JP4227816B2 - Powder heat treatment equipment - Google Patents

Powder heat treatment equipment Download PDF

Info

Publication number
JP4227816B2
JP4227816B2 JP2003041929A JP2003041929A JP4227816B2 JP 4227816 B2 JP4227816 B2 JP 4227816B2 JP 2003041929 A JP2003041929 A JP 2003041929A JP 2003041929 A JP2003041929 A JP 2003041929A JP 4227816 B2 JP4227816 B2 JP 4227816B2
Authority
JP
Japan
Prior art keywords
powder
hot air
hopper
heat treatment
supply nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003041929A
Other languages
Japanese (ja)
Other versions
JP2004249206A (en
Inventor
晃 山本
祐計 中村
昌宏 奥本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pneumatic Manufacturing Co Ltd
Original Assignee
Nippon Pneumatic Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pneumatic Manufacturing Co Ltd filed Critical Nippon Pneumatic Manufacturing Co Ltd
Priority to JP2003041929A priority Critical patent/JP4227816B2/en
Publication of JP2004249206A publication Critical patent/JP2004249206A/en
Application granted granted Critical
Publication of JP4227816B2 publication Critical patent/JP4227816B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Glanulating (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、粉体熱処理装置に関する。例えば、母粒子の表面に子粒子が付着した複合粉体を加熱溶融処理して母粒子表面に膜を生成する、または熱可塑性粒子を加熱溶融処理して球形化処理する粉体熱処理装置に関する。
【0002】
【従来の技術】
従来の熱処理装置として、熱風を下方向に吹き出す筒状の熱風供給ノズルと、熱風供給ノズル下端部と環状隙間をあけてかつ熱風供給ノズル下端部を囲うように配されて熱風供給ノズルから供給された熱風中に粉体を供給する環状粉体供給ヘッダと、粉体供給ヘッダの下方に、粉体供給ヘッダと隙間をおいて配されたホッパとを備え、ホッパにはホッパの上端開口を閉鎖する天板が設けられ、天板の中央および周縁部にそれぞれ開口があけられているものがある。(例えば特許文献参照)
【0003】
この装置では、以下のようにして熱処理が行なわれる。まず、熱風供給ノズルから下方に向けて熱風が供給される。次いで、熱風に向けて環状粉体供給ヘッダから処理前粉体が噴射される。熱風はほぼ真下に向かって流れ、この流れ内で粉体の熱処理が行なわれる。ノズルから吹き出された熱風および粉体は、天板中央の開口からホッパ内に導入される。熱処理中には、熱風供給ノズルと粉体供給ヘッダとの隙間、粉体供給ヘッダとホッパとの隙間およびホッパ天板周縁部の開口から冷風が装置内部に取り入れられる。
【0004】
【特許文献】
特開2000−52341号公報(第1図)
【0005】
【発明が解決しようとする課題】
熱風は、徐々に半径方向に広がってかつ冷風と混ざり合って温度を下げながら流れていく。しかしながら、ホッパ内での半径方向への広がりはわずかであり、熱風がほぼ真下に流れる時間は熱処理に要する時間より長くなる。また、熱風が冷風と混ざり合って温度が下がるまでの時間も熱処理に要する時間より長くなる。このため、粉体は熱処理後もほぼ真下に向かう高い温度の流れの中に存在することになり、隣り合う処理後粉体同士が融着凝結し、処理後粉体の粒径が所望の値より大きくなったり、処理前粉体の粒度分布と処理後粉体の粒度分布が著しく異なってしまうことがある。
【0006】
本発明は、上記問題を解決することを課題とし、熱処理後粉体の融着凝結を防止し、粒度の揃った処理後粉体を得られる粉体熱処理装置を提供することを目的とする。
【0007】
【課題を解決するための手段および発明の効果】
上記課題を解決するために本発明の粉体熱処理装置は、熱風を下向に吹き出す筒状熱風供給ノズルと、熱風供給ノズル下端部と環状隙間をあけてかつ熱風供給ノズル下端部と同心状に配され、熱風供給ノズルから吹き出された熱風中に粉体を供給する粉体供給ノズルを有する環状の粉体供給ヘッダと、粉体供給ヘッダの下方に、粉体供給ヘッダと隙間をおいて配されたホッパとを備え、ホッパには、ホッパの上端開口を閉鎖する天板が設けられ、天板中央および周縁部にそれぞれ開口があけられ、上記の粉体を含む熱風を、天板中央の開口からホッパ内に導入し、熱風供給ノズルと粉体供給ヘッダとの環状隙間、粉体供給ヘッダとホッパとの隙間およびホッパ天板周縁部の開口から冷風を内部に導入する粉体熱処理装置において、導入した冷風を旋回させる旋回流生成手段を有しているものである。
【0008】
上記の構成を有する粉体熱処理装置では、熱風供給ノズルから供給された熱風中に、粉体供給ヘッダから処理前粉体を供給する。粉体を熱処理した後の、粉体を含む熱風の流れは、旋回させられた冷風の影響を受けて旋回流となる。この旋回流は下流側になるほど旋回半径が大きくなる。したがって処理後粉体は旋回半径が大きくなった流れの中に分散して存在することになり、隣り合う処理後粉体同士の間隔が大きくなるので処理後粉体同士がぶつかって融着凝結することが防止、抑制される。また、熱風と冷風とは旋回しながら互いに混ざり合うため、熱風の温度が急速に下がり、より低い温度の気体中に処理後粉体が存在することになり、仮に処理後粉体同士がぶつかっても凝結する危険性は小さくなる。
【0009】
上記粉体熱処理装置において、粉体供給ヘッダとホッパ天板との間に配された複数の垂直状ガイドベーンを備え、ガイドベーン間から導入される冷風が旋回流となる、ことがある。このガイドベーンは傾きを可変とすることもある。
【0010】
また、粉体熱処理装置において、天板に複数の冷風導入口があけられ、冷風導入口に設けられた複数のガイドベーンが旋回冷風生成手段とされていることがある。
【0011】
さらに、熱風供給ノズルと粉体供給ヘッダとの間の隙間における熱風供給ノズルの外周に螺旋状のガイドが設けられ、このガイドが旋回冷風生成手段とされていることがある。
【0012】
【発明の実施の形態】
以下、図1〜2を参照して本発明の一実施形態の粉体熱処理装置について説明する。
【0013】
粉体熱処理装置1は、筒状の下向熱風供給ノズル4と、この熱風供給ノズル4下端部と環状隙間6をあけてかつ熱風供給ノズル4下端部と同心上に配された環状粉体供給ヘッダ5と、粉体供給ヘッダ5の下方に、粉体供給ヘッダ5と隙間をおいて配されたホッパ2とを備えている。
【0014】
ホッパ2は、これの上端開口を閉鎖する天板21を備えている。天板21の中央には開口22があけられている。また、天板21の周縁には、冷風をホッパ2内に導入するための冷風導入口23が周方向に間隔をおいて複数あけられている。図2に示すように冷風導入口23は円弧状をなしている。
【0015】
粉体供給ヘッダ5内には、環状流路51が形成され、この環状流路51が図示しない公知の粉体供給源に接続されている。粉体供給ヘッダ5の内周面下部は、下方に行くにしたがって内径の大きくなる逆テーパー面となっている。この逆テーパ面には、周方向に間隔をおいてかつテーパ面に対してほぼ直角に複数の粉体供給ノズル52が設けられている。また、粉体供給ヘッダ5と熱風供給ノズル4との間の環状隙間6からは冷風が導入されるようになっている。
