JP4226681B2 - Method for producing pyridinium compound and compound therefor - Google Patents

Method for producing pyridinium compound and compound therefor Download PDF

Info

Publication number
JP4226681B2
JP4226681B2 JP09276898A JP9276898A JP4226681B2 JP 4226681 B2 JP4226681 B2 JP 4226681B2 JP 09276898 A JP09276898 A JP 09276898A JP 9276898 A JP9276898 A JP 9276898A JP 4226681 B2 JP4226681 B2 JP 4226681B2
Authority
JP
Japan
Prior art keywords
compound
formula
pyridinium
compound represented
maillard reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09276898A
Other languages
Japanese (ja)
Other versions
JPH11269178A (en
Inventor
俊彦 大澤
純江 安東
光雄 秋葉
紀博 柿本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asai Germanium Research Institute Co Ltd
Original Assignee
Asai Germanium Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asai Germanium Research Institute Co Ltd filed Critical Asai Germanium Research Institute Co Ltd
Priority to JP09276898A priority Critical patent/JP4226681B2/en
Publication of JPH11269178A publication Critical patent/JPH11269178A/en
Application granted granted Critical
Publication of JP4226681B2 publication Critical patent/JP4226681B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Saccharide Compounds (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ピリジニウム化合物の製造方法及びそのための化合物に関するものである。
【0002】
【従来の技術】
周知のように、糖と蛋白アミンとのメイラード反応については、まずそれら糖と蛋白アミンとの非酵素的反応(グリケーション)によってシッフ塩基が形成され、このシッフ塩基からアマドリ転位反応により比較的短期間にメイラード反応前期生成物であるケトアミンが形成され、更に種々の段階をへてメイラード反応後期生成物が産生される。
【0003】
このメイラード反応前期生成物としては、臨床的には糖化ヘモグロビン(HbAlc)や糖化アルブミン(フルクトサミン)が、血糖コントロールの指標として利用されている。
【0004】
一方、メイラード反応後期生成物は、コラーゲン、神経ミエリンや水晶体等生体の代謝回転の遅い蛋白で生成され、長期高血糖状態(糖尿病)により増加することも知られており、糖尿病において最も特徴的変化である持続性高血糖状態が、なぜ糖尿病に特異的である慢性合併症を引き起こすかを説明する仮説として、このメイラード反応後期生成物がその成因して注目されると共に、その産生を阻害することによって合併症の発症や進展を阻止し得る可能性が示唆されてきた。
【0005】
又、メイラード反応後期生成物の血中、尿中や組織中の濃度を測定することによる、合併症の診断への可能性が期待されている。
【0006】
しかしながら、これまでに開発されたメイラード反応後期生成物測定法より得られた知見は、生体内メイラード反応後期生成物の増量と各種組織障害との間には密接な因果関係があることを強く示唆しているが、未だ生体内の主要メイラード反応後期生成物の化学構造は不明である。
【0007】
本発明の発明者の一部は、上記のようなメイラード反応後期生成物の現状に鑑み、各種組織障害との間に密接な因果関係を有する生体内メイラード反応後期生成物の構造を特定することを目的として研究を続けた結果、新規な生体内メイラード反応後期生成物を発見し、更に研究を続行して当該化合物が式、
【化9】

