JP4222097B2 - Fuel system diagnostic device for internal combustion engine - Google Patents

Fuel system diagnostic device for internal combustion engine Download PDF

Info

Publication number
JP4222097B2
JP4222097B2 JP2003134554A JP2003134554A JP4222097B2 JP 4222097 B2 JP4222097 B2 JP 4222097B2 JP 2003134554 A JP2003134554 A JP 2003134554A JP 2003134554 A JP2003134554 A JP 2003134554A JP 4222097 B2 JP4222097 B2 JP 4222097B2
Authority
JP
Japan
Prior art keywords
fuel
pressure
diagnosis
pump
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003134554A
Other languages
Japanese (ja)
Other versions
JP2004068810A (en
Inventor
一州 瀬見井
直樹 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003134554A priority Critical patent/JP4222097B2/en
Priority to EP20030013060 priority patent/EP1371836B1/en
Priority to DE60329733T priority patent/DE60329733D1/en
Publication of JP2004068810A publication Critical patent/JP2004068810A/en
Application granted granted Critical
Publication of JP4222097B2 publication Critical patent/JP4222097B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/224Diagnosis of the fuel system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/31Control of the fuel pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃料噴射弁からの要求燃料噴射量に応じて燃料ポンプの燃料吐出量を可変制御しつつ燃料吐出圧をフィードバック制御する内燃機関の燃料系における異常の有無を診断する装置に関する。
【0002】
【従来の技術】
上記のように燃料ポンプの燃料吐出量を可変制御しつつ燃料吐出圧(以下単に燃圧という)をフィードバック制御する可変容量型高圧燃料ポンプを有した燃料系として、特開平10−176587号公報に開示されたものがある。
【0003】
かかる燃料系の異常を診断する場合、燃料吐出量と燃圧との対応に基づいた従来の診断方式を採用し、燃料吐出量に対して燃圧が正常領域から外れたときに異常があると診断することができる。
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来の診断方式では、燃料ポンプからの燃料吐出量と燃料噴射弁からの燃料噴射量との流量収支で燃圧が定まるため、通常使用する流量範囲から定まる燃圧範囲が非常に広くなり、異常と診断できる燃圧範囲が非常に狭められるので、良好な診断精度が得られなかった。
【0005】
本発明は、このような従来の課題に着目してなされたもので、上記のように燃料ポンプの燃料吐出量を可変制御しつつ燃圧をフィードバック制御する燃料系を高精度に診断できる診断装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
このため、本発明は、上記のように燃料吐出圧をフィードバック制御する内燃機関の燃料系に対する異常の有無の診断において、燃料ポンプからの燃料吐出量と燃料噴射弁からの燃料噴射量との差が、要求燃料噴射量が大きいほど大きく設定される所定値以上のときに、異常があると診断する構成とした。
【0007】
このようにすれば、燃料ポンプの燃料吐出量の正常範囲と異常範囲とを弁別する判定値を、機関運転状態(要求燃料噴射量)毎に、切り分けて設定することができるので、診断精度が向上する。
また、前記所定値が、燃料噴射量が大きいほど大きく設定されることにより、容易かつ高精度な診断を行うことができる。
【0008】
【発明の実施の形態】
図1は、本発明に係る高圧燃料ポンプを備えた筒内直噴式内燃機関の燃料系システムの構成を示す。
【0009】
燃料タンク1内に配置される電動式の低圧燃料ポンプ(フィードポンプ)2より吐出された燃料は、燃料フィルタ3、低圧プレッシャレギュレータ4を経て、所定の低圧(0.3〜0.5MPa程度)に調整された後、低圧燃料通路5を通じて高圧燃料ポンプ6に圧送され、機関駆動される高圧燃料ポンプ6により高圧に加圧され、高圧燃料通路7を通じて燃料噴射弁8に供給される。前記高圧燃料通路7には、燃圧センサ9が介装され、該燃圧センサ9によって検出された燃圧信号は、コントロールユニット10に出力される。該コントロールユニット10には、この他、機関回転速度Neを検出するクランク角センサ11からの信号、気筒判別信号センサ12からの気筒判別信号、アクセル開度を検出するアクセル開度センサ13、機関の吸入空気流量Qaを検出するエアフローメータ14からの信号が入力される。
【0010】
前記高圧燃料ポンプ6は、前記コントロールユニット10からの信号により、電磁制御弁6aでポンプ本体6bからの吐出量が可変制御され、任意の高圧(3〜15MPa程度)に調整される。
【0011】
本燃料系システムにおいては、高圧燃料ポンプ6の燃料吐出量と燃料噴射弁8の燃料噴射量の流量収支で燃圧がフィードバック制御されるので、該燃圧フィードバック制御の制御因子は、高圧燃料ポンプ6の吐出量となる。目標燃圧より前記燃圧センサ9によって検出される実燃圧が低い場合は、高圧燃料ポンプ6の燃料吐出量を増やして目標燃圧となるまで燃圧を上げる方向に制御し、目標燃圧よりも実燃圧が高い場合は、逆に高圧燃料ポンプ6の燃料吐出量を減らして目標燃圧となるまで燃圧を下げる方向に制御する。
【0012】
実際は、上記高圧燃料ポンプ6の燃料吐出量、燃料噴射弁8の燃料噴射量の他に、燃料の体積弾性率、高圧燃料通路(配管)7の剛性、高圧部の容積によって、高圧系の燃圧が定まる。
【0013】
高圧燃料ポンプ6の吸入/吐出は、機関のカムシャフトに連結されているポンプ駆動カムで行われ、カム1回転につき、機関気筒数または気筒数の半分の回数で駆動される。
【0014】
高圧燃料ポンプ6の吸入行程において、燃料タンク1から圧送されてきた低圧燃料をポンプ行程容積分吸入した後、吐出行程において任意のタイミングで電磁弁6aを閉作動させてポンプ室を低圧な上流側と遮断することにより、燃料の加圧を開始して高圧燃料通路7に圧送する。
【0015】
高圧燃料ポンプ6の必要吐出量は、目標燃圧および燃料噴射量により計算され、クランク角センサ11により検出される機関回転速度、気筒判別センサ12からの気筒判別信号により検出されるポンプ駆動カム位相により、電磁制御弁6aの閉作動タイミングが制御される。
【0016】
図2は、高圧燃料ポンプ6の必要吐出量Qを算出するルーチンのフローチャートを示す。
ステップ11では、機関運転状態の各種信号を読み込む。具体的には、前記クランク角センサ11によって検出される機関回転速度Ne、エアフローメータ14によって検出される吸入空気流量Qa、燃圧センサ9によって検出される実燃圧P、アクセル開度センサ13によって検出されるアクセル開度Accその他高圧燃料ポンプ6の必要吐出量Qの算出に必要な値を読み込む。
【0017】
ステップ12では、前記アクセル開度Accなどから機関負荷(目標トルク)Tを算出する。
ステップ13では、機関回転速度Neと前記機関負荷Tとに基づいて、図3に示したマップから高圧燃料ポンプ6の目標燃圧Ptを算出する。具体的には、機関回転速度Ne、機関負荷Tが高いほど目標燃圧Ptが高圧に設定される。
【0018】
ステップ14では、機関回転速度Neと前記機関負荷Tとに基づいて、図4に示したマップから燃料噴射弁8の燃料噴射量Qiを算出する。具体的には、機関回転速度Ne、機関負荷Tが高いほど燃料噴射量Qiが大きい値に設定される。
【0019】
ステップ15では、ステップ13で算出した目標燃圧Ptと燃圧センサ9によって検出された実燃圧Pとの差Pcalを次式のように算出する。
Pcal=Pt−P
ステップ16では、上記圧力差Pcalに基づいて、高圧燃料ポンプ6の吐出量補正値Qhを次式のように算出する。
【0020】
Qh=Pcal・K
K:燃圧フィードバックゲイン(定数)
ステップ17では、機関回転速度Neと燃料噴射量Qiとに基づいて図5に示したマップから算出した高圧燃料ポンプ6の基本吐出量Qbasに、前記吐出量補正値Qhを加算して、必要吐出量Qを次式のように算出する。
【0021】
Q=Qbas+Qh
このようにして高圧燃料ポンプ6の燃料吐出量を前記必要吐出量Qとなるように可変制御しつつ燃圧をフィードバック制御する。
【0022】
さらに、前記コントロールユニット10は、上記燃料系システムの異常(故障)を精度良く診断する本発明にかかる診断を実行する。
以下に、本発明にかかる診断の実施形態を、図6に示したフローチャートに従って説明する。
【0023】
ステップ1では、診断開始条件に成立時に診断を開始する。ここで、診断開始条件について説明する。
既述のように、燃料フィードバック制御は、目標燃圧と要求燃料噴射量から計算される必要燃料供給量に対し、高圧燃料ポンプ6の燃料吐出量を可変に調整して行っている。すなわち、燃料噴射量と燃料吐出量とが1:1の場合、流量収支がバランスし、燃圧は一定に保たれる。燃圧を上げる場合は、一時的に高圧燃料ポンプ6の吐出量を増加させ、目標燃圧に到達した時点で流量収支=1:1に戻すように吐出量を制御する。燃圧を下げる場合はその逆である。
【0024】
ここで、燃圧センサ9、クランク角センサ11、気筒判別センサ12などの高圧燃料ポンプ6の燃料吐出量を計算するための信号系統の異常時や、機関始動直後の燃圧不安定状態などにおいては、正常な燃圧制御ができないため、燃圧フィードバック制御は中止される。
【0025】
よって、本発明に係る流量収支による診断開始条件としては、燃圧フィードバック制御中であることを前提とし、診断開始条件が満たされたときに、ステップ2へ進んで、流量収支による第1の診断を開始する。