【0016】
粉体供給ヘッダ5の下端部には鍔53が形成され、この鍔53と天板21との間に、複数の垂直状ガイドベーン7が環状に配され、ガイドベーン7、鍔53および天板21により囲われた空間が粉体吹込部3となっている。この粉体吹込部3の中央部が熱処理部3aとなる。そして隣り合うガイドベーン7間の隙間が冷風導入口8とされている。
【0017】
ガイドベーン7は粉体吹込部3およびホッパ2内に冷風を旋回させて吸い込むため、図2に示すように、一方の端部が他方の端部に比して鋭くとがっているとともに、そのとがった端部が他方の端部より半径方向内側に位置している。冷風導入口8から取り入れられた冷風は、ガイドベーン7により、粉体吹込部3の軸心を中心としかつガイドベーン内側の先端を結ぶ円の接線方向よりやや内側方向に流され、冷風の流れが旋回流となる。なお、ガイドベーン7は、軸7a周りに回転でき、ガイドベーン7の傾きを調節できるようになっている。
【0018】
熱風供給ノズル4は、図示しない公知の熱風供給源に接続されており、粉体吹込部3内の中央部分に上方から下方へ向かって適当な温度の熱風を吹き出す。
【0019】
なお、図示は省略したが、ホッパ2の下流側には、公知の構成を有するブロワーおよび粉体回収装置が配され、ホッパ2内の処理後粉体を下流側へ気流とともに排出し、排出された粉体を回収するようになっている。
【0020】
上記のような構成を有する粉体処理装置においては、以下に述べるようにして粉体が処理される。
【0021】
まず、熱風供給ノズル4から熱処理部3aに熱風が吹き出される。熱風が吹き出されると熱処理部3a内を下向きに流れる熱風に向けて粉体供給ノズル52から処理前粉体が空気とともに噴射供給される。また、上述したブロワーの作動により、天板21の冷風導入口23、ガイドベーン7間の冷風導入口8および冷風導入用の環状隙間6から外気すなわち冷風がホッパ2内および粉体吹込部3内に取り入れられる。
【0022】
熱風供給ノズル4の出口近傍において、熱風供給ノズル4から吹き出された熱風および環状隙間6から取り入れられた冷風は、ともにほぼ真下に向かって流れている。処理前粉体は、真下に向かう熱風の流れの中に供給される。この流れはガイドベーン7間から取り入れられた冷風の影響をほとんど受けずに高温のままであり、この真下に向かう熱風の流れ中において粉体は処理温度以上まで熱せられて粉体の熱処理が完了する。
【0023】
ところで、熱風の流れは、熱風供給ノズル4近傍ではほぼ真下に向かう流れとなっているが、下流に行くにしたがって熱風の回りを流れる旋回冷風の影響を受けるため旋回流となる。この旋回流では下流に行くにしたがって旋回半径が大きくなる。このため、下流に行くにつれて処理後粉体が分散し、すなわち隣り合う処理後粉体間の間隔が大きくなり、処理後粉体同士がぶつかり合って凝結することが防止される。
【0024】
また、旋回流となった熱風は天板21の冷風導入口23および冷風導入用の環状隙間6から導入された冷風と混ざり合って急激に温度が低下して処理温度以下となり、処理後粉体は速やかに冷却される。なお、天板21の冷風導入口23からホッパ2内に取り入れられた冷風は、ホッパ2内周面にそって流れ、処理後粉体がホッパ2内周面に付着するのを防止する。
【0025】
なお、本発明の粉体熱処理装置は、上記実施形態の装置に限定されるものではなく、各部構成は適宜変更可能である。例えば、冷風導入口23にガイドベーンを設け、冷風導入口23から取り入れられる冷風が旋回流となるようにしてもよい。
【0026】
また、冷風導入環状隙間6内における熱風供給ノズル4の外周に螺旋状のガイドを設け、環状隙間6から取り入れられる冷風が旋回流となるようにしてもよい。
【図面の簡単な説明】
【図1】本発明の一実施形態の粉体熱処理装置の縦断面図である。
【図2】図1のII-II線に沿う断面図である。
【符号の説明】
1 粉体熱処理装置
2 ホッパ
21 天板
22 開口
23 冷風導入用開口(冷風導入部)
3 粉体吹込部
3a 熱処理部
4 熱風供給ノズル
5 環状粉体供給ヘッダ
51 環状流路
52 粉体供給ノズル
53 鍔
6 隙間(冷風導入部)
7 ガイドベーン
7a 軸
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a powder heat treatment apparatus. For example, the present invention relates to a powder heat treatment apparatus that heats and melts a composite powder having child particles attached to the surface of mother particles to form a film on the surface of the mother particles, or heats and melts thermoplastic particles to form a spheroid.
[0002]
[Prior art]
As a conventional heat treatment apparatus, a cylindrical hot air supply nozzle that blows hot air downward, a hot air supply nozzle lower end and an annular gap are provided so as to surround the lower end of the hot air supply nozzle and supplied from the hot air supply nozzle An annular powder supply header for supplying powder into the hot air and a powder supply header and a hopper arranged with a gap below the powder supply header. The hopper closes the top opening of the hopper. There is a top plate that is provided with openings at the center and peripheral edge of the top plate. (See, for example, patent literature)
[0003]
In this apparatus, heat treatment is performed as follows. First, hot air is supplied downward from the hot air supply nozzle. Next, the unprocessed powder is jetted from the annular powder supply header toward the hot air. The hot air flows almost downward, and the heat treatment of the powder is performed in this flow. Hot air and powder blown from the nozzle are introduced into the hopper through the opening at the center of the top plate. During the heat treatment, cold air is taken into the apparatus through the gap between the hot air supply nozzle and the powder supply header, the gap between the powder supply header and the hopper, and the opening at the periphery of the hopper top plate.
[0004]
[Patent Literature]