Figure 0004226681
で表される構造を有するピリジニウム化合物であることを確認し、更にこのピリジニウム化合物が糖尿病又は腎不全に伴う合併症の診断試薬として有用であるとの知見を得、特許出願をした。
【0008】
【発明が解決しようとする課題】
上記のように、式(2)で表されるピリジニウム化合物が、糖尿病又は腎不全に伴う合併症の診断試薬として有用である以上、所定の量の当該化合物を効率的に生産することが必要となるが、従来は式(2)で表されるピリジニウム化合物のかかる製造方法は知られていなかった。
【0009】
【課題を解決するための手段】
本発明は、上記のような従来技術の現状に鑑みてなされたもので、本発明はまず、式(1)
【化10】
Figure 0004226681
(式中、Acはアシル基を、Rは低級アルキル基をそれぞれ表す。)
で表される化合物を加水分解することを特徴とする、式(2)
【化11】
Figure 0004226681
で表されるピリジニウム化合物の製造方法を提供する。
【0010】
本発明は又、式(1)
【化12】
Figure 0004226681
(式中、Acはアシル基を、Rは低級アルキル基をそれぞれ表す。)
で表される化合物を加水分解して、式(3)
【化13】
Figure 0004226681
で表される化合物を得、更にこの化合物を加水分解することを特徴とする、式(2)
【化14】
Figure 0004226681
で表されるピリジニウム化合物の製造方法を提供する。
【0011】
本発明は更に、式(4)
【化15】
Figure 0004226681
で表される化合物を加水分解することを特徴とする、式(2)
【化16】
Figure 0004226681
で表されるピリジニウム化合物の製造方法を提供する。
【0012】
本発明は更に又、式(1)
【化17】
Figure 0004226681
(式中、Acはアシル基を、Rは低級アルキル基をそれぞれ表す。)
で表されることを特徴とする、ピリジニウム化合物の製造のための化合物を提供する。
【0013】
【発明の実施の態様】
以下、本発明を詳細に説明する。
【0014】
本発明の製造方法の目的化合物である上記ピリジニウム化合物(2)は、一種のメイラード反応後期生成物であり、例えば、アルブミン、リゾチーム、カゼイン、リボヌクレアーゼやグロブリン等の蛋白質と、グルコース、ダイアセチル、グリオキザールやフルクトース等のカルボニル化合物との、非酵素的反応によって産生されるものである。
【0015】
上記ピリジニウム化合物(2)は、ウサギ赤血球とグルコースとを37℃で2週間反応させた系の反応液を48時間透析して加水分解した後、ODS−5カラムによる高速液体クロマトグラフィーにより、励起波長340nm、蛍光波長402nmにより検出され、その生成量はグルコースの濃度と反応時間並びに反応液の褐変化に比例して増加し、その生成はメイラード反応阻害物質であるアミノグアニジンによって阻害され、又、ウシ血清アルブミンとグルコースとの系においても、同様に生成するものである。
【0016】
上記ピリジニウム化合物(2)の構造は、ウシ血清アルブミンとグルコースの反応で生成したメイラード反応後期生成物を加水分解した後、蛍光波長を利用した高速液体クロマトグラフィーにより分取した後、グリセロールとニトロベンジルアルコールとの混合物をマトリクスとしたFAB−マススペクトルを用いて測定することにより、まずその分子量が212と決定された。
【0017】
次いで、高分解能マススペクトルを利用することにより、上記ピリジニウム化合物(2)の組成式がC910311と決定され、更に二次元を含むNMR解析の結果、上記メイラード反応後期生成物は、式
【化18】
Figure 0004226681
で表される8−ヒドロキシ−5−メチルジヒドロチアゾロ[3,2−a]ピリジニウム−3−カルボキシレートと決定された。
【0018】
尚、上記ピリジニウム化合物(2)は、牛の肝臓より蛍光を有する加水分解物としてすでに単離されているものである。
【0019】
而して、本発明は上記ピリジニウム化合物(2)を以下のようにして製造するものである。
【0020】
即ち、本発明の製造方法では、式(1)
【化19】
Figure 0004226681
で表される本発明の化合物を使用する。
【0021】
上記式(1)中、Acはアセチル基等のアシル基を、Rはメチル基、エチル基、プロピル基やブチル基等の低級アルキル基をそれぞれ表している。
【0022】
上記本発明の化合物は、Elofsson, M; Walse B, ; Kihlberg, J. Tetrahedron Lett, 1991, 32, 7613に記載の方法に準じ、グルコースペンタアセテートと、式(5)
【化20】
Figure 0004226681
で表されるシステイン誘導体とを、四塩化錫の存在下で反応させて式(6)
【化21】
Figure 0004226681
で表されるグルコース−システイン誘導体を得、その後にこのグルコース−システイン誘導体におけるFmoc保護基を脱離させることにより、得ることができる。
【0023】
尚、上記式(5)の化合物におけるFmocは、以下のような構造の保護基を表している。
【化22】
Figure 0004226681
【0024】
本発明の製造方法では、上記化合物(1)を加水分解することにより、上記ピリジニウム化合物(2)を得るものであるが、この加水分解は、例えば6N塩酸等による酸性条件下、必要に応じて加熱することにより行うことができる。
【0025】
尚、上記ピリジニウム化合物(2)の製造方法としては、Acta, Chem, Scand., 23, 371, 1969にも報告があるが、比較的長い工程によるもので、本発明の製造方法のように1工程で上記ピリジニウム化合物(2)を製造する方法は知られていない。
【0026】
又、上記ピリジニウム化合物(2)は、上記式(1)で表される化合物を加水分解して、一旦、式(3)
【化23】
Figure 0004226681
で表される化合物を得、更にこの化合物(3)を加水分解することによっても得ることができる。
【0027】
上記の方法において、前者の加水分解は、例えばメタノール等の溶媒中で、リジウムメトキシド等によるアルカリ性条件下で行うことができ、後者の加水分解は、例えば6N塩酸等による酸性条件下、必要に応じて加熱することにより行うことができる。
【0028】
更に、上記ピリジニウム化合物(2)は、式(4)
【化24】
Figure 0004226681
で表される化合物を加水分解することによっても得ることができる。
【0029】
上記の方法における加水分解は、例えば6N塩酸等による酸性条件下、必要に応じて加熱することにより行うことができる。
【0030】
上記式(4)で表される化合物は、H. Masaki, A. Imahoriの方法(JP. 09067226 A2)によって合成することができ、この式(4)で表される化合物は、上記式(3)で表される化合物における糖部分をガラクトースに変更したものである。
【0031】
尚、本発明の製造方法により得られた上記ピリジニウム化合物(2)の物理化学的データは、文献記載の値と一致した。
【0032】
本発明の製造方法により得られた上記ピリジニウム化合物(2)は、糖尿病病態において大量に産生して腎、腱、皮膚、神経等の組織に沈着すると共に、腎機能の低下に伴い尿中に大量に排泄されてくることから、糖尿病病態のバイオマーカ一として適用することが可能である。
【0033】
【実施例】
以下に本発明を実施例に基づいて詳細に説明するが、これらは本発明を何ら限定するものではない。
【0034】
実施例1
N-(9-Fluorenylmethoxycarbonyl)-S-triphenylmethyl-L-cysteine methyl esterの合成
メタノール9mlとベンゼン30mlの混合液に、1.77g(3mmol)のN-(9-Fluorenylmethoxycarbonyl)-S-triphenylmethyl-L-cysteineを溶解し、この溶液にトリメチルシリルジアゾメタン5.5ml(4.8mmol)を加えて、室温で15分間撹拌した。反応溶液より溶媒を減圧で留去することにより、粗メチルエステルが得られ、これを精製することなく使用した。
1HMMR(270MHz,CDCl3,TMS):δ2.66(d,J=5.3Hz,2H)、3.71(s,3H)、4.23(t,J=6.8Hz,1H)、4.30〜4.39(m,3H)、5.23(d,J=8.3Hz,1H)、7.18〜7.32(m,11H)、7.38〜7.41(m,8H)、7.60(d,J=6.3Hz,2H)、7,76(d,J=7.3Hz,2H)
【0035】
N-(9-Fluorenylmethoxycarbonyl)-L-cysteine methyl ester[式(5)においてR=CH3の化合物]の合成
ジクロロメタン1.5ml中に粗N-(9-Fluorenylmethoxycarbonyl)-S-triphenylmethyl-L-cysteine methyl esterを溶解した溶液に、419mg(3.6mmol)のトリエチルシランと1.5mlのトリフルオロ酢酸を加え、混合溶液を室温で1時間撹拌し、溶媒を留去した。残査をシリカゲルカラムクロマトグラフィによりヘキサン/酢酸エチル=4:1→2:1で精製し、1.04g(97%)の目的化合物を得た。
1HMMR(270MHz,CDCl3,TMS):δ1.36(t,J=9.1Hz,1H)、2.98〜3.02(m,2H)、3.80(s,3H)、4.24(t,J=6.8Hz,1H)、4.44(d,J=7.9Hz,2H)、4.67(dt,J=7.4,3.8Hz,1H)、5.68(d,J=7.4Hz,1H)、7.28〜7.44(m,4H)、7.61(d,J=7.3Hz,2H)、7.77(d,J=7.3Hz,2H)
13CNMR(67.8MHz,CDCl3)δ27.0,47.1,52.8,55.2,67.0,120.0,124.98,125.01,127.0,127.7,141.3,143.6,143.7,155.6,170.4
【0036】
N-(9-Fluorenylmethoxycarbonyl)-S-(2,3,4,6-tetra-O-acetyl-b-D-glucopyranosyl)-L-cysteine methyl ester[式(6)においてAc=COCH3、R=CH3の化合物]の合成
1,2,3,4,6-penta-O-acetyl-b-D-glucopyranose1.56g(4mmol)とN-(9-Fluorenylmethoxycarbonyl)-L-cysteine methyl ester[式(5)においてR=CH3の化合物]1.00g(2.8mmol)との20mlジクロルメタン溶液に、四塩化スズ0.48ml(4.1mmol)を添加した。混合溶液を室温で1時間撹拌し、更に1,2,3,4,6-penta-O-acetyl-b-D-glucopyranose1.56g(4mmol)と四塩化スズ0.48ml(4.1mmol)を加えた。室温で1時間撹拌後、反応溶液をジクロロメタンで希釈し、10%塩酸、水及び塩水で水洗し、硫酸マグネシウムで乾燥後、溶媒を留去した。残査をシリカゲルカラムクロマトグラフィ(ヘキサン/酢酸エチル=3:2)で製精し、1.69g(88%)の目的化合物を得た。