【0026】
前記流量収支による第1の診断は、高圧燃料ポンプ6の燃料吐出量と燃料噴射弁8の燃料噴射量とに基づいて、図7に示すようにNG領域とOK領域とを設定したマップを参照し、NG領域とOK領域のいずれに属しているかを判別することにより行う。ここで、NG領域とOK領域とは、流量収支による第1の診断が可能なように、通常の燃料吐出量の増減範囲で、実燃圧を目標燃圧へ収束させて要求燃料噴射量を確保できる場合にOK領域とし、そうでない場合にNG領域とするように、部品バラツキ、性能劣化、環境条件変化(燃料性状、燃料温度など)を考慮して決定される。
【0027】
ステップ3では、ステップ2での第1の診断によりNG領域に属しているかを判定し、NG領域に属していると判定された場合は、ステップ4で第1の診断が異常であると診断を下した後、ステップ6へ進む。
【0028】
また、ステップ3で第1の診断によるNG領域に属しておらずOK領域に属していると判定された場合は、ステップ5で高圧燃料ポンプ6の燃料吐出量が最小値MINまたは最大値MAXに張り付いたかを判定し、いずれの張り付きもないと判定された場合は、現在の状態は第1の診断結果が正常(OK)、つまり、燃料系は正常であるので、ステップ2に戻って運転状態の変化に備えて第1の診断を継続する。
【0029】
ステップ5で高圧燃料ポンプ6の燃料吐出量が最小値MINまたは最大値MAXに張り付いていると判定された場合は、ステップ6へ進む。
ステップ6では、燃圧による第2の診断を開始する。具体的には、目標燃圧と実燃圧とを比較し、両者の偏差(絶対値)に基づいて診断する。
【0030】
すなわち、ステップ7で、目標燃圧Ptと実燃圧Pとの偏差(絶対値)が所定値ΔP以上あるかを判定する。ここで、該判定用の所定値ΔPは、前記燃料吐出圧の可変制御における不感帯幅より大きい値に設定され、具体的には、±0.3〜0.5MPa程度に設定される。
【0031】
そして、偏差が所定値ΔP未満と判定されたときは、ステップ2に戻って、第1の診断を継続し、偏差が所定値ΔP以上と判定されたときは、ステップ8へ進んで、上記偏差が所定値ΔP以上の状態が所定時間T以上継続したかを判定する。
【0032】
ステップ8で、所定値ΔP以上の状態が所定時間T以上継続していないときは、ステップ7へ戻って第2の診断を継続し、所定時間T以上継続したと判定されたときは、ステップ9へ進んで、燃圧による第2の診断結果が異常(NG)であると確定してこのフローを終了する。
【0033】
ここで、ステップ3からステップ4を経た後、ステップ9に至った場合、つまり、第1の診断結果が異常(NG)であって第2の診断結果も異常(NG)である場合は、高圧燃料ポンプ6の流量制御では、燃圧を目標値に収束できない場合であるから、レベルが大きい異常を有していると診断することができる。これに対し、第1の診断結果が異常(NG)であるが第2の診断結果は異常(NG)と判定されていない状態は、正常範囲の流量制御では燃圧を目標値に収束させることができないが、正常範囲から外れた流量制御によって燃圧を目標値に収束させることができる相対的にレベルが小さい異常を有していると診断される。
【0034】
一方、ステップ5を経て、ステップ9に至った場合、つまり、高圧燃料ポンプ6の燃料吐出量が最小値MINまたは最大値MAXに張り付いたときに、第2の診断結果が異常(NG)と判定された場合は、流量収支による第1の診断では、診断できないので、燃圧による第2の診断を行い、その結果、異常(NG)と判定された場合である。この場合は、現状の最小値MINまたは最大値MAXに張り付いた状態で、燃圧を目標燃圧に収束させることはできないが、要求燃料噴射量が中間値である運転状態に移行した場合は、目標燃圧に収束することができるか否かは不明である。つまり、異常の程度の判別は行えないが、少なくとも正常範囲の流量制御では燃圧を目標値に収束させることができない異常を有していると診断することができる。
【0036】
上記実施形態の効果をまとめて以下に列挙する。
燃料噴射弁8からの要求燃料噴射量に応じて高圧燃料ポンプ6の燃料吐出量を可変制御しつつ燃料吐出圧をフィードバック制御する内燃機関の燃料系に対し、前記燃料ポンプ6の燃料吐出量と燃料噴射弁8からの燃料噴射量とに基づいて異常の有無を診断する第1の診断を行う構成としたことにより、診断の判定値(NG領域)を運転状態(要求燃料噴射量)毎に、切り分けて設定することができるので、診断精度が向上する。
【0037】
具体的には、前記第1の診断を、図7に示すようにNG領域とOK領域とを設定して、高圧燃料ポンプ6からの燃料吐出量と燃料噴射弁8からの燃料噴射量との差が、所定値以上のときに燃料系に異常があると診断するように構成することにより、容易に第1の診断を行うことができる。
【0038】
また、同じく図7に示すようにNG領域とOK領域との割合(OK領域の幅)を運転状態(要求燃料噴射量)毎に異ならせて設定し、前記第1診断における判定用の所定値が、機関の運転状態(要求燃料噴射量)に応じて可変に設定されるように構成したことにより、容易かつ高精度な診断を行うことができる。
【0039】
また前記高圧燃料ポンプの制御値が上限近傍または下限近傍に維持されたとき(前記燃料吐出量が最小値MINまたは最大値MAXに張り付いたとき)は、前記第1の診断と相違する第2の診断によって前記燃料系の異常の有無を診断する構成としたことにより、第1の診断では診断できない状態で第2の診断に切り換えて診断することができ、診断可能を領域を広げることができる。
【0040】
また、前記第2の診断を、実燃料圧力と目標燃料圧力との差が所定値(ΔP)以上のときに燃料系に異常があると診断する構成としたことにより、高圧燃料ポンプの制御値が上限近傍または下限近傍に維持されたときは、前記燃料噴射量と燃料吐出量とに基づく第1の診断では異常があってもが正常と診断されてしまうが、第2の診断では、異常時には実燃料圧力と目標燃料圧力との差が所定値(ΔP)以上となって、正しく異常有りと診断することができる。
【0041】
また、前記第2の診断の所定値(ΔP)は、前記燃料吐出圧の可変制御における不感帯幅より大きい値に設定するように構成したことにより、確実に異常を診断することができ、また、不感帯幅より大きい程度の大きさ(±0.3〜0.5MPa)に設定すればよいので、従来の燃料ポンプの燃料吐出量と燃料吐出圧とで診断する場合の燃料吐出圧の判定値(±5MPa程度)に比較して十分小さいな判定値でよく、拡大された診断領域においても高い診断精度が得られる。
【0042】
また、前記第2の診断を、異常状態を所定時間T以上検出しつづけたときに、異常があると診断する構成としたことにより、過渡的な燃圧変動による誤診断を防止でき、信頼性の高い診断を行うことができる。
【図面の簡単な説明】
【図1】本発明の実施形態の燃料系システムを示す図。
【図2】同上実施形態の高圧燃料ポンプの必要吐出量を算出するルーチンのフローチャート。
【図3】同上の高圧燃料ポンプの目標燃圧を算出するためのマップ。
【図4】同上実施形態の燃料噴射弁の燃料噴射量を算出するためのマップ。
【図5】同上の高圧燃料ポンプの基本吐出量を算出するためのマップ。
【図6】同上実施形態の異常診断のフローチャート。
【図7】上記異常診断に用いる第1の診断用のマップ。
【符号の説明】
6…高圧燃料ポンプ 7…高圧燃料通路 8…燃料噴射弁 9…燃料センサ 10…コントロールユニット 11…クランク角センサ 12気筒判別センサ 13…アクセル開度センサ 14…エアフローメータ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for diagnosing the presence or absence of an abnormality in a fuel system of an internal combustion engine that performs feedback control of fuel discharge pressure while variably controlling the fuel discharge amount of a fuel pump according to a required fuel injection amount from a fuel injection valve.
[0002]
[Prior art]
Japanese Laid-Open Patent Publication No. 10-176589 discloses a fuel system having a variable displacement high-pressure fuel pump that feedback-controls fuel discharge pressure (hereinafter simply referred to as fuel pressure) while variably controlling the fuel discharge amount of the fuel pump as described above. There is something that was done.
[0003]
When diagnosing such an abnormality in the fuel system, a conventional diagnosis method based on the correspondence between the fuel discharge amount and the fuel pressure is adopted, and it is diagnosed that there is an abnormality when the fuel pressure deviates from the normal range with respect to the fuel discharge amount. be able to.
[0004]
[Problems to be solved by the invention]
However, in the above conventional diagnostic method, the fuel pressure is determined by the flow rate balance between the fuel discharge amount from the fuel pump and the fuel injection amount from the fuel injection valve, so the fuel pressure range determined from the normal flow range is very wide, Since the fuel pressure range that can be diagnosed as abnormal is very narrow, good diagnostic accuracy could not be obtained.
[0005]
The present invention has been made paying attention to such a conventional problem, and as described above, a diagnostic apparatus capable of highly accurately diagnosing a fuel system that feedback controls the fuel pressure while variably controlling the fuel discharge amount of the fuel pump. The purpose is to provide.
[0006]
[Means for Solving the Problems]
For this reason, the present invention provides a difference between the fuel discharge amount from the fuel pump and the fuel injection amount from the fuel injection valve in the diagnosis of the presence or absence of abnormality in the fuel system of the internal combustion engine that feedback-controls the fuel discharge pressure as described above. However, when the required fuel injection amount is larger, the configuration is such that an abnormality is diagnosed when the predetermined fuel injection amount is greater than a predetermined value .
[0007]
In this way, the determination value for discriminating between the normal range and the abnormal range of the fuel discharge amount of the fuel pump can be set separately for each engine operating state (required fuel injection amount). improves.
In addition, since the predetermined value is set larger as the fuel injection amount is larger, an easy and highly accurate diagnosis can be performed.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows the configuration of a fuel system of a direct injection type internal combustion engine equipped with a high-pressure fuel pump according to the present invention.
[0009]
The fuel discharged from the electric low-pressure fuel pump (feed pump) 2 disposed in the fuel tank 1 passes through the fuel filter 3 and the low-pressure pressure regulator 4 to a predetermined low pressure (about 0.3 to 0.5 MPa). Then, the pressure is fed to the high-pressure fuel pump 6 through the low-pressure fuel passage 5, pressurized to a high pressure by the engine-driven high-pressure fuel pump 6, and supplied to the fuel injection valve 8 through the high-pressure fuel passage 7. A fuel pressure sensor 9 is interposed in the high pressure fuel passage 7, and a fuel pressure signal detected by the fuel pressure sensor 9 is output to the control unit 10. In addition to this, the control unit 10 includes a signal from the crank angle sensor 11 that detects the engine rotational speed Ne, a cylinder discrimination signal from the cylinder discrimination signal sensor 12, an accelerator opening sensor 13 that detects the accelerator opening, A signal from the air flow meter 14 for detecting the intake air flow rate Qa is input.
[0010]
In the high-pressure fuel pump 6, the discharge amount from the pump body 6 b is variably controlled by the electromagnetic control valve 6 a according to a signal from the control unit 10, and is adjusted to an arbitrary high pressure (about 3 to 15 MPa).
[0011]
In this fuel system, the fuel pressure is feedback-controlled by the flow rate balance between the fuel discharge amount of the high-pressure fuel pump 6 and the fuel injection amount of the fuel injection valve 8, so the control factor of the fuel pressure feedback control is that of the high-pressure fuel pump 6. Discharge amount. When the actual fuel pressure detected by the fuel pressure sensor 9 is lower than the target fuel pressure, the fuel pressure of the high-pressure fuel pump 6 is increased so that the fuel pressure is increased until the target fuel pressure is reached, and the actual fuel pressure is higher than the target fuel pressure. In this case, conversely, the fuel discharge amount of the high-pressure fuel pump 6 is reduced and the fuel pressure is controlled to decrease until the target fuel pressure is reached.
[0012]
Actually, in addition to the fuel discharge amount of the high-pressure fuel pump 6 and the fuel injection amount of the fuel injection valve 8, the fuel pressure of the high-pressure system depends on the volume elastic modulus of the fuel, the rigidity of the high-pressure fuel passage (pipe) 7, and the volume of the high-pressure portion. Is determined.
[0013]
The suction / discharge of the high-pressure fuel pump 6 is performed by a pump drive cam connected to the camshaft of the engine, and is driven by the number of engine cylinders or half the number of cylinders per one rotation of the cam.
[0014]
In the intake stroke of the high-pressure fuel pump 6, the low-pressure fuel pumped from the fuel tank 1 is sucked in by the pump stroke volume, and then the electromagnetic valve 6 a is closed at an arbitrary timing in the discharge stroke so that the pump chamber is opened at a low pressure upstream side. Is cut off to start pressurizing the fuel and pump it to the high-pressure fuel passage 7.
[0015]
The required discharge amount of the high-pressure fuel pump 6 is calculated based on the target fuel pressure and the fuel injection amount, and the engine rotational speed detected by the crank angle sensor 11 and the pump drive cam phase detected by the cylinder discrimination signal from the cylinder discrimination sensor 12. The closing operation timing of the electromagnetic control valve 6a is controlled.
[0016]
FIG. 2 shows a flowchart of a routine for calculating the required discharge amount Q of the high-pressure fuel pump 6.
In step 11, various signals of the engine operating state are read. Specifically, the engine rotational speed Ne detected by the crank angle sensor 11, the intake air flow rate Qa detected by the air flow meter 14, the actual fuel pressure P detected by the fuel pressure sensor 9, and the accelerator opening sensor 13 are detected. The accelerator opening Acc and other values necessary for calculating the required discharge amount Q of the high-pressure fuel pump 6 are read.
[0017]
In step 12, an engine load (target torque) T is calculated from the accelerator opening Acc or the like.
In step 13, the target fuel pressure Pt of the high-pressure fuel pump 6 is calculated from the map shown in FIG. 3 based on the engine speed Ne and the engine load T. Specifically, the higher the engine speed Ne and the engine load T, the higher the target fuel pressure Pt is set.
[0018]
In step 14, the fuel injection amount Qi of the fuel injection valve 8 is calculated from the map shown in FIG. 4 based on the engine speed Ne and the engine load T. Specifically, the fuel injection amount Qi is set to a larger value as the engine speed Ne and the engine load T are higher.
[0019]
In step 15, the difference Pcal between the target fuel pressure Pt calculated in step 13 and the actual fuel pressure P detected by the fuel pressure sensor 9 is calculated as follows:
Pcal = Pt−P
In step 16, the discharge amount correction value Qh of the high-pressure fuel pump 6 is calculated as follows based on the pressure difference Pcal.
[0020]
Qh = Pcal · K
K: Fuel pressure feedback gain (constant)
In step 17, the discharge amount correction value Qh is added to the basic discharge amount Qbas of the high-pressure fuel pump 6 calculated from the map shown in FIG. 5 based on the engine speed Ne and the fuel injection amount Qi, and the required discharge is obtained. The quantity Q is calculated as follows:
[0021]
Q = Qbas + Qh
In this way, the fuel pressure is feedback-controlled while the fuel discharge amount of the high-pressure fuel pump 6 is variably controlled so as to be the required discharge amount Q.
[0022]
Further, the control unit 10 executes diagnosis according to the present invention for accurately diagnosing abnormality (failure) of the fuel system.
Hereinafter, a diagnosis embodiment according to the present invention will be described with reference to the flowchart shown in FIG.
[0023]
In step 1, diagnosis is started when the diagnosis start condition is satisfied. Here, the diagnosis start condition will be described.
As described above, the fuel feedback control is performed by variably adjusting the fuel discharge amount of the high-pressure fuel pump 6 with respect to the required fuel supply amount calculated from the target fuel pressure and the required fuel injection amount. That is, when the fuel injection amount and the fuel discharge amount are 1: 1, the flow rate balance is balanced and the fuel pressure is kept constant. When increasing the fuel pressure, the discharge amount of the high-pressure fuel pump 6 is temporarily increased, and the discharge amount is controlled to return to the flow rate balance = 1: 1 when the target fuel pressure is reached. The opposite is true when lowering fuel pressure.
[0024]
Here, when the signal system for calculating the fuel discharge amount of the high-pressure fuel pump 6 such as the fuel pressure sensor 9, the crank angle sensor 11 and the cylinder discrimination sensor 12 is abnormal, or when the fuel pressure is unstable immediately after the engine is started, Since normal fuel pressure control cannot be performed, fuel pressure feedback control is stopped.
[0025]
Therefore, the diagnosis start condition based on the flow rate balance according to the present invention is based on the premise that the fuel pressure feedback control is being performed, and when the diagnosis start condition is satisfied, the process proceeds to step 2 to perform the first diagnosis based on the flow rate balance. Start.
[0026]
The first diagnosis based on the flow rate balance refers to a map in which an NG region and an OK region are set as shown in FIG. 7 based on the fuel discharge amount of the high-pressure fuel pump 6 and the fuel injection amount of the fuel injection valve 8. The determination is made by determining which of the NG area and the OK area it belongs to. Here, the NG region and the OK region can ensure the required fuel injection amount by converging the actual fuel pressure to the target fuel pressure within a normal fuel discharge amount increase / decrease range so that the first diagnosis based on the flow rate balance is possible. In some cases, the OK region is determined, and in other cases, the NG region is determined in consideration of component variations, performance deterioration, and environmental condition changes (fuel properties, fuel temperature, etc.).
[0027]
In step 3, it is determined whether or not it belongs to the NG area by the first diagnosis in step 2, and if it is determined that it belongs to the NG area, the diagnosis that the first diagnosis is abnormal in step 4 is made. Go to step 6.
[0028]
Further, if it is determined in step 3 that the fuel does not belong to the NG region in the first diagnosis but belongs to the OK region, the fuel discharge amount of the high-pressure fuel pump 6 is reduced to the minimum value MIN or the maximum value MAX in step 5. If it is determined that there is no sticking, the current state is that the first diagnosis result is normal (OK), that is, the fuel system is normal. The first diagnosis is continued in preparation for a change in state.
[0029]
If it is determined in step 5 that the fuel discharge amount of the high-pressure fuel pump 6 is stuck to the minimum value MIN or the maximum value MAX, the process proceeds to step 6.
In step 6, the second diagnosis based on the fuel pressure is started. Specifically, the target fuel pressure and the actual fuel pressure are compared, and the diagnosis is made based on the deviation (absolute value) between the two.
[0030]
That is, in step 7, it is determined whether the deviation (absolute value) between the target fuel pressure Pt and the actual fuel pressure P is greater than or equal to a predetermined value ΔP. Here, the predetermined value ΔP for determination is set to a value larger than the dead band width in the variable control of the fuel discharge pressure, specifically, set to about ± 0.3 to 0.5 MPa.
[0031]
When the deviation is determined to be less than the predetermined value ΔP, the process returns to step 2 to continue the first diagnosis. When the deviation is determined to be equal to or larger than the predetermined value ΔP, the process proceeds to step 8 and the deviation is It is determined whether or not the state of more than a predetermined value ΔP has continued for a predetermined time T or longer.
[0032]
If it is determined in step 8 that the state equal to or greater than the predetermined value ΔP has not continued for the predetermined time T or longer, the process returns to step 7 to continue the second diagnosis. The process proceeds to, and it is determined that the second diagnosis result by the fuel pressure is abnormal (NG), and this flow is terminated.
[0033]
Here, when the process reaches step 9 after passing from step 3 to step 4, that is, when the first diagnosis result is abnormal (NG) and the second diagnosis result is also abnormal (NG), the high pressure In the flow control of the fuel pump 6, since the fuel pressure cannot be converged to the target value, it can be diagnosed that the abnormality has a large level. On the other hand, when the first diagnostic result is abnormal (NG) but the second diagnostic result is not determined to be abnormal (NG), the fuel pressure can be converged to the target value in the normal range flow rate control. Although it is not possible, it is diagnosed that there is an abnormality having a relatively small level that can converge the fuel pressure to the target value by the flow rate control outside the normal range.
[0034]
On the other hand, when step 9 is reached after step 5, that is, when the fuel discharge amount of the high-pressure fuel pump 6 sticks to the minimum value MIN or the maximum value MAX, the second diagnosis result is abnormal (NG). If it is determined, the first diagnosis based on the flow rate balance cannot be diagnosed, so the second diagnosis based on the fuel pressure is performed, and as a result, it is determined that there is an abnormality (NG). In this case, the fuel pressure cannot be converged to the target fuel pressure while sticking to the current minimum value MIN or maximum value MAX, but if the required fuel injection amount shifts to an intermediate operation state, It is unknown whether the fuel pressure can be converged. That is, although the degree of abnormality cannot be determined, it can be diagnosed that there is an abnormality in which the fuel pressure cannot be converged to the target value at least in the normal range flow rate control.
[0036]
The effects of the above embodiment are listed below.
For the fuel system of the internal combustion engine that feedback-controls the fuel discharge pressure while variably controlling the fuel discharge amount of the high-pressure fuel pump 6 according to the required fuel injection amount from the fuel injection valve 8, the fuel discharge amount of the fuel pump 6 and Since the first diagnosis for diagnosing the presence or absence of abnormality based on the fuel injection amount from the fuel injection valve 8 is performed, the diagnosis determination value (NG region) is set for each operating state (requested fuel injection amount). Since it can be set separately, diagnostic accuracy is improved.
[0037]
Specifically, in the first diagnosis, as shown in FIG. 7, an NG region and an OK region are set, and the fuel discharge amount from the high-pressure fuel pump 6 and the fuel injection amount from the fuel injection valve 8 are set. By configuring so as to diagnose that there is an abnormality in the fuel system when the difference is equal to or greater than a predetermined value, the first diagnosis can be easily performed.
[0038]
Similarly, as shown in FIG. 7, the ratio between the NG region and the OK region (width of the OK region) is set differently for each operation state (required fuel injection amount), and a predetermined value for determination in the first diagnosis However, since it is configured to be variably set according to the operating state (required fuel injection amount) of the engine, an easy and highly accurate diagnosis can be performed.
[0039]
Further, when the control value of the high-pressure fuel pump is maintained near the upper limit or near the lower limit (when the fuel discharge amount sticks to the minimum value MIN or the maximum value MAX), the second diagnosis is different from the first diagnosis. With this configuration, the presence or absence of abnormality in the fuel system can be diagnosed, so that the diagnosis can be switched to the second diagnosis in a state that cannot be diagnosed by the first diagnosis, and the diagnosis can be expanded. .
[0040]
Further, since the second diagnosis is configured to diagnose that there is an abnormality in the fuel system when the difference between the actual fuel pressure and the target fuel pressure is equal to or greater than a predetermined value (ΔP), the control value of the high-pressure fuel pump is determined. Is maintained near the upper limit or near the lower limit, the first diagnosis based on the fuel injection amount and the fuel discharge amount is diagnosed as normal even though there is an abnormality. Sometimes, the difference between the actual fuel pressure and the target fuel pressure becomes equal to or greater than a predetermined value (ΔP), and it can be correctly diagnosed that there is an abnormality.
[0041]
Further, the predetermined value (ΔP) of the second diagnosis is set to a value larger than the dead zone width in the variable control of the fuel discharge pressure, so that an abnormality can be reliably diagnosed. Since it may be set to a size larger than the dead zone width (± 0.3 to 0.5 MPa), the determination value of the fuel discharge pressure when diagnosing with the fuel discharge amount and the fuel discharge pressure of the conventional fuel pump ( The judgment value may be sufficiently smaller than that of about ± 5 MPa, and high diagnostic accuracy can be obtained even in an enlarged diagnostic region.
[0042]
In addition, since the second diagnosis is configured to diagnose that there is an abnormality when an abnormal state is detected for a predetermined time T or longer, a misdiagnosis due to a transient fuel pressure fluctuation can be prevented, and reliability can be improved. High diagnosis can be made.
[Brief description of the drawings]
FIG. 1 is a diagram showing a fuel system according to an embodiment of the present invention.
FIG. 2 is a flowchart of a routine for calculating a required discharge amount of the high-pressure fuel pump according to the embodiment.
FIG. 3 is a map for calculating a target fuel pressure of the high-pressure fuel pump same as above.
FIG. 4 is a map for calculating a fuel injection amount of the fuel injection valve according to the embodiment;
FIG. 5 is a map for calculating a basic discharge amount of the high-pressure fuel pump same as above.
FIG. 6 is a flowchart of abnormality diagnosis according to the embodiment.
FIG. 7 is a first diagnosis map used for the abnormality diagnosis.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 6 ... High pressure fuel pump 7 ... High pressure fuel passage 8 ... Fuel injection valve 9 ... Fuel sensor 10 ... Control unit 11 ... Crank angle sensor 12 cylinder discrimination sensor 13 ... Accelerator opening sensor 14 ... Air flow meter

Claims (2)

燃料噴射弁からの要求燃料噴射量に応じて燃料ポンプの燃料吐出量を可変制御しつつ燃料吐出圧をフィードバック制御する内燃機関の燃料系において、
前記燃料ポンプからの燃料吐出量と燃料噴射弁からの燃料噴射量との差が、前記燃料噴射量が大きいほど大きく設定される所定値以上のときに、前記燃料系に対して異常があると診断する第1の診断を行い、
前記第1の診断により異常があると診断されなかった場合でも、前記燃料ポンプの制御値が上限近傍または下限近傍に維持された場合には、実燃料圧力と目標燃料圧力との差が所定値以上となる状態が所定時間以上継続したときに燃料系に異常があると診断する第2の診断を行うことを特徴とする内燃機関の燃料系診断装置。
In a fuel system of an internal combustion engine that feedback controls the fuel discharge pressure while variably controlling the fuel discharge amount of the fuel pump according to the required fuel injection amount from the fuel injection valve,
When the difference between the fuel discharge amount from the fuel pump and the fuel injection amount from the fuel injection valve is greater than a predetermined value that is set to be larger as the fuel injection amount is larger, the fuel system is abnormal. There the first row of the diagnosis of the diagnosis,
Even when the abnormality is not diagnosed by the first diagnosis, if the control value of the fuel pump is maintained near the upper limit or the lower limit, the difference between the actual fuel pressure and the target fuel pressure is a predetermined value. A fuel system diagnostic apparatus for an internal combustion engine, which performs a second diagnosis for diagnosing that the fuel system is abnormal when the above state continues for a predetermined time or more .
前記第2の診断の所定値は、前記燃料吐出圧の可変制御における不感帯幅より大きい値に設定されることを特徴とする請求項に記載の内燃機関の燃料系診断装置。Wherein the predetermined value of the second diagnosis, fuel system diagnostic apparatus for an internal combustion engine according to claim 1, characterized in that it is set in the dead zone width greater than the variable control of the fuel discharge pressure.
JP2003134554A 2002-06-10 2003-05-13 Fuel system diagnostic device for internal combustion engine Expired - Fee Related JP4222097B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003134554A JP4222097B2 (en) 2002-06-10 2003-05-13 Fuel system diagnostic device for internal combustion engine
EP20030013060 EP1371836B1 (en) 2002-06-10 2003-06-10 Fuel supply control system for internal combustion engine
DE60329733T DE60329733D1 (en) 2002-06-10 2003-06-10 System for fuel supply in an internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002169008 2002-06-10
JP2003134554A JP4222097B2 (en) 2002-06-10 2003-05-13 Fuel system diagnostic device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2004068810A JP2004068810A (en) 2004-03-04
JP4222097B2 true JP4222097B2 (en) 2009-02-12

Family

ID=29586046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003134554A Expired - Fee Related JP4222097B2 (en) 2002-06-10 2003-05-13 Fuel system diagnostic device for internal combustion engine

Country Status (3)

Country Link
EP (1) EP1371836B1 (en)
JP (1) JP4222097B2 (en)
DE (1) DE60329733D1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4539503B2 (en) * 2005-09-06 2010-09-08 スズキ株式会社 Failure diagnosis device for high pressure fuel system of engine
JP4492508B2 (en) * 2005-09-29 2010-06-30 株式会社デンソー Fuel injection control device
KR100749241B1 (en) 2006-06-30 2007-08-13 지멘스 오토모티브 주식회사 Apparatus and method for diagnosing error of fuel supplying apparatus for lpi car
WO2008002100A1 (en) * 2006-06-30 2008-01-03 Siemens Automotive Systems Co., Ltd. Method and apparatus for diagonsising fuel supply apparatus lpg car having lpi system
JP5088609B2 (en) * 2007-05-28 2012-12-05 トヨタ自動車株式会社 Fuel cell system
DE102008024956B4 (en) 2008-05-23 2011-02-10 Continental Automotive Gmbh Method for checking a pressure sensor of a fuel storage device
JP5059894B2 (en) * 2010-03-19 2012-10-31 日立オートモティブシステムズ株式会社 Fuel pump control device
DE102011004378B4 (en) * 2011-02-18 2013-08-08 Continental Automotive Gmbh Method for checking the function of a storage injection system
JP5798796B2 (en) * 2011-05-25 2015-10-21 日立オートモティブシステムズ株式会社 Engine control device
CN102817733B (en) * 2012-09-11 2015-06-17 潍柴动力股份有限公司 Control method and device for oil injection speed of orifice in wearing conditions
JP5988031B2 (en) * 2012-11-05 2016-09-07 三菱自動車工業株式会社 Abnormality judgment device for high-pressure pump
JP7091757B2 (en) 2018-03-22 2022-06-28 いすゞ自動車株式会社 Abnormality diagnosis device and abnormality diagnosis method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19534051A1 (en) * 1995-09-14 1997-03-20 Bosch Gmbh Robert Method of operating a fuel injector
US5720260A (en) 1996-12-13 1998-02-24 Ford Global Technologies, Inc. Method and system for controlling combustion stability for lean-burn engines
JP3680515B2 (en) * 1997-08-28 2005-08-10 日産自動車株式会社 Fuel system diagnostic device for internal combustion engine
EP1030047B1 (en) * 1999-02-15 2010-11-17 Toyota Jidosha Kabushiki Kaisha Fuel pressure control device and method for high pressure fuel injection system
DE19928548A1 (en) * 1999-06-22 2001-01-04 Hydraulik Ring Gmbh Detection of a leak in a vehicle fuel injection system by comparison of the fuel volume taken from the tank with the volume delivered by the injection system or by comparison of measured pressure with a theoretical pressure
US6715468B2 (en) * 2001-11-07 2004-04-06 Denso Corporation Fuel injection system

Also Published As

Publication number Publication date
EP1371836A2 (en) 2003-12-17
EP1371836B1 (en) 2009-10-21
JP2004068810A (en) 2004-03-04
DE60329733D1 (en) 2009-12-03
EP1371836A3 (en) 2006-05-17

Similar Documents

Publication Publication Date Title
JP4657140B2 (en) Engine fuel supply system
JP3000675B2 (en) Fuel supply device for internal combustion engine
JP4088627B2 (en) Fuel pressure control device for internal combustion engine
US7143747B2 (en) Common rail fuel injection system
JP4222097B2 (en) Fuel system diagnostic device for internal combustion engine
US7431018B2 (en) Fuel injection system monitoring abnormal pressure in inlet of fuel pump
JP4240673B2 (en) Fuel injection device
US7527035B2 (en) Fuel supply system, especially for an internal combustion engine
JPH09126038A (en) Fuel property detecting device and control device of diesel engine
US20090082939A1 (en) Control Apparatus for Cylinder Injection Internal Combustion Engine with High-Pressure Fuel Pump
US6928360B2 (en) Method and arrangement for monitoring an air-mass measuring device
US20090188307A1 (en) Abnormality determination apparatus for intake amount control mechanism
JP3540095B2 (en) Abnormality judgment device in diesel engine injection timing control device
JP2002227727A (en) Abnormality detecting device of exhaust gas recirculation device
JP4457510B2 (en) Abnormality detector for exhaust gas recirculation system
JP2002106446A (en) Driving method for fuel metering system of direct injection internal combustion engine, fuel metering system for direct injection internal combustion engine, direct injection internal combustion engine, control device for direct injection internal combustion engine and adjusting element of control device for direct injection internal combustion engine
JP3635393B2 (en) Fuel injection pressure control device for internal combustion engine
JP2007040265A (en) Fuel injection device manufacturing method
JPH1054317A (en) Fuel supply device
JP4300582B2 (en) Fuel supply device
JP2011163138A (en) Reference timing calculation device of high-pressure fuel pump
JP4165266B2 (en) Fuel system control device for internal combustion engine
JP5556572B2 (en) Fuel pressure sensor diagnostic device
JP2006291814A (en) Abnormality determining device for turbocharger
JP4457522B2 (en) Fuel injection control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080327

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080828

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees