JP4220562B2 - Metal bellows tube forming method - Google Patents

Metal bellows tube forming method Download PDF

Info

Publication number
JP4220562B2
JP4220562B2 JP2007177054A JP2007177054A JP4220562B2 JP 4220562 B2 JP4220562 B2 JP 4220562B2 JP 2007177054 A JP2007177054 A JP 2007177054A JP 2007177054 A JP2007177054 A JP 2007177054A JP 4220562 B2 JP4220562 B2 JP 4220562B2
Authority
JP
Japan
Prior art keywords
diameter
workpiece
mold
metal
cored bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007177054A
Other languages
Japanese (ja)
Other versions
JP2009012045A (en
Inventor
昌彦 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishimura Manufacturing Co Ltd
Original Assignee
Nishimura Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishimura Manufacturing Co Ltd filed Critical Nishimura Manufacturing Co Ltd
Priority to JP2007177054A priority Critical patent/JP4220562B2/en
Publication of JP2009012045A publication Critical patent/JP2009012045A/en
Application granted granted Critical
Publication of JP4220562B2 publication Critical patent/JP4220562B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

本発明は金属製円管からベローズ管(蛇腹管)を成形する成形方法に関し、更に詳しくは外径が小径(例えば、4mm〜7mm程度)なベローズ管をプレス加工によって成形する成形方法に関する。   The present invention relates to a forming method for forming a bellows tube (bellows tube) from a metal circular tube, and more particularly to a forming method for forming a bellows tube having a small outer diameter (for example, about 4 mm to 7 mm) by press working.

金属製ベローズ管は、管壁が蛇腹状に成形された金属管で、金属製円管からベローズ管を成形する方法として各種方法が開発されている。それら方法として、例えば、(1)ロール成形方法、(2)液圧成形方法、(3)溶接による方法、(4)電着による方法等がある。   A metal bellows tube is a metal tube whose tube wall is formed in a bellows shape, and various methods have been developed as a method for forming a bellows tube from a metal circular tube. Examples of these methods include (1) roll forming method, (2) hydraulic forming method, (3) welding method, and (4) electrodeposition method.

(1)のロール成形方法は、金属製円管の内側に芯金を入れ、外側にローラーを押し当てて成形する方法で、芯金の強度の関係等で成形可能なベローズ管の最小外径は10mm程度が限度である。
又、(2)の液圧成形方法は、金属製円管の外側に環状の成形型を配置し、その状態で金属製円管の内側に油や水等の液体を入れ、これに高圧を作用させて金属製円管の管壁を蛇腹状に成形する方法である。
(3)の溶接による方法は、プレス成形で得たドーナツ形状の部品を、内側縁、外側縁同士を溶接して蛇腹管を成形する方法で、耐圧強度に問題がある。
(4)の電着による方法は、アルミニウム製の丸棒を、ベローズ管の内側形状に合わせて削りだしてマンドレルを形成し、そのマンドレルの表面に金属皮膜を電着により所望の厚さまで堆積形成する。その後、前記マンドレルを溶剤で取り除き、蛇腹状の薄い金属皮膜を得る方法である。この方法は、金属皮膜の堆積で目的の厚さに成形する為、厚さに限度があり、高い耐圧強度を求められるベローズ管の成形は困難である。
The roll forming method of (1) is a method in which a metal core is placed inside a metal tube, and a roller is pressed against the outside to form, and the minimum outer diameter of the bellows tube that can be formed due to the strength of the metal core etc. Is about 10 mm.
In addition, in the hydraulic forming method (2), an annular mold is placed outside the metal circular tube, and in that state, a liquid such as oil or water is placed inside the metal circular tube, and a high pressure is applied to this. In this method, the tube wall of the metal circular tube is formed into a bellows shape.
The welding method (3) is a method of forming a bellows tube by welding the inner and outer edges of a donut-shaped part obtained by press molding, and has a problem in pressure resistance.
In the method of electrodeposition (4), a round bar made of aluminum is cut out in accordance with the inner shape of the bellows tube to form a mandrel, and a metal film is deposited on the surface of the mandrel to a desired thickness by electrodeposition. To do. Thereafter, the mandrel is removed with a solvent to obtain a bellows-like thin metal film. In this method, since the metal film is formed to a desired thickness, the thickness is limited, and it is difficult to form a bellows tube that requires high pressure strength.

一方、金属製ベローズ管は、伸縮、バネ性、気密性を利用してバルブ用シール材、配管部材、真空機器、加速器等、一般産業から化学分野まで幅広く使用され、最近は自動車の燃料噴射装置のバルブ等にも使用されている。そして、燃料噴射装置のバルブに使用されるベローズ管は小形(例えば、外径5mm前後)で、圧力20MPaに耐え得る耐圧強度が求められている。   On the other hand, metal bellows pipes are widely used from general industries to chemical fields, such as valve seals, piping members, vacuum equipment, accelerators, etc. by using expansion, contraction, springiness, and airtightness. Recently, fuel injection devices for automobiles It is also used for other valves. And the bellows pipe used for the valve | bulb of a fuel-injection apparatus is small (for example, outer diameter around 5 mm), and the pressure strength which can endure a pressure of 20 MPa is calculated | required.

しかし、上記した従来の成形方法は、口径(例えば、10.0〜900.0mm)の大きな大形のベローズ管の成形には問題ないが、口径の小さなベローズ管の成形は殆ど不可能である。
何故ならば、(1)のロール成形では当然のことながら芯金も口径に応じて細くなり、ローラーの圧力に耐えられず変形する、(2)の液圧成形の場合は、金属製円管を液密に保持しなければならない為、円管を高精度に加工する必要があり、且つ装置全体が大型化、複雑化し、設備が高価となる問題を有する。これらの成形方法は構造的に、口径の小さいベローズ管の成形には不向きである。
又、高い耐圧強度の要求に応じて使用する金属製円管の肉厚も厚くなるが、これを加工成形するのに、上記した従来の何れの成形方法も困難である。
従って、従来の成形方法では外径が小径(例えば、4mm〜7mm程度)で、耐圧強度に優れたベローズ管を高精度に成形することは殆ど不可能である。
However, the above-described conventional forming method has no problem in forming a large bellows tube having a large diameter (for example, 10.0 to 900.0 mm), but it is almost impossible to form a bellows tube having a small diameter. .
This is because, in the roll forming of (1), the core metal also becomes thin according to the diameter and deforms without being able to withstand the pressure of the roller. Therefore, it is necessary to process the circular pipe with high accuracy, and the entire apparatus becomes large and complicated, resulting in expensive equipment. These forming methods are structurally unsuitable for forming a bellows tube having a small diameter.
In addition, the thickness of the metal circular tube used in response to the demand for high pressure strength increases, but any of the above-described conventional forming methods is difficult to process and form this.
Therefore, it is almost impossible to form a bellows tube having a small outer diameter (for example, about 4 mm to 7 mm) and excellent pressure resistance with high accuracy by the conventional molding method.

また、最近、金属管を軸方向に圧縮し、表面に座屈による凹凸を発生させることにより、ベローズ管を成形する方法が提案されている(例えば、特許文献1参照)。
しかし、特許文献1に記載の方法は、内部にマンドレルを配置した上で、金属管を軸方向端部から圧縮し、表面に座屈による凹凸を発生させるもので、座屈を利用した工法である。尚、軸方向に圧縮する際、金属管表面に座屈の起点となる折れビードを予備成形した上で圧縮することで、所定の箇所以外の部位での座屈の発生を抑制でき、より均一で良好な形状のベローズ管の成形が可能であるとしているが、管端部を軸方向に圧縮するため、座屈による変形にバラツキが生じ、成形される襞形状は安定しない。
Recently, a method of forming a bellows tube by compressing a metal tube in the axial direction and generating irregularities due to buckling on the surface has been proposed (see, for example, Patent Document 1).
However, the method described in Patent Document 1 is a method that uses a buckling method by placing a mandrel inside and then compressing the metal tube from the axial end to generate irregularities due to buckling. is there. In addition, when compressing in the axial direction, it is possible to suppress the occurrence of buckling at a portion other than a predetermined location by preliminarily forming a bent bead that is a starting point of buckling on the surface of the metal tube, and more uniform. However, since the end of the tube is compressed in the axial direction, the deformation due to buckling varies, and the shape of the formed collar is not stable.

特開2005−262308号公報JP 2005-262308 A

本発明は、外径が小径(例えば、4mm〜7mm程度)で、耐圧強度に優れたベローズ管を高精度に成形することができる成形方法を提供することを目的とする。   An object of this invention is to provide the shaping | molding method which can shape | mold the bellows pipe | tube with an outer diameter small diameter (for example, about 4 mm-7 mm) and excellent in pressure-resistant strength with high precision.

本発明者は、上記目的を達成すべく鋭意研究した結果、肉厚の厚い小径の金属製円管からベローズ管を精度よく成形する為には、プレス加工を用い、且つ目的の製品寸法のものを一工程で成形せずに、段階的に複数の工程を経て成形することが有効であることを知見し、斯かる知見に基づき更に研究を重ねた結果、本発明を完成するに至った。   As a result of earnest research to achieve the above-mentioned object, the present inventor uses press work and accurately produces a product with the desired product dimensions in order to accurately form a bellows pipe from a thick, small-diameter metal circular pipe. As a result of further research based on such knowledge, it has been accomplished that the present invention has been completed.

即ち、本発明の金属製ベローズ管の成形方法は、金属製円管からベローズ管をプレス加工で成形する成形方法であって、
(1)金属製円管のワークを、内側面に環状突条を等ピッチで有し、径方向に開閉可能な外型と、前記外型の内側に挿入され前記環状突条と互い違いに噛合する環状突条を外側面に等ピッチで有し、径方向に拡縮する内型との間に挿入し、前記内型を外型方向に加圧拡開して前記ワークの管壁に波形状の襞を成形する第一工程と、
(2)前記第一工程で成形したワークの内側に、襞部分の内径と略同径の芯金を挿入し、且つ襞部分を開閉可能な板部材で上下より挟持し、その板部材相互の間隔を狭める方向に加圧して前記波形状のピッチ間隔を圧縮し、波形状の外側形状を断面略V字型から断面略U字型に成形する第二工程と、
(3)前記第二工程で成形したワークの内側に、第二工程完了時の襞部分の内径と第三工程で縮径する目的の内径に合致する外径を有した芯金を挿入し、ワークの外側には波形状の谷部分を周方向に間隔をおいて配置した分割パンチで挟み、その分割パンチを縮径する襞部分に対応配置し、ワークの内側には前記縮径する内径に合致する外径を有した芯金を配置すると共に、縮径する襞部分より上位の襞部分の内側には該襞部分の内径と合致する外径を有した芯金を配置し、前記分割パンチを径方向外側から中心方向に加圧移動させて前記谷部分を前記縮径の内径に合致する外径を有した芯金の外周面と接触まで縮径し、更に前記芯金及び前記ワークを軸方向に移動させて前記谷部分を1ピッチずつ目的の内径に縮径する第三工程と、
からなることを特徴とする(請求項1)。
That is, the metal bellows tube molding method of the present invention is a molding method for molding a bellows tube from a metal circular tube by press work,
(1) A metal circular pipe work having annular ridges on the inner surface at equal pitches, an outer mold that can be opened and closed in the radial direction, and inserted into the outer mold and alternately meshed with the annular ridge. An annular ridge that has an equal pitch on the outer surface and is inserted between an inner mold that expands and contracts in the radial direction, and the inner mold is pressed and expanded in the outer mold direction to corrugate the pipe wall of the workpiece The first step of molding
(2) said inner workpiece molded in the first step, to insert the core metal of the inner diameter substantially the same diameter of the fold portions, and and clamped from above and below with openable plate member each fold portion, each plate member A second step of compressing the corrugated pitch interval by pressurizing in the direction of narrowing the mutual interval, and forming the corrugated outer shape from a substantially V-shaped cross section to a substantially U-shaped cross section ;
(3) Insert a mandrel having an outer diameter that matches the inner diameter of the flange portion at the completion of the second step and the target inner diameter to be reduced in the third step, inside the workpiece formed in the second step, The corrugated valley portion is sandwiched between circumferentially spaced split punches on the outside of the workpiece, and the split punch is disposed corresponding to the flange portion that reduces the diameter. A cored bar having a matching outer diameter is disposed, and a cored bar having an outer diameter matching the inner diameter of the flange part is disposed inside the flange part higher than the flange part to be reduced in diameter. Is pressed from the radially outer side to the center direction to reduce the valley portion to a contact with the outer peripheral surface of the core metal having an outer diameter matching the inner diameter of the reduced diameter, and further, the core metal and the workpiece are A third step of moving in the axial direction and reducing the valley portion to a target inner diameter by one pitch ;
(Claim 1).

前記第一工程における内側面に環状突条を有する外型は、ベローズ管の外形(波形状)を決定するもので、ワークのセット及び第一工程の加工終了後における成形済みワークの取り出しのために開閉し得るように分割されているが、その分割数は、二分割、三分割、四分割等何れでもよく、分割外型は閉鎖されて形状付与に供される。
他方、内型は、径方向に拡開して該内型の外側に配置したワークの管壁を前記外型の内側面側に押し広げるもので、前記外型同様、周方向が複数に分割されている。その分割数は、径方向に拡開することで分割型相互間には隙間が発生するが、その隙間の幅を出来るだけ小さくする為には分割数を多くするのが有効である。尚、型の成形を考慮した場合は四分割程度が好ましい。
The outer mold having an annular ridge on the inner surface in the first step determines the outer shape (wave shape) of the bellows tube, and is for setting the workpiece and taking out the molded workpiece after completion of processing in the first step. However, the number of divisions may be any of two divisions, three divisions, four divisions, etc., and the division outer mold is closed to be provided with a shape.
On the other hand, the inner mold expands in the radial direction and pushes the pipe wall of the work placed outside the inner mold to the inner surface side of the outer mold. Like the outer mold, the circumferential direction is divided into a plurality of parts. Has been. As for the number of divisions, a gap is generated between the divided molds by expanding in the radial direction, but it is effective to increase the number of divisions in order to reduce the width of the gap as much as possible. In consideration of molding of the mold, about four divisions are preferable.

又、前記内型を圧力(プレス圧)で外型方向に拡開させる方法としては、例えば、前記分割内型の軸芯に沿ってテーパ孔を形成し、その分割内型のテーパ孔(軸芯)にテーパピンを挿入し、そのテーパピンの上端にプレス圧を加えることで前記分割内型を径方向外側に向けて拡開することができる。   Further, as a method of expanding the inner mold in the direction of the outer mold by pressure (pressing pressure), for example, a tapered hole is formed along the axis of the divided inner mold, and the tapered hole (shaft of the divided inner mold) is formed. By inserting a taper pin into the core and applying a press pressure to the upper end of the taper pin, the divided inner mold can be expanded outward in the radial direction.

前記第二工程における波形状のピッチ間隔の圧縮は、前記第一工程で成形した複数の襞の全部を同時に圧縮するもので、その為に襞部分を上下より挟持する板部材は所定間隔をおいて積層され、且つワークを着脱し得るように分割され、開閉可能となっている。尚、波形状のピッチ間隔の圧縮完了は、加圧部材の移動量を制御する、或いはセンサで検知する等、各種方法があるが、例えば、予め所定の間隔をあけて積層配置した板部材同士が加圧によって接触した時、圧縮完了としてもよく、その場合は装置を簡単な構造とすることが出来る。   The compression of the corrugated pitch interval in the second step compresses all of the plurality of ridges formed in the first step at the same time. For this purpose, the plate member sandwiching the ridge portion from above and below has a predetermined interval. Are divided so that the workpiece can be attached and detached, and can be opened and closed. There are various methods such as controlling the amount of movement of the pressure member or detecting it with a sensor to complete the compression of the wave-shaped pitch interval. For example, the plate members stacked in advance with a predetermined interval between them When contact is made by pressurization, compression may be completed, and in that case, the apparatus can have a simple structure.