Japanese Patent Laid-Open No. 2000-52341 (FIG. 1)
[0005]
[Problems to be solved by the invention]
The hot air gradually spreads in the radial direction and mixes with the cold air to flow while lowering the temperature. However, the spread in the radial direction in the hopper is slight, and the time during which the hot air flows almost directly becomes longer than the time required for the heat treatment. In addition, the time required for the hot air to mix with the cold air and to decrease the temperature is longer than the time required for the heat treatment. For this reason, the powder remains in a high temperature flow almost directly below after the heat treatment, the adjacent processed powders are fused and condensed, and the particle size of the processed powder is a desired value. In some cases, the particle size distribution of the powder before treatment and the particle size distribution of the powder after treatment may be significantly different.
[0006]
An object of the present invention is to provide a powder heat treatment apparatus capable of preventing the fusion-aggregation of the powder after heat treatment and obtaining the processed powder having a uniform particle size.
[0007]
[Means for Solving the Problems and Effects of the Invention]
In order to solve the above-mentioned problems, the powder heat treatment apparatus of the present invention comprises a cylindrical hot air supply nozzle for blowing hot air downward, a concentric shape with a lower end portion of the hot air supply nozzle and an annular clearance between the lower end portion of the hot air supply nozzle. An annular powder supply header having a powder supply nozzle for supplying powder into the hot air blown from the hot air supply nozzle, and arranged below the powder supply header with a gap from the powder supply header. The hopper is provided with a top plate that closes the upper end opening of the hopper. Openings are formed in the center and the peripheral portion of the top plate, respectively, and the hot air containing the above powder is passed through the top plate at the center of the top plate. In a powder heat treatment apparatus that introduces cold air into the hopper through an opening, and introduces cold air into the annular gap between the hot air supply nozzle and the powder supply header, the gap between the powder supply header and the hopper, and the opening at the peripheral edge of the hopper top plate Introduced cold Those having a swirl flow generating means for swirling the.
[0008]
In the powder heat treatment apparatus having the above-described configuration, the unprocessed powder is supplied from the powder supply header into the hot air supplied from the hot air supply nozzle. After the powder is heat-treated, the flow of hot air containing the powder becomes a swirl flow under the influence of the swirled cold air. The swirl radius increases as the swirl flow becomes downstream. Therefore, the processed powders are dispersed in the flow with the larger turning radius, and the distance between the adjacent processed powders is increased, so that the processed powders collide with each other and are fused and condensed. This is prevented and suppressed. Moreover, since hot air and cold air mix with each other while swirling, the temperature of the hot air drops rapidly, and the processed powder exists in a lower temperature gas. The risk of condensation is reduced.
[0009]
The powder heat treatment apparatus may include a plurality of vertical guide vanes arranged between the powder supply header and the hopper top plate, and the cool air introduced from between the guide vanes may be swirling. This guide vane may be variable in inclination.
[0010]
In the powder heat treatment apparatus, a plurality of cold air inlets may be opened in the top plate, and a plurality of guide vanes provided in the cold air inlet may be used as the swirling cold air generating means.
[0011]
Further, a spiral guide may be provided on the outer periphery of the hot air supply nozzle in the gap between the hot air supply nozzle and the powder supply header, and this guide may be used as the swirling cold air generating means.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, with reference to FIGS. 1-2, the powder heat processing apparatus of one Embodiment of this invention is demonstrated.
[0013]
The powder heat treatment apparatus 1 includes a cylindrical downward hot air supply nozzle 4 and an annular powder supply that is arranged concentrically with the lower end portion of the hot air supply nozzle 4 with an annular gap 6 formed at the lower end portion of the hot air supply nozzle 4. A header 5 and a powder supply header 5 and a hopper 2 disposed with a gap are provided below the powder supply header 5.
[0014]
The hopper 2 includes a top plate 21 that closes the upper end opening thereof. An opening 22 is opened in the center of the top plate 21. Further, a plurality of cold air inlets 23 for introducing cold air into the hopper 2 are formed at the peripheral edge of the top plate 21 at intervals in the circumferential direction. As shown in FIG. 2, the cold air inlet 23 has an arc shape.
[0015]
An annular channel 51 is formed in the powder supply header 5, and the annular channel 51 is connected to a known powder supply source (not shown). The lower part of the inner peripheral surface of the powder supply header 5 is an inversely tapered surface having an inner diameter that increases downward. A plurality of powder supply nozzles 52 are provided on the reverse tapered surface at intervals in the circumferential direction and substantially perpendicular to the tapered surface. Further, cold air is introduced from an annular gap 6 between the powder supply header 5 and the hot air supply nozzle 4.
[0016]
A flange 53 is formed at the lower end of the powder supply header 5, and a plurality of vertical guide vanes 7 are annularly arranged between the flange 53 and the top plate 21, and the guide vanes 7, the flange 53 and the top plate are arranged. A space surrounded by 21 is a powder blowing portion 3. The center part of this powder blowing part 3 becomes the heat treatment part 3a. A gap between adjacent guide vanes 7 serves as a cold air inlet 8.
[0017]
Since the guide vane 7 swirls and sucks cold air into the powder blowing section 3 and the hopper 2, as shown in FIG. 2, one end portion is sharper than the other end portion, and the pointed portion is also sharpened. One end is located radially inward from the other end. The cold air taken in from the cold air inlet 8 is caused to flow by the guide vane 7 slightly inward from the tangential direction of the circle centering on the axis of the powder blowing portion 3 and connecting the tip inside the guide vane. Becomes a swirl flow. The guide vane 7 can be rotated around the shaft 7a, and the inclination of the guide vane 7 can be adjusted.
[0018]
The hot air supply nozzle 4 is connected to a known hot air supply source (not shown), and blows hot air at an appropriate temperature from the upper side to the lower side in the central portion of the powder blowing unit 3.
[0019]
Although not shown, a blower and a powder recovery device having a known configuration are arranged on the downstream side of the hopper 2, and the processed powder in the hopper 2 is discharged to the downstream side together with the airflow and discharged. The collected powder is collected.
[0020]
In the powder processing apparatus having the above configuration, powder is processed as described below.
[0021]
First, hot air is blown out from the hot air supply nozzle 4 to the heat treatment section 3a. When the hot air is blown out, the powder before processing is jetted and supplied together with air from the powder supply nozzle 52 toward the hot air flowing downward in the heat treatment section 3a. Further, due to the operation of the blower described above, the outside air, that is, the cool air is introduced into the hopper 2 and the powder blowing portion 3 from the cold air introduction port 23 of the top plate 21, the cold air introduction port 8 between the guide vanes 7 and the annular gap 6 for introducing the cold air. Incorporated.
[0022]
In the vicinity of the outlet of the hot air supply nozzle 4, the hot air blown from the hot air supply nozzle 4 and the cold air taken in from the annular gap 6 both flow almost downward. The pre-treatment powder is supplied in a flow of hot air that goes directly below. This flow remains almost unaffected by the cold air introduced from between the guide vanes 7, and the powder is heated to the processing temperature or higher in the flow of hot air that goes directly below it, completing the heat treatment of the powder. To do.
[0023]
By the way, the flow of the hot air is a flow almost directly below in the vicinity of the hot air supply nozzle 4, but it becomes a swirl flow because it is affected by the swirling cold air flowing around the hot air as it goes downstream. In this swirl flow, the swirl radius increases as going downstream. For this reason, the processed powder is dispersed as it goes downstream, that is, the interval between the adjacent processed powders is increased, and the processed powders are prevented from colliding and condensing.
[0024]
Further, the hot air that has turned into a swirl flow is mixed with the cold air introduced from the cold air inlet 23 of the top plate 21 and the annular gap 6 for introducing the cold air, and the temperature is suddenly lowered to become the processing temperature or lower. Is quickly cooled. Note that the cold air taken into the hopper 2 from the cold air inlet 23 of the top plate 21 flows along the inner peripheral surface of the hopper 2 and prevents the treated powder from adhering to the inner peripheral surface of the hopper 2.
[0025]
The powder heat treatment apparatus of the present invention is not limited to the apparatus of the above embodiment, and the configuration of each part can be changed as appropriate. For example, a guide vane may be provided at the cold air inlet 23 so that the cold air taken from the cold air inlet 23 becomes a swirling flow.
[0026]
Further, a spiral guide may be provided on the outer periphery of the hot air supply nozzle 4 in the cold air introduction annular gap 6 so that the cold air taken in from the annular gap 6 becomes a swirling flow.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a powder heat treatment apparatus according to an embodiment of the present invention.
2 is a cross-sectional view taken along the line II-II in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Powder heat processing apparatus 2 Hopper 21 Top plate 22 Opening 23 Open for cold air introduction (cold air introduction part)
3 Powder blowing portion 3a Heat treatment portion 4 Hot air supply nozzle 5 Annular powder supply header 51 Annular flow channel 52 Powder supply nozzle 53 鍔 6 Crevice (cold air introduction portion)
7 Guide vane 7a shaft

Claims (2)

熱風を下向きに吹き出す筒状熱風供給ノズルと、熱風供給ノズル下端部と環状隙間をあけてかつ熱風供給ノズル下端部と同心上に配され、熱風供給ノズルから吹き出された熱風中に粉体を供給する粉体供給ノズルを有する環状の粉体供給ヘッダと、粉体供給ヘッダの下方に、粉体供給ヘッダと隙間をおいて配されたホッパとを備え、
ホッパには、ホッパの上端開口を閉鎖する天板が設けられ、
天板中央および周縁部にそれぞれ開口があけられ、
上記の粉体を含む熱風を、天板中央の開口からホッパ内に導入し、
熱風供給ノズルと粉体供給ヘッダとの環状隙間、粉体供給ヘッダとホッパとの隙間およびホッパ天板周縁部の開口から冷風を内部に導入する粉体熱処理装置において、
粉体供給ヘッダとホッパ天板との間に複数のガイドベーンを環状に配し、ガイドベーンの間から冷風を旋回流として導入する旋回流生成手段を設けた粉体熱処理装置。
A cylindrical hot air supply nozzle that blows hot air downward, and a concentric space with the lower end of the hot air supply nozzle and concentric with the lower end of the hot air supply nozzle to supply powder into the hot air blown from the hot air supply nozzle An annular powder supply header having a powder supply nozzle, and a hopper disposed below the powder supply header with a gap therebetween,
The hopper is provided with a top plate that closes the upper end opening of the hopper,
Openings are made in the center and peripheral edge of the top plate,
Hot air containing the above powder is introduced into the hopper through the opening at the center of the top plate,
In the powder heat treatment apparatus for introducing cold air into the annular gap between the hot air supply nozzle and the powder supply header, the gap between the powder supply header and the hopper, and the opening at the peripheral edge of the hopper top plate,
A powder heat treatment apparatus comprising a plurality of guide vanes arranged annularly between a powder supply header and a hopper top plate, and provided with swirling flow generating means for introducing cold air as swirling flows from between the guide vanes .
ガイドベーンの傾きを可変とし、傾きを変えることにより導入される冷風の旋回速度を調節する、
請求項1記載の粉体熱処理装置。
Adjust the inclination of the guide vane and adjust the swirl speed of the cold air introduced by changing the inclination .
The powder heat treatment apparatus according to claim 1.
JP2003041929A 2003-02-20 2003-02-20 Powder heat treatment equipment Expired - Fee Related JP4227816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003041929A JP4227816B2 (en) 2003-02-20 2003-02-20 Powder heat treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003041929A JP4227816B2 (en) 2003-02-20 2003-02-20 Powder heat treatment equipment

Publications (2)

Publication Number Publication Date
JP2004249206A JP2004249206A (en) 2004-09-09
JP4227816B2 true JP4227816B2 (en) 2009-02-18

Family

ID=33025339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003041929A Expired - Fee Related JP4227816B2 (en) 2003-02-20 2003-02-20 Powder heat treatment equipment

Country Status (1)

Country Link
JP (1) JP4227816B2 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7776503B2 (en) 2005-03-31 2010-08-17 Ricoh Company, Ltd. Particles and manufacturing method thereof, toner and manufacturing method thereof, and developer, toner container, process cartridge, image forming method and image forming apparatus
US9173967B1 (en) 2007-05-11 2015-11-03 SDCmaterials, Inc. System for and method of processing soft tissue and skin with fluids using temperature and pressure changes
US8507401B1 (en) 2007-10-15 2013-08-13 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US8652992B2 (en) 2009-12-15 2014-02-18 SDCmaterials, Inc. Pinning and affixing nano-active material
US8557727B2 (en) 2009-12-15 2013-10-15 SDCmaterials, Inc. Method of forming a catalyst with inhibited mobility of nano-active material
US9149797B2 (en) 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
US9039916B1 (en) 2009-12-15 2015-05-26 SDCmaterials, Inc. In situ oxide removal, dispersal and drying for copper copper-oxide
US8803025B2 (en) 2009-12-15 2014-08-12 SDCmaterials, Inc. Non-plugging D.C. plasma gun
US8470112B1 (en) 2009-12-15 2013-06-25 SDCmaterials, Inc. Workflow for novel composite materials
US8545652B1 (en) 2009-12-15 2013-10-01 SDCmaterials, Inc. Impact resistant material
US9126191B2 (en) 2009-12-15 2015-09-08 SDCmaterials, Inc. Advanced catalysts for automotive applications
JP5414507B2 (en) * 2009-12-21 2014-02-12 キヤノン株式会社 Toner heat treatment apparatus and toner manufacturing method
JP5479072B2 (en) * 2009-12-21 2014-04-23 キヤノン株式会社 Toner heat treatment apparatus and toner manufacturing method
US8669202B2 (en) 2011-02-23 2014-03-11 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
AU2012299065B2 (en) 2011-08-19 2015-06-04 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
CN105592921A (en) 2013-07-25 2016-05-18 Sdc材料公司 Washcoats and coated substrates for catalytic converters and method for manufacturing and using same
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
CN105848756A (en) 2013-10-22 2016-08-10 Sdc材料公司 Compositions of lean NOx trap
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
CN114405394B (en) * 2022-02-14 2023-04-07 南京博纳能源环保科技有限公司 Granulating device and granulating method for discharging molten silicon

Also Published As

Publication number Publication date
JP2004249206A (en) 2004-09-09

Similar Documents

Publication Publication Date Title
JP4227816B2 (en) Powder heat treatment equipment
EP0068853B1 (en) Method and apparatus for processing matter in a turbulent mass of particulate material
JP6149316B2 (en) Swirl burner and process for combustion melting in liquid
JPH0748118A (en) Burner for producing inorganic spherical particle
FI122961B (en) Supply Unit
JPH0792210B2 (en) Split flow burner assembly
KR20040045480A (en) Apparatus and method for evenly flowing processing gas onto a semiconductor wafer
US20170120252A1 (en) Method and air-swept vertical mill for grinding hot, wet raw material and also channel-like segment
US4052304A (en) Preheating device for centrifugal
WO2007145207A1 (en) Air flow classifier, and classifying plant
KR910000499Y1 (en) Heat exchanger
JPS59127662A (en) Method and apparatus for treating powder or particles
JP2016112494A (en) Powder treatment device and powder treatment facility
JPH0857424A (en) Raw material supply device in air classifier
JPH0780414A (en) Air separator
JP2010069393A (en) Pneumatic classifier
JPH0566173B2 (en)
JPH11138103A (en) Pneumatic classifier
JP4543495B2 (en) Heat treatment equipment for thermoplastic particles
JP3752068B2 (en) Airflow classifier
JPS59125742A (en) Heat treating equipment of powder or granular
JPH0256667B2 (en)
JP3986152B2 (en) Drying device for powder
JP6800796B2 (en) Raw material supply equipment, flash smelting furnace, nozzle members
JPS60161721A (en) Method and apparatus for mixing powders by air stream

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees