatsu Heat Tec Kk Chimney and its manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101298238B1 (en) 2010-10-12 2013-08-22 이인태 manufacturing device for twist tape of heat exchanger
CN102954728A (en) * 2011-08-31 2013-03-06 中国石油化工股份有限公司 Tubular heat exchanger and heat exchange pipe thereof
CN106288875A (en) * 2016-10-19 2017-01-04 朱友东 A kind of energy-conservation depositing dust chimney
EP3587987A4 (en) * 2017-06-07 2020-11-04 Nanjing Tech University Pipe-type mixer
JP2020115080A (en) * 2020-04-24 2020-07-30 丸越工業株式会社 Heat transfer enhancement body, installation method of heat transfer enhancement body, and method of manufacturing heat transfer enhancement body
JP2021193332A (en) * 2020-04-24 2021-12-23 丸越工業株式会社 Connection heat transfer promoter, radiant tube type heater, and radiant tube type heat exchanger
JP7036455B2 (en) 2020-04-24 2022-03-15 丸越工業株式会社 Heat transfer promoter and its manufacturing method
JP7089811B2 (en) 2020-04-24 2022-06-23 丸越工業株式会社 Connected heat transfer promoter, radiant tube type heating device and radiant tube type heat exchanger

Similar Documents

Publication Publication Date Title
CA1080212A (en) Heat exchanger core for recuperator
KR102365697B1 (en) Heat exchanger unit
NO316995B1 (en) Plate heat exchanger for an oven or radiator
EP0957327B1 (en) Heat-exchanger coil assembly
KR102405498B1 (en) Heat exchanger unit
EP2894990B1 (en) Hot air oven
CN112236637B (en) Heat exchange tube, heat exchanger unit using the same, and condensing boiler using the same
JP2002364997A (en) Heat exchange system for combustion gas
US20130075070A1 (en) Heat exchanger tube
CN105202950A (en) Shell-and-tube type heat exchanger
JP5288169B2 (en) Heat exchanger and water heater
JP5489285B2 (en) Radiation device
US5913289A (en) Firetube heat exchanger with corrugated internal fins
KR20160015945A (en) High efficiency environmental-friendly sensible heat exchanger
JP2000121267A (en) Heat exchanger with connection piece
US6296480B1 (en) Circulating oil heater
RU53410U1 (en) DEVICE FOR GAS AND OIL HEATING
Gentry et al. RODbaffle heat exchanger thermal-hydraulic predictive methods
US20210180870A1 (en) Heat exchanger component with varying twist angle
CN217275714U (en) Block hole type heat exchanger and heat exchange system
JP2002360448A (en) Fryer for uniform heating
KR102048518B1 (en) Heat exchanger having a heat exchange promoting member formed therein
EP3741453B1 (en) Mixing device with reversed coiled configuration and use thereof
RU2219454C1 (en) Multi-section shell-and-tube heat exchanger
RU2739962C2 (en) Radial-tube cross flow heat-mass exchange apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100601