WO2017195723A1 - Particle charging device - Google Patents

Particle charging device Download PDF

Info

Publication number
WO2017195723A1
WO2017195723A1 PCT/JP2017/017364 JP2017017364W WO2017195723A1 WO 2017195723 A1 WO2017195723 A1 WO 2017195723A1 JP 2017017364 W JP2017017364 W JP 2017017364W WO 2017195723 A1 WO2017195723 A1 WO 2017195723A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
gas
charged
unit
charging device
Prior art date
Application number
PCT/JP2017/017364
Other languages
French (fr)
Japanese (ja)
Inventor
洋 関
良弘 上野
奥田 浩史
博 桜井
Original Assignee
株式会社島津製作所
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所, 国立研究開発法人産業技術総合研究所 filed Critical 株式会社島津製作所
Priority to JP2018516997A priority Critical patent/JP6702412B2/en
Publication of WO2017195723A1 publication Critical patent/WO2017195723A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/38Particle charging or ionising stations, e.g. using electric discharge, radioactive radiation or flames
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T19/00Devices providing for corona discharge
    • H01T19/02Corona rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T23/00Apparatus for generating ions to be introduced into non-enclosed gases, e.g. into the atmosphere

Definitions

  • the present invention relates to a particle charging device for charging fine particles in a gas, and more particularly to a particle charging device using a diffusion charging method.
  • the diffusion charging method is generally used.
  • appropriate carrier gas molecules are ionized by corona discharge or the like, and the generated gas ions are brought into contact with the particles to be charged. Is charged.
  • the charging method using the discharge for generating the gas ions is roughly classified into a bipolar charging method for generating positive and negative charged particles using the bipolar discharge, and a positive electrode using the single electrode discharge.
  • a unipolar charging system that generates unipolar charged particles of either a negative polarity or a negative polarity.
  • the bipolar charging method there is an advantage that charges of an equilibrium charge distribution which is electrically stable are usually given to the charged particles, and there is little occurrence of multivalent charge of 2 or more.
  • the charging efficiency is particularly low for particles having a small particle size. Particles that are not charged in the charging device are not subject to classification based on electric mobility or collection using electrostatic force, and therefore there is a problem that analysis sensitivity is lowered when charging efficiency is low.
  • the unipolar charging method has an advantage that sufficiently high charging efficiency can be obtained even for particles having a small particle diameter, compared to the bipolar charging method.
  • large-sized particles have a large surface area and are more likely to come into contact with ions than small-sized particles. Since the electric mobility of a charged particle is approximately inversely proportional to the cross-sectional area of the charged particle and proportional to the electric charge, the electric mobility of a large particle charged with a multivalent charge and a small particle with a smaller valence are smaller. May be almost the same, and even if it is attempted to classify charged particles in a state in which they are mixed according to the electric mobility, the difference in particle diameter cannot be distinguished. As a result, even if it is attempted to collect particles having a specific particle size by using classification, there is a risk that contamination with particles other than the target particle size will increase.
  • a particle charging device used for electrostatic classification / collecting devices for gas phase nanoparticles it is possible to improve the collection efficiency of particles due to high charging efficiency and to use multivalent charging to prevent mixing of different diameter particles.
  • multivalent charging there is a demand for both suppression of the above, that is, to make the valence of the nanoparticles uniform.
  • the charging efficiency and the suppression of the multivalent charging are in a trade-off relationship, and it is difficult to satisfy the above demand.
  • the present invention has been made in order to solve the above-mentioned problems, and the object of the present invention is to provide particles capable of efficiently taking out monovalent charged particles while maintaining high charge efficiency and suppressing multivalent charge. It is to provide a charging device.
  • the present invention provides a particle charging device for charging particles in a gas.
  • a housing having an introduction part for introducing a carrier gas containing particles to be charged into the inside and a lead-out part for taking out charged particles to the outside;
  • an ion generator that supplies, as primary ions, predetermined gas ions generated by a unipolar charging method in the casing and forward in the traveling direction of the carrier gas introduced into the casing from the inlet;
  • the charged particles in the mixed region are moved in the direction of the deriving unit between the deriving unit and the mixed region in the casing where the primary ions and the charge target particles in the carrier gas are in contact with each other.
  • An electric field forming unit including an electrode and a voltage applying unit for applying a predetermined voltage to the electrode for forming an electric field having a potential gradient; It is characterized by having.
  • the particles to be charged are introduced into the casing continuously or intermittently through the introducing portion together with a carrier gas such as the atmosphere.
  • the ion generation unit generates gas ions by ionizing gas molecules contained in the carrier gas, or a carrier gas flow in which gas ions generated by ionizing another gas are introduced from the introduction unit proceeds. Supply to the area to be.
  • the ion generator is not particularly limited as long as it generates gas ions by a monopolar charging method, but typically, surface discharge including dielectric barrier discharge, corona discharge, arc discharge, spark discharge, atmospheric pressure glow What ionizes a predetermined gas molecule by discharge, such as discharge, can be used.
  • the gas ions are present in the space ahead of the carrier gas in the traveling direction. For this reason, the particles to be charged contained in the carrier gas come into contact with the primary ions and are charged by exchanging charges with the primary ions.
  • an electric field having a potential gradient that moves particles charged in the mixed region in the direction of the deriving unit is between the mixed region in which the primary ions and the charge target particles are in contact with each other by the electric field forming unit. Is formed.
  • the uncharged particles that have reached the mixed region are not affected by the electric field, but are immediately affected by the electric field when charged. Therefore, the charged particles in the mixed region, that is, charged particles, are accelerated in the direction of the lead-out portion by the action of the electric field and leave the mixed region. Then, the charged particles ride on the carrier gas flow flowing in the housing from the introducing portion toward the deriving portion, and are taken out of the housing by the deriving portion.
  • the primary ions are also attracted toward the deriving unit.
  • primary ions are much smaller in size than particles (charged particles), their behavior is not easily affected by the carrier gas flow. Therefore, the force acting on the primary ions is dominated by the electrostatic force received from the electric field, and after passing through the mixed region, the primary ions travel toward the stronger electrode and collide with the electrode and disappear. Therefore, the spatial concentration of the primary ions in the path from the charged particles leaving the mixed region to the deriving unit is low, and the primary ions are hardly extracted outside the casing through the deriving unit.
  • the particles give and receive charge each time they come into contact with the primary ions, if the particles stay in the mixed region where the primary ions are present at a high concentration, the particles are likely to be charged multivalently by coming into contact with the primary ions multiple times. .
  • the particle charging device when the particles are monovalently charged in the mixing region, they are immediately accelerated and leave the mixing region, so that contact with a plurality of primary ions hardly occurs, and multivalent charging is reduced. can do.
  • the ion generation unit generates primary ions by the unipolar charging method, the charging efficiency is higher than that of the bipolar charging method. Thereby, in the particle charging device according to the present invention, the charged particles that are monovalently charged can be efficiently taken out from the deriving unit.
  • the particle charging device can take various modes. That is, the particle charging device according to the first aspect of the present invention includes: The introduction part and the lead-out part are arranged to face each other on a substantially straight line,
  • the electric field forming section includes a plurality of ring electrodes arranged around a linear axis connecting the introduction section and the lead-out section, and a voltage application section that applies different DC voltages to the plurality of ring electrodes. It can be set as the structure containing these.
  • a cylindrical or truncated conical electrode made of a resistor is used, and a predetermined DC voltage is applied to both ends of the cylindrical or truncated conical electrode. Also good.
  • the introduction direction of the carrier gas to the casing through the introduction portion that is, the movement direction of the charge target particles riding on the carrier gas flow and the acceleration direction of the charged particles by the electric field are the same direction. Therefore, the movement of the charged particles is smooth. For this reason, the monovalently charged particles in the mixed region quickly leave the mixed region, and multivalent charging is less likely to occur.
  • the housing may have a substantially cylindrical wall surface centered on the shaft, and further include an auxiliary gas introduction portion and an auxiliary gas discharge portion for supplying auxiliary gas in the axial direction along the inner periphery of the wall surface.
  • the flow of the carrier gas introduced into the housing from the introduction portion and the flow of the auxiliary gas introduced from the auxiliary gas introduction portion into the housing are in the same direction, and the particles introduced on the carrier gas
  • the particle charging device comprises:
  • the housing further includes a gas outlet portion disposed substantially opposite to the introduction portion, and the outlet portion is provided at a position deviating from a straight line connecting the introduction portion and the gas outlet portion,
  • the electric field forming unit may be configured to form an electric field that moves particles charged in the mixing region in the direction of the deriving unit while separating the particles charged from the introducing unit to the gas deriving unit. it can.
  • the particles that are not charged in the casing are not affected by the electric field formed by the electric field forming unit, and thus travel almost straight and are discharged from the gas outlet unit.
  • the charged particles are separated from most of the carrier gas flow by the influence of the electric field, and are taken out from the lead-out portion together with a part of the carrier gas to the outside of the casing. Therefore, according to this configuration, uncharged particles and charged charged particles can be separated and extracted.
  • uncharged particles can be returned to the inlet of the same particle charging device or introduced into another particle charging device to charge the particles contained in the carrier gas without leakage as much as possible. It can be taken out as particles.
  • the particle charging device suppresses multivalent charging by rapidly moving particles that are monovalently charged from a mixed region with primary ions while efficiently charging the particles by monopolar charging. Can do. Thereby, monovalent charged particles can be taken out efficiently.
  • the block diagram of the principal part of the particle charging device by one Example of this invention The block diagram of the principal part of the particle charging device by other Examples of this invention.
  • the block diagram of the principal part of the particle charging device by other Example of this invention The block diagram of the principal part of the particle charging device by other Example of this invention.
  • FIG. 1 is a configuration diagram of a main part of the particle charging apparatus of the present embodiment.
  • an aerosol introducing portion (corresponding to an introducing portion in the present invention) 2 and an aerosol extracting portion (corresponding to a leading portion in the present invention) are provided on both end surfaces of a substantially cylindrical housing 1 whose both end surfaces are closed. ) 3 is provided in a substantially straight line, and a sheath gas introduction part (auxiliary gas introduction part in the present invention) 4 is provided on the outer peripheral side of the aerosol introduction part 2 and a sheath gas is discharged on the outer peripheral side of the aerosol extraction part 3.
  • Part (auxiliary gas lead-out part in the present invention) 5 is provided.
  • An ion generation element (corresponding to an ion generation section in the present invention) 6 for generating primary ions is disposed immediately after the outlet of the aerosol introduction section 2 opened in the internal space of the casing 1, and the ion generation element 6 and the casing Between the inlet of the aerosol extraction part 3 opened to the space inside the body 1, with the axis C connecting the central axis of the aerosol introduction part 2 and the central axis of the aerosol extraction part 3 as the center, in the extending direction of the axis C A plurality of (seven in this example) ring-shaped electrodes 7 are arranged along.
  • the ion generating element 6 is not particularly limited as long as it performs unipolar charging, but for example, a surface-discharge microplasma device or a corona discharge electrode described in Non-Patent Document 1 or the like. For example, various discharges may be used.
  • a predetermined voltage is applied from the ionization voltage generation unit 11 to the ion generation element 6 under the control of the control unit 10.
  • the applied voltage at this time varies depending on the charging method of the ion generating element 6.
  • a pulsed voltage may be applied from either a positive or negative unipolar power supply depending on the polarity of charging.
  • an AC voltage on which a large DC bias voltage having a positive or negative polarity is superimposed may be applied.
  • a direct current electric field having a downward potential gradient with respect to the charged particles is formed from the aerosol introduction part 2 side toward the aerosol extraction part 3 side, that is, from left to right in FIG.
  • a predetermined DC voltage is applied to the plurality of ring electrodes 7 and the aerosol extraction unit 3 from the transfer voltage generation unit 12.
  • the voltage generated by the DC power source is divided by a ladder resistor and applied to each ring electrode 7 and the aerosol extraction unit 3.
  • the transfer voltage generation unit 12 is not limited to this configuration. Absent.
  • Carrier gas such as the atmosphere containing particles to be charged is supplied from the aerosol introduction unit 2 into the housing 1 at a predetermined flow rate, while, for example, the same sheath gas as the carrier gas is supplied from the sheath gas introduction unit 4 into the housing 1. Is done. Since the aerosol introduction part 2 has a tapered shape that gently spreads, the carrier gas has a wider sectional area and a lower flow rate. Further, since the flow of the sheath gas is formed on the outer peripheral side (portion close to the cylindrical wall surface) in the housing 1, the carrier gas is difficult to spread on the outer peripheral side. For this reason, the carrier gas discharged from the outlet end of the aerosol introduction part 2 opened in the housing 1 does not spread so much and gradually proceeds in the housing 1 toward the aerosol extraction part 3.
  • the ion generation element 6 When a predetermined voltage is applied from the ionization voltage generation unit 11 to the ion generation element 6, the ion generation element 6 ionizes gas molecules contained in the carrier gas and generates gas ions as primary ions. At this time, since the ion generating element 6 ionizes the gas molecules by unipolar charging, a large amount of gas ions having the same polarity can be generated. Therefore, in the vicinity of the outlet end of the aerosol introduction part 2, a mixed region 8 in which primary ions used for charging particles are present at a high concentration is formed. Since the particles contained in the carrier gas pass through the mixing region 8, they are charged in contact with the gas ions.
  • the potential gradient due to the DC electric field formed by the voltage applied from the transfer voltage generator 12 to the ring electrode 7 extends to the mixing region 8. Therefore, as soon as the particles are monovalently charged in the mixed region 8, an electric field acts on the charged particles and is accelerated in the direction toward the aerosol extraction unit 3.
  • a plurality of ring electrodes 7 are used to form a DC electric field for accelerating charged particles.
  • cylindrical (or truncated cone) electrodes made of resistors are used.
  • a DC electric field having a potential gradient similar to that of the above embodiment can also be formed by applying a DC voltage having a potential difference to both ends thereof.
  • the ion generating element 6 was arrange
  • FIG. 2 is a configuration diagram of a main part of a particle charging apparatus according to another embodiment, and the same components as those in the above embodiment are denoted by the same reference numerals.
  • an ion generating element 20 that ionizes a predetermined gas by an applied voltage from the ionization voltage generating unit 22 is provided outside the housing 1, and gas ions generated by the ion generating element 20 are supplied to the ion supply pipe 21. Is supplied to the inside of the housing 1. Obviously, even with such a configuration, the same effects as in the above-described embodiment can be obtained.
  • FIG. 3 is a configuration diagram of a main part of a particle charging device according to still another embodiment of the present invention. Constituent elements that are the same as in the above embodiment are given the same reference numerals.
  • the aerosol introduction part 2 and the aerosol extraction part 3 are arranged so as to face each other in a straight line.
  • a gas discharge part 30 is provided on the aerosol introduction part 2 and in a straight line, Apart from this, an aerosol takeout part 31 is provided at a position greatly deviating from a straight line connecting the aerosol introduction part 2 and the gas discharge part 30.
  • a plurality of ring electrodes 32 are formed in order to form a DC electric field that guides the monovalent charged particles charged in the mixing region 8 in the housing 1 to the aerosol extraction unit 31. Is arranged.
  • the ring electrode 32 is provided with an opening through which a carrier gas flow can pass.
  • An electric field having a potential gradient for accelerating charged particles downward in FIG. 3 is formed in a space surrounded by the ring-shaped electrode 32 by a voltage applied to the ring-shaped electrode 32 from a transfer voltage generator (not shown). . That is, the particles contained in the carrier gas are charged in contact with the gas ions in the mixing region 8, and immediately after being charged, the particles are accelerated in the direction of the gas discharge unit 30 by the electric field formed by the ring electrode 7. Then, when entering the space surrounded by the ring-shaped electrode 32, this time it is accelerated downward and toward the aerosol extraction part 31.
  • the carrier gas goes straight because it is not affected by the electric field, and most of the carrier gas is discharged to the outside of the housing 1 through the gas discharge unit 30. That is, the charged particles are separated from the carrier gas flow, and are taken out of the housing 1 through the aerosol takeout portion 31 together with a small amount of carrier gas.
  • non-charged particles are not affected by the electric field as in the case of the carrier gas, they are discharged through the gas discharge unit 30 together with most of the carrier gas. Thereby, in the particle charging device of this embodiment, monovalent charged particles and uncharged particles can be separated and taken out.

Abstract

In the present invention, an inlet unit (2), wherethrough a carrier gas containing particles to be charged is introduced to the interior of a housing (1), and an outlet unit (3), wherethrough charged particles are extracted, are provided so as to oppose one another on a straight line. An ion generating element (6) is disposed in the vicinity of the inlet unit (2) exit. Ring-shaped electrodes (7) are disposed between this element (6) and the outlet unit (3), forming a direct current electric field whereby charged particles are accelerated toward the outlet unit (3). Particles in the carrier gas enter into contact with and are charged by gas ions generated by the ion generating element (6) to become monovalent charged particles, and immediately upon becoming charged, are affected by the direct current electric field and are accelerated toward the outlet unit (3). In this manner, the monovalent charged particles immediately leave a mixed region (8) in which gas ions are present in high concentration such that the opportunity of entering into contact again with a gas ion is slim, and multivalent charging is suppressed. In addition, since the ion generating element (6) carries out single electrode charging, the charging efficiency is satisfactory. This allows monovalent charged particles to be extracted efficiently.

Description

粒子荷電装置Particle charging device
 本発明は、気体中の微粒子を帯電させる粒子荷電装置に関し、さらに詳しくは拡散荷電法を利用した粒子荷電装置に関する。 The present invention relates to a particle charging device for charging fine particles in a gas, and more particularly to a particle charging device using a diffusion charging method.
 一般に、気体中に浮遊する微小な液体又は固体の粒子をエアロゾルという。自動車の排気ガスや工場から排出される煤煙中の汚染物質の多くもエアロゾルであり、特に粒径1μmを下回る、いわゆるナノエアロゾルは、健康に対する影響が懸念されている。こうしたことから、その粒径の測定や粒径分布の測定は、環境測定・評価等の分野において非常に重要となっている。エアロゾルの粒径分布を測定する装置としては、帯電した微粒子の電場内での移動速度(電気移動度)の相違を利用して微粒子を分級する微分型電気移動度測定装置(DMA=Differential Mobility Analyzer)が広く用いられている。 Generally, fine liquid or solid particles floating in gas are called aerosols. Many of the pollutants in the exhaust gas of automobiles and smoke emitted from factories are also aerosols, and so-called nano aerosols having a particle size of less than 1 μm are concerned about the effect on health. For these reasons, the measurement of the particle size and the measurement of the particle size distribution are very important in the fields of environmental measurement and evaluation. As a device for measuring the particle size distribution of aerosol, a differential type electromobility measuring device (DMA = Differential Mobility Analyzer) that classifies fine particles by utilizing the difference in the moving speed (electric mobility) of charged fine particles in the electric field. ) Is widely used.
 DMAによる測定では測定に先立って測定対象である粒子(エアロゾル)を帯電させる必要があり、そのために拡散荷電法が一般に用いられている。拡散荷電法による粒子荷電装置では、特許文献1に記載のように、例えばコロナ放電等によって適宜のキャリアガス分子をイオン化し、生成されたガスイオンを荷電対象である粒子に接触させることで該粒子を帯電させる。このようにガスイオンを生成するために放電を利用した荷電方式には、大別して、両極放電を利用して正負両極性の荷電粒子を生成する両極荷電方式と、単極放電を利用して正極性又は負極性いずれか一方の単極性の帯電粒子を生成する単極荷電方式と、がある。 In the measurement by DMA, it is necessary to charge particles (aerosol) to be measured prior to the measurement, and for this purpose, the diffusion charging method is generally used. In the particle charging apparatus based on the diffusion charging method, as described in Patent Document 1, for example, appropriate carrier gas molecules are ionized by corona discharge or the like, and the generated gas ions are brought into contact with the particles to be charged. Is charged. As described above, the charging method using the discharge for generating the gas ions is roughly classified into a bipolar charging method for generating positive and negative charged particles using the bipolar discharge, and a positive electrode using the single electrode discharge. And a unipolar charging system that generates unipolar charged particles of either a negative polarity or a negative polarity.
 両極荷電方式では、通常、電気的に安定である平衡帯電分布の電荷が帯電粒子に与えられ、2価以上の多価帯電の発生が少ないという利点がある。その反面、両極荷電方式では、特に小粒径の粒子における荷電効率が低い。荷電装置において帯電されなかった粒子は電気移動度による分級や静電気力を利用した捕集の対象外となってしまうため、荷電効率が低いと分析感度が低くなるという問題がある。 In the bipolar charging method, there is an advantage that charges of an equilibrium charge distribution which is electrically stable are usually given to the charged particles, and there is little occurrence of multivalent charge of 2 or more. On the other hand, in the bipolar charging method, the charging efficiency is particularly low for particles having a small particle size. Particles that are not charged in the charging device are not subject to classification based on electric mobility or collection using electrostatic force, and therefore there is a problem that analysis sensitivity is lowered when charging efficiency is low.
 これに対し、単極荷電方式は両極荷電方式に比べて、小粒径の粒子に対しても十分に高い荷電効率が得られるという利点がある。その反面、大粒径の粒子は表面積が大きく、小粒径の粒子と比べてイオンとの接触の機会が多いため、多価帯電が起こり易い。帯電粒子の電気移動度は概ねその帯電粒子の断面積に反比例するとともに電荷に比例するため、多価帯電した大粒径の粒子と、より価数の小さい小粒径の粒子とでは電気移動度がほぼ同じになる可能性があり、それらが混じった状態の帯電粒子を電気移動度に応じて分級しようとしても粒径の相違の区別がつかない。その結果、分級を利用して特定の粒径の粒子を収集しようとしても、目的とする粒径以外の粒子の混入が多くなるおそれがある。 On the other hand, the unipolar charging method has an advantage that sufficiently high charging efficiency can be obtained even for particles having a small particle diameter, compared to the bipolar charging method. On the other hand, large-sized particles have a large surface area and are more likely to come into contact with ions than small-sized particles. Since the electric mobility of a charged particle is approximately inversely proportional to the cross-sectional area of the charged particle and proportional to the electric charge, the electric mobility of a large particle charged with a multivalent charge and a small particle with a smaller valence are smaller. May be almost the same, and even if it is attempted to classify charged particles in a state in which they are mixed according to the electric mobility, the difference in particle diameter cannot be distinguished. As a result, even if it is attempted to collect particles having a specific particle size by using classification, there is a risk that contamination with particles other than the target particle size will increase.
特開2007-305498号公報JP 2007-305498 A
 例えば、気相ナノ粒子用の静電分級・捕集装置に使用される粒子荷電装置では、高い荷電効率による粒子の捕集効率の向上と、異径粒子の混入を防止するための多価帯電の抑制、即ち、ナノ粒子の価数を1価に揃えること、の両方が要望されている。しかしながら、上述したように、従来の粒子荷電装置では、荷電効率と多価帯電の抑制とはトレードオフの関係になっており、上記要望を満たすことは困難である。 For example, in a particle charging device used for electrostatic classification / collecting devices for gas phase nanoparticles, it is possible to improve the collection efficiency of particles due to high charging efficiency and to use multivalent charging to prevent mixing of different diameter particles. There is a demand for both suppression of the above, that is, to make the valence of the nanoparticles uniform. However, as described above, in the conventional particle charging apparatus, the charging efficiency and the suppression of the multivalent charging are in a trade-off relationship, and it is difficult to satisfy the above demand.
 本発明は上記課題を解決するために成されたものであり、その目的とするところは、高い荷電効率を保ちつつ多価帯電を抑制し、1価の荷電粒子を効率良く取り出すことができる粒子荷電装置を提供することである。 The present invention has been made in order to solve the above-mentioned problems, and the object of the present invention is to provide particles capable of efficiently taking out monovalent charged particles while maintaining high charge efficiency and suppressing multivalent charge. It is to provide a charging device.
 上記課題を解決するために成された本発明は、気体中の粒子を帯電させる粒子荷電装置において、
 a)荷電対象の粒子を含むキャリアガスを内部に導入するための導入部及び荷電粒子を外側に取り出すための導出部を有する筐体と、
 b)前記筐体内であって前記導入部から該筐体内に導入されるキャリアガスの進行方向前方に、単極荷電方式によって生成した所定のガスイオンを一次イオンとして供給するイオン生成部と、
 c)前記筐体内であって前記一次イオンと前記キャリアガス中の荷電対象粒子とが接触する混合領域と前記導出部との間に該混合領域で荷電した粒子を該導出部の方向に移動させる電位勾配を有する電場を形成するための、電極及び該電極に所定の電圧を印加する電圧印加部を含む電場形成部と、
 を備えることを特徴としている。
In order to solve the above problems, the present invention provides a particle charging device for charging particles in a gas.
a) a housing having an introduction part for introducing a carrier gas containing particles to be charged into the inside and a lead-out part for taking out charged particles to the outside;
b) an ion generator that supplies, as primary ions, predetermined gas ions generated by a unipolar charging method in the casing and forward in the traveling direction of the carrier gas introduced into the casing from the inlet;
c) The charged particles in the mixed region are moved in the direction of the deriving unit between the deriving unit and the mixed region in the casing where the primary ions and the charge target particles in the carrier gas are in contact with each other. An electric field forming unit including an electrode and a voltage applying unit for applying a predetermined voltage to the electrode for forming an electric field having a potential gradient;
It is characterized by having.
 本発明に係る粒子荷電装置では、荷電対象の粒子は大気等のキャリアガスとともに導入部を通して筐体内に連続的に又は間欠的に導入される。イオン生成部は、そのキャリアガスに含まれるガス分子をイオン化することでガスイオンを生成する、或いは、別のガスをイオン化することで生成したガスイオンを導入部から導入されたキャリアガス流が進行する領域に供給する。このイオン生成部は単極荷電方式によってガスイオンを生成するものであれば特に限定されないが、典型的には、誘電体バリア放電を含む表面放電、コロナ放電、アーク放電、火花放電、大気圧グロー放電などの放電によって所定のガス分子をイオン化するものを用いることができる。 In the particle charging apparatus according to the present invention, the particles to be charged are introduced into the casing continuously or intermittently through the introducing portion together with a carrier gas such as the atmosphere. The ion generation unit generates gas ions by ionizing gas molecules contained in the carrier gas, or a carrier gas flow in which gas ions generated by ionizing another gas are introduced from the introduction unit proceeds. Supply to the area to be. The ion generator is not particularly limited as long as it generates gas ions by a monopolar charging method, but typically, surface discharge including dielectric barrier discharge, corona discharge, arc discharge, spark discharge, atmospheric pressure glow What ionizes a predetermined gas molecule by discharge, such as discharge, can be used.
 上記キャリアガスの進行方向前方の空間には上記ガスイオンが存在している。そのため、キャリアガスに含まれる荷電対象の粒子は一次イオンと接触し、該一次イオンとの間で電荷を授受することで帯電する。一方、電場形成部によって、その一次イオンと荷電対象粒子とが接触する混合領域と導出部との間には、該混合領域で荷電した粒子を導出部の方向に移動させる電位勾配を有する電場が形成されている。その混合領域に到達した未だ帯電していない粒子は電場の影響を受けないが、帯電すると直ぐに電場の影響を受ける。そのため、上記混合領域において帯電した粒子つまり荷電粒子は電場の作用によって導出部の方向に加速され該混合領域を離れる。そして、その荷電粒子は筐体内を導入部から導出部に向かって流れているキャリアガス流に乗って、該導出部により筐体の外側に取り出される。 The gas ions are present in the space ahead of the carrier gas in the traveling direction. For this reason, the particles to be charged contained in the carrier gas come into contact with the primary ions and are charged by exchanging charges with the primary ions. On the other hand, an electric field having a potential gradient that moves particles charged in the mixed region in the direction of the deriving unit is between the mixed region in which the primary ions and the charge target particles are in contact with each other by the electric field forming unit. Is formed. The uncharged particles that have reached the mixed region are not affected by the electric field, but are immediately affected by the electric field when charged. Therefore, the charged particles in the mixed region, that is, charged particles, are accelerated in the direction of the lead-out portion by the action of the electric field and leave the mixed region. Then, the charged particles ride on the carrier gas flow flowing in the housing from the introducing portion toward the deriving portion, and are taken out of the housing by the deriving portion.
 なお、電場形成部により形成される電場は混合領域にある一次イオンにも作用するため、該一次イオンも導出部の方向へと誘引される。しかしながら、一次イオンは粒子(荷電粒子)に比べて格段にサイズが小さいためにその挙動はキャリアガス流の影響を受けにくい。そのため、一次イオンに作用する力は電場から受ける静電力が支配的になり、一次イオンは混合領域を通過した後、電場がより強い電極に向かって進行して電極に衝突して消滅する。そのため、混合領域を離れた荷電粒子が導出部に至るまでの経路における一次イオンの空間濃度は低く、また、一次イオンが導出部を経て筐体の外側に取り出されることも殆どない。 In addition, since the electric field formed by the electric field forming unit also acts on the primary ions in the mixed region, the primary ions are also attracted toward the deriving unit. However, since primary ions are much smaller in size than particles (charged particles), their behavior is not easily affected by the carrier gas flow. Therefore, the force acting on the primary ions is dominated by the electrostatic force received from the electric field, and after passing through the mixed region, the primary ions travel toward the stronger electrode and collide with the electrode and disappear. Therefore, the spatial concentration of the primary ions in the path from the charged particles leaving the mixed region to the deriving unit is low, and the primary ions are hardly extracted outside the casing through the deriving unit.
 粒子は一次イオンと接触する毎に電荷を授受するため、一次イオンが高い濃度で存在する混合領域に粒子が長く留まると、該粒子は一次イオンと複数回接触することで多価に帯電し易い。これに対し、本発明に係る粒子荷電装置では、混合領域で粒子が1価に帯電すると直ぐに加速されて該混合領域を離れるため、複数の一次イオンとの接触が起こりにくく、多価帯電を軽減することができる。また、イオン生成部は単極荷電方式によって一次イオンを生成するので、両極荷電方式に比べると荷電効率が高い。それによって、本発明に係る粒子荷電装置では、1価に帯電した荷電粒子を効率良く導出部から取り出すことができる。 Since the particles give and receive charge each time they come into contact with the primary ions, if the particles stay in the mixed region where the primary ions are present at a high concentration, the particles are likely to be charged multivalently by coming into contact with the primary ions multiple times. . In contrast, in the particle charging device according to the present invention, when the particles are monovalently charged in the mixing region, they are immediately accelerated and leave the mixing region, so that contact with a plurality of primary ions hardly occurs, and multivalent charging is reduced. can do. In addition, since the ion generation unit generates primary ions by the unipolar charging method, the charging efficiency is higher than that of the bipolar charging method. Thereby, in the particle charging device according to the present invention, the charged particles that are monovalently charged can be efficiently taken out from the deriving unit.
 本発明に係る粒子荷電装置は様々な態様を採り得る。
 即ち、本発明の第1の態様による粒子荷電装置は、
 上記導入部及び上記導出部が略直線上に対向して配置され、
 上記電場形成部は、上記導入部と上記導出部とを結ぶ直線状の軸を中心に複数配置されたリング状電極と、該複数のリング状電極にそれぞれ異なる直流電圧を印加する電圧印加部と、を含む構成とすることができる。
The particle charging device according to the present invention can take various modes.
That is, the particle charging device according to the first aspect of the present invention includes:
The introduction part and the lead-out part are arranged to face each other on a substantially straight line,
The electric field forming section includes a plurality of ring electrodes arranged around a linear axis connecting the introduction section and the lead-out section, and a voltage application section that applies different DC voltages to the plurality of ring electrodes. It can be set as the structure containing these.
 また、上記複数のリング状電極に代えて抵抗体から成る円筒状又は切頭円錐状の電極を用い、該円筒状又は切頭円錐状の電極の両端にそれぞれ所定の直流電圧を印加する構成としてもよい。 Further, instead of the plurality of ring electrodes, a cylindrical or truncated conical electrode made of a resistor is used, and a predetermined DC voltage is applied to both ends of the cylindrical or truncated conical electrode. Also good.
 これら構成によれば、導入部を通した筐体へのキャリアガスの導入方向、つまりはキャリアガスの流れに乗った荷電対象粒子の移動方向と電場による荷電粒子の加速方向とが同方向であるため、荷電粒子の移動がスムーズである。そのため、混合領域において1価に帯電した粒子が迅速に混合領域から離脱し、多価帯電が一層起こりにくくなる。 According to these configurations, the introduction direction of the carrier gas to the casing through the introduction portion, that is, the movement direction of the charge target particles riding on the carrier gas flow and the acceleration direction of the charged particles by the electric field are the same direction. Therefore, the movement of the charged particles is smooth. For this reason, the monovalently charged particles in the mixed region quickly leave the mixed region, and multivalent charging is less likely to occur.
 また第1の態様による粒子荷電装置では、好ましくは、
 上記筐体は上記軸を中心とする略円筒形状の壁面を有し、その壁面内周に沿って軸方向に補助ガスを供給する補助ガス導入部及び補助ガス排出部をさらに備える構成とするとよい。
In the particle charging device according to the first aspect, preferably,
The housing may have a substantially cylindrical wall surface centered on the shaft, and further include an auxiliary gas introduction portion and an auxiliary gas discharge portion for supplying auxiliary gas in the axial direction along the inner periphery of the wall surface. .
 この構成によれば、導入部から筐体内に導入されるキャリアガスの流れと補助ガス導入部から筐体内に導入される補助ガスの流れとが同方向となり、キャリアガスに乗って導入された粒子が補助ガスの流れに阻まれてリング状電極や円筒状電極等の電極付近に近づきにくくなる。それによって、荷電対象の粒子がリング状電極に接触して消失してしまうことを抑制することができる。 According to this configuration, the flow of the carrier gas introduced into the housing from the introduction portion and the flow of the auxiliary gas introduced from the auxiliary gas introduction portion into the housing are in the same direction, and the particles introduced on the carrier gas However, it becomes difficult to approach the vicinity of an electrode such as a ring electrode or a cylindrical electrode due to the flow of auxiliary gas. Thereby, it can suppress that the particle | grains to be charged contact with the ring electrode and disappear.
 また本発明の第2の態様による粒子荷電装置は、
 上記筐体が、上記導入部と略直線上に対向して配置された気体導出部をさらに有し、上記導出部は上記導入部と上記気体導出部を結ぶ直線から外れた位置に設けられ、
 上記電場形成部は、上記混合領域で荷電した粒子を、上記導入部から上記気体導出部へと向かうキャリアガス流と分離しつつ上記導出部の方向に移動させる電場を形成する構成とすることができる。
Moreover, the particle charging device according to the second aspect of the present invention comprises:
The housing further includes a gas outlet portion disposed substantially opposite to the introduction portion, and the outlet portion is provided at a position deviating from a straight line connecting the introduction portion and the gas outlet portion,
The electric field forming unit may be configured to form an electric field that moves particles charged in the mixing region in the direction of the deriving unit while separating the particles charged from the introducing unit to the gas deriving unit. it can.
 この第2の態様による粒子荷電装置では、筐体内で帯電しなかった粒子は電場形成部により形成される電場の影響を受けないためほぼ直進し、気体導出部から排出される。一方、帯電した粒子は電場の影響を受けて大部分のキャリアガス流とは分離され、一部のキャリアガスとともに導出部から筐体の外側に取り出される。したがって、この構成によれば、帯電していない粒子と帯電した荷電粒子とを分離して取り出すことができる。これにより、例えば、帯電していない粒子を同じ粒子荷電装置の導入口に戻したり或いは別の粒子荷電装置に導入したりして、キャリアガスに含まれていた粒子をできるだけ漏れなく帯電させ、荷電粒子として取り出すようにすることができる。 In the particle charging device according to the second aspect, the particles that are not charged in the casing are not affected by the electric field formed by the electric field forming unit, and thus travel almost straight and are discharged from the gas outlet unit. On the other hand, the charged particles are separated from most of the carrier gas flow by the influence of the electric field, and are taken out from the lead-out portion together with a part of the carrier gas to the outside of the casing. Therefore, according to this configuration, uncharged particles and charged charged particles can be separated and extracted. As a result, for example, uncharged particles can be returned to the inlet of the same particle charging device or introduced into another particle charging device to charge the particles contained in the carrier gas without leakage as much as possible. It can be taken out as particles.
 本発明に係る粒子荷電装置によれば、単極荷電によって粒子を効率良く帯電させつつ、1価に帯電した粒子を一次イオンとの混合領域から迅速に移動させることで多価帯電を抑制することができる。それにより、1価の荷電粒子を効率良く取り出すことが可能となる。 The particle charging device according to the present invention suppresses multivalent charging by rapidly moving particles that are monovalently charged from a mixed region with primary ions while efficiently charging the particles by monopolar charging. Can do. Thereby, monovalent charged particles can be taken out efficiently.
本発明の一実施例による粒子荷電装置の要部の構成図。The block diagram of the principal part of the particle charging device by one Example of this invention. 本発明の他の実施例による粒子荷電装置の要部の構成図。The block diagram of the principal part of the particle charging device by other Examples of this invention. 本発明のさらに他の実施例による粒子荷電装置の要部の構成図。The block diagram of the principal part of the particle charging device by other Example of this invention.
 以下、本発明の一実施例である粒子荷電装置について、添付図面を参照して説明する。図1は本実施例の粒子荷電装置の要部の構成図である。 Hereinafter, a particle charging apparatus according to an embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a configuration diagram of a main part of the particle charging apparatus of the present embodiment.
 図1に示すように、両端面が閉じられた略円筒形状の筐体1の両端面にはエアロゾル導入部(本発明における導入部に相当)2とエアロゾル取出部(本発明における導出部に相当)3とが略直線上に対向して設けられ、さらにエアロゾル導入部2よりも外周側にシースガス導入部(本発明における補助ガス導入部)4が、エアロゾル取出部3よりも外周側にシースガス排出部(本発明における補助ガス導出部)5が設けられている。筐体1内空間に開口したエアロゾル導入部2の出口の直後には一次イオンを生成するためのイオン生成素子(本発明におけるイオン生成部に相当)6が配置され、該イオン生成素子6と筐体1内空間に開口したエアロゾル取出部3の入口との間には、エアロゾル導入部2の中心軸とエアロゾル取出部3の中心軸とを繋ぐ軸線Cを中心として、その軸線Cの延伸方向に沿って複数(この例では7個)のリング状電極7が配置されている。 As shown in FIG. 1, an aerosol introducing portion (corresponding to an introducing portion in the present invention) 2 and an aerosol extracting portion (corresponding to a leading portion in the present invention) are provided on both end surfaces of a substantially cylindrical housing 1 whose both end surfaces are closed. ) 3 is provided in a substantially straight line, and a sheath gas introduction part (auxiliary gas introduction part in the present invention) 4 is provided on the outer peripheral side of the aerosol introduction part 2 and a sheath gas is discharged on the outer peripheral side of the aerosol extraction part 3. Part (auxiliary gas lead-out part in the present invention) 5 is provided. An ion generation element (corresponding to an ion generation section in the present invention) 6 for generating primary ions is disposed immediately after the outlet of the aerosol introduction section 2 opened in the internal space of the casing 1, and the ion generation element 6 and the casing Between the inlet of the aerosol extraction part 3 opened to the space inside the body 1, with the axis C connecting the central axis of the aerosol introduction part 2 and the central axis of the aerosol extraction part 3 as the center, in the extending direction of the axis C A plurality of (seven in this example) ring-shaped electrodes 7 are arranged along.
 イオン生成素子6は単極荷電を行うものであればその荷電方式や構成は特に限定されないが、例えば非特許文献1等に記載の表面放電マイクロプラズマ素子(Surface-discharge microplasma device)やコロナ放電電極など、各種の放電を利用したものとするとよい。 The ion generating element 6 is not particularly limited as long as it performs unipolar charging, but for example, a surface-discharge microplasma device or a corona discharge electrode described in Non-Patent Document 1 or the like. For example, various discharges may be used.
 制御部10による制御の下で、イオン生成素子6にはイオン化電圧発生部11から所定の電圧が印加される。このときの印加電圧は、イオン生成素子6の荷電方式によって異なる。例えば、コロナ放電、アーク放電、火花放電などを用いる場合には、帯電の極性に応じて正極性又は負極性のいずれかの単極電源からパルス状電圧を印加すればよい。一方、表面放電や大気圧グロー放電など用いる場合には、極性が正負いずれかである大きな直流バイアス電圧を重畳した交流電圧を印加すればよい。 A predetermined voltage is applied from the ionization voltage generation unit 11 to the ion generation element 6 under the control of the control unit 10. The applied voltage at this time varies depending on the charging method of the ion generating element 6. For example, when corona discharge, arc discharge, spark discharge, or the like is used, a pulsed voltage may be applied from either a positive or negative unipolar power supply depending on the polarity of charging. On the other hand, in the case of using surface discharge, atmospheric pressure glow discharge, or the like, an AC voltage on which a large DC bias voltage having a positive or negative polarity is superimposed may be applied.
 また、エアロゾル導入部2側からエアロゾル取出部3側に向かって、つまり図1においては左方から右方へ向かって、荷電粒子に対し下り傾斜の電位勾配を有する直流電場が形成されるように、移送電圧発生部12からそれぞれ所定の直流電圧が複数のリング状電極7及びエアロゾル取出部3に印加される。なお、図1では、直流電源により生成される電圧をラダー抵抗により分割して各リング状電極7及びエアロゾル取出部3に印加する構成となっているが、移送電圧発生部12はこうした構成に限らない。 Further, a direct current electric field having a downward potential gradient with respect to the charged particles is formed from the aerosol introduction part 2 side toward the aerosol extraction part 3 side, that is, from left to right in FIG. A predetermined DC voltage is applied to the plurality of ring electrodes 7 and the aerosol extraction unit 3 from the transfer voltage generation unit 12. In FIG. 1, the voltage generated by the DC power source is divided by a ladder resistor and applied to each ring electrode 7 and the aerosol extraction unit 3. However, the transfer voltage generation unit 12 is not limited to this configuration. Absent.
 本実施例の粒子荷電装置の動作を以下に説明する。
 荷電対象の粒子を含む大気等のキャリアガスが所定流量で以てエアロゾル導入部2から筐体1内に供給され、一方、例えばキャリアガスと同じシースガスがシースガス導入部4から筐体1内に供給される。エアロゾル導入部2は緩やかに広がるテーパ状であるため、キャリアガスはその断面積が広がるとともに流速が低下する。また、筐体1内の外周側(円筒状の壁面に近い部分)にはシースガスの流れが形成されているため、キャリアガスは外周側には広がりにくい。そのため、筐体1内に開口したエアロゾル導入部2の出口端から吐き出されたキャリアガスはあまり広がることなく、筐体1内をエアロゾル取出部3に向かって緩やかに進行する。
The operation of the particle charging apparatus of this embodiment will be described below.
Carrier gas such as the atmosphere containing particles to be charged is supplied from the aerosol introduction unit 2 into the housing 1 at a predetermined flow rate, while, for example, the same sheath gas as the carrier gas is supplied from the sheath gas introduction unit 4 into the housing 1. Is done. Since the aerosol introduction part 2 has a tapered shape that gently spreads, the carrier gas has a wider sectional area and a lower flow rate. Further, since the flow of the sheath gas is formed on the outer peripheral side (portion close to the cylindrical wall surface) in the housing 1, the carrier gas is difficult to spread on the outer peripheral side. For this reason, the carrier gas discharged from the outlet end of the aerosol introduction part 2 opened in the housing 1 does not spread so much and gradually proceeds in the housing 1 toward the aerosol extraction part 3.
 イオン化電圧発生部11からイオン生成素子6に所定の電圧が印加されることで、イオン生成素子6はキャリアガスに含まれるガス分子をイオン化しガスイオンを一次イオンとして生成する。このとき、イオン生成素子6は単極荷電によりガス分子をイオン化するので、極性の揃ったガスイオンを多量に生成することができる。そのため、エアロゾル導入部2の出口端の近傍には、粒子の荷電に利用される一次イオンが高い濃度で存在する混合領域8が形成される。キャリアガスに含まれる粒子はこの混合領域8中を通過するため、ガスイオンに接触して帯電する。 When a predetermined voltage is applied from the ionization voltage generation unit 11 to the ion generation element 6, the ion generation element 6 ionizes gas molecules contained in the carrier gas and generates gas ions as primary ions. At this time, since the ion generating element 6 ionizes the gas molecules by unipolar charging, a large amount of gas ions having the same polarity can be generated. Therefore, in the vicinity of the outlet end of the aerosol introduction part 2, a mixed region 8 in which primary ions used for charging particles are present at a high concentration is formed. Since the particles contained in the carrier gas pass through the mixing region 8, they are charged in contact with the gas ions.
 上述したように移送電圧発生部12からリング状電極7に印加される電圧によって形成される直流電場による電位勾配は混合領域8にも及んでいる。そのため、混合領域8において粒子が1価に帯電すると直ぐにその荷電粒子には電場が作用し、エアロゾル取出部3に向かう方向に加速される。 As described above, the potential gradient due to the DC electric field formed by the voltage applied from the transfer voltage generator 12 to the ring electrode 7 extends to the mixing region 8. Therefore, as soon as the particles are monovalently charged in the mixed region 8, an electric field acts on the charged particles and is accelerated in the direction toward the aerosol extraction unit 3.
 一方、ガスイオンは粒子に比べてサイズが格段に小さいため、その挙動はキャリアガス流の影響を殆ど受けず、電場の影響が支配的である。このとき各リング状電極7に印加される電圧によって形成される直流電場はエアロゾル取出部3の混合領域8側の縁部に向かっているため、殆どのガスイオンはこの直流電場による電位勾配に沿って加速され(図1中の波線矢印参照)、主としてエアロゾル取出部3の混合領域8側の縁部に衝突して消滅する。それにより、電場の作用によって混合領域8を迅速に離れた1価の荷電粒子がエアロゾル取出部3に到達するまでの空間におけるガスイオンの濃度は低い。即ち、1価の荷電粒子が再びガスイオンと接触する機会は少なく、該粒子の多価帯電が抑制される。それによって、エアロゾル取出部3を通して筐体1の外側には、1価の荷電粒子が効率良く取り出される。 On the other hand, since gas ions are much smaller in size than particles, their behavior is hardly affected by the carrier gas flow, and the influence of the electric field is dominant. At this time, since the DC electric field formed by the voltage applied to each ring electrode 7 is directed to the edge of the aerosol extraction part 3 on the mixed region 8 side, most gas ions follow the potential gradient caused by this DC electric field. (Refer to the wavy arrow in FIG. 1), and collides with the edge of the aerosol extraction portion 3 on the mixed region 8 side to disappear. As a result, the concentration of gas ions in the space until the monovalent charged particles rapidly leaving the mixing region 8 by the action of the electric field reaches the aerosol extraction unit 3 is low. That is, there is little opportunity for the monovalent charged particles to come into contact with the gas ions again, and the multivalent charging of the particles is suppressed. Thereby, monovalent charged particles are efficiently extracted to the outside of the housing 1 through the aerosol extraction unit 3.
 なお、上記実施例では、荷電粒子を加速するための直流電場を形成するために複数のリング状電極7を用いていたが、抵抗体からなる円筒状(又は切頭円錐状)の電極を用い、その両端部に電位差を有する直流電圧を印加することによっても、上記実施例と同様の電位勾配を有する直流電場を形成することができる。 In the above embodiment, a plurality of ring electrodes 7 are used to form a DC electric field for accelerating charged particles. However, cylindrical (or truncated cone) electrodes made of resistors are used. A DC electric field having a potential gradient similar to that of the above embodiment can also be formed by applying a DC voltage having a potential difference to both ends thereof.
 また、上記実施例では、イオン生成素子6を筐体1内に配置し、キャリアガス中のガス分子をイオン化することで一次イオンを生成していたが、一次イオンの生成自体は筐体1の外側で実行してもよい。 Moreover, in the said Example, although the ion generating element 6 was arrange | positioned in the housing | casing 1 and the primary ion was produced | generated by ionizing the gas molecule in carrier gas, generation | occurrence | production of a primary ion itself is the housing | casing 1. It may be performed outside.
 図2は別の実施例による粒子荷電装置の要部の構成図であり、上記実施例と同じ構成要素には同じ符号を付している。
 この実施例では、イオン化電圧発生部22からの印加電圧によって所定のガスをイオン化するイオン生成素子20を筐体1の外側に設け、該イオン生成素子20で生成されたガスイオンをイオン供給管21を通して筐体1内に供給している。こうした構成でも上記実施例と同様の効果を奏することは明らかである。
FIG. 2 is a configuration diagram of a main part of a particle charging apparatus according to another embodiment, and the same components as those in the above embodiment are denoted by the same reference numerals.
In this embodiment, an ion generating element 20 that ionizes a predetermined gas by an applied voltage from the ionization voltage generating unit 22 is provided outside the housing 1, and gas ions generated by the ion generating element 20 are supplied to the ion supply pipe 21. Is supplied to the inside of the housing 1. Obviously, even with such a configuration, the same effects as in the above-described embodiment can be obtained.
 図3は、本発明のさらに別の実施例による粒子荷電装置の要部の構成図である。上記実施例と同じ構成要素には同じ符号を付している。
 上記実施例では、エアロゾル導入部2とエアロゾル取出部3とが直線上で対向するように配置されていたが、この実施例では、エアロゾル導入部2と直線上にガス排出部30が設けられ、これとは別に、つまりエアロゾル導入部2とガス排出部30とを結ぶ直線から大きく外れた位置に、エアロゾル取出部31が設けられている。さらに、筐体1内の混合領域8で帯電された1価の荷電粒子をエアロゾル取出部31にまで案内する直流電場を形成するために、リング状電極7のほかに、複数のリング状電極32が配置されている。ここでは、リング状電極32にはキャリアガス流が通過可能な開口部が設けられている。
FIG. 3 is a configuration diagram of a main part of a particle charging device according to still another embodiment of the present invention. Constituent elements that are the same as in the above embodiment are given the same reference numerals.
In the above embodiment, the aerosol introduction part 2 and the aerosol extraction part 3 are arranged so as to face each other in a straight line. In this example, a gas discharge part 30 is provided on the aerosol introduction part 2 and in a straight line, Apart from this, an aerosol takeout part 31 is provided at a position greatly deviating from a straight line connecting the aerosol introduction part 2 and the gas discharge part 30. Further, in addition to the ring electrode 7, a plurality of ring electrodes 32 are formed in order to form a DC electric field that guides the monovalent charged particles charged in the mixing region 8 in the housing 1 to the aerosol extraction unit 31. Is arranged. Here, the ring electrode 32 is provided with an opening through which a carrier gas flow can pass.
 図示しない移送電圧発生部からリング状電極32に印加される電圧によって、該リング状電極32で囲まれる空間には、荷電粒子を図3において下方向に加速する電位勾配を有する電場が形成される。即ち、キャリアガスに含まれる粒子は混合領域8においてガスイオンと接触して帯電され、帯電されると直ぐにリング状電極7により形成される電場によってガス排出部30の方向に加速される。そして、リング状電極32で囲まれる空間に入ると、今度は下向きに加速されエアロゾル取出部31に向かう。一方、キャリアガスは電場の作用を受けないため直進し、その大部分がガス排出部30を通して筐体1の外側に排出される。即ち、荷電粒子はキャリアガス流とは分離され、少量のキャリアガスとともにエアロゾル取出部31を通して筐体1の外側に取り出される。 An electric field having a potential gradient for accelerating charged particles downward in FIG. 3 is formed in a space surrounded by the ring-shaped electrode 32 by a voltage applied to the ring-shaped electrode 32 from a transfer voltage generator (not shown). . That is, the particles contained in the carrier gas are charged in contact with the gas ions in the mixing region 8, and immediately after being charged, the particles are accelerated in the direction of the gas discharge unit 30 by the electric field formed by the ring electrode 7. Then, when entering the space surrounded by the ring-shaped electrode 32, this time it is accelerated downward and toward the aerosol extraction part 31. On the other hand, the carrier gas goes straight because it is not affected by the electric field, and most of the carrier gas is discharged to the outside of the housing 1 through the gas discharge unit 30. That is, the charged particles are separated from the carrier gas flow, and are taken out of the housing 1 through the aerosol takeout portion 31 together with a small amount of carrier gas.
 帯電しない粒子はキャリアガスと同様に電場の作用を受けないため、大部分のキャリアガスとともにガス排出部30を通して排出される。これにより、この実施例の粒子荷電装置では、1価の荷電粒子と非荷電粒子とを分離して取り出すことができる。 Since the non-charged particles are not affected by the electric field as in the case of the carrier gas, they are discharged through the gas discharge unit 30 together with most of the carrier gas. Thereby, in the particle charging device of this embodiment, monovalent charged particles and uncharged particles can be separated and taken out.
 なお、上記実施例はいずれも本発明の一例にすぎず、本発明の趣旨の範囲で適宜に修正、変更、追加などを行っても本願特許請求の範囲に包含されることは明らかである。 It should be noted that each of the above embodiments is merely an example of the present invention, and it is obvious that modifications, changes, additions, and the like as appropriate within the scope of the present invention are included in the scope of the claims of the present application.
1…筐体
2…エアロゾル導入部
3、31…エアロゾル取出部
4…シースガス導入部
5…シースガス排出部
6、20…イオン生成素子
7、32…リング状電極
8…混合領域
10…制御部
11、22…イオン化電圧発生部
12…移送電圧発生部
21…イオン供給管
30…ガス排出部
C…軸線
DESCRIPTION OF SYMBOLS 1 ... Case 2 ... Aerosol introduction part 3, 31 ... Aerosol extraction part 4 ... Sheath gas introduction part 5 ... Sheath gas discharge part 6, 20 ... Ion generating element 7, 32 ... Ring-shaped electrode 8 ... Mixing area 10 ... Control part 11, 22 ... Ionization voltage generator 12 ... Transfer voltage generator 21 ... Ion supply pipe 30 ... Gas discharge part C ... Axis

Claims (4)

  1.  気体中の粒子を帯電させる粒子荷電装置において、
     a)荷電対象の粒子を含むキャリアガスを内部に導入するための導入部及び荷電粒子を外側に取り出すための導出部を有する筐体と、
     b)前記筐体内であって前記導入部から該筐体内に導入されるキャリアガスの進行方向前方に、単極荷電方式によって生成した所定のガスイオンを一次イオンとして供給するイオン生成部と、
     c)前記筐体内であって前記一次イオンと前記キャリアガス中の荷電対象粒子とが接触する混合領域と前記導出部との間に該混合領域で荷電した粒子を該導出部の方向に移動させる電位勾配を有する電場を形成するための、電極及び該電極に所定の電圧を印加する電圧印加部を含む電場形成部と、
     を備えることを特徴とする粒子荷電装置。
    In a particle charging device that charges particles in a gas,
    a) a housing having an introduction part for introducing a carrier gas containing particles to be charged into the inside and a lead-out part for taking out charged particles to the outside;
    b) an ion generator that supplies, as primary ions, predetermined gas ions generated by a unipolar charging method in the casing and forward in the traveling direction of the carrier gas introduced into the casing from the inlet;
    c) The charged particles in the mixed region are moved in the direction of the deriving unit between the deriving unit and the mixed region in the casing where the primary ions and the charge target particles in the carrier gas are in contact with each other. An electric field forming unit including an electrode and a voltage applying unit for applying a predetermined voltage to the electrode for forming an electric field having a potential gradient;
    A particle charging device comprising:
  2.  請求項1に記載の粒子荷電装置であって、
     前記導入部及び前記導出部は略直線上に対向して配置され、
     前記電場形成部は、前記導入部と前記導出部とを結ぶ直線状の軸を中心に複数配置されたリング状の電極と、該複数のリング状電極にそれぞれ異なる直流電圧を印加する電圧印加部と、を含むことを特徴とする粒子荷電装置。
    The particle charging device according to claim 1,
    The introduction part and the lead-out part are arranged to face each other on a substantially straight line,
    The electric field forming unit includes a plurality of ring-shaped electrodes arranged around a linear axis connecting the introduction unit and the lead-out unit, and a voltage application unit that applies different DC voltages to the plurality of ring-shaped electrodes, respectively. And a particle charging device.
  3.  請求項2に記載の粒子荷電装置であって、
     前記筐体は前記軸を中心とする略円筒形状の壁面を有し、その壁面内周に沿って軸方向に補助ガスを供給する補助ガス導入部及び補助ガス排出部をさらに備えることを特徴とする粒子荷電装置。
    The particle charging device according to claim 2,
    The housing has a substantially cylindrical wall surface centered on the shaft, and further includes an auxiliary gas introduction part and an auxiliary gas discharge part for supplying auxiliary gas in the axial direction along the inner periphery of the wall surface. Particle charging device.
  4.  請求項1に記載の粒子荷電装置であって、
     前記筐体は、前記導入部と略直線上に対向して配置された気体導出部をさらに有し、前記導出部は前記導入部と前記気体導出部を結ぶ直線から外れた位置に設けられ、
     前記電場形成部は、前記混合領域で荷電した粒子を、前記導入部から前記気体導出部へと向かうキャリアガス流と分離しつつ前記導出部の方向に移動させる電場を形成することを特徴とする粒子荷電装置。
    The particle charging device according to claim 1,
    The housing further includes a gas lead-out portion arranged substantially opposite to the introduction portion, and the lead-out portion is provided at a position deviating from a straight line connecting the introduction portion and the gas lead-out portion,
    The electric field forming unit forms an electric field that moves particles charged in the mixed region in a direction of the deriving unit while separating the particles charged from the introducing unit to the gas deriving unit. Particle charging device.
PCT/JP2017/017364 2016-05-13 2017-05-08 Particle charging device WO2017195723A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018516997A JP6702412B2 (en) 2016-05-13 2017-05-08 Particle charging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-096647 2016-05-13
JP2016096647 2016-05-13

Publications (1)

Publication Number Publication Date
WO2017195723A1 true WO2017195723A1 (en) 2017-11-16

Family

ID=60266622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017364 WO2017195723A1 (en) 2016-05-13 2017-05-08 Particle charging device

Country Status (2)

Country Link
JP (1) JP6702412B2 (en)
WO (1) WO2017195723A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020179502A1 (en) * 2019-03-01 2020-09-10 日本碍子株式会社 Fine particle detection element and fine particle detector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005174619A (en) * 2003-12-09 2005-06-30 Hitachi Ltd Ion mobility spectrometer and ionic mobility spectroscopy
JP2007534126A (en) * 2004-04-20 2007-11-22 マイクロマス ユーケー リミテッド Mass spectrometer
JP2010518378A (en) * 2007-02-01 2010-05-27 サイオネックス コーポレイション Differential mobility spectrometer prefilter for mass spectrometer
JP2011159422A (en) * 2010-01-29 2011-08-18 Shimadzu Corp Mass spectroscope
WO2016079780A1 (en) * 2014-11-17 2016-05-26 株式会社島津製作所 Ion mobility analysis device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005174619A (en) * 2003-12-09 2005-06-30 Hitachi Ltd Ion mobility spectrometer and ionic mobility spectroscopy
JP2007534126A (en) * 2004-04-20 2007-11-22 マイクロマス ユーケー リミテッド Mass spectrometer
JP2010518378A (en) * 2007-02-01 2010-05-27 サイオネックス コーポレイション Differential mobility spectrometer prefilter for mass spectrometer
JP2011159422A (en) * 2010-01-29 2011-08-18 Shimadzu Corp Mass spectroscope
WO2016079780A1 (en) * 2014-11-17 2016-05-26 株式会社島津製作所 Ion mobility analysis device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020179502A1 (en) * 2019-03-01 2020-09-10 日本碍子株式会社 Fine particle detection element and fine particle detector

Also Published As

Publication number Publication date
JP6702412B2 (en) 2020-06-03
JPWO2017195723A1 (en) 2019-03-28

Similar Documents

Publication Publication Date Title
US8710849B2 (en) Particle measurement process and apparatus
JP5817929B2 (en) Particle number measuring instrument
US10814335B2 (en) Selective aerosol particle collecting method and device, according to particle size
US8044350B2 (en) Miniaturized ultrafine particle sizer and monitor
US20180128716A1 (en) Particle collecting apparatus
WO2014198737A2 (en) Apparatus for charging or adjusting the charge of aerosol particles
US10799883B2 (en) Method for the selective purification of aerosols
Intra et al. Progress in unipolar corona discharger designs for airborne particle charging: A literature review
JP2011185939A (en) Electrical ionizer for aerosol charge conditioning and measurement
US9875873B2 (en) Particle charger
JP4547506B2 (en) Aerosol charge neutralizer
US5824137A (en) Process and apparatus to treat gas-borne particles
KR100701400B1 (en) Non-thermal Plasma Pre-ionizer for the Removal of Oil Mist
Alguacil et al. Multiple charging of ultrafine particles in a corona charger
WO2017195723A1 (en) Particle charging device
US20180071750A1 (en) Particle concentrator
Intra et al. Evaluation of the performance in charging efficiencies and losses of ultrafine particles ranging in sizes from 15 to 75 nm in a unipolar corona-based ionizer
JP2003329646A (en) Method and device for ion separation and ion trapping, and method and device for ion detection using them
RU2405226C1 (en) Barrier discharge-based ionisation source
JP2007305498A (en) Ion generating/emitting discharge electrode pair, ion generator using it, and ion generation device
Cheng et al. Experimental design of high volume electrostatic charger
JP2008055382A (en) Particle electrostatic charge apparatus
JP4867995B2 (en) Ionizer
Byeon et al. Charge distributions of aerosol dioctyl sebacate particles charged in a dielectric barrier discharger
US20100290171A1 (en) Method and device for producing a bipolar ionic atmosphere using a dielectric barrier discharge

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018516997

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17796084

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17796084

Country of ref document: EP

Kind code of ref document: A1