前記第三工程における分割パンチを径方向外側から中心方向に加圧移動させる方式としては、例えば、カム方式、或いはシリンダ方式等、その方式は問わない。又、分割パンチの分割数も、該パンチの径方向の移動によってパンチの内径で区画される口径が変化(縮径)するものであればよく、分割数は問わない。
又、前記第三工程の縮径は、第二工程で波形状のピッチ間隔を狭く成形した谷部分を縮径して断面略U字型が連続したベローズ管に仕上げるが、前記縮径は波形状の全部を一度に縮径することなく、1ピッチ(1段)ずつ成形するようにする。即ち、ワークの内側に挿入する縮径代(第二工程終了時の波形状の内径と、第三工程終了時(完成ベローズ管)の波形状の内径とのギャップ)を有した芯金とワークを1ピッチ成形ごとに順次軸方向に移動させて縮径するようにする。
ワーク内に挿入する縮径代に相当する外径差を有する芯金は、大径の芯金と小径の芯金の二分割構造、或いは大径部と小径部が一本の軸に形成された段付の芯金であってもよい。
The method of pressing and moving the divided punch in the third step from the radially outer side to the center direction may be any method such as a cam method or a cylinder method. The number of divided punches is not particularly limited as long as the diameter defined by the inner diameter of the punch changes (reduced diameter) by the radial movement of the punch.
The diameter of the third step is reduced to the bellows tube having a substantially U-shaped cross-section by reducing the diameter of the trough formed by narrowing the wave-shaped pitch interval in the second step. The entire shape is molded one pitch (one step) at a time without reducing the diameter. That is, a cored bar having a diameter reduction margin (gap between a corrugated inner diameter at the end of the second process and a corrugated inner diameter at the end of the third process (finished bellows pipe)) to be inserted inside the work and the work Are sequentially moved in the axial direction for each pitch forming to reduce the diameter.
A cored bar having an outer diameter difference corresponding to a diameter reduction allowance inserted into a workpiece is a two-part structure of a large-diameter cored bar and a small-diameter cored bar, or a large-diameter part and a small-diameter part are formed on one shaft. A stepped core may be used.

上記手段によれば、第一工程で環状突条を有した閉鎖固定の外型に対し、内型を径方向外側に拡開することで外型と内型との間にセットした金属製円管のワークは、内型と外型の環状突条の噛み合いにより管壁が緩やかな波形状に予備成形される。そして、その予備成形された緩やかな波形状の管壁における襞部分は、第二工程で板部材で上下より挟持し、その板部材相互の間隔を狭める加圧(プレス)により、前記波形状のピッチ間隔が狭くなり、波形状は断面略V字型から断面略U字型に成形される。そして、波形状が鋭角になったワークは、更にその波形状の谷部分が第三工程の分割パンチによる縮径(絞り)動作によって目的の内径に絞られ、全ての谷部分が縮径されることでベローズ管が完成する。
即ち、金属製円管の管壁を緩やかな波形状に予備成形し、次にその予備成形した波形状のピッチ間隔を狭くしてハッキリした鋭角の波形状に成形し、最後に波形状の谷部分を縮径して目的のベローズ管に仕上げる。
そして、第三工程で谷部分を1ピッチずつ縮径するため、ワークにおける縮径箇所以外は軸方向端部に向かって解放されているため、縮径動作は阻止されることなく安定して行われる。従って、口径が小さく、肉厚が厚いベローズ管を高精度に成形することができる。
According to the above means, the metal circle set between the outer mold and the inner mold by expanding the inner mold radially outward with respect to the closed fixed outer mold having the annular ridge in the first step. The pipe work is preformed into a wave shape with a gentle pipe wall by meshing the inner and outer annular ridges. Then, the corrugated portion of the pre-formed gentle wave-shaped tube wall is sandwiched from above and below by the plate members in the second step, and by pressing (pressing) the interval between the plate members, The pitch interval is narrowed, and the wave shape is formed from a substantially V-shaped cross section to a substantially U-shaped cross section. And the workpiece | work where the wave shape became an acute angle is further diameter-reduced to the target internal diameter by the diameter reduction (drawing) operation | movement by the division | segmentation punch of a 3rd process, and all the valley parts are reduced in diameter. This completes the bellows tube.
That is, the tube wall of the metal circular tube is preformed into a gentle wave shape, and then the pre-formed wave shape is formed into a sharp acute wave shape by narrowing the pitch interval, and finally the wave shape trough is formed. Reduce the diameter to finish the desired bellows tube.
And since the trough portion is reduced in diameter by one pitch in the third step, the portions other than the reduced diameter portion in the work are released toward the end in the axial direction, so that the diameter reducing operation is stably performed without being blocked. Is called. Therefore, a bellows tube having a small diameter and a large thickness can be formed with high accuracy.

前記第一工程は、閉鎖固定した外型に対し内側に配置した内型を径方向外側に拡開してワークの管壁を波形状に成形するが、内型は周方向が複数に分割されている為、径方向に拡開した時、内型を構成する部材相互間には周方向に隙間が生じる。従って、内型を拡開させて波形状の成形を行う場合において、前記隙間と対応する管壁部分は内型の拡開によって間接的に引き伸ばされる。しかし、成形するベローズ管の口径が小さく、例えばワークの外径が5mm、肉厚が1mm、内型の分割数が4分割である場合、該内型を拡開して内型部材相互間に生じる隙間は0.5mm以下である。
よって、内型の拡開を一定の位置で行っても製品の仕上がりに大きく影響するものではないが、より高精度のものを成形する場合は、発生する前記隙間部分を内型で直接押圧するために内型又は外型(ワークも一緒)を周方向に回転移動させる(請求項2)。例えば、内型が4等分の型である場合、内型又は外型を最初拡開した位置から時計回り方向又は反時計回り方向に45度回転し、その位置で内型を拡開する。
この動作を複数回行なうことで、管壁を均等に拡開することが出来る。
In the first step, the inner mold arranged on the inner side with respect to the outer mold closed and fixed is expanded outward in the radial direction to form the tube wall of the workpiece into a wave shape, but the inner mold is divided into a plurality of circumferential directions. Therefore, when it expands in the radial direction, a gap is generated in the circumferential direction between the members constituting the inner mold. Therefore, in the case where the inner mold is expanded to form a wave shape, the tube wall portion corresponding to the gap is indirectly stretched by the expansion of the inner mold. However, when the diameter of the bellows tube to be molded is small, for example, when the outer diameter of the workpiece is 5 mm, the wall thickness is 1 mm, and the number of divisions of the inner mold is four, the inner mold is expanded and the inner mold members are The resulting gap is 0.5 mm or less.
Therefore, even if the inner mold is expanded at a certain position, it does not greatly affect the finished product, but when molding a more accurate product, the generated gap is directly pressed by the inner mold. For this purpose, the inner mold or the outer mold (including the work) is rotationally moved in the circumferential direction (Claim 2). For example, when the inner mold is a quadrant mold, the inner mold or the outer mold is rotated 45 degrees clockwise or counterclockwise from the position where the inner mold or the outer mold is first expanded, and the inner mold is expanded at that position.
By performing this operation a plurality of times, the tube wall can be expanded evenly.

更に、前記第三工程の縮径は、前記第一工程の内型と同様、周方向が複数に分割された分割パンチの径方向内方への移動で行われるため、縮径時においてパンチ部材相互間には微小な隙間が生じる。従って、管壁の全周を均一に縮径し、外径真円度を高めるときは、分割パンチ又はワークを周方向に回転して縮径位置を移動させる(請求項)。
Further, the diameter reduction in the third step is performed by moving the divided punch, which is divided into a plurality of circumferential directions in the radial direction, in the same manner as the inner mold in the first step. There is a minute gap between them. Thus, the entire circumference of the pipe wall uniformly reduced in diameter, when increasing the outer径真circularity, by rotating the divided punch or work in the circumferential direction to move the reduced diameter position (claim 3).

上記手段によれば、分割パンチ又はワークを周方向に回転して縮径することで、分割パンチによる縮径位置(絞り位置)が周方向に移動し、分割パンチで直接縮径されない箇所はなくなる。それにより、真円度を高めることが出来る。   According to the above means, by rotating the divided punch or workpiece in the circumferential direction to reduce the diameter, the reduced diameter position (drawing position) by the divided punch moves in the circumferential direction, and there is no portion that is not directly reduced in diameter by the divided punch. . Thereby, the roundness can be increased.

本発明の金属製ベローズ管の成形方法は請求項1に記載の構成により、従来の方法では成形が困難である小口径で素材肉厚が厚い金属製ベローズ管を高精度に成形することが出来る。
又、請求項2記載の構成により、第一工程の緩やかな波形状成形(予備成形)をより均一行うことができ、その結果それ以降の第二工程、第三工程の成形精度も安定し、高精度のベローズ管を成形することができる。
According to the metal bellows tube forming method of the present invention, a metal bellows tube having a small diameter and a large material thickness, which is difficult to be formed by the conventional method, can be formed with high accuracy by the configuration described in claim 1. .
In addition, according to the configuration of claim 2, it is possible to more uniformly perform the gentle wave shape molding (preliminary molding) in the first step, and as a result, the molding accuracy in the second and third steps thereafter is also stable. A highly accurate bellows tube can be formed.

更に、請求項3記載の構成により、外径真円度が安定した高精度のベローズ管を成形することができる。

Furthermore, according to the configuration of the third aspect, a highly accurate bellows tube having a stable outer diameter roundness can be formed.

本発明の金属製ベローズ管の成形方法は、プレス加工により成形し、しかも材料の金属製円管のワークWから目的のベローズ管Fに仕上げるまでを3段階(第一工程、第二工程、第三工程)に分けて成形することで、従来の工法では成形することが困難とされていた肉厚が厚く口径の小さいベローズ管(例えば、7mm以下)を高精度に成形することを可能とするものである。
即ち、金属製円管のワークW(図1(a)参照)を、内側面に環状突条を等ピッチで有した外型と、前記外型の内側に挿入され前記環状突条と互い違いに噛合する環状突条を外側面に等ピッチで有し、径方向に拡縮する内型との間に挿入し、前記内型を軸芯方向の圧力(プレス加工)で外型方向に拡開して前記ワークの管壁を緩やかな波形状の襞に成形する第一工程(第一工程加工品形状は図1(b)参照)と、前記第一工程で成形したワークW’の内側に、襞部分の内径と略同径の芯金を挿入し、且つ襞部分を開閉可能な板部材で上下より挟持し、その板部材相互の間隔を狭める方向に加圧して前記波形状のピッチ間隔を圧縮する第二工程(第二工程加工品形状は図1(c)参照)と、前記第二工程で成形したワークW”の内側に、第二工程完了時の襞部分の内径と第三工程で縮径する目的の内径に合致する外径を有した芯金を挿入し、ワークの外側には波形状の谷部分を分割パンチで挟み、その分割パンチを径方向外側から中心方向に移動させて目的の内径に縮径する第三工程(第三工程加工品(完成品F)形状は図1(d)参照)と、からなる。
The method for forming a metal bellows pipe of the present invention includes three steps (a first process, a second process, and a first process) from the work W of a metal circular pipe made of a material to finishing to a target bellows pipe F. By molding in three steps, it is possible to form a bellows tube (for example, 7 mm or less) having a large wall thickness and a small diameter, which has been difficult to mold by the conventional method, with high accuracy. Is.
That is, a metal circular work W (see FIG. 1A) is alternately arranged between an outer mold having annular ridges on the inner surface at equal pitches and an annular ridge inserted inside the outer mold. Engaging annular ridges on the outer surface at equal pitches, inserted between the inner molds that expand and contract in the radial direction, and the inner molds are expanded in the outer mold direction by axial pressure (pressing) The first step of forming the tube wall of the workpiece into a gently corrugated ridge (see FIG. 1B for the shape of the first step processed product), and inside the workpiece W ′ formed in the first step, Insert a core bar having the same diameter as the inner diameter of the flange portion, and sandwich the flange portion from above and below with a plate member that can be opened and closed, and pressurize in a direction to narrow the interval between the plate members to reduce the pitch interval of the wave shape. The second step to be compressed (see FIG. 1C for the shape of the second step processed product) and the second step inside the workpiece W ″ formed in the second step Insert a cored bar that has an inner diameter that matches the inner diameter of the flange at the time of completion and the target inner diameter to be reduced in the third step, and sandwich the corrugated valley on the outside of the work with a split punch. The third step (refer to FIG. 1 (d) for the shape of the third step processed product (finished product F)) is to reduce the diameter to the target inner diameter by moving the punch from the radially outer side to the center direction.

以下、第一工程から第三工程を図面に基いて説明する。尚、図示する成形装置は本発明の成形方法を概念的に説明する為のもので、成形に直接関係しない動力源等は省略する。
[第一工程]
この第一工程は、ワークWの管壁を緩やかな波形状に予備成形する工程で、成形装置は図2に示すように、内側面に環状突条2を等ピッチで突出形成し、且つ径方向に開閉可能とした4分割の外型1と、前記外型1の環状突条2と互い違い状に噛み合う環状突条4を外側面に等ピッチで有し、且つ径方向に拡縮可能な4分割の内型3と、前記内型3を径方向外方に向けて拡開するテーパピン5とを備え、前記外型はワークを載承保持する基台6上に配置され、前記内型3は前記外型1より上方に配置されて該外型1に対して抜き差し自在に構成され、更に、前記内型3はスプリング7で閉じ方向に付勢されている。
Hereinafter, the first to third steps will be described with reference to the drawings. Note that the illustrated molding apparatus is for conceptually explaining the molding method of the present invention, and a power source and the like not directly related to molding are omitted.
[First step]
This first step is a step of preforming the tube wall of the workpiece W into a gentle wave shape. As shown in FIG. 2, the forming apparatus projects the annular ridges 2 on the inner surface at an equal pitch and has a diameter. The outer die 1 is divided into four parts that can be opened and closed in the direction, and the annular ridges 4 that are alternately meshed with the annular ridges 2 of the outer die 1 are provided at equal pitches on the outer surface and can be expanded and contracted in the radial direction. A split inner mold 3 and a taper pin 5 that expands the inner mold 3 outward in the radial direction are provided. The outer mold is disposed on a base 6 that supports and holds a workpiece. Is arranged above the outer mold 1 and is configured to be detachable with respect to the outer mold 1, and the inner mold 3 is urged in a closing direction by a spring 7.

上記装置による第一工程は、先ず図2(a)に示すように、基台6上の外型1を開き、その中心にワークWを載置し、次に図2(b)に示すように外型1を閉鎖して前記ワークWを保持する。次に、図2(c)に示すように、スプリングで縮径されている内型3を、前記ワークWの内側に挿入する。この時、内型3の環状突条4は外型1の環状突条2相互間に位置し、互い違い状に噛み合うように配置する。そして、図2(d)に示すように、内型3の軸芯に挿入したテーパピン5をプレス機で加圧し、内型3を径方向外方に向けて拡開する。
それにより、ワークWの管壁は閉鎖固定された外型1の内側面に圧着され、外型1の環状突条2と内型3の環状突条4の噛み合いにより波形状に成形される。
As shown in FIG. 2 (a), the first step by the above apparatus is as follows. First, the outer mold 1 on the base 6 is opened, the workpiece W is placed at the center, and then, as shown in FIG. 2 (b). The outer mold 1 is closed to hold the workpiece W. Next, as shown in FIG. 2 (c), the inner mold 3 reduced in diameter by a spring is inserted inside the workpiece W. At this time, the annular ridges 4 of the inner mold 3 are positioned between the annular ridges 2 of the outer mold 1 and are arranged so as to engage with each other in a staggered manner. Then, as shown in FIG. 2 (d), the taper pin 5 inserted into the shaft core of the inner mold 3 is pressurized with a press machine, and the inner mold 3 is expanded outward in the radial direction.
As a result, the tube wall of the workpiece W is pressure-bonded to the inner surface of the outer mold 1 which is closed and fixed, and is formed into a wave shape by meshing the annular ridge 2 of the outer mold 1 and the annular ridge 4 of the inner mold 3.

そして、前記内型3は前記したように分割型であるため、径方向に拡開した時、型部材相互間に僅かな隙間が生じ、ワークWの内側面に対して内型3が接触しない部分が生じる。そこで、内型3を周方向に回転して前回の内型拡開時に内型がワークWと非接触だった部分に内型3の外側面が対応するようにし、その位置で再度テーパピン5をプレス機で加圧して内型3を拡開する。このような内型3を周方向に回転する動作を数回行い、拡開位置を移動させることで、ワークWの周壁を波形状に均一に成形する。
成形後、図3(a)に示すように、プレス機を上昇してテーパピン5の加圧を解除し、内型3をスプリング7の収縮力で径方向内方に縮径させ、ワークWの内側面から引き離す。
その後、図3(b)に示すように内型3を上方に移動させて外型1から離し、図3(c)に示すように外型1を開いて波形状が予備成形されたワークW’(図1(b)参照)を取り出す。
図4(a)、(b)、(c)は、前記第一工程の成形動作の各部(内型挿入、内型拡開による成形、内型縮径)における外型1と内型3とワークWの位置関係を示す拡大図である。
Since the inner mold 3 is a split mold as described above, a slight gap is generated between the mold members when the inner mold 3 is expanded in the radial direction, and the inner mold 3 does not contact the inner surface of the workpiece W. A part arises. Therefore, the inner die 3 is rotated in the circumferential direction so that the outer surface of the inner die 3 corresponds to the portion where the inner die is not in contact with the workpiece W at the previous inner die expansion, and the taper pin 5 is again attached at that position. The inner die 3 is expanded by applying pressure with a press. The operation of rotating the inner die 3 in the circumferential direction is performed several times and the expansion position is moved, so that the peripheral wall of the workpiece W is uniformly formed into a wave shape.
After the molding, as shown in FIG. 3A, the press machine is lifted to release the pressurization of the taper pin 5, the inner mold 3 is contracted radially inward by the contraction force of the spring 7, and the workpiece W Pull away from the inside surface.
Thereafter, the inner mold 3 is moved upward as shown in FIG. 3 (b) to be separated from the outer mold 1, and the outer mold 1 is opened as shown in FIG. '(See Fig. 1 (b)) is taken out.
4 (a), 4 (b), and 4 (c) show the outer mold 1 and the inner mold 3 in each part of the molding operation in the first step (inner mold insertion, molding by expanding the inner mold, and inner mold diameter reduction). It is an enlarged view showing a positional relationship of the workpiece W.

[第二工程]
第二工程は、第一工程で予備成形した緩やか(鈍角)な波形状のピッチ間隔を狭くする波形状に成形する工程で、第一工程を終了したワークW’の襞部分を軸方向に圧縮して、図1(c)に示す波形状のピッチ間隔を圧縮したワークW”を成形する。
波形状の襞部分のピッチを圧縮する第二工程は、ワークW’の波形状の各谷部分に左右二分割の板部材を嵌着し、且つワークW’の内側には該波形状の谷部分の内径と略同径の芯金を挿入して内径を規制し、その状態で前記板部材を鉛直方向に加圧して該板部材相互の鉛直方向の間隔を狭め、それにより波形状のピッチ間隔を圧縮する。
その装置は、開閉可能な基台8,8’上に、ワークW’の波形状の谷部分に嵌着し得る略半円形の切欠部を有した板部材9,9’が鉛直方向に移動可能に積層配置された下型10と、ワークW’の内側に挿入する芯金11と前記下型10の板部材9,9’を加圧する加圧ブロック12を垂下保持した上型13と、ワークW’を前記下型10にセットするガイドピン14を備え、上型13とガイドピン14は、下型10に対して上下し得るように構成されている。
[Second step]
The second step is a step of forming a wave shape that narrows the pitch interval of the gentle (obtuse angle) pre-formed in the first step, and compresses the flange portion of the workpiece W ′ that has finished the first step in the axial direction. Then, the workpiece W ″ in which the wavy pitch interval shown in FIG. 1C is compressed is formed.
In the second step of compressing the pitch of the corrugated ridge portion, a plate member divided into left and right parts is fitted into each corrugated trough portion of the work W ′, and the corrugated trough is placed inside the work W ′. A core metal having the same diameter as the inner diameter of the portion is inserted to regulate the inner diameter, and in this state, the plate members are pressed in the vertical direction to narrow the vertical interval between the plate members, thereby forming a wave-shaped pitch. Compress the interval.
In the apparatus, plate members 9 and 9 ′ having substantially semicircular cutouts that can be fitted into wave-shaped valley portions of the workpiece W ′ move vertically on the bases 8 and 8 ′ that can be opened and closed. A lower mold 10 arranged in a stackable manner, a core 11 inserted inside the workpiece W ′, and an upper mold 13 holding down a pressure block 12 for pressing the plate members 9 and 9 ′ of the lower mold 10; A guide pin 14 for setting the workpiece W ′ on the lower die 10 is provided, and the upper die 13 and the guide pin 14 are configured to move up and down with respect to the lower die 10.

先ず、図5(a)に示すようにガイドピン14にワークW’を嵌着し、次に図5(b)に示すようにガイドピン14を開いている下型10内に上昇させ、その後図5(c)に示すように下型10を閉鎖して板部材9,9’をワークW’の波形状の谷部分に嵌着する。このワークW’の各波形状の谷部分に板部材9,9’を嵌めることで、積層配置された板部材9,9’は波形状のピッチ間隔に保持され、積層された板部材相互間には圧縮代に相当する隙間が形成される。ワークW’を下型10に嵌着セット後、図5(d)に示すように前記ガイドピン14を下降させ、ワークW’から離脱する。
ガイドピン14の離脱後、図6(a)に示すように上型13を下降させ、芯金11をワークW’の内側に挿入し、加圧ブロック12を下型10の板部材9,9’の最上部に当接させる。この時の下型10と上型13とワークW’の位置関係は図8(a)に示す通りで、下型10の板部材9,9’はワークW’の波形状の谷部分に嵌着係合して、積層された各板部材相互間に圧縮代Sが形成されている。又、ワークW’の波形状の内側面(谷部分の内径)には上型13の芯金11の外周面が略当接し、加圧ブロック12による波形状の圧縮時、ワークW’の管壁が中心方向へ膨出変形するのが規制されている。
First, as shown in FIG. 5A, the workpiece W ′ is fitted on the guide pin 14, and then the guide pin 14 is lifted into the open lower mold 10 as shown in FIG. As shown in FIG. 5C, the lower mold 10 is closed and the plate members 9 and 9 ′ are fitted into the wave-shaped valley portions of the workpiece W ′. By fitting the plate members 9 and 9 ′ into the corrugated valley portions of the workpiece W ′, the stacked plate members 9 and 9 ′ are held at a wave-shaped pitch interval, and the stacked plate members are between each other. A gap corresponding to the compression allowance is formed in. After the work W ′ is fitted and set to the lower mold 10, the guide pin 14 is lowered as shown in FIG. 5 (d) and detached from the work W ′.
After the guide pin 14 is detached, the upper die 13 is lowered as shown in FIG. 6A, the core metal 11 is inserted inside the work W ′, and the pressure block 12 is moved to the plate members 9 and 9 of the lower die 10. Touch the top of '. The positional relationship among the lower mold 10, the upper mold 13 and the work W ′ at this time is as shown in FIG. 8A, and the plate members 9 and 9 ′ of the lower mold 10 are fitted in the wave-shaped valley portions of the work W ′. A compression allowance S is formed between the stacked plate members in engagement. Further, the outer peripheral surface of the core metal 11 of the upper mold 13 is substantially in contact with the corrugated inner surface (inner diameter of the valley portion) of the work W ′, and the pipe of the work W ′ is compressed when the corrugation is compressed by the pressure block 12. The wall is restricted from bulging and deforming toward the center.

次に、図6(b)に示すように上型13を下降させ、下型10の積層配置された板部材9,9’を加圧ブロック12で加圧し、前記圧縮代Sをゼロにする。圧縮した状態は図8(b)に示す通り、谷部分に嵌着する板部材9,9’相互が接触して前記圧縮代Sがゼロになり、その圧縮による変形は、内側への膨出変形が芯金11で規制されているため、変形が許容されている外側方向、即ち、板部材9、9’に予め形成されている段差部(逃げ凹部)15内に膨出する。
前記圧縮完了後、図6(c)に示すように上型13を上昇させて下型10より離し、次に図6(d)に示すようにガイドピン14を上昇させ、下型10の内側に支持されているワークW’に挿入し、挿入後、図7(a)に示すように下型10を開き、更に図7(b)に示すようにガイドピン14を下降させて第二工程加工済みのワークW”をガイドピン14から取り出す。
Next, as shown in FIG. 6 (b), the upper die 13 is lowered, and the plate members 9, 9 'in which the lower die 10 is laminated are pressurized by the pressure block 12, and the compression allowance S is made zero. . In the compressed state, as shown in FIG. 8 (b), the plate members 9, 9 'fitted in the valley portions come into contact with each other, and the compression margin S becomes zero, and the deformation due to the compression is caused to bulge inward. Since the deformation is restricted by the metal core 11, the deformation is allowed to bulge out in the outward direction in which the deformation is allowed, that is, in the step portion (relief recess) 15 formed in advance on the plate members 9, 9 ′.
After completion of the compression, the upper die 13 is raised and separated from the lower die 10 as shown in FIG. 6C, and then the guide pins 14 are raised as shown in FIG. Is inserted into the workpiece W ′ supported by the first step, and after the insertion, the lower mold 10 is opened as shown in FIG. 7A, and the guide pin 14 is lowered as shown in FIG. The processed workpiece W ″ is taken out from the guide pin 14.

[第三工程]
第三工程は、第二工程でピッチ間隔を狭くした波形状の谷部分の内径を目的の内径に縮径する工程で、第二工程を終了したワークW”の内側に、第二工程完了時の襞部分の内径と第三工程で縮径する目的の内径に合致する外径を有した芯金を挿入し、ワークW”の外側には波形状の谷部分を、周方向に間隔をおいて複数個配置した分割パンチで挟み、その分割パンチを径方向外側から中心方向に移動させて目的の内径に縮径し、完成品(製品)F(図1(d)参照)を得る。
その装置は、図9に示すように、第二工程の加工を終了したワークW”を保持するスリーブ16を備えたスリーブホルダ17と、縮径する内径に合致する外径を有した下部芯金18を起立保持した下部芯金ホルダ19と、ワークW”の谷部分を縮径する径方向に移動可能な4個で構成された分割パンチ20と、ワークW”の谷部分の内径に合致する外径を有した上部芯金21を垂下保持した上部芯金ホルダ22を備え、前記スリーブ16は下部芯金18に嵌合され、上下昇降可能に支持されている。又、分割パンチ20は前記スリーブ16を貫通して水平に支持したパンチホルダ23上に平面視略十字状に支持され、径方向外側から中心方向に加圧移動することでワークW”の谷部分を中心方向に押し込み、目的の内径に縮径する。
[Third step]
The third step is a step of reducing the inner diameter of the corrugated valley portion in which the pitch interval is narrowed in the second step to the target inner diameter. A cored bar having an outer diameter that matches the inner diameter of the flange portion and the target inner diameter to be reduced in the third step is inserted, and a corrugated valley portion is provided on the outer side of the workpiece W ″ with a gap in the circumferential direction. A plurality of divided punches are sandwiched, and the divided punches are moved from the radially outer side to the central direction to reduce the diameter to a desired inner diameter, thereby obtaining a finished product (product) F (see FIG. 1D).
As shown in FIG. 9, the apparatus includes a sleeve holder 17 having a sleeve 16 that holds a workpiece W ″ that has been processed in the second step, and a lower metal core having an outer diameter that matches the inner diameter to be reduced. It matches the inner diameter of the lower cored bar holder 19 that holds 18 upright, the four divided punches 20 that are movable in the radial direction to reduce the valley portion of the workpiece W ″, and the inner diameter of the valley portion of the workpiece W ″. An upper cored bar holder 22 is provided that suspends and holds an upper cored bar 21 having an outer diameter, and the sleeve 16 is fitted to the lower cored bar 18 and supported so as to be vertically movable. The punch holder 23 that is horizontally supported through the sleeve 16 is supported in a substantially cross shape in plan view, and the valley portion of the workpiece W ″ is pushed in the center direction by pressing and moving from the radially outer side to the center direction. Reduced to the inner diameter of

前記分割パンチ20を径方向に加圧移動させる機構としては、例えば、図11(a),(b)に示すように、前記パンチホルダ23上のスリーブ16で起立支持されるワークW”を囲む周囲に、4分割の分割パンチ20がパンチガイド24で径方向に移動可能に支持され、且つ前記分割パンチ20はリング状のスクロールカム25の回転で径方向に移動しワークW”の谷部分を中心方向に押し込み縮径する。   As a mechanism for pressing and moving the divided punch 20 in the radial direction, for example, as shown in FIGS. 11 (a) and 11 (b), it surrounds a workpiece W ″ supported upright by a sleeve 16 on the punch holder 23. Around the periphery, a four-division divided punch 20 is supported by a punch guide 24 so as to be movable in the radial direction, and the divided punch 20 is moved in the radial direction by the rotation of a ring-shaped scroll cam 25 and moves along the valley portion of the workpiece W ″. Push in the center to reduce the diameter.

第三工程は、先ず図9(a)に示すように、第二工程の成形を完了したワークW”をスリーブ16に嵌合セットし、次に図9(b)に示すように上部芯金21をワークW”内に挿入し、上部芯金21の下端を下部芯金18の上端と接触させる。この時点におけるスリーブ16、ワークW”、分割パンチ20、下部芯金18、及び上部芯金21の位置関係は図12(a)に示す通りで、分割パンチ20と対応するワークW”の谷部の内径と下部芯金18の外周面との間に縮径代に相当する環状隙間S’が生じ、縮径箇所より上位の谷部分の内径は上部芯金21の外周面と合致し、隙間は生じていない。従って、後に行われる分割パンチ20の径方向の移動による縮径では、該分割パンチ20が嵌入した谷部分のみが縮径され、他の部分が変形されることはない。   In the third step, first, as shown in FIG. 9 (a), the workpiece W "that has been formed in the second step is fitted and set to the sleeve 16, and then the upper core metal as shown in FIG. 9 (b). 21 is inserted into the workpiece W ″, and the lower end of the upper cored bar 21 is brought into contact with the upper end of the lower cored bar 18. At this time, the positional relationship among the sleeve 16, the workpiece W ″, the divided punch 20, the lower metal core 18, and the upper metal core 21 is as shown in FIG. 12A, and the valley portion of the workpiece W ″ corresponding to the divided punch 20. An annular gap S ′ corresponding to the reduction diameter is generated between the inner diameter of the lower cored bar 18 and the outer peripheral surface of the lower cored bar 18. Has not occurred. Therefore, in the diameter reduction by the radial movement of the divided punch 20 performed later, only the valley portion where the divided punch 20 is fitted is reduced in diameter, and the other portions are not deformed.

上部芯金21を挿入した後、図9(c)に示すように分割パンチ20をスクロールカム25の回転によって径方向中心方向に移動させ、ワークW”の谷部分を縮径する。その縮径の量は、前記した環状隙間S’をゼロにするもので、図12(b)に示すように分割パンチ20の径方向移動によって縮径された谷部分の内側が下部芯金18の外周面と接触するまで縮径する。
そして縮径後、図9(d)に示すように、前記分割パンチ20を径方向外側に移動させてワークW”から離し(図12(c)参照)、1つの谷部分の縮径を終了する。
そして、次の谷部分の縮径を行うために、図9(e)に示すように、ワークW”を保持したスリーブ16を下部芯金18に沿って1ピッチ下降させる。この時点におけるスリーブ16、ワークW”、分割パンチ20、下部芯金18、及び上部芯金21の位置関係は図12(d)に示す通りである。
以後、分割パンチの移動による縮径成形(図9(c)の動作)、分割パンチ20の開動離脱(図9(d)の動作)、スリーブ16(ワークW”)の下降移動(図9(e)の動作)を順次繰り返し、ワークW”の周壁に形成された波形状の全ての谷部分について縮径を行い、図10(a)に示すように、最終段の縮径加工を完了する。
After the upper mandrel 21 is inserted, as shown in FIG. 9C, the split punch 20 is moved in the radial center direction by the rotation of the scroll cam 25 to reduce the valley portion of the workpiece W ″. The amount of is to make the above-described annular gap S ′ zero, and as shown in FIG. 12 (b), the inside of the valley portion reduced in diameter by the radial movement of the divided punch 20 is the outer peripheral surface of the lower core metal 18. Until it comes into contact with
Then, after the diameter reduction, as shown in FIG. 9D, the divided punch 20 is moved radially outward to be separated from the workpiece W ″ (see FIG. 12C), and the diameter reduction of one valley portion is completed. To do.
Then, in order to reduce the diameter of the next valley portion, as shown in FIG. 9E, the sleeve 16 holding the workpiece W ″ is lowered by one pitch along the lower cored bar 18. The sleeve 16 at this time point. The positional relationship among the workpiece W ″, the divided punch 20, the lower cored bar 18, and the upper cored bar 21 is as shown in FIG.
Thereafter, the diameter reduction by the movement of the divided punch (operation of FIG. 9C), the opening and disengagement of the divided punch 20 (operation of FIG. 9D), and the downward movement of the sleeve 16 (work W ″) (FIG. 9 (FIG. 9). The operation (e) is sequentially repeated to reduce the diameter of all trough portions of the corrugated shape formed on the peripheral wall of the workpiece W ″, and the final diameter reduction processing is completed as shown in FIG. .

最終段の縮径を完了した後、図10(b)に示すように上部芯金21をワークW”から離脱し、次に図10(c)に示すようにスリーブ16を下部芯金18に沿って上昇させ、ワークW”を分割パンチ20より上方に突出させ、ワークW”をスリーブ16より取り出して完成品(金属製ベローズ管)Fを得る。完成した金属製ベローズ管Fは図1(d)に示す通りである。   After completing the final diameter reduction, the upper cored bar 21 is detached from the work W ″ as shown in FIG. 10B, and then the sleeve 16 is moved to the lower cored bar 18 as shown in FIG. 10C. The workpiece W ″ is projected upward from the split punch 20 and the workpiece W ″ is taken out from the sleeve 16 to obtain a finished product (metal bellows tube) F. The completed metal bellows tube F is shown in FIG. As shown in d).

又、第三工程は分割パンチ20を径方向中心方向に移動させてワークW”の谷部分を縮径(絞る)するが、その分割パンチは周方向が複数(図示例では4分割)に分割されている為、ワークW”の谷部分の全周が前記分割パンチで一度に縮径されるとは限らず、分割パンチによる縮径が行われない箇所が円周上に発生する。この分割パンチによる未縮径箇所の発生を無くし、略真円の縮径とするために、前記第一工程と同様、分割パンチ20又はワークW”を周方向に回動して、縮径位置(分割パンチがワークと当たる位置)を移動させる。縮径位置の変更、即ち位置変更の回数は任意である。これにより、より均一な縮径を行うことが可能となる。   In the third step, the divided punch 20 is moved in the central direction in the radial direction to reduce (squeeze) the valley portion of the workpiece W ″. The divided punch is divided into a plurality of circumferential directions (in the illustrated example, four divisions). Therefore, the entire circumference of the valley portion of the workpiece W ″ is not necessarily reduced in diameter by the divided punch, and a portion where the diameter is not reduced by the divided punch is generated on the circumference. In order to eliminate the occurrence of an unreduced portion due to the divided punch and to reduce the diameter to a substantially perfect circle, the divided punch 20 or the workpiece W ″ is rotated in the circumferential direction in the same manner as in the first step, so that the reduced diameter position is obtained. The position where the divided punch hits the workpiece is moved.The diameter reduction position can be changed, that is, the number of times of position change is arbitrary, so that more uniform diameter reduction can be performed.

上記した成形方法は、ワークを鉛直方向にセットして成形する縦型について行い、その成形のための装置も縦型を図示したが、本発明の成形方法はワークの軸芯を水平線と平行となる横に寝かせた状態で成形する横型でもよいことは言うまでもないことである。
又、本発明における第一工程、第二工程、及び第三工程の各動作を示す成形装置は、あくまでも一例であり、これによって限定されるものではない。
The forming method described above is performed for a vertical mold that sets the workpiece in the vertical direction and the apparatus for forming the vertical mold is illustrated. However, in the molding method of the present invention, the axis of the work is parallel to the horizontal line. It goes without saying that a horizontal mold formed in a state of being laid down may be used.
Moreover, the shaping | molding apparatus which shows each operation | movement of the 1st process in this invention, a 2nd process, and a 3rd process is an example to the last, and is not limited by this.

本発明の成形方法における各工程の成形状態を示す正面図で、(a)は成形に使用するワーク(金属製円管)W、(b)は第一工程完了時のワークW’、(c)は第二工程完了時のワークW”、(d)は第三工程完了時の完成品Fを示す。It is a front view which shows the shaping | molding state of each process in the shaping | molding method of this invention, (a) is the workpiece | work (metal circular pipe) W used for shaping | molding, (b) is the workpiece | work W 'at the time of completion of a 1st process, (c ) Shows the workpiece W ″ when the second process is completed, and (d) shows the finished product F when the third process is completed. (a)〜(d)は第一工程のワークセットから波形状の成形までを示す説明図。(A)-(d) is explanatory drawing which shows from the work set of a 1st process to shaping | molding of a waveform. (a)〜(c)は第一工程の内型縮径から外型開動までを示す説明図。(A)-(c) is explanatory drawing which shows from an inner mold diameter reduction of an 1st process to an outer mold opening. (a)〜(c)は第一工程の各動作時における外型1と内型3とワークWの位置関係を示す拡大図。(A)-(c) is an enlarged view which shows the positional relationship of the outer mold | type 1, the inner mold | type 3, and the workpiece | work W at the time of each operation | movement of a 1st process. (a)〜(d)は第二工程の下型に対するワークのセットまでを示す説明図。(A)-(d) is explanatory drawing which shows to the set of the workpiece | work with respect to the lower mold | type of a 2nd process. (a)〜(d)は第二工程の波形状の圧縮動作を示す説明図。(A)-(d) is explanatory drawing which shows the waveform compression operation | movement of a 2nd process. (a)、(b)は第二工程の成形済みワークを取り出す工程を示す説明図。(A), (b) is explanatory drawing which shows the process of taking out the molded workpiece | work of a 2nd process. (a)、(b)は第二工程の圧縮前と圧縮後の状態を示す拡大図。(A), (b) is an enlarged view which shows the state before the compression of a 2nd process, and the state after compression. (a)〜(e)は第三工程のワークセットから一段目の谷部分の縮径までを示す説明図。(A)-(e) is explanatory drawing which shows from the work set of a 3rd process to the diameter reduction of the trough part of the 1st step | paragraph. (a)〜(c)は第三工程の最終段の縮径完了からワークの取出しまでを示す説明図。(A)-(c) is explanatory drawing which shows from the completion of diameter reduction of the last stage of a 3rd process to the taking-out of a workpiece | work. 第三工程の分割パンチの縮径動作を行う移動機構の一例を示す説明図で、(a)は縮径前、(b)は縮径時を示す。It is explanatory drawing which shows an example of the moving mechanism which performs the diameter reduction operation | movement of the division | segmentation punch of a 3rd process, (a) is before diameter reduction, (b) shows the time of diameter reduction. (a)〜(d)は第三工程の各動作時における拡大図。(A)-(d) is an enlarged view at the time of each operation | movement of a 3rd process.

符号の説明Explanation of symbols

W…ワーク(金属製円管)
W’…第一工程の成形を完了したワーク
W”…第二工程の成形を完了したワーク
F…第三工程の成形を完了した完成品
1…第一工程でワークに波形状を成形する外型
3…第一工程でワークに波形状を成形する内型
5…内型を拡開するテーパピン
9,9’…第二工程で波形状を圧縮する板部材
11…第二工程でワークの内側に挿入する芯金
18,21…第三工程でワークに挿入する芯金
20…第三工程でワークの谷部分を縮径する分割パンチ
W ... Work (metal circular pipe)
W ′: Work piece that has been formed in the first step W ″: Work piece that has been formed in the second step
F ... Finished product that completed the third process
1 ... Outer mold that forms a wave shape on the workpiece in the first step
3 ... Inner mold that forms a wave shape on the workpiece in the first step
5 ... Taper pin that expands the inner die 9, 9 '... Plate member that compresses the wave shape in the second step 11 ... Core metal inserted inside the workpiece in the second step 18, 21 ... Inserted into the workpiece in the third step Core to be cut 20 ... Split punch that reduces the trough of the workpiece in the third step

Claims (3)

外径が小径な金属製円管から小口径のベローズ管をプレス加工で成形する成形方法であって、
(1)金属製円管のワークを、内側面に環状突条を等ピッチで有し、径方向に開閉可能な外型と、前記外型の内側に挿入され前記環状突条と互い違いに噛合する環状突条を外側面に等ピッチで有し、径方向に拡縮する内型との間に挿入し、前記内型を外型方向に加圧拡開して前記ワークの管壁に波形状の襞を成形する第一工程と、
(2)前記第一工程で成形したワークの内側に、襞部分の内径と略同径の芯金を挿入し、且つ襞部分を開閉可能な板部材で上下より挟持し、その板部材相互の間隔を狭める方向に加圧して前記波形状のピッチ間隔を圧縮し、波形状の外側形状を断面略V字型から断面略U字型に成形する第二工程と、
(3)前記第二工程で成形したワークの内側に、第二工程完了時の襞部分の内径と第三工程で縮径する目的の内径に合致する外径を有した芯金を挿入し、ワークの外側には波形状の谷部分を周方向に間隔をおいて配置した分割パンチで挟み、その分割パンチを縮径する襞部分に対応配置し、ワークの内側には前記縮径する内径に合致する外径を有した芯金を配置すると共に、縮径する襞部分より上位の襞部分の内側には該襞部分の内径と合致する外径を有した芯金を配置し、前記分割パンチを径方向外側から中心方向に加圧移動させて前記谷部分を前記縮径の内径に合致する外径を有した芯金の外周面と接触するまで縮径し、更に前記芯金及び前記ワークを軸方向に移動させて前記谷部分を1ピッチずつ目的の内径に縮径する第三工程と、
からなることを特徴とする高耐圧用金属製ベローズ管の成形方法。
A molding method in which a small-diameter bellows pipe is formed by press working from a metal circular pipe having a small outer diameter,
(1) A metal circular pipe work having annular ridges on the inner surface at equal pitches, an outer mold that can be opened and closed in the radial direction, and inserted into the outer mold and alternately meshed with the annular ridge. An annular ridge that has an equal pitch on the outer surface and is inserted between an inner mold that expands and contracts in the radial direction, and the inner mold is pressed and expanded in the outer mold direction to corrugate the pipe wall of the workpiece The first step of molding
(2) said inner workpiece molded in the first step, to insert the core metal of the inner diameter substantially the same diameter of the fold portions, and and clamped from above and below with openable plate member each fold portion, each plate member A second step of compressing the corrugated pitch interval by pressurizing in the direction of narrowing the mutual interval, and forming the corrugated outer shape from a substantially V-shaped cross section to a substantially U-shaped cross section ;
(3) Insert a mandrel having an outer diameter that matches the inner diameter of the flange portion at the completion of the second step and the target inner diameter to be reduced in the third step, inside the workpiece formed in the second step, The corrugated valley portion is sandwiched between circumferentially spaced split punches on the outside of the workpiece, and the split punch is disposed corresponding to the flange portion that reduces the diameter. A cored bar having a matching outer diameter is disposed, and a cored bar having an outer diameter matching the inner diameter of the flange part is disposed inside the flange part higher than the flange part to be reduced in diameter. Is pressed from the radially outer side to the central direction to reduce the diameter of the valley until it comes into contact with the outer peripheral surface of the cored bar having an outer diameter matching the inner diameter of the reduced diameter, and further to the cored bar and the workpiece A third step of axially moving the trough portion to a desired inner diameter by one pitch ;
A method for forming a metal bellows tube for high pressure resistance, comprising :
前記第一工程の拡開は、内型、外型の何れか一方、又は両方を周方向に回転させて拡開位置を移動させて行うことを特徴とする請求項1記載の高耐圧用金属製ベローズ管の成形方法。 2. The metal for high pressure resistance according to claim 1, wherein the expansion in the first step is performed by rotating one or both of an inner mold and an outer mold in the circumferential direction to move the expansion position. A method for forming a bellows tube. 前記第三工程の分割パンチによる縮径は、該分割パンチを周方向に回転して縮径位置を移動させて行うことを特徴とする請求項1又は2記載の高耐圧用金属製ベローズ管の成形方法。 3. The metal bellows pipe for high pressure resistance according to claim 1 or 2 , wherein the diameter reduction by the divided punch in the third step is performed by rotating the divided punch in the circumferential direction and moving the reduced diameter position . Molding method.
JP2007177054A 2007-07-05 2007-07-05 Metal bellows tube forming method Expired - Fee Related JP4220562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007177054A JP4220562B2 (en) 2007-07-05 2007-07-05 Metal bellows tube forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007177054A JP4220562B2 (en) 2007-07-05 2007-07-05 Metal bellows tube forming method

Publications (2)

Publication Number Publication Date
JP2009012045A JP2009012045A (en) 2009-01-22
JP4220562B2 true JP4220562B2 (en) 2009-02-04

Family

ID=40353601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007177054A Expired - Fee Related JP4220562B2 (en) 2007-07-05 2007-07-05 Metal bellows tube forming method

Country Status (1)

Country Link
JP (1) JP4220562B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102000723A (en) * 2010-09-14 2011-04-06 肇庆市骏驰科技有限公司 Multi-boss molding device for automotive pipeline
WO2021152896A1 (en) * 2020-01-31 2021-08-05 株式会社キーレックス Method for molding screw thread of metal pipe

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011121103A (en) * 2009-12-14 2011-06-23 Jtekt Corp Method for manufacturing hollow rack shaft and hollow rack shaft
JP5745785B2 (en) * 2010-06-18 2015-07-08 坂本工業株式会社 Method and apparatus for forming cylindrical molded product
CN107471618A (en) * 2016-12-21 2017-12-15 温州风神硅胶制品有限公司 A kind of corrugated pipe forming machine
CN108326109A (en) * 2018-03-14 2018-07-27 河南兴迪锻压设备制造有限公司 A kind of high-pressure liquid-filling shaping dies for bellows

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102000723A (en) * 2010-09-14 2011-04-06 肇庆市骏驰科技有限公司 Multi-boss molding device for automotive pipeline
WO2021152896A1 (en) * 2020-01-31 2021-08-05 株式会社キーレックス Method for molding screw thread of metal pipe
JP2021121446A (en) * 2020-01-31 2021-08-26 株式会社キーレックス Spiral thread molding method of metal pipe
JP7292727B2 (en) 2020-01-31 2023-06-19 株式会社キーレックス Spiral crest forming method for metal pipe

Also Published As

Publication number Publication date
JP2009012045A (en) 2009-01-22

Similar Documents

Publication Publication Date Title
JP3509217B2 (en) Forming method and forming apparatus for deformed cross-section pipe
JP4220562B2 (en) Metal bellows tube forming method
JP2008290154A (en) Apparatus and method for manufacturing pipe connector
JP2016073986A (en) Manufacturing method and manufacturing device of diameter expanded pipe part
JP7261228B2 (en) Method of forming roll edges
JP7160320B2 (en) Tube expansion mold, tube contraction mold, and each mold device
CN110576088B (en) 90-degree bending forming method and device for large-diameter thin pipe
EP2807651B1 (en) A method for the manufacture of a vessel bottom with a flange
JP5807293B2 (en) Method for forming undercut portion and method for producing molded product having undercut portion
JP5969234B2 (en) Cylinder member manufacturing method for automatic transmission
JP2000210738A (en) Structure including press molded article and its production
US11745243B2 (en) Multi-axis roll-forming of stepped-diameter cylinder
KR102272735B1 (en) processing method using elastic body
CN214601198U (en) Equipment for manufacturing small-diameter slotted cylindrical metal piece with one end turned over
JPH0732052A (en) Method for working corrugated pipe and apparatus therefor
JP2020006387A (en) Manufacturing device of round steel pipe and round steel pipe manufacturing facility
JP2507229B2 (en) Manufacturing method for ring body for hydraulic hose mouth fittings
RU2730347C1 (en) Manufacturing method of steeply bent angle staff
CN113000647B (en) Method and equipment for manufacturing small-diameter slotted cylindrical metal piece with one end turned
JP6187238B2 (en) Press molding method and press molding apparatus
JPH02117729A (en) Forming method for sheet metal multistage v-pulley
RU2710619C1 (en) Method of manufacturing segmented shells for ball containers
WO2024111215A1 (en) Method and device for performing extrusion molding of different-thickness pipe having solid portion
JP2017217700A (en) Can manufacturing method
RU2392079C1 (en) Procedure for punching thin-wall semi-spherical bottoms and installation for implementation of this procedure

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4220562

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141121

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees