JP4221501B2 - Aerosol charge neutralizer - Google Patents

Aerosol charge neutralizer Download PDF

Info

Publication number
JP4221501B2
JP4221501B2 JP2003341192A JP2003341192A JP4221501B2 JP 4221501 B2 JP4221501 B2 JP 4221501B2 JP 2003341192 A JP2003341192 A JP 2003341192A JP 2003341192 A JP2003341192 A JP 2003341192A JP 4221501 B2 JP4221501 B2 JP 4221501B2
Authority
JP
Japan
Prior art keywords
aerosol
discharge
alternating current
particles
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003341192A
Other languages
Japanese (ja)
Other versions
JP2005106670A (en
Inventor
博 桜井
瀬戸章文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003341192A priority Critical patent/JP4221501B2/en
Publication of JP2005106670A publication Critical patent/JP2005106670A/en
Application granted granted Critical
Publication of JP4221501B2 publication Critical patent/JP4221501B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、エアロゾルの荷電分布を中和化する技術に関するもので、エアロゾル中の粒子の粒径分布測定において、既知の荷電分布量を簡便に実現するために利用されるものである。 The present invention relates to a technique for neutralizing the charge distribution of an aerosol, and is used to easily realize a known charge distribution amount in the particle size distribution measurement of particles in an aerosol.

エアロゾルの構成粒子の荷電量は一般に分布を持つが、その分布の平均をほぼゼロ(無荷電)にする中和化技術は、電気移動度分級によるエアロゾル粒子の粒径分布計測で重要な技術として広く用いられている。中和技術を用いた電気移動度分布測定は、従来から詳細に議論されており(非特許文献1参照)、また、これまでに米国TSI社を含め複数の製造業者により商品化されている。こうした測定装置は、微粒子を用いる製造プロセス中の粒子粒径分布や、大気エアロゾルや自動車排ガス中の微粒子の粒径分布の測定など幅広く用いられている。   The amount of charge of aerosol constituent particles generally has a distribution, but neutralization technology that makes the average of the distribution almost zero (uncharged) is an important technique for measuring the particle size distribution of aerosol particles by electromobility classification. Widely used. Electric mobility distribution measurement using a neutralization technique has been discussed in detail (see Non-Patent Document 1) and has been commercialized by a number of manufacturers including US TSI. Such a measuring apparatus is widely used for measuring particle size distribution during a manufacturing process using fine particles, particle size distribution of fine particles in atmospheric aerosol or automobile exhaust gas, and the like.

中和荷電分布状態のエアロゾルは、その構成粒子のほとんどが無帯電であるが、同時に一部の粒子は正か負の電荷を一価、あるいは多価帯びて存在する。それぞれの価数の粒子数は正負ほぼ同数であり、荷電価数を横軸にとり、それぞれの荷電価数の粒子の存在頻度を縦軸にとった頻度分布は、ゼロを最頻値とした正負対称の分布となる。この様な荷電分布状態を中和状態と称する。中和状態では、こうした荷電数と荷電・無荷電率の分布が粒径毎にわかっているので、電気移動度法により測定された荷電粒子の粒径分布から、無帯電粒子をも含めた全粒子の粒径分布を換算し、正確に求めることができる。   The aerosol in the neutralized charge distribution state is almost uncharged, but at the same time, some of the particles are positively or negatively charged with a monovalent or multivalent charge. The number of particles of each valence is approximately the same number, the frequency distribution with the charged valence on the horizontal axis and the existence frequency of each charged valence on the vertical axis is positive and negative with zero as the mode value. Symmetric distribution. Such a charge distribution state is referred to as a neutralized state. In the neutralized state, since the distribution of the number of charges and the charge / uncharge rate are known for each particle size, the particle size distribution of the charged particles measured by the electromobility method can be used to determine the total number including uncharged particles. The particle size distribution of the particles can be converted and obtained accurately.

エアロゾル粒子の中和化には、放射性物質を用いた装置がもっとも頻繁に利用されている。このような中和装置は例えば非特許文献1に詳しく述べられており、その構成の一例を図2に記す。この装置内では、放射性物質24から放出される高エネルギー粒子が気体分子と衝突し、多量のイオンを正負ほぼ同数発生させる。このようにして発生した両極イオンがブラウン運動する過程で浮遊粒子に付着し、粒子の荷電量を変化させる。正と負のイオンがほぼ同数存在する状況における荷電粒子へのイオンの付着確率は、粒子の持つ電荷と反対の極性を持つイオンの付着確率が、粒子と同じ極性をもつイオンの付着確率を上回るので、その結果、両極イオンと粒子の間の付着反応は、大多数の粒子を無帯電状態化する。しかしながら、一部の粒子は正か負の一価に帯電し、さらに少数の粒子は正または負の多価に帯電し、粒子全体としては上記の中和荷電状態に至る。   For neutralization of aerosol particles, a device using a radioactive substance is most frequently used. Such a neutralization apparatus is described in detail in, for example, Non-Patent Document 1, and an example of the configuration is shown in FIG. In this apparatus, high-energy particles emitted from the radioactive substance 24 collide with gas molecules, and a large number of ions are generated in almost the same number. The bipolar ions generated in this way adhere to the suspended particles in the process of Brownian motion and change the charge amount of the particles. In the situation where there are almost the same number of positive and negative ions, the probability of attachment of ions to charged particles is greater than the probability of attachment of ions having the opposite polarity to the charge of the particles. As a result, the adhesion reaction between the bipolar ions and the particles renders the majority of the particles uncharged. However, some particles are charged positively or negatively monovalently, and a small number of particles are charged positively or negatively multivalently, and the particles as a whole reach the neutralized charge state described above.

エアロゾルの中和化を目的とした両極イオン発生には、放電を利用することも可能である。例えば、直流コロナ放電を用いて、正の直流コロナ放電による正イオンの発生と負の直流コロナ放電による負イオンの発生を同時に行い、それらのイオンを混合することにより正と負のイオンをほぼ同量含む両極イオンを発生させている。この装置では、イオン発生場と粒子を荷電中和する場を分離している。この分離は、直流コロナ放電場内での粒子の損失を防ぐために必要である(非特許文献2参照)。また、交流コロナ放電を用いた両極イオンの発生装置とエアロゾル粒子の中和化への適用が論じられているが、この中和法においても、両極イオン発生部は粒子荷電中和場と分離されている(特許文献1参照)。   In order to generate bipolar ions for the purpose of neutralizing the aerosol, it is also possible to use electric discharge. For example, using a DC corona discharge, positive ions are generated simultaneously by a positive DC corona discharge and negative ions are generated by a negative DC corona discharge. By mixing these ions, the positive and negative ions are substantially the same. Bipolar ions including the amount are generated. In this apparatus, the ion generation field and the field for neutralizing the particles are separated. This separation is necessary to prevent the loss of particles in the DC corona discharge field (see Non-Patent Document 2). In addition, a bipolar ion generator using AC corona discharge and its application to neutralization of aerosol particles have been discussed. In this neutralization method, the bipolar ion generator is separated from the particle charge neutralization field. (See Patent Document 1).

両極イオンの発生によるエアロゾルの中和技術としては、このほかに紫外線照射による光電子放出を利用した正イオンと光電子の発生を用いた技術がある(特許文献2)。
しかしこの方法では、中和装置内に直流電場を発生させて正負イオン数の調節を行うとする原理のため、帯電した粒子は中和装置内の電場により装置壁面に輸送され損失されてしまう。電気移動度測定は荷電粒子にのみ有効であるので、この中和法は電気移動度測定と組み合わせての使用には適さない。
As another technique for neutralizing aerosol by generating bipolar ions, there is a technique using generation of positive ions and photoelectrons using photoelectron emission by ultraviolet irradiation (Patent Document 2).
However, in this method, due to the principle that a DC electric field is generated in the neutralizing device to adjust the number of positive and negative ions, the charged particles are transported to the device wall by the electric field in the neutralizing device and lost. This neutralization method is not suitable for use in combination with electromobility measurements because electromobility measurements are only effective on charged particles.

エアロゾル粒子の荷電分布を調節する技術はこの他にも数多く提案・実用化されている。そうした技術は、中和化が目的ではなく、正または負の単極イオンを用いて無帯電状態の粒子を帯電状態化することを目的とするものがほとんどである。
粒子の帯電化の結果、粒子の空間中での輸送制御を容易にすることを目的とし、そうした荷電技術と輸送制御技術は、粒子を材料要素とする製造プロセスにおける生産効率の向上や(特許文献3参照)、コピー機中でのトナー粒子の制御(特許文献4参照)、電気集塵による気中からの粒子除去(特許文献5参照)、さらには荷電粒子にのみ感度を持つ粒子計測装置の測定感度の上昇(特許文献6参照)といった用途に利用されている。
これらの荷電技術では、直流放電から発生する単極イオンや(特許文献7参照)、放射性物質から発生する両極イオンのうち単極成分のみを取り出したもの(特許文献8参照)を用いたものがある。
しかしながら、無帯電粒子の荷電化を目的とするこうした手法では、いずれの場合でも粒子の荷電分布がゼロから正または負の一方に偏り、中和状態の荷電分布には至らない。また、多くの多価荷電粒子が発生するので、電気移動度法による粒径分布測定においては、多価荷電を有する粗大粒子と一価荷電の微小粒子が同じ電気移動度として測定される感度交差の問題を発生させてしまう。したがってこうした粒子荷電技術を電気移動度法による粒径測定を目的とした中和技術としてそのまま利用することは困難である。

特許第3393270号明細書 特許第2670942号明細書 特開2002−190258号公報 特開2000−187369号公報 特開昭52−99480号公報 特表2000−504111号公報 特許昭62−19033号公報 特開平7−24357号公報 Knutson, E. O. (1976). Extended electric mobility method for measuring aerosol particle size and concentration. Fine Particles, Aerosol Generation, Measurement, Sampling, and Analysis. B. Y. H. Liu. New York, NY, Academic Press: 740-762. Adachi, M. et al. (1993). "Aerosol charge neutralization by a corona ionizer." Aerosol Sci. Technol. 18: 48-58.
Many other techniques for adjusting the charge distribution of aerosol particles have been proposed and put to practical use. Most of such techniques are not intended to neutralize, but are intended to charge non-charged particles using positive or negative monopolar ions.
As a result of the electrification of particles, the purpose is to facilitate the transport control of particles in the space. Such charging technology and transport control technology can improve the production efficiency in the manufacturing process using particles as a material element (Patent Literature 3), control of toner particles in a copying machine (see Patent Document 4), removal of particles from the air by electric dust collection (see Patent Document 5), and particle measuring apparatus having sensitivity only to charged particles. It is used for applications such as an increase in measurement sensitivity (see Patent Document 6).
Among these charging technologies, there are those using unipolar ions generated from direct current discharge (see Patent Document 7) or those obtained by extracting only the unipolar components from bipolar ions generated from radioactive substances (see Patent Document 8). is there.
However, in such a method for the purpose of charging uncharged particles, in any case, the charge distribution of the particles is biased from zero to either positive or negative, and the charge distribution in a neutralized state is not reached. In addition, since many polyvalent charged particles are generated, in the particle size distribution measurement by the electromobility method, coarse particles having multivalent charges and monovalent charged microparticles are measured as the same electric mobility. Cause problems. Therefore, it is difficult to use such a particle charging technique as it is as a neutralization technique for the purpose of measuring the particle diameter by the electric mobility method.

Japanese Patent No. 3393270 Japanese Patent No. 2670942 JP 2002-190258 A JP 2000-187369 A JP 52-99480 A Special Table 2000-504111 Japanese Patent No. 62-19033 Japanese Patent Laid-Open No. 7-24357 Knutson, EO (1976) .Extended electric mobility method for measuring aerosol particle size and concentration.Fine Particles, Aerosol Generation, Measurement, Sampling, and Analysis.BYH Liu.New York, NY, Academic Press: 740-762. Adachi, M. et al. (1993). "Aerosol charge neutralization by a corona ionizer." Aerosol Sci. Technol. 18: 48-58.

前記の放射性物質を用いた中和装置は、放射性物質使用認可を受けた場所においてのみ、かつ放射性物質取扱認可を受けた者によってのみ使用が可能であるという制限があった。また、認可条件を満たす場合であっても、放射性物質の使用に伴う人体への健康影響をなくすための安全管理や保管に関して特別な取り扱いが必要であった。   The neutralizing device using the radioactive substance has a limitation that it can be used only in a place where the use of the radioactive substance is approved and only by a person who has received the authorization for handling the radioactive substance. Even when the conditions for approval were satisfied, special handling was required for safety management and storage to eliminate the health effects on the human body associated with the use of radioactive materials.

また、非特許文献2ならびに特許文献1のコロナ放電を用いた中和装置では、イオン発生部がエアロゾルの流路と分離されており、イオン発生部で生じたイオンを被中和エアロゾルと混合させるために、イオン発生部独自のガス導入と流量制御が必要となり、中和装置の構造の複雑化を伴う。また、イオンを含むガスの被中和エアロゾルへの混入はエアロゾルを希釈し粒子濃度の低下を生じさせる。さらに、特許文献2では、装置内の直流電場による荷電粒子の損失が生じる。   Moreover, in the neutralization apparatus using the corona discharge of Non-Patent Document 2 and Patent Document 1, the ion generation part is separated from the aerosol flow path, and the ions generated in the ion generation part are mixed with the neutralized aerosol. Therefore, it is necessary to introduce gas and control the flow rate unique to the ion generation unit, which complicates the structure of the neutralizer. Further, mixing of the gas containing ions into the neutralized aerosol dilutes the aerosol and causes a decrease in the particle concentration. Furthermore, in patent document 2, the loss of the charged particle by the direct current electric field in an apparatus arises.

本発明は、交流放電を用いてイオン発生装置から両極イオンを発生させることによりエアロゾルの荷電分布を中和化する。すなわち、直流成分がゼロ(バイアスがかかってない)の交流電圧を印加することができるため、放電を用いても電極周辺で粒子損失を生じることがないので、従来の装置では考えられなかった場所、すなわち、粒子を荷電中和する場の中心部にイオン発生機能を持つことが出来るため、構造が簡単で、コントロールしやすく、取り扱いやすいエアロゾルの荷電中和装置を作り出すことに成功した。
すなわち、この出願は以下の発明を提供するものである。
〈1〉両端にエアロゾル流入口とエアロゾル流出口を有し、中央部に枝管を付随した導電性容器と、交流によるイオン発生装置と、交流電源からなるエアロゾルの荷電中和装置であって、
下記の要件を備えることを特徴とするエアロゾルの荷電中和装置。
(i)交流放電を用いて正イオンと負イオンを発生させる場が、粒子を荷電中和する場の中心にあり、かつ双方の場が同一空間内にあること
(ii)交流によるイオン発生装置は、放電電極と接地電極からなり、該放電電極は、その表面に微細な突起を有する構造を有し、該接地電極は、電極対近傍空間に局所的にのみ電場を形成することができるように、薄い絶縁層を介して放電電極を取り囲むように設けられていること、かつ
(iii)該交流によるイオン発生装置は、容器中央部の枝管を介しエアロゾルの流路方向に直交して設けられていること
〈2〉放電電極にかける交流が、バイアスがかかっていない交流を用いることを特徴とする〈1〉に記載のエアロゾルの荷電中和装置。
〈3〉放電により発生される正負のイオン個数をほぼ同数にするよう、印加される交流電圧ならびに周波数が設定されていることを特徴とする〈1〉または〈2〉に記載のエアロゾルの荷電中和装置。
The present invention neutralizes the aerosol charge distribution by generating bipolar ions from an ion generator using alternating current discharge. In other words, since an AC voltage with zero DC component (unbiased) can be applied, particle loss does not occur around the electrode even if discharge is used. In other words, it was possible to have an ion generation function at the center of the field for neutralizing the charge of the particles, so we succeeded in creating an aerosol charge neutralization device that is simple in structure, easy to control and easy to handle.
That is, this application provides the following inventions.
<1> An aerosol charge neutralization device comprising an aerosol inlet and an aerosol outlet at both ends, a conductive container with a branch pipe at the center, an ion generator by alternating current, and an alternating current power source,
An aerosol charge neutralization apparatus comprising the following requirements:
(I) The field where positive ions and negative ions are generated using AC discharge is at the center of the field where the particles are charged and neutralized, and both fields are in the same space.
(Ii) An alternating current ion generator includes a discharge electrode and a ground electrode, and the discharge electrode has a structure having fine protrusions on the surface, and the ground electrode is only locally in the space near the electrode pair. to be able to form an electric field, it is provided so as to surround the discharge electrodes via the thin insulating layer, and (iii) an ion generating apparatus according to the alternating current of the aerosol through the branch pipe of the container central portion that it is provided perpendicular to the flow path direction subjected to <2> discharge electrode alternating current, charge neutralization apparatus of the aerosol according to <1>, which comprises using an alternating current bias is not applied.
<3> During the charging of the aerosol according to <1> or <2>, the applied AC voltage and frequency are set so that the number of positive and negative ions generated by the discharge is substantially the same. Japanese equipment.

本発明においては、交流によるイオン発生装置を用いるため、放射性物質を用いないので、使用認可や取扱認可による中和装置使用の制限がなくなる。また、中和装置の取り扱いや保管が、放射性物質を用いるものより容易になる。   In this invention, since the ion generator by alternating current is used, since a radioactive substance is not used, the restriction | limiting of the neutralization apparatus use by use authorization or handling authorization is lost. In addition, handling and storage of the neutralizer is easier than using a radioactive substance.

本発明においては、交流によるイオン発生装置は、微細な突起を表面に有する構造の放電電極を使用し、かつ、直流成分がゼロ(バイアスがかかってない)の交流電圧を印加することにより、放電を用いても電極周辺で粒子損失を生じることがないので、放電電極を被中和エアロゾル流路内に置くことが可能となる。その結果、イオン発生部をエアロゾル流路から分離する必要がなくなり、ガスを新たに導入する必要がなく、流量制御などの装置構造を簡略化することができる。   In the present invention, an alternating current ion generator uses a discharge electrode having a structure having fine protrusions on the surface, and discharges by applying an alternating voltage with zero direct current component (not biased). Since no particle loss occurs around the electrode even if is used, the discharge electrode can be placed in the neutralized aerosol flow path. As a result, it is not necessary to separate the ion generating part from the aerosol flow path, it is not necessary to introduce a new gas, and the apparatus structure such as flow rate control can be simplified.

本発明においては、放電に用いる印加電圧を発生する電源は通常電圧の発生・停止が制御できるものを用いることから、そうした電源を操作することにより、装置の取り外しをすることなく中和作用の有無を制御できる。   In the present invention, since the power source for generating the applied voltage used for the discharge is a power source that can control the generation / stop of the normal voltage, the operation of such a power source can be performed without the removal of the device. Can be controlled.

本発明においては、交流放電を用いて正イオンと負イオンを発生させる場の中心にイオン発生装置があり、空間を構成する導電材が接地されているエアロゾルの荷電中和装置とすることができる。
また、本発明においては、交流によるイオン発生装置は放電電極と接地電極からなり、放電電極にはその表面に微細な突起を有する構造を有するものを使用する。接地電極は薄い絶縁層を介して放電電極を取り囲み、電極対近傍空間に局所的にのみ電場を形成することができるよう上記電極の対が設けられているエアロゾルの荷電中和装置とすることができる。
そのような放電電極を被中和エアロゾルの流路内に置き、直流成分がゼロの交流電圧を印加する。また、電圧と周波数は、正負ほぼ同量のイオンを発生させるために適切な値にそれぞれ設定する。
In the present invention, there is an ion generator at the center of a field for generating positive ions and negative ions using AC discharge, and an aerosol charge neutralizing device in which a conductive material constituting the space is grounded can be obtained. .
In the present invention, an ion generator using alternating current is composed of a discharge electrode and a ground electrode, and the discharge electrode having a structure having fine protrusions on the surface thereof is used. The ground electrode surrounds the discharge electrode through a thin insulating layer, and is an aerosol charge neutralization device in which the electrode pair is provided so that an electric field can be formed only locally in the space near the electrode pair. it can.
Such a discharge electrode is placed in the flow path of the aerosol to be neutralized, and an AC voltage having a DC component of zero is applied. The voltage and frequency are set to appropriate values in order to generate approximately the same amount of positive and negative ions.

本発明で用いるエアロゾルの荷電中和装置を図1と図3を用いて説明する。
図1にエアロゾルの荷電中和装置の構成の全体図を示す。中和装置容器は円筒に枝管を付随した金属製容器11と、その両端に金属製のエアロゾル流入口12と流出口13を有し、容器内部にはイオン発生装置14を設置する。イオン発生装置14は、交流電圧が印加された場合に安定した放電を持続できるものを用いる必要があり、本発明では沿面コロナ放電電極の構造を用いる。
この放電電極への導線19は、電流導入端子15を介して外部の交流電源16と接続される。放電電極への導線19と円筒容器との間の空間に直流電場を生じさせないよう、イオン発生装置14の一方へ接続された接地電極への導線17は導線18を介して円筒状容器と電気的に接続する。放電電極に接続された導線19は容器枝管部中に配置し、被中和エアロゾルの流れとできる限り分離し、導線19周辺に発生する電場による粒子損失を抑制する。同様の理由により、導線19の長さはできる限り短くする。中和装置内を流れるエアロゾル流量は、流出口13に接続されるエアロゾル流路下流の装置の流量制御により決定される。
The aerosol charge neutralization apparatus used in the present invention will be described with reference to FIGS.
FIG. 1 shows an overall view of the configuration of an aerosol charge neutralization apparatus. The neutralizer container has a metal container 11 having a cylindrical tube attached with a branch pipe, metal aerosol inlets 12 and outlets 13 at both ends thereof, and an ion generator 14 is installed inside the container. It is necessary to use the ion generator 14 that can maintain a stable discharge when an AC voltage is applied. In the present invention, the structure of a creeping corona discharge electrode is used.
The conducting wire 19 to the discharge electrode is connected to an external AC power supply 16 through a current introduction terminal 15. In order not to generate a DC electric field in the space between the lead wire 19 to the discharge electrode and the cylindrical vessel, the lead wire 17 to the ground electrode connected to one side of the ion generator 14 is electrically connected to the cylindrical vessel via the lead wire 18. Connect to. The conducting wire 19 connected to the discharge electrode is disposed in the vessel branch pipe part and separated as much as possible from the flow of the neutralized aerosol to suppress particle loss due to the electric field generated around the conducting wire 19. For the same reason, the length of the conductive wire 19 is made as short as possible. The aerosol flow rate flowing in the neutralization device is determined by the flow rate control of the device downstream of the aerosol flow path connected to the outlet 13.

図3にイオン発生装置の構造を示す。交流電圧は導線32を介して放電電極31に印加される。放電電極31の周囲には、薄い絶縁層を介して、これを取り囲むように接地電極33を配置する。この放電電極31と接地電極33の間の間隔は、安定した放電が得られる範囲でできる限り小さくする。接地電極33は導線34を介して接地する。 FIG. 3 shows the structure of the ion generator. The alternating voltage is applied to the discharge electrode 31 via the conducting wire 32. A ground electrode 33 is arranged around the discharge electrode 31 so as to surround the thin insulating layer. The interval between the discharge electrode 31 and the ground electrode 33 is made as small as possible within a range where stable discharge can be obtained. The ground electrode 33 is grounded via a conducting wire 34.

本発明の装置において、正負のイオンをほぼ同数発生させるために放電電極に印加する電圧と周波数を最適化するには、極性別のイオン個数濃度を電圧と周波数の関数として測定する。
そうした測定結果の例を表1に示す。負イオン濃度が正イオン濃度を若干上回る場合が多く見られたが、電圧が3kVで周波数が50Hzの条件においては、正負ほぼ同量のイオン濃度が見られ、中和化を目的とする操作条件を満たすことがわかる。また、放射性物質(アメリシウム241)を用いた中和装置の発生するイオン濃度を表1の最下部に示したが、これらとの比較から、放電によって発生されたイオン濃度と放射性物質により発生されたイオン濃度がほぼ同量であることがわかり、放電による中和装置が放射性物質を用いた中和装置と同様の中和性能を持つであろうことが類推される。

Figure 0004221501
In the apparatus of the present invention, in order to optimize the voltage and frequency applied to the discharge electrode in order to generate approximately the same number of positive and negative ions, the ion number concentration by polarity is measured as a function of voltage and frequency.
Examples of such measurement results are shown in Table 1. There were many cases where the negative ion concentration was slightly higher than the positive ion concentration. However, under the conditions where the voltage was 3 kV and the frequency was 50 Hz, almost the same positive and negative ion concentrations were observed, and operating conditions aimed at neutralization. You can see that Moreover, although the ion concentration which the neutralization apparatus using a radioactive substance (Americium 241) generate | occur | produced was shown in the lowest part of Table 1, it was generated by the ion concentration and radioactive substance which were generated by discharge from comparison with these. It can be seen that the ion concentration is almost the same amount, and it can be analogized that the neutralizing device by discharge will have the same neutralizing performance as the neutralizing device using radioactive material.
Figure 0004221501

最適の条件を表1を参考にしながら定めて(3kV、50Hz)、粒子発生装置から生じた無荷電状態の銀粒子エアロゾルに対して本発明の中和装置を適用し、粒子の一部が荷電した様子を微分型電気移動度分級装置により測定し、粒径ごとの荷電粒子個数濃度を正負それぞれ求めた。その結果を、図4に示す。それぞれの粒径において正負の荷電粒子量がほぼ同量であり、両極イオンによって荷電分布がゼロを中心とした正負対称型になっていると考えられる。   Optimum conditions are determined with reference to Table 1 (3 kV, 50 Hz), and the neutralization device of the present invention is applied to the uncharged silver particle aerosol generated from the particle generator so that some of the particles are charged. The state was measured with a differential electric mobility classifier, and the charged particle number concentration for each particle size was determined positively and negatively. The result is shown in FIG. The amount of positive and negative charged particles is almost the same in each particle size, and it is considered that the charge distribution is a positive and negative symmetric type centered on zero due to bipolar ions.

本発明のエアロゾル荷電中和装置は、交流によるイオン発生装置を用いるため、放射性物質を用いないので、使用認可や取扱認可による中和装置使用の制限がなくなる。また、中和装置の取り扱いや保管が、放射性物質を用いるものより容易になるので、荷電中和を用いたエアロゾル測定に画期的な簡便性を与えることが出来る。   Since the aerosol charge neutralization apparatus of the present invention uses an alternating current ion generator, it does not use a radioactive substance, so that there is no restriction on the use of the neutralization apparatus due to use authorization or handling authorization. In addition, since the handling and storage of the neutralization device is easier than those using radioactive materials, it is possible to give epoch-making convenience to aerosol measurement using charge neutralization.

本発明の一実施形態におけるエアロゾル荷電中和装置の概略図1 is a schematic diagram of an aerosol charge neutralization apparatus according to an embodiment of the present invention. 従来の放射性物質を用いたエアロゾル荷電中和装置の概略図Schematic diagram of conventional aerosol charge neutralization equipment using radioactive materials イオン発生装置の電極構造の概略図Schematic diagram of electrode structure of ion generator 無帯電銀粒子エアロゾルを本発明のエアロゾル荷電中和装置内を通過させた結果生じた正負荷電粒子の粒径別個数濃度分布(表1)本発明のエアロゾル荷電中和装置から発生する正負イオン濃度の印加電圧と周波数に対する依存性と、放射性物質を用いた中和装置から発生する正負イオン濃度Concentration distribution of distinct number of positively charged particles generated as a result of passing an uncharged silver particle aerosol through the aerosol charge neutralizer of the present invention (Table 1) Positive and negative ions generated from the aerosol charge neutralizer of the present invention Dependence of concentration on applied voltage and frequency, and concentration of positive and negative ions generated from neutralizers using radioactive materials

符号の説明Explanation of symbols

11 中和装置容器
12 エアロゾル流入口
13 エアロゾル流出口
14 イオン発生装置
15 電流導入端子
16 交流電源
17 導線
18 導線
19 導線
21 従来型中和装置容器
22 エアロゾル流入口
23 エアロゾル流出口
24 放射性物質を含有する放射線源
31 放電電極
32 導線
33 接地電極
34 導線
35 電極基板
11 Neutralizer container 12 Aerosol inlet 13 Aerosol outlet 14 Ion generator 15 Current introduction terminal 16 AC power source 17 Conductor 18 Conductor 19 Conductor 21 Conventional neutralizer container 22 Aerosol inlet 23 Aerosol outlet 24 Containing radioactive substance Radiation source 31 Discharge electrode 32 Conductor 33 Ground electrode 34 Conductor 35 Electrode substrate

Claims (3)

両端にエアロゾル流入口とエアロゾル流出口を有し、中央部に枝管を付随した導電性容器と、交流によるイオン発生装置と、交流電源からなるエアロゾルの荷電中和装置であって、
下記の要件を備えることを特徴とするエアロゾルの荷電中和装置。
(i)交流放電を用いて正イオンと負イオンを発生させる場が、粒子を荷電中和する場の中心にあり、かつ双方の場が同一空間内にあること
(ii)交流によるイオン発生装置は、放電電極と接地電極からなり、該放電電極は、その表面に微細な突起を有する構造を有し、該接地電極は、電極対近傍空間に局所的にのみ電場を形成することができるように、薄い絶縁層を介して放電電極を取り囲むように設けられていること、かつ
(iii)該交流によるイオン発生装置は、容器中央部の枝管を介しエアロゾルの流路方向に直交して設けられていること
An aerosol charge neutralization device comprising an aerosol inlet and an aerosol outlet at both ends, a conductive container with a branch pipe at the center, an ion generator by alternating current, and an alternating current power source,
An aerosol charge neutralization apparatus comprising the following requirements:
(I) The field where positive ions and negative ions are generated using AC discharge is at the center of the field where the particles are charged and neutralized, and both fields are in the same space.
(Ii) An alternating current ion generator includes a discharge electrode and a ground electrode, and the discharge electrode has a structure having fine protrusions on the surface, and the ground electrode is only locally in the space near the electrode pair. to be able to form an electric field, it is provided so as to surround the discharge electrodes via the thin insulating layer, and (iii) an ion generating apparatus according to the alternating current of the aerosol through the branch pipe of the container central portion Provided perpendicular to the flow path direction
放電電極にかける交流が、バイアスがかかっていない交流を用いることを特徴とする請求項1に記載のエアロゾルの荷電中和装置。2. The aerosol charge neutralization apparatus according to claim 1, wherein an alternating current applied to the discharge electrode is an alternating current that is not biased. 放電により発生される正負のイオン個数をほぼ同数にするよう、印加される交流電圧ならびに周波数が設定されていることを特徴とする請求項1または2に記載したエアロゾルの荷電中和装置。3. The aerosol charge neutralization apparatus according to claim 1, wherein the applied AC voltage and frequency are set so that the number of positive and negative ions generated by the discharge is substantially the same.
JP2003341192A 2003-09-30 2003-09-30 Aerosol charge neutralizer Expired - Lifetime JP4221501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003341192A JP4221501B2 (en) 2003-09-30 2003-09-30 Aerosol charge neutralizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003341192A JP4221501B2 (en) 2003-09-30 2003-09-30 Aerosol charge neutralizer

Publications (2)

Publication Number Publication Date
JP2005106670A JP2005106670A (en) 2005-04-21
JP4221501B2 true JP4221501B2 (en) 2009-02-12

Family

ID=34535877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003341192A Expired - Lifetime JP4221501B2 (en) 2003-09-30 2003-09-30 Aerosol charge neutralizer

Country Status (1)

Country Link
JP (1) JP4221501B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4547506B2 (en) 2005-11-24 2010-09-22 株式会社司測研 Aerosol charge neutralizer

Also Published As

Publication number Publication date
JP2005106670A (en) 2005-04-21

Similar Documents

Publication Publication Date Title
KR101862160B1 (en) Clean corona gas ionization for static charge neutralization
Chen et al. A high efficiency, high throughput unipolar aerosol charger for nanoparticles
Intra et al. An overview of unipolar charger developments for nanoparticle charging
CN107921444B (en) Method and apparatus for selective aerosol particle collection based on particle size
JP4547506B2 (en) Aerosol charge neutralizer
JPH04503422A (en) Improvements in corona discharge equipment for removing harmful substances generated by corona discharge
WO2014198737A2 (en) Apparatus for charging or adjusting the charge of aerosol particles
Zheng et al. Developments in unipolar charging of airborne particles: Theories, simulations and measurements
Sambudi et al. Capture of ultrafine particles using a film-type electret filter with a unipolar charger
US9259742B2 (en) Electrostatic collecting system for suspended particles in a gaseous medium
Modesto-Lopez et al. Soft X-ray charger (SXC) system for use with electrospray for mobility measurement of bioaerosols
JP4221501B2 (en) Aerosol charge neutralizer
US11135334B2 (en) Method of air disinfection and an air disinfection apparatus comprising an unipolar corona discharge zone and an electrical field
EP1542792A2 (en) Charging and capture of particles in coronas irradiated by in-situ x-rays
Intra et al. Evaluation of the performance in charging efficiencies and losses of ultrafine particles ranging in sizes from 15 to 75 nm in a unipolar corona-based ionizer
Yun et al. Development of unipolar ion generator—separation of ions in axial direction of flow
JP2007305498A (en) Ion generating/emitting discharge electrode pair, ion generator using it, and ion generation device
JPS594184B2 (en) Electrostatic precipitation method and apparatus
WO2017195723A1 (en) Particle charging device
US10173226B2 (en) Device for controlling the charge of an aerosol post-discharge
Lackowski et al. Electrostatic charging of particulates by ionic current in alternating electric field
Han et al. Unipolar diffusional charging of fibrous aerosols—theory and experiment
Intra et al. Performance evaluation of a corona discharger for unipolar charging of submicron aerosol particles in the size range of 20-300 nm
JP4604965B2 (en) Ion measuring instrument
JPH0479180A (en) Ionized gas generating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4221501

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term