1HMMR(270MHz,CDCl3,TMS):δ2.01(s,3H)、2.02(s,6H)、2.04(s,3H)、2.99(dd,J=14.2,6.8Hz,1H)、3.26(dd,J=14.2,4.0Hz,1H)、3.67(dt,J=9.9,4.0Hz,1H)、3.75(s,3H),4.09〜4.15(m,2H)、4.24(bt,J=9.9,9.4,1H)、4.36〜4.61(m,4H)、5.01(dd,J=9.9,9.4Hz,1H)、5.06(dd,J=9.9,9.4,1H)、5.23(t,J=9.4Hz,1H)、5,93(d,J=7.9Hz,1H)、7.28〜7.34(m,4H)、7.59〜7.61(m,2H)、7.76(d,J=6.9Hz,2H)
13CNMR(67.8MHz,CDCl3)δ20.4,20.5,31.8,47.0,52.6,53.8,61.9,66.8,68.1,69.5,74.3,75.9,82.9,119.9,124.85,124.91,127.0,127.6,141.1,143.58,143.61,155.7,169.2,169.3,169.9,170.4,170.7
【0037】
S-(2,3,4,6-tetra-O-acetyl-b-D-glucopyranosyl)-L-cysteine methyl ester[式(1)においてAc=COCH3、R=CH3の化合物]の合成
DMF(10ml)中、N-(9-Fluorenylmethoxycarbonyl)-S-(2,3,4,6-tetra-O-acetyl-b-D-glucopyranosyl)-L-cysteine methyl ester390mg(0.57mmol)を、20%ピペリジンで1時間、室温下に処理した。混合溶液から減圧で溶媒を留去した後、酢酸エチルとエーテル1:1の混合溶液で希釈した。水と塩水で水洗し、硫酸マグネシウムで乾燥後、溶媒を留去し、残査をシリカゲルカラムクロマトグラフィ(クロロホルム/メタノール=40:1)製精し、243mg(91%)の目的化合物を得た。
1HMMR(270MHz,CDCl3,TMS):δ1.77(bs,2H)、2.01(s,3H)、2.03(s,3H)、2.07(s,3H)、2.09(s,3H)、2.83(dd,J=13.9,7.9Hz,1H)、3.17(dd,J=13.9,4.3Hz,1H)、3.69〜3.75(m,2H),3.75(s,3H)、4.16(dd,J=12.5,2.6Hz,1H)、4.24(dd,J=12.5,4.6Hz,1H)、4.59(d,J=9.9Hz,1H)、5.04(t,J=9.6Hz,1H)、5,09(t,J=9.6Hz,1H)、5.23(t,J=9.4Hz,2H)
13CNMR(67.8MHz,CDCl3)δ20.5,20.6,34.8,52.3,54.7,61.9,68.1,69.6,73.7,75.9,83.5,169.4,170.1,170.6,173.9
【0038】
8-hydroxy-5-methyldihydrothiazolo[3,2-a]pyridinium-3-carboxylate[化合物(2)]の合成
ミクロチューブにS-(2,3,4,6-tetra-O-acetyl-b-D-glucopyranosyl)-L-cysteine methyl ester[式(1)においてAc=COCH3、R=CH3の化合物]1.5mgを入れ、6N塩酸で110℃、24時間の気相加水分解を行った後、フィルター処理し、ODS−HG−5カラムを用い、3%アセトニトリル/0.1%トリフルオロ酢酸を流速2ml/minで流し、励起波長340nm、蛍光波長402nmにて高速液体クロマトグラフィーにおいて、目的化合物に相当する溶出時間10分のピークを分取した。これを繰り返した結果、S-(2,3,4,6-tetra-O-acetyl-b-D-glucopyranosyl-L-cysteine methyl ester[式(1)においてAc=COCH3、R=CH3の化合物]22.5mgから、精製された化合物(2)0.9mg(収率4.35%)を得た。
【0039】
実施例2
3-S-(b-D-glucopyranosyl)-L-cysteine [化合物(3)]の合成
200mg(0.3mmol)のS-(2,3,4,6-tetra-O-acetyl-b-D-glucopyranosyl)-L-cysteine methyl ester[式(1)においてAc=COCH3、R=CH3の化合物]の1mlメタノール溶液に、メタノール0.4ml中の0.1Nナトリウムメトキシドを4℃で滴下し、同温度で48時間撹拌した。アンバーリスト15を加えて中和し、次いで濾過して濾液を濃縮した。93mgの残渣を少量のメタノールに溶解し、塩化メチレンを加えることにより固体12mgを得た。母液を濃縮し、再度メタノール−塩化メチレンで処理することにより、27mgの固定を得た。両固体を合わせることにより、39mgの目的化合物を28%の収率で得た。得られた目的化合物の1HMMRは文献(Monsigny, M.L.P.; Delay, D.; Vaculik, M. Carbohydr. Res. 1977, 59, 589)記載の値と一致した。
【0040】
3-S-(b-D-glucopyranosyl)-L-cysteine [化合物(3)]1.5mgを、実施例1と同様に加水分解、後処理して、化合物(3)30mgから、精製された化合物(2)2.5mg(収率11.23%)を得た。
【0041】
実施例3
S-D-galactopyranosyl-L-cysteine [化合物(4)]1.5mgを、実施例1と同様に加水分解、後処理して、化合物(3)30mgから、精製された化合物(2)2.4mg(収率10.82%)を得た。尚、化合物(4)は上記文献に記載の方法に準じて合成した。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a pyridinium compound and a compound therefor.
[0002]
[Prior art]
As is well known, in the Maillard reaction between a sugar and a protein amine, first, a Schiff base is formed by a non-enzymatic reaction (glycation) between the sugar and the protein amine, and this Schiff base undergoes a relatively short time by an Amadori rearrangement reaction. In the meantime, ketoamine which is the early product of Maillard reaction is formed, and the late product of Maillard reaction is produced through various stages.
[0003]
Clinically, glycated hemoglobin (HbAlc) or glycated albumin (fructosamine) is used as an index of blood glucose control as the Maillard reaction early product.
[0004]
On the other hand, late products of Maillard reaction are known to increase with long-term hyperglycemia (diabetes), and are produced by proteins with slow biological turnover, such as collagen, neuromyelin and lens. As a hypothesis explaining why persistent hyperglycemia, which is the cause of chronic complications specific to diabetes, this late product of Maillard reaction is noted as its origin and inhibits its production Has suggested the possibility of preventing the onset and progression of complications.
[0005]
In addition, the possibility of diagnosing complications by measuring the concentration of the late Maillard reaction product in blood, urine, or tissue is expected.
[0006]
However, the findings obtained from the late Maillard reaction product measurement method developed so far strongly suggest that there is a close causal relationship between the increase in in vivo Maillard reaction late product and various tissue disorders. However, the chemical structure of the late product of the major Maillard reaction in vivo is still unknown.
[0007]
Some of the inventors of the present invention identify the structure of the in-vivo Maillard reaction late product having a close causal relationship with various tissue disorders in view of the current state of the Maillard reaction late product as described above. As a result of continuing research for the purpose of, we discovered a novel late product of Maillard reaction in vivo, and continued further research to find that the compound has the formula:
[Chemical 9]
Figure 0004226681
It was confirmed that the compound was a pyridinium compound having a structure represented by the following formula. Further, the inventors obtained a knowledge that this pyridinium compound is useful as a diagnostic reagent for complications associated with diabetes or renal failure, and filed a patent application.
[0008]
[Problems to be solved by the invention]
As described above, since the pyridinium compound represented by the formula (2) is useful as a diagnostic reagent for complications associated with diabetes or renal failure, it is necessary to efficiently produce a predetermined amount of the compound. However, conventionally, such a method for producing a pyridinium compound represented by the formula (2) has not been known.
[0009]
[Means for Solving the Problems]
The present invention has been made in view of the current state of the prior art as described above.
[Chemical Formula 10]
Figure 0004226681
(In the formula, Ac represents an acyl group, and R represents a lower alkyl group.)
Wherein the compound represented by formula (2) is hydrolyzed.
Embedded image
Figure 0004226681
The manufacturing method of the pyridinium compound represented by these is provided.
[0010]
The present invention also provides formula (1)
Embedded image
Figure 0004226681
(In the formula, Ac represents an acyl group, and R represents a lower alkyl group.)
The compound represented by the formula (3)
Embedded image
Figure 0004226681
A compound represented by formula (2) is obtained, and the compound is further hydrolyzed:
Embedded image
Figure 0004226681
The manufacturing method of the pyridinium compound represented by these is provided.
[0011]
The present invention further provides formula (4)
Embedded image
Figure 0004226681
Wherein the compound represented by formula (2) is hydrolyzed.
Embedded image
Figure 0004226681
The manufacturing method of the pyridinium compound represented by these is provided.
[0012]
The present invention still further provides formula (1)
Embedded image
Figure 0004226681
(In the formula, Ac represents an acyl group, and R represents a lower alkyl group.)
The compound for manufacture of a pyridinium compound characterized by these is provided.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
[0014]
The pyridinium compound (2), which is the target compound of the production method of the present invention, is a kind of late product of the Maillard reaction, such as proteins such as albumin, lysozyme, casein, ribonuclease and globulin, and glucose, diacetyl, and glyoxal. It is produced by a non-enzymatic reaction with a carbonyl compound such as fructose.
[0015]
The pyridinium compound (2) was prepared by dialysis of a reaction solution of a system in which rabbit erythrocytes and glucose were reacted at 37 ° C. for 2 weeks for 48 hours, followed by hydrolysis, followed by excitation wavelength by high performance liquid chromatography using an ODS-5 column. 340 nm, fluorescence wavelength 402 nm, and the amount of production increases in proportion to the concentration of glucose and reaction time and browning of the reaction solution, and its production is inhibited by aminoguanidine, a Maillard reaction inhibitor, It is produced similarly in the system of serum albumin and glucose.
[0016]
The structure of the pyridinium compound (2) is obtained by hydrolyzing a late product of the Maillard reaction generated by the reaction of bovine serum albumin and glucose, and then fractionating the product by high performance liquid chromatography using a fluorescence wavelength, followed by glycerol and nitrobenzyl. The molecular weight was first determined to be 212 by measurement using a FAB-mass spectrum with a mixture of alcohol as a matrix.
[0017]
Next, by using a high-resolution mass spectrum, the composition formula of the pyridinium compound (2) was determined as C 9 H 10 O 3 N 1 S 1, and as a result of NMR analysis including two dimensions, the late stage of the Maillard reaction The product has the formula:
Figure 0004226681
It was determined as 8-hydroxy-5-methyldihydrothiazolo [3,2-a] pyridinium-3-carboxylate represented by
[0018]
The pyridinium compound (2) has already been isolated as a hydrolyzate having fluorescence from bovine liver.
[0019]
Thus, the present invention is to produce the pyridinium compound (2) as follows.
[0020]
That is, in the production method of the present invention, the formula (1)
Embedded image
Figure 0004226681
The compound of this invention represented by these is used.
[0021]
In the above formula (1), Ac represents an acyl group such as an acetyl group, and R represents a lower alkyl group such as a methyl group, an ethyl group, a propyl group, or a butyl group.
[0022]
The compound of the present invention is prepared by reacting glucose pentaacetate with formula (5) according to the method described in Elofsson, M; Walse B,; Kihlberg, J. Tetrahedron Lett, 1991, 32, 7613.
Embedded image
Figure 0004226681
Is reacted with cysteine derivative represented by the formula (6) in the presence of tin tetrachloride.
Embedded image
Figure 0004226681
Can be obtained by removing the Fmoc protecting group from the glucose-cysteine derivative.
[0023]
In addition, Fmoc in the compound of the said Formula (5) represents the protecting group of the following structures.
Embedded image
Figure 0004226681
[0024]
In the production method of the present invention, the above-mentioned pyridinium compound (2) is obtained by hydrolyzing the above-mentioned compound (1). This hydrolysis is carried out as necessary under acidic conditions such as 6N hydrochloric acid. This can be done by heating.
[0025]
The production method of the pyridinium compound (2) is also reported in Acta, Chem, Scand., 23, 371, 1969, but it is a relatively long process. A method for producing the pyridinium compound (2) in a process is not known.
[0026]
In addition, the pyridinium compound (2) hydrolyzes the compound represented by the formula (1), and once the formula (3)
Embedded image
Figure 0004226681
It can obtain also by hydrolyzing this compound (3).
[0027]
In the above method, the former hydrolysis can be carried out under alkaline conditions such as with lithium methoxide in a solvent such as methanol, and the latter hydrolysis is necessary under acidic conditions such as with 6N hydrochloric acid. It can carry out by heating according to it.
[0028]
Furthermore, the pyridinium compound (2) has the formula (4)
Embedded image
Figure 0004226681
It can obtain also by hydrolyzing the compound represented by these.
[0029]
Hydrolysis in the above method can be performed by heating as necessary under acidic conditions such as with 6N hydrochloric acid.
[0030]
The compound represented by the above formula (4) can be synthesized by the method of H. Masaki, A. Imahori (JP. 09067226 A2). The compound represented by the above formula (4) is synthesized by the above formula (3). The sugar moiety in the compound represented by) is changed to galactose.
[0031]
In addition, the physicochemical data of the said pyridinium compound (2) obtained by the manufacturing method of this invention corresponded with the value described in literature.
[0032]
The pyridinium compound (2) obtained by the production method of the present invention is produced in a large amount in a diabetic state and deposited in tissues such as the kidney, tendon, skin, and nerve, and a large amount in the urine with a decrease in renal function. Therefore, it can be applied as a biomarker for diabetic conditions.
[0033]
【Example】
The present invention will be described in detail below based on examples, but these do not limit the present invention.
[0034]
Example 1
Synthesis of N- (9-Fluorenylmethoxycarbonyl) -S-triphenylmethyl-L-cysteine methyl ester To a mixture of 9 ml of methanol and 30 ml of benzene, 1.77 g (3 mmol) of N- (9-Fluorenylmethoxycarbonyl) -S-triphenylmethyl-L- Cysteine was dissolved, and 5.5 ml (4.8 mmol) of trimethylsilyldiazomethane was added to the solution, followed by stirring at room temperature for 15 minutes. The solvent was distilled off from the reaction solution under reduced pressure to obtain a crude methyl ester, which was used without purification.
1 HMMR (270 MHz, CDCl 3 , TMS): δ 2.66 (d, J = 5.3 Hz, 2H), 3.71 (s, 3H), 4.23 (t, J = 6.8 Hz, 1H), 4.30 to 4.39 (m, 3H), 5.23 (d, J = 8.3 Hz, 1H), 7.18 to 7.32 (m, 11H), 7.38 to 7.41 (m , 8H), 7.60 (d, J = 6.3 Hz, 2H), 7, 76 (d, J = 7.3 Hz, 2H)
[0035]
Synthesis of N- (9-Fluorenylmethoxycarbonyl) -L-cysteine methyl ester [compound of R = CH 3 in formula (5)] Crude N- (9-Fluorenylmethoxycarbonyl) -S-triphenylmethyl-L-cysteine in 1.5 ml of dichloromethane To the solution in which methyl ester was dissolved, 419 mg (3.6 mmol) of triethylsilane and 1.5 ml of trifluoroacetic acid were added, the mixed solution was stirred at room temperature for 1 hour, and the solvent was distilled off. The residue was purified by silica gel column chromatography with hexane / ethyl acetate = 4: 1 → 2: 1 to obtain 1.04 g (97%) of the desired compound.
1 HMMR (270 MHz, CDCl 3 , TMS): δ 1.36 (t, J = 9.1 Hz, 1H), 2.98 to 3.02 (m, 2H), 3.80 (s, 3H), 4. 24 (t, J = 6.8 Hz, 1H), 4.44 (d, J = 7.9 Hz, 2H), 4.67 (dt, J = 7.4, 3.8 Hz, 1H), 5.68 (D, J = 7.4 Hz, 1H), 7.28-7.44 (m, 4H), 7.61 (d, J = 7.3 Hz, 2H), 7.77 (d, J = 7. 3Hz, 2H)
13 C NMR (67.8 MHz, CDCl 3 ) δ 27.0, 47.1, 52.8, 55.2, 67.0, 120.0, 124.98, 125.01, 127.0, 127.7, 141.3, 143.6, 143.7, 155.6, 170.4
[0036]
N- (9-Fluorenylmethoxycarbonyl) -S- (2,3,4,6-tetra-O-acetyl-bD-glucopyranosyl) -L-cysteine methyl ester [Ac = COCH 3 in formula (6), R = CH 3 Of Compound]
