JP4224583B2 - Positive electrode material for lithium secondary battery - Google Patents

Positive electrode material for lithium secondary battery Download PDF

Info

Publication number
JP4224583B2
JP4224583B2 JP2003347301A JP2003347301A JP4224583B2 JP 4224583 B2 JP4224583 B2 JP 4224583B2 JP 2003347301 A JP2003347301 A JP 2003347301A JP 2003347301 A JP2003347301 A JP 2003347301A JP 4224583 B2 JP4224583 B2 JP 4224583B2
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
secondary battery
electrode active
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003347301A
Other languages
Japanese (ja)
Other versions
JP2005116273A (en
Inventor
光春 田渕
友成 竹内
晃里 高原
章子 中島
博之 蔭山
繁雄 近藤
保之 栗栖
了次 菅野
太郎 稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003347301A priority Critical patent/JP4224583B2/en
Publication of JP2005116273A publication Critical patent/JP2005116273A/en
Application granted granted Critical
Publication of JP4224583B2 publication Critical patent/JP4224583B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウム二次電池用正極材料の製造方法、当該方法により得られた正極材料及び当該正極材料を用いたリチウム二次電池に関する。   The present invention relates to a method for producing a positive electrode material for a lithium secondary battery, a positive electrode material obtained by the method, and a lithium secondary battery using the positive electrode material.

近年のノートパソコン、携帯電話等のモバイル機器の発展に伴い、電源としてのリチウム二次電池の開発も盛んに行われている。リチウム二次電池は正極材料としてコバルト酸リチウムなどのリチウム含有遷移金属酸化物(正極活物質)、負極材料として炭素材料、電解質として有機電解液を用いている。   With the development of mobile devices such as notebook computers and mobile phones in recent years, development of lithium secondary batteries as power sources has been actively conducted. A lithium secondary battery uses a lithium-containing transition metal oxide (positive electrode active material) such as lithium cobaltate as a positive electrode material, a carbon material as a negative electrode material, and an organic electrolyte as an electrolyte.

リチウム二次電池は、このような材料構成により、4V近い電池作動電圧(ニッケル水素電池の約3倍の作動電圧に相当)を実現するため、現在最も高いエネルギー密度有する二
次電池として上記モバイル機器に必須の電源となっている。
The lithium secondary battery achieves a battery operating voltage close to 4V (corresponding to an operating voltage approximately three times that of the nickel metal hydride battery) due to such a material structure. Therefore, the above-mentioned mobile device is the secondary battery having the highest energy density. It is an indispensable power source.

上記の電池構成において、正極材料は、通常一定電流密度下で充電/放電時にリチウムイオン脱離/挿入を行い、その際遷移金属イオンが酸化/還元される。すなわち、リチウムイオン脱離・挿入量がリチウム二次電池の充放電容量を、遷移金属イオンの酸化還元電位が実質的にリチウム二次電池の電池作動電圧を決定づけることから、正極材料の開発はきわめて重要である。   In the battery configuration described above, the positive electrode material usually undergoes lithium ion desorption / insertion during charging / discharging under a constant current density, and at that time, transition metal ions are oxidized / reduced. That is, the amount of lithium ion desorption / insertion determines the charge / discharge capacity of a lithium secondary battery, and the redox potential of transition metal ions substantially determines the battery operating voltage of the lithium secondary battery. is important.

特に、一定の充放電容量を得る際に、正極材料当たりの通電し得る電流量(電流密度)が大きいほど大電流充放電が可能であるので、実用上きわめて重要である。このような高電流密度の充放電を実現するためには正極内の電子伝導性を高める必要があるが、現状の正極材料のみでは電子伝導性が低いため、通常アセチレンブラックなどの導電性炭素材料(以下、「導電材」という。)を結着剤を用いて複合化し、集電性を高める工夫がなされている(例えば、非特許文献1参照。)。   In particular, when obtaining a certain charge / discharge capacity, the larger the amount of current (current density) that can be energized per positive electrode material is, the larger current charge / discharge is possible. In order to realize such high current density charging / discharging, it is necessary to increase the electron conductivity in the positive electrode, but the current positive electrode material alone has a low electron conductivity, so usually a conductive carbon material such as acetylene black. (Hereinafter, referred to as “conductive material”) is combined with a binder to improve current collection (for example, see Non-Patent Document 1).

しかしながら、上記のような集電性を向上させる方策を行っているにもかかわらず、正極材料は高電流密度下での充放電において正極表面が絶縁性となることが報告されている(例えば、非特許文献2参照。)。この文献において、正極の電子伝導性を担うのはほと
んど炭素材料であると明言されており、充放電時に正極材料の表面から炭素材料が剥離しているのではないかと思われる。この現象は、活物質が充放電時に結晶格子の膨張・収縮を行うことによって引き起こされると考えられる。従って、正極活物質に高電子伝導性を付与しうる新たな手法開発が必要である。
However, it has been reported that the positive electrode surface becomes insulative in charge / discharge under a high current density, even though the above-described measures for improving current collection are being performed (for example, (See Non-Patent Document 2.) In this document, it is clearly stated that the carbon material is responsible for the electron conductivity of the positive electrode, and it is considered that the carbon material is peeled off from the surface of the positive electrode material during charge and discharge. This phenomenon is considered to be caused by the active material expanding and contracting the crystal lattice during charging and discharging. Therefore, it is necessary to develop a new technique that can impart high electron conductivity to the positive electrode active material.

前述のように、リチウム二次電池はニッケル水素電池などに比べて高エネルギー密度であるが、電解質として有機電解液を用いるため、例えば、液漏れ、爆発など充電時の電池の安全性に関して問題がある。   As described above, a lithium secondary battery has a higher energy density than a nickel metal hydride battery. However, since an organic electrolyte is used as an electrolyte, there are problems regarding battery safety during charging such as liquid leakage and explosion. is there.

この問題を解決するためには、有機電解液の代わりにリチウムイオン導電性の高い無機固体電解質を用いる必要があり、そのような無機固体電解質としては、硫化物系固体電解質を用いた全固体リチウム二次電池が提案されている(例えば、特許文献1参照。)。   In order to solve this problem, it is necessary to use an inorganic solid electrolyte with high lithium ion conductivity instead of the organic electrolyte, and as such an inorganic solid electrolyte, all solid lithium using a sulfide-based solid electrolyte is used. Secondary batteries have been proposed (see, for example, Patent Document 1).

硫化物系無機固体電解質を用いる全固体リチウム二次電池用の正極の特徴としては、硫化物固体電解質が正極中に含まれている点が挙げられる。これは、固体電解質−正極活物質間の界面接合面積が液体系の構成(ほとんど活物質と導電材のみで微量の結着剤を含む)では十分に広くとれないためである。   A feature of the positive electrode for an all solid lithium secondary battery using a sulfide-based inorganic solid electrolyte is that the sulfide solid electrolyte is contained in the positive electrode. This is because the interfacial bonding area between the solid electrolyte and the positive electrode active material cannot be sufficiently widened in a liquid system configuration (almost only an active material and a conductive material and includes a small amount of a binder).

この全固体電池では、硫化物系固体電解質が炭素材料の触媒作用により分解し、顕著な容量劣化(コバルト酸リチウムに対し0.1重量%の炭素添加で容量の50%が失われる。)を
引き起こすため(例えば、特許文献2参照。)、硫化物系全固体リチウム二次電池の正極
への硫化物系固体電解質の共存下での導電材の導入方法の検討が必要である。
In this all-solid-state battery, the sulfide-based solid electrolyte decomposes due to the catalytic action of the carbon material, causing significant capacity deterioration (50% of the capacity is lost by adding 0.1% by weight of carbon to lithium cobaltate). (For example, refer to Patent Document 2), it is necessary to examine a method for introducing a conductive material in the coexistence of a sulfide-based solid electrolyte into the positive electrode of a sulfide-based all solid lithium secondary battery.

さらに、上記の正極内での固体電解質-導電材の反応による容量劣化の問題を解決する
ために、正極表面にリチウムイオン導電性ポリマーを被覆し、そのポリマー中に炭素材料などの導電材を分散させる方法が考えられている(例えば、特許文献3参照。)。しかし
ながら、この方法では、ポリマーの正極への導入に伴う正極内での正極材料の量の低下による充放電容量低下が懸念され、導電材を付与する他の方法が必要である。
特開平8−162151号公報 特開平8−96836号公報 特開平11−7942号公報 特開平10−251070号公報 特開2001−348277公報 芳尾真幸、小沢昭弥編「リチウムイオン二次電池第2版、材料と応用」日刊工業新聞社、p191、2000年 R. Kostecki and F. McLarnon, Electrochemical and Solid State Letters, 5, A164-A166 (2002).
Furthermore, in order to solve the problem of capacity deterioration due to the reaction between the solid electrolyte and the conductive material in the positive electrode, the surface of the positive electrode is coated with a lithium ion conductive polymer, and a conductive material such as a carbon material is dispersed in the polymer. (See, for example, Patent Document 3). However, in this method, there is a concern about a decrease in charge / discharge capacity due to a decrease in the amount of the positive electrode material in the positive electrode accompanying the introduction of the polymer into the positive electrode, and another method for applying a conductive material is necessary.
JP-A-8-162151 JP-A-8-96836 Japanese Patent Laid-Open No. 11-7942 JP-A-10-251070 JP 2001-348277 A Yoshio Masao and Ozawa Akiya "Lithium-ion Secondary Battery 2nd Edition, Materials and Applications", Nikkan Kogyo Shimbun, p191, 2000 R. Kostecki and F. McLarnon, Electrochemical and Solid State Letters, 5, A164-A166 (2002).

本発明は、容量の劣化が抑制され、充放電サイクル特性に優れたリチウム二次電池用の正極材料を提供することを主な目的とする。   The main object of the present invention is to provide a positive electrode material for a lithium secondary battery, in which deterioration of capacity is suppressed and which is excellent in charge / discharge cycle characteristics.

本発明者は、リチウム二次電池正極活物質への導電性付与方法に関して鋭意検討を重ねた結果、相互に接触した正極活物質及び導電材に電流を供給することにより、優れた電池特性を有するリチウム二次電池用の正極材料が得られることを見出し、本発明を完成するに至った。   As a result of intensive studies on the method of imparting conductivity to the positive electrode active material of the lithium secondary battery, the present inventor has excellent battery characteristics by supplying current to the positive electrode active material and the conductive material in contact with each other. The inventors have found that a positive electrode material for a lithium secondary battery can be obtained, and have completed the present invention.

即ち、本発明は以下の通りである。   That is, the present invention is as follows.

1.リチウム二次電池用正極材料を製造する方法であって、
(1)リチウム二次電池用正極活物質とカーボンシートとを加圧下に交互に積層させることにより接触させる工程、
(2)交互に接触させた正極活物質及びカーボンシートにパルス電流を供給し、正極活物質材料の表面にカーボンシートを付着させる工程を含む方法。
1. A method for producing a positive electrode material for a lithium secondary battery, comprising:
(1) a step of contacting positive electrode active materials for lithium secondary batteries and carbon sheets by alternately laminating them under pressure;
(2) A method comprising a step of supplying a pulse current to the positive electrode active material and the carbon sheet that are alternately contacted to adhere the carbon sheet to the surface of the positive electrode active material.

.正極活物質が、コバルト酸リチウム及びニッケル酸リチウムからなる群から選ばれる少なくとも1種である上記項1に記載の方法。 2 . Item 2. The method according to Item 1, wherein the positive electrode active material is at least one selected from the group consisting of lithium cobaltate and lithium nickelate.

.上記項1又は2に記載の方法により得られるリチウム二次電池用正極材料。 3 . 3. A positive electrode material for a lithium secondary battery obtained by the method according to item 1 or 2 .

4.上記項3に記載のリチウム二次電池用正極材料を含むリチウム二次電池。 4). 4. A lithium secondary battery comprising the positive electrode material for a lithium secondary battery according to item 3.

本発明では、リチウム二次電池用の正極材料として、パルス電流を供給することにより表面に導電材が付着した正極活物質(以下、「本発明の正極材料」という。)を製造することを特徴とする。   In the present invention, as a positive electrode material for a lithium secondary battery, a positive electrode active material (hereinafter referred to as “the positive electrode material of the present invention”) having a conductive material attached to its surface is supplied by supplying a pulse current. And

正極活物質
本発明において使用されるリチウム二次電池用の正極活物質の種類は特に限定されず、通常リチウム二次電池に用いられる正極材料を使用することができる。好ましくは、コバルト酸リチウム及びニッケル酸リチウムからなる群から選ばれる少なくとも1種が例示で
きる。これらは単独で使用することもでき、2種を組み合わせて(両者の混合物またはLiCo1-xNixO2固溶体(0<x<1))使用することもできる。さらに、充放電特性改善や安全性向上等のためにAl、Mnなどのニッケル、コバルトと異なる陽イオンを試料中に含んでいてもよい。
Positive electrode active type of material for lithium secondary batteries used in the positive electrode active material present invention is not particularly limited, usually it is possible to use a positive electrode material for use in lithium secondary batteries. Preferably, at least one selected from the group consisting of lithium cobaltate and lithium nickelate can be exemplified. These can be used alone or in combination (a mixture of the two or a LiCo 1-x Ni x O 2 solid solution (0 <x <1)). Furthermore, a cation different from nickel and cobalt such as Al and Mn may be included in the sample in order to improve charge / discharge characteristics and safety.

本発明において、このような正極活物質に導電材を付着させたものを二次電池の正極材料として使用することができる。   In the present invention, a material obtained by attaching a conductive material to such a positive electrode active material can be used as a positive electrode material for a secondary battery.

導電材
本発明において使用される導電材としては、正極材料に導電性を付与することができるものであれば限定されないが、好ましくは、炭素が例示できる。炭素の原料としても限定されないが、例えば、黒鉛等が挙げられる。
Conductive Material The conductive material used in the present invention is not limited as long as it can impart conductivity to the positive electrode material. Preferably, carbon can be exemplified. Although it is not limited as a raw material of carbon, For example, graphite etc. are mentioned.

本発明の正極材料の製造(導電材の正極活物質表面への付着)
本発明では、加圧下に正極活物質と導電材とを接触させて、そこにパルス電流を供給することにより、正極活物質に導電材を付着させることを特徴とする。
Production of positive electrode material of the present invention (adhesion of conductive material to positive electrode active material surface)
The present invention is characterized in that a positive electrode active material and a conductive material are brought into contact with each other under pressure and a pulse current is supplied thereto to attach the conductive material to the positive electrode active material.

正極活物質及び導電材に電流を供給する方法、そのために使用する装置としては限定されないが、例えば、放電プラズマ焼結法において用いられる放電プラズマ焼結装置を利用することができる。放電プラズマ焼結装置の種類も限定されないが、例えば特許文献4及
び特許文献5等に記載されたような装置が使用できる。
The method for supplying current to the positive electrode active material and the conductive material and the apparatus used therefor are not limited. For example, a discharge plasma sintering apparatus used in the discharge plasma sintering method can be used. The type of the discharge plasma sintering apparatus is not limited, but apparatuses such as those described in Patent Document 4, Patent Document 5, and the like can be used.

以下、放電プラズマ焼結機の模式図を示した図1を参考にしながら、本発明の正極材料
製造方法の一例を説明する。
Hereinafter, an example of the positive electrode material manufacturing method of the present invention will be described with reference to FIG. 1 showing a schematic diagram of a discharge plasma sintering machine.

放電プラズマ焼結機1は、試料2が装填されるダイ3と上下一対のパンチ4及び5とを有す
る。パンチ4及び5は、それぞれパンチ電極6及び7に支持されており、このパンチ電極6及
び7を介して、ダイ3に装填された試料2に必要に応じて加圧しながらパルス電流を供給す
ることができる。ダイ3の素材は限定されず、例えば、黒鉛等の炭素材料が挙げられる。
The spark plasma sintering machine 1 includes a die 3 on which a sample 2 is loaded and a pair of upper and lower punches 4 and 5. The punches 4 and 5 are supported by punch electrodes 6 and 7, respectively, and a pulse current is supplied through the punch electrodes 6 and 7 while applying pressure to the sample 2 loaded on the die 3 as necessary. Can do. The material of the die 3 is not limited, and examples thereof include a carbon material such as graphite.

ダイ3に装填する試料2としては、正極活物質、導電材等が挙げられる。正極活物質及び導電材をダイ3に装填する際に、正極活物質と導電材とをお互いに接触させることが好ま
しい。接触させる方法としては限定されないが、例えば、正極活物質と導電材とを単に混合するだけでもよい。また、正極活物質と導電材とを交互に積層することにより接触させてもよい。
Examples of the sample 2 loaded in the die 3 include a positive electrode active material and a conductive material. When the positive electrode active material and the conductive material are loaded into the die 3, it is preferable to bring the positive electrode active material and the conductive material into contact with each other. Although it does not limit as a method to contact, For example, you may just mix a positive electrode active material and a electrically conductive material. Moreover, you may make it contact by laminating | stacking a positive electrode active material and a electrically conductive material alternately.

導電材の正極活物質に対する付着効率を高めるために、導電材間に挟む正極活物質の量をできるだけ少量にし、「導電材/正極活物質/導電材」といった繰り返し(積層数)を増やす(例えば、導電材/正極活物質/導電材/正極活物質/導電材/…)のが好ましい。積層数は限定されず、目的とする正極活物質の耐還元性等に応じて適宜選択することが
できる。
In order to increase the adhesion efficiency of the conductive material to the positive electrode active material, the amount of the positive electrode active material sandwiched between the conductive materials is made as small as possible, and the repetition (number of layers) of “conductive material / positive electrode active material / conductive material” is increased (for example, , Conductive material / positive electrode active material / conductive material / positive electrode active material / conductive material /. The number of stacked layers is not limited and can be appropriately selected according to the reduction resistance of the target positive electrode active material.

正極活物質と導電材の混合比は、正極活物質及び導電材の合計量に対して導電材が0.01〜30重量%程度になるように混合するのが好ましい。正極活物質の導電性が十分に向上し
、また、正極材料の体積・重量あたりのエネルギー密度の低下が抑制されるからである。
The mixing ratio of the positive electrode active material and the conductive material is preferably mixed so that the conductive material is about 0.01 to 30% by weight with respect to the total amount of the positive electrode active material and the conductive material. This is because the conductivity of the positive electrode active material is sufficiently improved, and a decrease in energy density per volume / weight of the positive electrode material is suppressed.

また、積層により導電材の付着を行う際には、付着率を考慮して上記の重量%比率にな
るように正極活物質と導電材の層を交互に積層すれば良く、例えば、導電材として炭素シートを用いた場合には、導電材の層の厚さに対する正極活物質の層の厚さの比が0.1〜10
程度となるように積層するのが好ましい。
Further, when the conductive material is adhered by lamination, the positive electrode active material and the conductive material layer may be alternately laminated so that the above-mentioned weight percent ratio is taken into consideration, for example, as the conductive material. When a carbon sheet is used, the ratio of the thickness of the positive electrode active material layer to the thickness of the conductive material layer is 0.1 to 10
It is preferable to laminate so as to be about the same.

正極活物質及び導電材に与える電流の種類としてはパルス電流が好ましい。パルス通電を行うことにより、正極活物質及び導電材並びにその近傍(ダイ3及び上下部パンチ4及び5)が加熱される。その加熱及びパルス電流の両方の効果により、導電材を正極活物質表
面に強固に付着させることができるので、本発明の正極活物質を含むリチウム二次電池を充放電した後も、その結合が保たれる。その結果、正極材料の導電性の低下及び導電材と固体電解質との反応がほとんど起こらず、結果として充放電特性に優れたリチウム二次電池の正極を提供することが可能となる。
A pulse current is preferable as the type of current applied to the positive electrode active material and the conductive material. By performing pulse energization, the positive electrode active material, the conductive material, and the vicinity thereof (the die 3 and the upper and lower punches 4 and 5) are heated. Because of the effect of both the heating and the pulse current, the conductive material can be firmly attached to the surface of the positive electrode active material, so that the bond is maintained even after charging and discharging the lithium secondary battery containing the positive electrode active material of the present invention. Kept. As a result, it is possible to provide a positive electrode for a lithium secondary battery having excellent charge / discharge characteristics as a result of the decrease in conductivity of the positive electrode material and almost no reaction between the conductive material and the solid electrolyte.

これに対し、従来法では、単に正極活物質に対し導電材を混合することにより導電性を付与していたため、導電材と正極活物質との付着力が弱かった。その結果、充放電時に導電材が正極活物質から剥離し、正極活物質近傍での電子伝導性低下や導電材と固体電解質とが反応を起こし、充放電特性(充放電容量、充放電効率)を著しく低下させていた(本発明と従来法との正極材料の相違の模式図を図2に示す。)
本発明において正極活物質及び導電材に電流を供給する際の条件としては、導電材が正極活物質の表面に強固に付着することができれば限定されない。正極活物質及び導電材に圧力をかけて(加圧下に)パルス電流を供給することが好ましい。その圧力としては、例えば5〜60MPa程度、好ましくは10〜50MPa程度が挙げられる。導電材が正極活物質へしっ
かりと付着し、また、正極の分解等が起こりにくいからである。
On the other hand, in the conventional method, conductivity was imparted simply by mixing the conductive material with the positive electrode active material, and thus the adhesion between the conductive material and the positive electrode active material was weak. As a result, the conductive material is peeled off from the positive electrode active material during charge and discharge, causing a decrease in electronic conductivity in the vicinity of the positive electrode active material and a reaction between the conductive material and the solid electrolyte, and charge / discharge characteristics (charge / discharge capacity, charge / discharge efficiency). (The schematic diagram of the difference in the positive electrode material between the present invention and the conventional method is shown in FIG. 2).
In the present invention, conditions for supplying current to the positive electrode active material and the conductive material are not limited as long as the conductive material can firmly adhere to the surface of the positive electrode active material. It is preferable to apply a pressure to the positive electrode active material and the conductive material (under pressure) to supply a pulse current. The pressure is, for example, about 5 to 60 MPa, preferably about 10 to 50 MPa. This is because the conductive material adheres firmly to the positive electrode active material, and the positive electrode is not easily decomposed.

また、正極活物質及び導電材に電流を供給する際のダイ3の温度は、正極活物質の種類
及びその粒径等に応じて適宜選択することができるが、通常400〜700℃程度、好ましくは500〜600℃程度とするのがよい。導電材が正極活物質へしっかりと付着し、また、炭素の還元効果による正極活物質の分解(例えば、正極活物質としてLiCoO2を用いた場合、充放電しない酸化コバルトCoO又はCo3O4等が共存することがある。)等が起こりにくいからである。
Further, the temperature of the die 3 when supplying current to the positive electrode active material and the conductive material can be appropriately selected according to the type of the positive electrode active material and the particle size thereof, but is usually about 400 to 700 ° C., preferably Is preferably about 500 to 600 ° C. Conductive material adheres firmly to the positive electrode active material, and decomposition of the positive electrode active material due to the reduction effect of carbon (for example, when LiCoO 2 is used as the positive electrode active material, cobalt oxide CoO or Co 3 O 4 that is not charged or discharged) Are not likely to coexist.).

供給するパルス電流の強さ及びその時間は、導電材が正極活物質表面に充分に付着されれば限定されず、例えば、ダイ3及び上下部パンチ4及び5の大きさ等に応じて適宜選択さ
れる。また、供給する電流の強さ及びその時間は、用いる型材および正極活物質、導電材の電気伝導度によって制御することもでる。
The strength and time of the pulse current to be supplied are not limited as long as the conductive material is sufficiently attached to the surface of the positive electrode active material, and is appropriately selected according to the size of the die 3 and the upper and lower punches 4 and 5, for example. Is done. In addition, the strength of the current to be supplied and the time thereof can be controlled by the electrical conductivity of the mold material, the positive electrode active material, and the conductive material used.

例えば、内径15mmの黒鉛製ダイを用い、導電材として炭素シート及び正極活物質を積層して通電処理する場合には、例えば100〜1000A程度、好ましくは200〜800A程度である。
パルス電流の周波数としては、例えば1〜500Hz程度、好ましくは3〜200Hz程度である。
For example, when using a graphite die having an inner diameter of 15 mm and laminating a carbon sheet and a positive electrode active material as a conductive material and conducting an energization treatment, for example, it is about 100 to 1000 A, preferably about 200 to 800 A.
The frequency of the pulse current is, for example, about 1 to 500 Hz, preferably about 3 to 200 Hz.

また、電流の供給時間は、温度が上記の範囲(400〜700℃程度)に到達してから、1〜30分程度、好ましくは3〜15分程度が挙げられる。ダイの温度を上昇させる速度としても限定されず、正極活物質、導電材等の種類に応じて適宜選択することができる。例えば、10〜300℃/分程度、好ましくは50〜200℃/分程度である。   The current supply time is about 1 to 30 minutes, preferably about 3 to 15 minutes after the temperature reaches the above range (about 400 to 700 ° C.). The speed at which the temperature of the die is raised is not limited, and can be appropriately selected according to the type of positive electrode active material, conductive material, and the like. For example, it is about 10 to 300 ° C./min, preferably about 50 to 200 ° C./min.

上記したようにパルス電流が供給された正極活物質及び導電材を、冷却後ダイ3より取
り出し、上下の導電材を取り除くことにより、導電材が強固に付着した本発明の正極材料を得ることができる。
As described above, the positive electrode active material and the conductive material supplied with the pulse current are taken out from the die 3 after cooling, and the upper and lower conductive materials are removed to obtain the positive electrode material of the present invention in which the conductive material is firmly attached. it can.

このようにして得られた本発明の正極材料は、正極活物質に対する導電材の重量比が、例えば1:0.0001〜0.3程度、好ましくは1:0.0005〜0.2程度である。この範囲より導電材量が少なくなると正極内に十分に導電性を付与することが困難となり、一方この範囲より導電材量が多くなると正極内での活物質量が低下し電池としての充放電容量の低下を招く。   In the positive electrode material of the present invention thus obtained, the weight ratio of the conductive material to the positive electrode active material is, for example, about 1: 0.0001 to 0.3, preferably about 1: 0.0005 to 0.2. If the amount of the conductive material is less than this range, it becomes difficult to impart sufficient conductivity in the positive electrode. On the other hand, if the amount of the conductive material is larger than this range, the amount of the active material in the positive electrode is reduced and the charge / discharge capacity as a battery is reduced. Cause a decline.

リチウム二次電池
上記のようにして得られた本発明の正極材料は、通常の方法によりリチウム二次電池に用いることができる。
Lithium Secondary Battery The positive electrode material of the present invention obtained as described above can be used for a lithium secondary battery by a usual method.

例えば、正極材料をアセチレンブラックなどの導電材や必要に応じて固体電解質と混合して正極合材(正極)を形成し、その得られた正極と負極とで有機電解液または固体電解質を挟むことにより、リチウム二次電池を製造することができる。   For example, a positive electrode material is mixed with a conductive material such as acetylene black and, if necessary, a solid electrolyte to form a positive electrode mixture (positive electrode), and an organic electrolyte or a solid electrolyte is sandwiched between the obtained positive electrode and negative electrode Thus, a lithium secondary battery can be manufactured.

本発明においては、導電材を付着させた正極材料と導電材を付着させていない負極材料用素材とを用いて二次電池を作ることもでき、また、導電材を付着させた正極材料と導電材を付着させた負極材料とを用いて二次電池を作ることもできる。   In the present invention, a secondary battery can be made by using a positive electrode material with a conductive material attached and a negative electrode material for which a conductive material is not attached. A secondary battery can also be made using a negative electrode material to which a material is attached.

有機電解液としては、通常リチウム二次電池に使用される電解液が使用できる。本発明における好ましい有機電解液としては、支持塩としてLiPF6、LiClO4及びLiBF4からなる群から得らればれる少なくとも1種を有機混合溶媒に溶解させたもの(1mol/kg程度の濃度)が好ましい。 As the organic electrolytic solution, an electrolytic solution usually used for a lithium secondary battery can be used. As a preferable organic electrolyte in the present invention, a solution in which at least one selected from the group consisting of LiPF 6 , LiClO 4 and LiBF 4 as a supporting salt is dissolved in an organic mixed solvent (a concentration of about 1 mol / kg) is preferable. .

有機混合溶媒としては、例えば、エチレンカーボネート(EC)又はプロピレンカーボネート(PC)と、ジメチルカーボネート(DMC)又はジエチレンカボネート(DEC)とを混合させた溶液を使用することができる。これらの有機溶媒の混合割合は限定されないが、好ましくは、エチレンカーボネート(EC)又はプロピレンカーボネート(PC):ジメチルカーボネート(DMC)又はジエチレンカボネート(DEC)=1:1(体積比)程度が挙げられる。   As the organic mixed solvent, for example, a solution obtained by mixing ethylene carbonate (EC) or propylene carbonate (PC) with dimethyl carbonate (DMC) or diethylene carbonate (DEC) can be used. The mixing ratio of these organic solvents is not limited, but is preferably about ethylene carbonate (EC) or propylene carbonate (PC): dimethyl carbonate (DMC) or diethylene carbonate (DEC) = 1: 1 (volume ratio). It is done.

固体電解質としては、通常リチウム二次電池に使用される固体電解質が使用できる。本発明における好ましい固体電解質としては、例えば、Li2S-SiS2、Li2S-P2S5、Li2S-B2S3
、Li2S-SiS2-Li3PO4、Li2S-SiS2-P2S5-LiI、Li2S-GeS2、Li4GeS4-Li3PS4等の硫化物系固
体電解質、エチレンオキシド、ポリエステル、ポリスルフィド系高分子にLi塩を複合化した高分子固体電解質、ハロゲン化リチウム、窒化リチウム、リチウム酸素酸塩(例えば、リン酸チタンアルミニウムリチウム、リン酸ゲルマニウムアルミニウムリチウム、リチウム含有チタン酸ランタンなど)又はこれらの誘導体が挙げられる。それらの中でも、硫化物系固体電解質が好ましい。更に、硫化物系固体電解質の中でも、Li2S-SiS2-Li3PO4系ガラス状固体電解質、Li4GeS4-Li3PS4結晶性固体電解質等が特に好ましい。
As the solid electrolyte, a solid electrolyte usually used for a lithium secondary battery can be used. Preferred solid electrolytes in the present invention include, for example, Li 2 S—SiS 2 , Li 2 SP 2 S 5 , Li 2 SB 2 S 3
, Li 2 S-SiS 2 -Li 3 PO 4, Li 2 S-SiS 2 -P 2 S 5 -LiI, Li 2 S-GeS 2, Li 4 GeS 4 -Li 3 PS sulfide-based solid electrolyte such as 4 , Ethylene oxide, polyester, polymer solid electrolyte with polysulfide polymer combined with Li salt, lithium halide, lithium nitride, lithium oxyacid salt (eg lithium aluminum aluminum phosphate, lithium aluminum germanium phosphate, lithium containing titanium) Lanthanum acid) or derivatives thereof. Among these, sulfide-based solid electrolytes are preferable. Furthermore, among the sulfide-based solid electrolytes, Li 2 S—SiS 2 —Li 3 PO 4 -based glassy solid electrolyte, Li 4 GeS 4 —Li 3 PS 4 crystalline solid electrolyte, and the like are particularly preferable.

また、負極材料も限定されず、通常のリチウム二次電池に使用される負極材料を使用できる。例えば、金属リチウム、金属インジウム、スズ、アルミニウム、それらの合金、炭素材料、酸化スズ、チタン酸リチウム及び鉄を固溶させたチタン酸リチウムからなる群から選ばれる少なくとも1種が挙げられる。これらは単独で用いてもよく、2種以上の混合
物を用いてもよい。
Further, the negative electrode material is not limited, and a negative electrode material used for a normal lithium secondary battery can be used. For example, at least one selected from the group consisting of metallic lithium, metallic indium, tin, aluminum, alloys thereof, carbon materials, tin oxide, lithium titanate, and lithium titanate in which iron is dissolved is used. These may be used alone or as a mixture of two or more.

本発明によれば、導電材を正極活物質の表面に簡便かつ強固に付着させることができる。その結果、容量の劣化が抑制され、充放電特性に優れたリチウム二次電池の正極材料を得ることができる。その理由は定かではないが、導電材が活物質に付着や加熱による導電材の粒径増大などによる、正極の電子伝導性増大や導電材-固体電解質反応面積の低下な
どが考えられる。
According to the present invention, the conductive material can be easily and firmly attached to the surface of the positive electrode active material. As a result, it is possible to obtain a positive electrode material for a lithium secondary battery in which the deterioration of capacity is suppressed and the charge / discharge characteristics are excellent. The reason is not clear, but it is conceivable that the electroconductivity of the positive electrode is increased due to the conductive material adhering to the active material or the particle size of the conductive material is increased by heating, and the reaction area of the conductive material-solid electrolyte is decreased.

以下、実施例を示し、本発明の特徴を一層明確にする。本発明はこれら実施例に限定されるものではない。   Hereinafter, examples will be shown to further clarify the features of the present invention. The present invention is not limited to these examples.

なお、以下の実施例及び比較例で得られた正極材料の結晶相はX線回折分析により評価
し、エネルギー分散型X線(EDX)分析により、正極材料におけるC/NiおよびC/Co比を、化学分析によりLi、Co、C量を算出した。また、正極活物質又は正極材料の表面状態は走査
型電子顕微鏡(SEM)により評価した。
The crystal phases of the positive electrode materials obtained in the following examples and comparative examples were evaluated by X-ray diffraction analysis, and the C / Ni and C / Co ratios in the positive electrode material were determined by energy dispersive X-ray (EDX) analysis. The amounts of Li, Co, and C were calculated by chemical analysis. Moreover, the surface state of the positive electrode active material or the positive electrode material was evaluated by a scanning electron microscope (SEM).

参考例1
水酸化ニッケル(II)(Ni(OH)2)20.00gをポリテトラフルオロエチレンシャーレー上に秤量した。ガラス製ビーカーに、Li/Ni原子比が1.00に相当する水酸化リチウム1水和物9.05gを蒸留水100mlに溶解させた水酸化リチウム水溶液を作製し、その溶液を前述の水酸化ニッケル粉末に加えてよく攪拌後、100℃で12時間乾燥した。
Reference example 1
20.00 g of nickel hydroxide (II) (Ni (OH) 2 ) was weighed on a polytetrafluoroethylene petri dish. In a glass beaker, a lithium hydroxide aqueous solution in which 9.05 g of lithium hydroxide monohydrate corresponding to a Li / Ni atomic ratio of 1.00 was dissolved in 100 ml of distilled water was prepared. In addition, after stirring well, it was dried at 100 ° C. for 12 hours.

乾燥物を乳鉢にて粉砕し、アルミナるつぼに充填し、電気炉内で酸素気流中750℃で20
時間焼成した。焼成後24時間かけて室温まで冷却後、電気炉より粉末を取り出し、粉砕器により粉砕後、330メッシュのふるいを通して以後の評価試験用試料とした。
The dried product is pulverized in a mortar, filled in an alumina crucible, and heated in an electric furnace at 750 ° C in an oxygen stream.
Baked for hours. After cooling to room temperature over 24 hours after firing, the powder was taken out from an electric furnace, pulverized by a pulverizer, and passed through a 330 mesh sieve to obtain a sample for subsequent evaluation tests.

すべてのピークは六方晶系のニッケル酸リチウムの単位胞(   All peaks are unit cells of hexagonal lithium nickelate (

)で指数付けできた。得られた格子定数はa = 2.88001 (6)Å, c = 14.2061 (3)Åであり、既報(H. Arai, S. Okada, H. Ohtsuka, M. Ichimura, and J. Yamaki, Solid State Ionics, 80, 261-269, (1995).)のニッケル酸リチウムの格子定数値a = 2.883Å, c = 14.0205Åに近く、目的物質であるニッケル酸リチウムが生成したことが確認できた。 ). The obtained lattice constants are a = 2.88001 (6) Å, c = 14.2061 (3) 、, and have been reported (H. Arai, S. Okada, H. Ohtsuka, M. Ichimura, and J. Yamaki, Solid State Ionics). , 80, 261-269, (1995).) Near the lattice constants of lithium nickelate a = 2.883 Å and c = 14.0205 で き, confirming the formation of lithium nickelate as the target substance.

この粉末0.4gをカーボンシート(厚さ0.2mm)で上下挟んだものを内径15mmの黒鉛性型
材(ダイ)に装填し、上下部パンチで約30MPaに加圧しながら約400Aのパルス電流を供給
した。黒鉛ダイ近傍は約130℃/分の昇温速度で加熱され、パルス電流の供給開始3分後に400℃に到達した。この温度で約5分間保持した後、電流印加及び加圧を停止し、自然放冷させた。冷却後、ダイからカーボンシート/ニッケル酸リチウム積層体を取り出し、カーボンシートを取り除き、生成物を回収した。
A 0.4 g powder was sandwiched between carbon sheets (thickness 0.2 mm) and loaded into a graphite mold (die) with an inner diameter of 15 mm. A pulse current of about 400 A was supplied while pressing the upper and lower punches to about 30 MPa. . The vicinity of the graphite die was heated at a heating rate of about 130 ° C./min, and reached 400 ° C. 3 minutes after the start of pulse current supply. After holding at this temperature for about 5 minutes, the application of current and pressurization were stopped and allowed to cool naturally. After cooling, the carbon sheet / lithium nickelate laminate was removed from the die, the carbon sheet was removed, and the product was recovered.

得られた粉末のX線回折パターンを図3に示す。構造精密化プログラムRIETAN-2000(F. Izumi and T. Ikeda, Mater. Sci. Forum, 321-324 (2000) 198-203.)により得られた試料は、重量比で96.8%のニッケル酸リチウム(図中、実測パターン直下の一番上の縦棒群
が推定ピーク位置)、2.0%の炭酸リチウム(Li2CO3、図中実測パターン直下の中央の縦棒群が推定ピーク位置)、1.2%の酸化ニッケル(NiO、図中実測パターン直下の一番下の縦
棒群が推定ピーク位置)よりなることがわかった。
The X-ray diffraction pattern of the obtained powder is shown in FIG. Samples obtained by the structural refinement program RIETAN-2000 (F. Izumi and T. Ikeda, Mater. Sci. Forum, 321-324 (2000) 198-203.) Were 96.8% lithium nickelate (by weight) ( In the figure, the top vertical bar group just below the actual measurement pattern is the estimated peak position), 2.0% lithium carbonate (Li 2 CO 3 , the central vertical bar group just below the actual measurement pattern in the figure is the estimated peak position), 1.2% Of nickel oxide (NiO, the lowest vertical bar group just below the measured pattern in the figure is the estimated peak position).

すなわち、ほぼニッケル酸リチウムが単相に近い形で試料中に存在していることを示している。得られたニッケル酸リチウムの格子定数はa = 2.88179(8)Å, c = 14.2190(4)Åであり、既報(H. Arai, S. Okada, H. Ohtsuka, M. Ichimura, and J. Yamaki, Solid State Ionics, 80, 261-269, (1995).)のニッケル酸リチウムの格子定数値a = 2.883Å, c = 14.0205Åに近く、目的物質であるニッケル酸リチウムが生成したことが確認できた
That is, it shows that lithium nickelate is present in the sample in a form close to a single phase. The obtained lithium nickelate has a lattice constant of a = 2.88179 (8) Å, c = 14.2190 (4) Å, and has already been reported (H. Arai, S. Okada, H. Ohtsuka, M. Ichimura, and J. Yamaki , Solid State Ionics, 80, 261-269, (1995).), The lattice constants of lithium nickelate are close to a = 2.883 mm, c = 14.0205 mm, confirming that the target nickel lithium oxide was formed. It was.

同時に、得られた層状岩塩型を有するニッケル酸リチウムのニッケルイオン分布は、(Li1-xNix)3a[Ni]3bO2の組成式表示でx=0.043(2)と推定された。充放電特性の向上の観点からは、リチウム位置(3a位置)に共存するニッケルイオン量に相当するxはできるだけ0に近づけることが望ましい。 At the same time, the nickel ion distribution of the obtained lithium nickelate with the layered rock salt type was estimated to be x = 0.043 (2) in the composition formula of (Li 1-x Ni x ) 3a [Ni] 3b O 2 . From the viewpoint of improving charge / discharge characteristics, it is desirable that x corresponding to the amount of nickel ions coexisting at the lithium position (3a position) be as close to 0 as possible.

すなわち、より理想的なイオン分布にする(すべてのニッケルイオンを正規位置である3b位置にのみ存在させることに相当)ことが必要である。本発明で得られたx値は(H. Arai, S. Okada, H. Ohtsuka, M. Ichimura, and J. Yamaki, Solid State Ionics, 80, 261-269, (1995).)の値(0.095)に比べて低く、ほぼ理想的なニッケルイオン分布を有する
ニッケル酸リチウムが生成していることが見出せた。
That is, it is necessary to have a more ideal ion distribution (corresponding to all nickel ions existing only at the normal position 3b). The x value obtained in the present invention is the value (0.095) of (H. Arai, S. Okada, H. Ohtsuka, M. Ichimura, and J. Yamaki, Solid State Ionics, 80, 261-269, (1995).) It was found that lithium nickelate having an almost ideal nickel ion distribution was produced.

得られた試料の粉末状態をSEM観察したところ(図4)、1(m以下の粒子が凝集して数ミ
クロン程度の二次粒子となっていることが確認でき、通電被覆処理前の試料(比較例1)
と差異は見られなかった。
When the powder state of the obtained sample was observed by SEM (Fig. 4), it was confirmed that particles of 1 (m or less aggregated into secondary particles of several microns, Comparative Example 1)
There was no difference.

一方、EDX分析によりC:Ni比(重量比)を見積もったところ、8:92であり、通電被覆
処理前の試料(比較例1)の値3 : 97に比べて炭素量が多くなっていることが確認でき、
ニッケル酸リチウム−炭素複合体の生成が確認された。
On the other hand, when the C: Ni ratio (weight ratio) was estimated by EDX analysis, it was 8:92, and the amount of carbon was larger than the value 3:97 of the sample before the energization coating treatment (Comparative Example 1). Can confirm that
Formation of a lithium nickelate-carbon composite was confirmed.

炭素の粉末上での存在状態を推定するため、EDX面分析を行った(図5)。図5中、上の
図がSEM像であり、その中で四角で囲った部分の分析を行った。分析される各元素が存在
すると白く表示され、存在量が少ないと黒く表示されている。炭素面分析の結果、炭素はニッケル酸リチウムに由来するニッケル、酸素元素とほぼ同じ位置に存在しており、導電材である炭素がニッケル酸リチウム表面に存在していることが確認でき、図2にて推定された導電材分布モデルを支持する結果となった。
EDX surface analysis was performed to estimate the presence of carbon on the powder (Fig. 5). In FIG. 5, the upper figure is an SEM image, in which the portion enclosed by a square was analyzed. When each element to be analyzed is present, it is displayed in white, and when there is a small amount, it is displayed in black. As a result of carbon surface analysis, it can be confirmed that carbon is present at substantially the same position as nickel and oxygen elements derived from lithium nickelate, and that carbon as a conductive material is present on the surface of lithium nickelate. The results supported the conductive material distribution model estimated in.

また、得られた試料の圧粉体を作製し、直流抵抗測定を行ったところ、42((cmと見積もられ、下記比較例1に示される通電被覆未処理品の値60Ω(cmに比べて低下していることが確認でき、本実施例1の試料が高い電子伝導性を有していることが確認できた。   Further, when the green compact of the obtained sample was prepared and the direct current resistance measurement was performed, 42 ((cm was estimated, and the value of the uncoated product shown in Comparative Example 1 below was 60Ω (cm It was confirmed that the sample of Example 1 had high electron conductivity.

比較例1
実施例1と同様にニッケル酸リチウムの合成を行い、通電被覆処理は行わなかった。粒子形状(図4)は特に実施例1と差はなく、前述のように圧粉体の電気抵抗は実施例1の場
合に比べて高かった。
Comparative Example 1
In the same manner as in Example 1, lithium nickelate was synthesized, and no energization coating treatment was performed. The particle shape (FIG. 4) was not particularly different from Example 1, and the electrical resistance of the green compact was higher than that of Example 1 as described above.

試験例1
実施例1又は比較例1で得られた試料を正極材料として用い、以下の方法に従ってリチウム二次電池を作製した。得られた試料20mgに対し、アセチレンブラック2.2mgおよびポリ
テトラフルオロエチレン粉末0.5mgを加えて、乳鉢にて混合し、金属アルミニウム集電体
に圧着した。得られた正極合材を120℃で真空乾燥した後、グローブボックス内に導入し
、グローブボックス内にて支持塩LiPF6とエチレンカーボネートおよびジエチルカーボネ
ート混合溶媒(体積比1:1)からなる電解液と金属リチウム負極を用いて、コイン型リチウム二次電池を作製した。
Test example 1
Using the sample obtained in Example 1 or Comparative Example 1 as the positive electrode material, a lithium secondary battery was produced according to the following method. To 20 mg of the obtained sample, acetylene black 2.2 mg and polytetrafluoroethylene powder 0.5 mg were added, mixed in a mortar, and pressure-bonded to a metal aluminum current collector. The obtained positive electrode mixture is vacuum-dried at 120 ° C. and then introduced into a glove box, and an electrolytic solution comprising a supporting salt LiPF 6 and a mixed solvent of ethylene carbonate and diethyl carbonate (volume ratio 1: 1) in the glove box. And a metal lithium negative electrode were used to produce a coin-type lithium secondary battery.

この電池を充放電装置に接続し、充放電電位範囲2.75-4.2Vの定電流定電圧充電−定電
流放電、充放電レートは1-10サイクル、21サイクル目において0.2C(55mA/g)とし、11-20
サイクルまでは1C(275mA/g)とした。充放電測定時の放電曲線を図6に示す。
Connect this battery to a charge / discharge device, and charge / discharge potential range 2.75-4.2V constant current constant voltage charge-constant current discharge, charge / discharge rate is 1-10 cycles, 21C is 0.2C (55mA / g) , 11-20
It was set to 1C (275mA / g) until the cycle. FIG. 6 shows a discharge curve at the time of charge / discharge measurement.

実施例1の正極材料を用いた場合には0.2Cにおける初期放電容量は170mAh/g程度であり
、比較例1の炭素未被覆試料の200mAh/gに比べて低くなっているが、10および21サイクル
後の放電容量ではほぼ同等である。
When the positive electrode material of Example 1 was used, the initial discharge capacity at 0.2 C was about 170 mAh / g, which is lower than the 200 mAh / g of the carbon-uncoated sample of Comparative Example 1, but 10 and 21 The discharge capacity after the cycle is almost the same.

また、1Cにおいては、実施例1の試料では11サイクル後の放電容量(1Cでの初期放電容
量に相当)が150mAh/gを維持しているのに対し、比較例1の試料では135mAh/gに低下した
。20サイクル後においては実施例の試料は放電容量が145mAh/gを維持しているのに対し、比較例1の試料は120mAh/gに低下した。
At 1C, the discharge capacity after 11 cycles (corresponding to the initial discharge capacity at 1C) of the sample of Example 1 is maintained at 150 mAh / g, whereas the sample of Comparative Example 1 is 135 mAh / g. Declined. After 20 cycles, the sample of the example maintained a discharge capacity of 145 mAh / g, whereas the sample of Comparative Example 1 decreased to 120 mAh / g.

これらのことから、本発明により得られた試料が、電子伝導性に優れるため、リチウム二次電池における高電流密度での充放電特性に優れた正極材料を提供できることが明らかである。   From these facts, it is clear that the sample obtained according to the present invention is excellent in electron conductivity, and therefore can provide a positive electrode material excellent in charge / discharge characteristics at a high current density in a lithium secondary battery.

実施例1
酸化コバルト(Co3O4)1.00gとLi/Coモル比が1.02に相当する炭酸リチウム(Li2CO3)0.47gとを秤量し、乾式混合した。この混合物を大気中850℃で5時間焼成した。得られた試料のX線回折パターンを図7(a)に示す。
Example 1
Cobalt oxide (Co 3 O 4 ) 1.00 g and lithium carbonate (Li 2 CO 3 ) 0.47 g corresponding to a Li / Co molar ratio of 1.02 were weighed and dry mixed. This mixture was calcined in the atmosphere at 850 ° C. for 5 hours. FIG. 7 (a) shows the X-ray diffraction pattern of the obtained sample.

すべてのピークは六方晶系のコバルト酸リチウムの単位胞(   All peaks are unit cells of hexagonal lithium cobaltate (

)で指数付けできた。得られた格子定数はa = 2.81557(6)Å, c = 14.0489(3)Åであり、既報(R.J.Gummow, M.M.Thackeray, W.I.F.David and S.Hull, Mat. Res. Bull., 27, 327-337, (1992).)のコバルト酸リチウムの格子定数値a = 2.8179(1)Å, c = 14.0597(8)
Åに近く、目的物質であるコバルト酸リチウムが生成したことが確認できた。
). The obtained lattice constants are a = 2.81557 (6) Å, c = 14.0489 (3) Å, and have been reported (RJGummow, MMThackeray, WIFDavid and S.Hull, Mat. Res. Bull., 27, 327-337, ( 1992).) Lattice constant value of lithium cobaltate a = 2.8179 (1) Å, c = 14.0597 (8)
Close to the soot, it was confirmed that lithium cobaltate, the target substance, was produced.

この粉末0.2gをカーボンシート(厚さ0.2mm)で上下挟んだものを2層積層し(カーボンシート/コバルト酸リチウム(0.2g)/カーボンシート/コバルト酸リチウム(0.2g)/カーボンシート)、これを内径15mmの黒鉛性型材(ダイ)に装填し、上下部パンチで約30MPaに加圧しながら約500Aのパルス電流を供給した。   Two layers of this powder 0.2 g sandwiched between carbon sheets (thickness 0.2 mm) are laminated (carbon sheet / lithium cobaltate (0.2 g) / carbon sheet / lithium cobaltate (0.2 g) / carbon sheet), This was loaded into a graphite mold (die) having an inner diameter of 15 mm, and a pulse current of about 500 A was supplied while being pressurized to about 30 MPa with upper and lower punches.

黒鉛ダイ近傍は約130℃/分の昇温速度で加熱され、パルス電流の供給開始4分後に500
℃に到達した。この温度で約5分間保持した後、電流印加及び加圧を停止し、自然放冷さ
せた。
The vicinity of the graphite die is heated at a rate of about 130 ° C / min, and 500 minutes after the start of pulse current supply.
C reached. After holding at this temperature for about 5 minutes, the application of current and pressurization were stopped and allowed to cool naturally.

冷却後、ダイからカーボンシート/コバルト酸リチウム積層体を取り出し、カーボンシートを取り除き、生成物を回収した。得られた試料のX線回折パターンを図7(b)に示す
。微量の黒鉛のピークが検出されただけでなく、それ以外のピークは六方晶系のコバルト酸リチウムの単位胞(
After cooling, the carbon sheet / lithium cobaltate laminate was removed from the die, the carbon sheet was removed, and the product was recovered. The X-ray diffraction pattern of the obtained sample is shown in FIG. 7 (b). Not only were traces of graphite peaks detected, but the other peaks were hexagonal lithium cobalt oxide unit cells (

)で指数付けできた。得られた格子定数はa = 2.81604(6)Å, c = 14.0517(2)Åであり、既報(R.J.Gummow, M.M.Thackeray, W.I.F.David and S.Hull, Mat. Res. Bull., 27, 327-337, (1992).)のコバルト酸リチウムの格子定数値a = 2.8179(1)Å, c = 14.0597(8)
Åに近かった。
). The obtained lattice constants are a = 2.81604 (6) c, c = 14.0517 (2) 、 and have been reported (RJGummow, MMThackeray, WIFDavid and S.Hull, Mat. Res. Bull., 27, 327-337, 1992).) Lattice constant value of lithium cobaltate a = 2.8179 (1) Å, c = 14.0597 (8)
It was close to the niece.

X線リートベルト解析によりコバルト酸リチウムと炭素の重量比を求めたところ、96:4
の割合であり、試料中に約4%炭素が含まれていることがわかった。また、化学分析により、得られた試料中の炭素含有量は0.27%であり、試料中に炭素を含有していることが確認
できた。更に、試料中のリチウム量は7.22重量%、コバルト量は57.7重量%であり、Li/Co
原子比は1.06となり、LiCoO2組成から推定されるLi/Co比1.00に近く、LiCoO2としては定
比組成に近いことがわかった。
The weight ratio between lithium cobaltate and carbon was determined by X-ray Rietveld analysis.
It was found that the sample contained about 4% carbon. Moreover, the carbon content in the obtained sample was 0.27% by chemical analysis, and it was confirmed that the sample contained carbon. Furthermore, the amount of lithium in the sample is 7.22% by weight, the amount of cobalt is 57.7% by weight, Li / Co
Atomic ratio 1.06, close to the Li / Co ratio 1.00 estimated from LiCoO 2 composition, the LiCoO 2 was found to be close to the stoichiometric composition.

粉末の表面状態を走査型電子顕微鏡(SEM)により観察したところ、比較例の粉末表面
(図8下)には見られないような粒子が付着していることが確認できた(図8上)。EDX分
析によりC/Co比を算出したところ8/92と見積もられ、下記比較例2で示される炭素未被覆
試料の値1/99に比べて増加していることがわかり、上記化学分析、X線回折測定結果と整
合した。
When the surface state of the powder was observed with a scanning electron microscope (SEM), it was confirmed that particles that could not be seen on the powder surface of the comparative example (bottom of FIG. 8) were attached (top of FIG. 8). . When the C / Co ratio was calculated by EDX analysis, it was estimated to be 8/92, which was found to be increased compared to the value 1/99 of the carbon-uncoated sample shown in Comparative Example 2 below. Consistent with X-ray diffraction measurement results.

炭素の粉体中での分布状態をコバルト、酸素元素とともに実施例1と同様にEDX面分析によって推定した。図9に示されるように炭素元素は、コバルト、酸素とほぼ同じ位置に存
在していることがわかり、炭素が付着したコバルト酸リチウムの生成が確認できた。
The distribution state of carbon in the powder was estimated by EDX plane analysis in the same manner as in Example 1 together with cobalt and oxygen elements. As shown in FIG. 9, it was found that the carbon element was present at almost the same position as cobalt and oxygen, and it was confirmed that lithium cobalt oxide with carbon attached was formed.

比較例2
実施例1と同様にして得られたコバルト酸リチウムを、このコバルト酸リチウムと硫化
物系(Li2S-SiS2-Li3PO4)固体電解質との比が7:3(210mg:90mg)の割合になるように
秤量し、コバルト酸リチウムに対し通電被覆量(実施例2において正極活物質に付着した炭素材料の量)とほぼ同量の0.25重量%のアセチレンブラックを添加後、アセトニトリル
溶媒中で湿式法により混合し、正極合材を得た。
Comparative Example 2
The lithium cobaltate obtained in the same manner as in Example 1 has a ratio of lithium cobaltate to a sulfide-based (Li 2 S—SiS 2 —Li 3 PO 4 ) solid electrolyte of 7: 3 (210 mg: 90 mg). After adding 0.25% by weight of acetylene black, which is approximately the same amount as the energization coating amount (the amount of the carbon material attached to the positive electrode active material in Example 2) to lithium cobaltate, the acetonitrile solvent was added. The mixture was mixed by a wet method to obtain a positive electrode mixture.

試験例2
実施例2又は比較例2で得られた試料を正極材料として用い、以下の手順で全固体リチウム二次電池を作製した(電池セルの模式図を図10に示す。)。
Test example 2
Using the sample obtained in Example 2 or Comparative Example 2 as the positive electrode material, an all-solid lithium secondary battery was produced by the following procedure (a schematic diagram of the battery cell is shown in FIG. 10).

試料と硫化物系(Li2S-SiS2-Li3PO4)固体電解質とを7:3(210mg:90mg)の割合にな
るように秤量し、アセトニトリル溶媒中で湿式法により混合し、正極合材を得た。
A sample and a sulfide-based (Li 2 S-SiS 2 -Li 3 PO 4 ) solid electrolyte are weighed to a ratio of 7: 3 (210 mg: 90 mg), mixed by a wet method in acetonitrile solvent, and positive electrode A mixture was obtained.

10mm径の絶縁体管の中で、粉砕したLi2S-SiS2-Li3PO4ガラス状電解質50mgを1.3t/cm2でプレスした。その片側(図10では下の方)から、上記正極合材を20mgを添加し、3.8 t/cm2で二層を同時にプレスした。 In a 10 mm diameter insulator tube, 50 mg of ground Li 2 S—SiS 2 —Li 3 PO 4 glassy electrolyte was pressed at 1.3 t / cm 2 . From one side (lower side in FIG. 10), 20 mg of the positive electrode mixture was added, and the two layers were simultaneously pressed at 3.8 t / cm 2 .

更に、図10における下の方から集電体としてTiを入れ、他の片側(図10における上の方)には金属インジウムを入れた後、0.6 t/cm2でプレスすることにより全固体リチウム二
次電池を得た。
Further, Ti is added as a current collector from the lower side in FIG. 10, and metal indium is put on the other side (the upper side in FIG. 10), and then pressed at 0.6 t / cm 2 to press all solid lithium. A secondary battery was obtained.

充放電試験条件は、電流0.25mA(0.32mAcm-2)、カットオフ電位3.9−2.0 Vにおける定電流測定で行った。実施例2で得られた炭素付着コバルト酸リチウムを正極とした全固体
リチウム二次電池の充放電特性を図11に示す。
The charge / discharge test conditions were constant current measurement at a current of 0.25 mA (0.32 mA cm −2 ) and a cut-off potential of 3.9 to 2.0 V. FIG. 11 shows the charge / discharge characteristics of the all-solid lithium secondary battery using the carbon-attached lithium cobalt oxide obtained in Example 2 as a positive electrode.

特開平8-96836号公報では、炭素を0.1%添加するだけで50%の充放電容量の低下が見られた。これに対し、本発明の炭素付着コバルト酸リチウムが0.1%を超える炭素を含有しているにも関わらず、100mAh/g以上の初期充放電容量を示し充電容量(■)及び放電容量(□)のサイクル毎のばらつきもほとんどない。10サイクル後の放電容量も70mAh/g以上であ
った。
In Japanese Patent Application Laid-Open No. 8-96836, a 50% reduction in charge / discharge capacity was observed when only 0.1% carbon was added. In contrast, despite the fact that the carbon-adhered lithium cobaltate of the present invention contains more than 0.1% of carbon, the initial charge / discharge capacity of 100 mAh / g or more is shown, and the charge capacity (■) and discharge capacity (□) There is almost no variation from cycle to cycle. The discharge capacity after 10 cycles was also 70 mAh / g or more.

更に、式:
「第nサイクルでの充放電効率=第nサイクルでの放電容量/第nサイクルでの充電容量」
で定義される充放電効率(○)は、2サイクル後から10サイクル後まで0.95以上を維持し
続けた。
Furthermore, the formula:
“Charge / discharge efficiency in the nth cycle = discharge capacity in the nth cycle / charge capacity in the nth cycle”
The charge / discharge efficiency (○) defined by the equation continued to maintain 0.95 or more from 2 cycles to 10 cycles.

このことから、本発明で得られた正極材料の表面には導電材が強固に付着しており、この正極材料が全固体リチウム電池用正極材料として好適に使用できることがわかった。   From this, it was found that the conductive material was firmly attached to the surface of the positive electrode material obtained in the present invention, and this positive electrode material can be suitably used as the positive electrode material for an all solid lithium battery.

これに対し、比較例2で得られた二次電池を用いた場合には、図12から明らかなように
、実施例2で得られた二次電池に比べ、充電容量(■)及び放電容量(□)はサイクル毎
のばらつきが大きく、初期充放電容量も90mAh/g以下であった。また10サイクル後の放電
容量も30mAh/g以下であった。また、充放電効率は2サイクル目以降0.9以上を維持してい
るがそのサイクル毎のばらつきは実施例2に比べて大きかった。
On the other hand, when the secondary battery obtained in Comparative Example 2 was used, as is clear from FIG. 12, the charge capacity (■) and the discharge capacity were compared with the secondary battery obtained in Example 2. (□) showed large variations from cycle to cycle, and the initial charge / discharge capacity was 90 mAh / g or less. Also, the discharge capacity after 10 cycles was 30 mAh / g or less. The charge / discharge efficiency was maintained at 0.9 or more after the second cycle, but the variation for each cycle was larger than that in Example 2.

これらのことから、比較例2のような通常の方法で得られた正極材料では、その表面に
導電材がしっかりと付着しておらず、充放電効率、充放電容量のサイクル安定性に優れた全固体リチウム二次電池を作製することはできないことを示している。
From these facts, in the positive electrode material obtained by the ordinary method as in Comparative Example 2, the conductive material did not adhere firmly to the surface, and the charge / discharge efficiency and charge / discharge capacity cycle stability were excellent. This shows that an all-solid lithium secondary battery cannot be produced.

放電プラズマ焼結機を示す概略図である。It is the schematic which shows a discharge plasma sintering machine. 本発明と従来法とにおける導電材−正極活物質分布状態の相違を示す図である。It is a figure which shows the difference in the electrically conductive material-positive electrode active material distribution state in this invention and the conventional method. 実施例1において得られた正極材料の実測X線回折図(+)と計算回折図(実線)との比較を表す図である。残差は図の下に示されている。ニッケル酸リチウム、酸化ニッケル、炭酸リチウムの推定ピーク位置が縦棒で示されている。FIG. 3 is a diagram showing a comparison between an actual measurement X-ray diffraction pattern (+) and a calculated diffraction pattern (solid line) of the positive electrode material obtained in Example 1. The residual is shown below the figure. The estimated peak positions of lithium nickelate, nickel oxide, and lithium carbonate are indicated by vertical bars. 実施例1(右図)及び比較例1(左図)で得られた正極材料の走査型電子顕微鏡(SEM)写真を示す図である。It is a figure which shows the scanning electron microscope (SEM) photograph of the positive electrode material obtained in Example 1 (right figure) and the comparative example 1 (left figure). 実施例1で得られた正極材料のSEM像とそれに対応した炭素、ニッケル、酸素のEDX分析による分布状態を示す図である。FIG. 3 is a diagram showing an SEM image of the positive electrode material obtained in Example 1 and the corresponding distribution state of carbon, nickel, and oxygen by EDX analysis. 実施例1および比較例1で得られた試料を正極としたリチウム二次電池の0.2Cおよび1Cにおける充放電特性を示す図である。FIG. 3 is a diagram showing charge / discharge characteristics at 0.2 C and 1 C of a lithium secondary battery using the samples obtained in Example 1 and Comparative Example 1 as positive electrodes. 実施例2で得られた正極活物質(a)及び正極材料(b)のX線回折を示す図である。4 is a diagram showing X-ray diffraction of a positive electrode active material (a) and a positive electrode material (b) obtained in Example 2. FIG. 実施例2(上図)及び比較例2(下図)で得られた正極材料の走査型電子顕微鏡(SEM)写真を示す図である。It is a figure which shows the scanning electron microscope (SEM) photograph of the positive electrode material obtained in Example 2 (upper figure) and the comparative example 2 (lower figure). 実施例2で得られた正極材料のSEM像とそれに対応した炭素、コバルト、酸素のEDX分析による分布状態を示す図である。FIG. 6 is a diagram showing an SEM image of the positive electrode material obtained in Example 2 and the corresponding distribution state of carbon, cobalt, and oxygen by EDX analysis. コイン型全固体リチウム二次電池を示す模式図である。It is a schematic diagram which shows a coin type all-solid-state lithium secondary battery. 実施例2で得られた正極材料を用いて作製した全固体リチウム二次電池の充放電特性を示す図である。右上がりの曲線が充電曲線に対応し、右下がりの曲線が放電曲線に対応する(上図)。下図は、充放電容量及び充放電効率のサイクル数依存性を示す。上図の上軸 は脱離・挿入Li量を示す。6 is a graph showing charge / discharge characteristics of an all solid lithium secondary battery produced using the positive electrode material obtained in Example 2. FIG. The upward curve corresponds to the charge curve, and the downward curve corresponds to the discharge curve (upper figure). The figure below shows the cycle number dependence of charge / discharge capacity and charge / discharge efficiency. The upper axis of the above figure shows the amount of Li removed / inserted. 比較例2で得られた正極材料を用いて作製した全固体リチウム二次電池の充放電特性を示す図である。右上がりの曲線が充電曲線に対応し、右下がりの曲線が放電曲線に対応する(上図)。下図は、充放電容量及び充放電効率のサイクル数依存性を示す。上図の上軸 は脱離・挿入Li量を示す。6 is a diagram showing charge / discharge characteristics of an all solid lithium secondary battery produced using the positive electrode material obtained in Comparative Example 2. FIG. The upward curve corresponds to the charge curve, and the downward curve corresponds to the discharge curve (upper figure). The figure below shows the cycle number dependence of charge / discharge capacity and charge / discharge efficiency. The upper axis of the above figure shows the amount of Li removed / inserted.

Claims (4)

リチウム二次電池用正極材料を製造する方法であって、
(1)リチウム二次電池用正極活物質とカーボンシートとを加圧下に交互に積層させることにより接触させる工程、
(2)交互に接触させた正極活物質及びカーボンシートにパルス電流を供給し、正極活物質材料の表面にカーボンシートを付着させる工程を含む方法。
A method for producing a positive electrode material for a lithium secondary battery, comprising:
(1) a step of contacting positive electrode active materials for lithium secondary batteries and carbon sheets by alternately laminating them under pressure;
(2) A method comprising a step of supplying a pulse current to the positive electrode active material and the carbon sheet that are alternately contacted to adhere the carbon sheet to the surface of the positive electrode active material.
正極活物質が、コバルト酸リチウム及びニッケル酸リチウムからなる群から選ばれる少なくとも1種である請求項1に記載の方法。   2. The method according to claim 1, wherein the positive electrode active material is at least one selected from the group consisting of lithium cobaltate and lithium nickelate. 請求項1又は2に記載の方法により得られるリチウム二次電池用正極材料。   3. A positive electrode material for a lithium secondary battery obtained by the method according to claim 1 or 2. 請求項3に記載のリチウム二次電池用正極材料を含むリチウム二次電池。 4. A lithium secondary battery comprising the positive electrode material for a lithium secondary battery according to claim 3.
JP2003347301A 2003-10-06 2003-10-06 Positive electrode material for lithium secondary battery Expired - Lifetime JP4224583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003347301A JP4224583B2 (en) 2003-10-06 2003-10-06 Positive electrode material for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003347301A JP4224583B2 (en) 2003-10-06 2003-10-06 Positive electrode material for lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2005116273A JP2005116273A (en) 2005-04-28
JP4224583B2 true JP4224583B2 (en) 2009-02-18

Family

ID=34539926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003347301A Expired - Lifetime JP4224583B2 (en) 2003-10-06 2003-10-06 Positive electrode material for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4224583B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4997496B2 (en) * 2006-03-31 2012-08-08 独立行政法人産業技術総合研究所 Composite powder for electrode and method for producing the same
JP5190916B2 (en) * 2007-03-15 2013-04-24 独立行政法人産業技術総合研究所 Composite powder for electrode and method for producing the same
JP2010225582A (en) * 2009-02-24 2010-10-07 Idemitsu Kosan Co Ltd Electrical apparatus
JP5222313B2 (en) * 2010-02-09 2013-06-26 三菱重工業株式会社 Electrode material manufacturing equipment
DE102014208228A1 (en) * 2014-04-30 2015-11-05 Robert Bosch Gmbh Galvanic element and method for its production
JP2014239068A (en) * 2014-08-19 2014-12-18 富山県 Positive electrode for lithium battery
JP6601593B1 (en) * 2018-03-07 2019-11-06 日立金属株式会社 Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery

Also Published As

Publication number Publication date
JP2005116273A (en) 2005-04-28

Similar Documents

Publication Publication Date Title
JP4061586B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP5879761B2 (en) Lithium composite compound particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
Arumugam et al. Synthesis and electrochemical characterizations of nano-La2O3-coated nanostructure LiMn2O4 cathode materials for rechargeable lithium batteries
JP5987401B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and secondary battery
JP5897971B2 (en) Electrode active material, electrode for non-aqueous secondary battery, non-aqueous secondary battery and method for producing electrode for non-aqueous secondary battery
CN103456936A (en) Sodium ion secondary battery, and layered titanate active substance, electrode material, anode and cathode adopted by the sodium ion secondary battery, and preparation method of the layered titanate active substance
WO2011118302A1 (en) Active material for battery, and battery
CN112758989A (en) Method for producing positive electrode active material and method for producing lithium ion battery
KR20140046480A (en) Negative electrode active material and metal ion battery using same
JP2011249293A (en) Lithium transition metal compound and its manufacturing method, and lithium ion battery
Kebede et al. The electrical and electrochemical properties of graphene nanoplatelets modified 75V2O5–25P2O5 glass as a promising anode material for lithium ion battery
JP3624205B2 (en) Electrode active material for non-aqueous electrolyte secondary battery, electrode and battery including the same
JPWO2019087558A1 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, method for producing positive electrode active material for non-aqueous electrolyte secondary battery, method for evaluating lithium metal composite oxide powder
Jin et al. Improved electrochemical performance of LiNi 0.4 Ti 0.1 Mn 1.5 O 4 as cathode of lithium ion battery by carbon-coating
JP5548523B2 (en) Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery
JP4224583B2 (en) Positive electrode material for lithium secondary battery
JP2002246025A (en) Electrode active material for non-aqueous electrolyte secondary battery, and electrode and battery containing the same
JP5957536B2 (en) Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery
JPH10233212A (en) Electrode active material for nonaqueous battery
JP2021106074A (en) Negative electrode active material
KR101668929B1 (en) Secondary battery and method for producing same
JP5698929B2 (en) Positive electrode active material, positive electrode and non-aqueous secondary battery
Karthikeyan et al. Adipic Acid Assisted Sol-Gel Synthesis of Li 1+ x (Mn 0.4 Ni 0.4 Fe 0.2) 1-x O 2 (0< x< 0.3) as Cathode Materials for Lithium Ion Batteries
Andersen New Materials for Lithium-Ion Batteries
EP4449524A1 (en) Solid material comprising li, mg, p, s and halogen elements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081022

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4224583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term