1,2,3,4,6-penta-O-acetyl-bD-glucopyranose 1.56 g (4 mmol) and N- (9-Fluorenylmethoxycarbonyl) -L-cysteine methyl ester [compound with R = CH 3 in formula (5) ] To a 20 ml dichloromethane solution with 1.00 g (2.8 mmol), 0.48 ml (4.1 mmol) of tin tetrachloride was added. The mixed solution was stirred at room temperature for 1 hour, and 1.56 g (4 mmol) of 1,2,3,4,6-penta-O-acetyl-bD-glucopyranose and 0.48 ml (4.1 mmol) of tin tetrachloride were added. . After stirring at room temperature for 1 hour, the reaction solution was diluted with dichloromethane, washed with 10% hydrochloric acid, water and brine, dried over magnesium sulfate, and the solvent was evaporated. The residue was purified by silica gel column chromatography (hexane / ethyl acetate = 3: 2) to obtain 1.69 g (88%) of the target compound.
1 HMMR (270 MHz, CDCl 3 , TMS): δ 2.01 (s, 3H), 2.02 (s, 6H), 2.04 (s, 3H), 2.99 (dd, J = 14.2, 6.8 Hz, 1H), 3.26 (dd, J = 14.2, 4.0 Hz, 1H), 3.67 (dt, J = 9.9, 4.0 Hz, 1H), 3.75 (s) 3H), 4.09 to 4.15 (m, 2H), 4.24 (bt, J = 9.9, 9.4, 1H), 4.36 to 4.61 (m, 4H), 5 .01 (dd, J = 9.9, 9.4 Hz, 1H), 5.06 (dd, J = 9.9, 9.4, 1H), 5.23 (t, J = 9.4 Hz, 1H) ), 5, 93 (d, J = 7.9 Hz, 1H), 7.28-7.34 (m, 4H), 7.59-7.61 (m, 2H), 7.76 (d, J = 6.9Hz, 2H)
13 C NMR (67.8 MHz, CDCl 3 ) δ 20.4, 20.5, 31.8, 47.0, 52.6, 53.8, 61.9, 66.8, 68.1, 69.5 74.3, 75.9, 82.9, 119.9, 124.85, 124.91, 127.0, 127.6, 141.1, 143.58, 143.61, 155.7, 169. 2, 169.3, 169.9, 170.4, 170.7
[0037]
Synthesis of S- (2,3,4,6-tetra-O-acetyl-bD-glucopyranosyl) -L-cysteine methyl ester [Compound of Ac = COCH 3 and R = CH 3 in Formula (1)] DMF (10 ml ) 390 mg (0.57 mmol) of N- (9-Fluorenylmethoxycarbonyl) -S- (2,3,4,6-tetra-O-acetyl-bD-glucopyranosyl) -L-cysteine methyl ester with 20% piperidine Treated at room temperature for hours. After the solvent was distilled off from the mixed solution under reduced pressure, the mixture was diluted with a mixed solution of ethyl acetate and ether 1: 1. The extract was washed with water and brine, dried over magnesium sulfate, the solvent was distilled off, and the residue was purified by silica gel column chromatography (chloroform / methanol = 40: 1) to obtain 243 mg (91%) of the target compound.
1 HMMR (270 MHz, CDCl 3 , TMS): δ 1.77 (bs, 2H), 2.01 (s, 3H), 2.03 (s, 3H), 2.07 (s, 3H), 2.09 (S, 3H), 2.83 (dd, J = 13.9, 7.9 Hz, 1H), 3.17 (dd, J = 13.9, 4.3 Hz, 1H), 3.69-3. 75 (m, 2H), 3.75 (s, 3H), 4.16 (dd, J = 12.5, 2.6 Hz, 1H), 4.24 (dd, J = 12.5, 4.6 Hz) , 1H), 4.59 (d, J = 9.9 Hz, 1H), 5.04 (t, J = 9.6 Hz, 1H), 5,09 (t, J = 9.6 Hz, 1H), 5 .23 (t, J = 9.4 Hz, 2H)
13 C NMR (67.8 MHz, CDCl 3 ) δ 20.5, 20.6, 34.8, 52.3, 54.7, 61.9, 68.1, 69.6, 73.7, 75.9, 83.5, 169.4, 170.1, 170.6, 173.9
[0038]
Synthesis of 8-hydroxy-5-methyldihydrothiazolo [3,2-a] pyridinium-3-carboxylate [compound (2)] S- (2,3,4,6-tetra-O-acetyl-bD-glucopyranosyl ) -L-cysteine methyl ester [Compound of Ac = COCH3, R = CH3 in formula (1)] 1.5 mg was added and subjected to gas phase hydrolysis with 6N hydrochloric acid at 110 ° C. for 24 hours, followed by filtration. This corresponds to the target compound in high performance liquid chromatography using an ODS-HG-5 column and flowing 3% acetonitrile / 0.1% trifluoroacetic acid at a flow rate of 2 ml / min and an excitation wavelength of 340 nm and a fluorescence wavelength of 402 nm. A peak with an elution time of 10 minutes was collected. As a result of repeating this, S- (2,3,4,6-tetra-O-acetyl-bD-glucopyranosyl-L-cysteine methyl ester [compound of Ac = COCH 3 and R = CH 3 in formula (1)] From 22.5 mg, 0.9 mg (yield 4.35%) of the purified compound (2) was obtained.
[0039]
Example 2
Synthesis of 3-S- (bD-glucopyranosyl) -L-cysteine [Compound (3)] 200 mg (0.3 mmol) of S- (2,3,4,6-tetra-O-acetyl-bD-glucopyranosyl)- To a 1 ml methanol solution of L-cysteine methyl ester [compound of Ac = COCH 3 and R = CH 3 in formula (1)], 0.1N sodium methoxide in 0.4 ml of methanol was added dropwise at 4 ° C. For 48 hours. Amberlyst 15 was added to neutralize, then filtered and the filtrate was concentrated. 93 mg of the residue was dissolved in a small amount of methanol, and methylene chloride was added to obtain 12 mg of a solid. The mother liquor was concentrated and treated with methanol-methylene chloride again to obtain 27 mg of immobilization. By combining both solids, 39 mg of the target compound was obtained in 28% yield. 1 HMMR of the obtained target compound agreed with the value described in the literature (Monsigny, MLP; Delay, D .; Vaculik, M. Carbohydr. Res. 1977, 59, 589).
[0040]
3-S- (bD-glucopyranosyl) -L-cysteine [Compound (3)] (1.5 mg) was subjected to hydrolysis and post-treatment in the same manner as in Example 1, and purified from 30 mg of Compound (3) ( 2) 2.5 mg (yield 11.23%) was obtained.
[0041]
Example 3
SD-galactopyranosyl-L-cysteine [Compound (4)] (1.5 mg) was hydrolyzed and post-treated in the same manner as in Example 1 to purify Compound (2) (2.4 mg) from 30 mg of Compound (3) ( Yield 10.82%). Compound (4) was synthesized according to the method described in the above document.

Claims (5)

式(1)
Figure 0004226681
(式中、Acはアシル基を、Rは低級アルキル基をそれぞれ表す。)
で表される化合物を加水分解することを特徴とする、式(2)
Figure 0004226681
で表されるピリジニウム化合物の製造方法。
Formula (1)
Figure 0004226681
(In the formula, Ac represents an acyl group, and R represents a lower alkyl group.)
Wherein the compound represented by formula (2) is hydrolyzed.
Figure 0004226681
The manufacturing method of the pyridinium compound represented by these.
式(1)
Figure 0004226681
(式中、Acはアシル基を、Rは低級アルキル基をそれぞれ表す。)
で表される化合物を加水分解して、式(3)
Figure 0004226681
で表される化合物を得、更にこの化合物を加水分解することを特徴とする、式(2)
Figure 0004226681
で表されるピリジニウム化合物の製造方法。
Formula (1)
Figure 0004226681
(In the formula, Ac represents an acyl group, and R represents a lower alkyl group.)
The compound represented by the formula (3)
Figure 0004226681
A compound represented by formula (2) is obtained, and the compound is further hydrolyzed:
Figure 0004226681
The manufacturing method of the pyridinium compound represented by these.
式(3)で表される化合物を単離せずに行う請求項2に記載のピリジニウム化合物の製造方法。The manufacturing method of the pyridinium compound of Claim 2 performed without isolating the compound represented by Formula (3). 式(4)
Figure 0004226681
で表される化合物を加水分解することを特徴とする、式(2)
Figure 0004226681
で表されるピリジニウム化合物の製造方法。
Formula (4)
Figure 0004226681
Wherein the compound represented by formula (2) is hydrolyzed.
Figure 0004226681
The manufacturing method of the pyridinium compound represented by these.
式(1)
Figure 0004226681
(式中、Acはアシル基を、Rは低級アルキル基をそれぞれ表す。)
で表されることを特徴とする、ピリジニウム化合物の製造のための化合物。
Formula (1)
Figure 0004226681
(In the formula, Ac represents an acyl group, and R represents a lower alkyl group.)
A compound for the production of a pyridinium compound, characterized in that
JP09276898A 1998-03-19 1998-03-19 Method for producing pyridinium compound and compound therefor Expired - Fee Related JP4226681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09276898A JP4226681B2 (en) 1998-03-19 1998-03-19 Method for producing pyridinium compound and compound therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09276898A JP4226681B2 (en) 1998-03-19 1998-03-19 Method for producing pyridinium compound and compound therefor

Publications (2)

Publication Number Publication Date
JPH11269178A JPH11269178A (en) 1999-10-05
JP4226681B2 true JP4226681B2 (en) 2009-02-18

Family

ID=14063612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09276898A Expired - Fee Related JP4226681B2 (en) 1998-03-19 1998-03-19 Method for producing pyridinium compound and compound therefor

Country Status (1)

Country Link
JP (1) JP4226681B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104592320A (en) * 2015-02-13 2015-05-06 佛山市赛维斯医药科技有限公司 Glucosamine and nitropyridine structure-containing derivative and application thereof
CN104610390A (en) * 2015-02-13 2015-05-13 佛山市赛维斯医药科技有限公司 GPR119 agonist containing glucosamine and nitrile pyridine structure and application of GPR119 agonist
CN104610389A (en) * 2015-02-13 2015-05-13 佛山市赛维斯医药科技有限公司 GPR119 agonist containing glucosamine and nitropyridine structure and application of GPR119 agonist
CN104610392A (en) * 2015-02-13 2015-05-13 佛山市赛维斯医药科技有限公司 GPR119 agonist containing glucosamine and halogenated pyridine structures and application thereof
CN104610393A (en) * 2015-02-13 2015-05-13 佛山市赛维斯医药科技有限公司 Compound containing glucosamine and halogenated pyridine structures and application thereof
CN104628795A (en) * 2015-02-13 2015-05-20 佛山市赛维斯医药科技有限公司 Derivative containing glucosamine and nitrile pyridine structure and use thereof
CN104610391A (en) * 2015-02-13 2015-05-13 佛山市赛维斯医药科技有限公司 GPR119 agonist containing glucosamine structure as well as preparation method and application thereof

Also Published As

Publication number Publication date
JPH11269178A (en) 1999-10-05

Similar Documents

Publication Publication Date Title
JPH0138798B2 (en)
JP4226681B2 (en) Method for producing pyridinium compound and compound therefor
RU2007130942A (en) SYNTHESIS OF SODIUM NARCISTATINE AND RELATED COMPOUNDS
CN1317293C (en) Technique for synthesizing the exemestane
JPS60123494A (en) Sialic acid-containing oligosaccharide and its preparation
CN107324986A (en) The preparation method and application of 16 (S) hilo prostaglandins
EP0082793B1 (en) Derivatives with a uronic acid structure, their preparation and their biological applications
Koóš et al. Synthesis and structure determination of some sugar amino acids related to alanine and 6-deoxymannojirimycin
JPH0662591B2 (en) Novel thioproline derivative
JP2906228B2 (en) Glucopyranose derivative salt
JPH058200B2 (en)
JP4196423B2 (en) Alkylglyoxal adduct and method for producing the same
JP4813838B2 (en) O-linked sugar amino acid derivative having core 6 type structure and method for producing the same
JP2002030096A (en) Agent for regenerating neurocyte process and method for producing the same
CN86108424A (en) The synthetic method of nizatidine
JP2006188475A (en) O-bond type sugar amino acid derivative having core 8 type structure and method for producing the same
JP4890805B2 (en) O-linked sugar amino acid derivative having core 3 type structure and method for producing the same
JP2670574B2 (en) Isotope-labeled aldononitrile derivatives
JPS6391396A (en) Production of erythromycin a derivative
JP2680231B2 (en) Process for producing optically active 24-hydroxycholesterols
JP2004217540A (en) Method for producing gallic acid glycoside
JPS6140669B2 (en)
JP3992510B2 (en) Novel lactosamine derivative and method for producing the same
JP3051213B2 (en) Maltooligosaccharide derivatives, their synthetic intermediates and their production
JPH07116213B2 (en) Novel N-6,2'-O-disubstituted-adenosine-3 ', 5'-cyclic phosphate and process for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees