JP4219430B2 - Vehicle speed control device for mobile agricultural machines - Google Patents

Vehicle speed control device for mobile agricultural machines Download PDF

Info

Publication number
JP4219430B2
JP4219430B2 JP31429297A JP31429297A JP4219430B2 JP 4219430 B2 JP4219430 B2 JP 4219430B2 JP 31429297 A JP31429297 A JP 31429297A JP 31429297 A JP31429297 A JP 31429297A JP 4219430 B2 JP4219430 B2 JP 4219430B2
Authority
JP
Japan
Prior art keywords
speed
piston
vehicle speed
steering
lever
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31429297A
Other languages
Japanese (ja)
Other versions
JPH11127668A (en
Inventor
竹 一 男 小
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanma Agricultural Equipment Co Ltd
Original Assignee
Yanma Agricultural Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanma Agricultural Equipment Co Ltd filed Critical Yanma Agricultural Equipment Co Ltd
Priority to JP31429297A priority Critical patent/JP4219430B2/en
Publication of JPH11127668A publication Critical patent/JPH11127668A/en
Application granted granted Critical
Publication of JP4219430B2 publication Critical patent/JP4219430B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は例えば刈取部で刈取った穀稈を脱穀部で脱穀処理するようにしたコンバインなど移動農機の車速制御装置に関する。
【0002】
【発明が解決しようとする課題】
従来、作業負荷の増大などによってエンジン負荷が増大したとき車速を低減させ、エンジン負荷を一定維持させて、コンバインの扱胴回転数など常時一定に保つようにした手段があるが、エンジン負荷の変動に対し、車速が必要以上に減速するなどして制御が不安定となる欠点があった。
【0003】
【課題を解決するための手段】
したがって本発明は、自動バルブの減速用ソレノイドまたは増速用ソレノイドによって、圧油をピストンに作用させ車速制御を行う移動農機の車速制御装置において、
主変速レバーでもって車速が変速操作されるとともに、エンジンの負荷率と回転数の検出に基づき前記自動バルブを備える油圧サーボ機構を用いて車速が増減速制御され、
前記主変速レバーは、変速連動機構および変速リンク機構を介してコントロールレバーに連係するとともに、前記コントロールレバーは、走行ストッパー杆、回動枢軸およびクランクアームを介して、ピストン内の、該ピストンの軸線に沿って形成された内径部を移動可能に配設したスプールに連係し、
前記主変速レバーの操作に伴う前記スプールの移動によって、ピストン内に導入した圧油によりピストンを移動させ、走行用変速ポンプの斜板の回転角度を変更させ車速制御を行うとともに、
前記油圧サーボ機構は、前記エンジンの負荷率が設定以上、且つ前記エンジンの回転数が設定回転数より一定回転数低下したとき、前記自動バルブの前記減速用ソレノイドによ って、圧油を前記ピストンに作用させることにより前記ピストンを移動させて、前記走行用変速ポンプの斜板の回転角度を変更し、前記主変速レバーで設定される車速を基準として一定値車速を減速させ、
前記車速の減速時に前記エンジンの負荷率が所定値以下となったとき、前記自動バルブの前記増速用ソレノイドによって、圧油を前記ピストンに作用させることにより前記ピストンを移動させて、前記走行用変速ポンプの斜板の回転角度を変更し、前記主変速レバーで設定された元の車速に復帰させることを特徴とする、移動農機の車速制御装置であり、高精度な車速制御を行ってエンジン性能を安定維持させるものである。
【0004】
【発明の実施の形態】
以下、本発明の実施例を図面に基づいて詳述する。図1は操向操作部の説明図、図2は全体側面図、図3は同平面図であり、図中(1)は走行部である走行クローラ(2)を装設するトラックフレーム、(3)は前記トラックフレーム(1)に架設する機台、(4)はフィードチェン(5)を左側に張架し扱胴(6)及び処理胴(7)を内蔵している脱穀部、(8)は刈刃(9)及び穀稈搬送機構(10)などを備える刈取部、(11)は刈取フレーム(12)を介して刈取部(8)を昇降させる油圧昇降シリンダ、(13)は排藁チェン(14)終端を臨ませる排藁処理部、(15)は脱穀部(4)からの穀粒を揚穀筒(16)を介して搬入する穀物タンク、(17)は前記タンク(15)の穀粒を機外に搬出する排出オーガ、(18)は操向ハンドル(19)及び運転席(20)などを備える運転キャビン、(21)は運転キャビン(18)下方に設けるエンジンであり、連続的に穀稈を刈取って脱穀するように構成している。
【0005】
また、図4に示す如く、前記走行クローラ(2)を駆動するミッションケース(22)は、1対の油圧変速ポンプ(23)及び油圧変速モータ(24)からなる走行用の油圧式無段変速機構(25)と、1対の油圧操向ポンプ(26)及び油圧操向モータ(27)からなる旋回用の油圧式無段変速機構(28)とを備え、前記エンジン(21)の出力軸(21a)の駆動力を変速及び操向ポンプ(23)(26)の入力軸(29)にカウンタケース(30)を介してベルト伝動させ、各ポンプ(23)(26)を駆動するように構成している。
【0006】
そして、前記変速モータ(24)の出力軸(31)に、副変速機構(32)及び強制差動機構(33)を介し、左右走行クローラ(2)(2)の駆動輪(34)(34)を連動連結させるもので、前記差動機構(33)は左右対称の1対の遊星ギヤ機構(35)(35)を有し、該遊星ギヤ機構(35)は1つのサンギヤ(36)と、該サンギヤ(36)の外周で噛合う3つのプラネタリギヤ(37)…と、各プラネタリギヤ(37)…に噛合うリングギヤ(38)などで形成している。
【0007】
さらに、前記各プラネタリギヤ(37)は、サンギヤ軸(39)と同軸線上とのキャリヤ軸(40)のキャリヤ(41)にそれぞれ回転自在に軸支させ、左右のサンギヤ(36)(36)を挾んで左右のキャリヤ(41)を対向配置させると共に、前記リングギヤ(38)は、各プラネタリギヤ(37)に噛み合う内歯(38a)を有し、サンギヤ軸(39)と同一軸芯上のキャリヤ軸(40)に回転自在に支持させている。
【0008】
またさらに、走行用の油圧式無段変速機構(25)は、変速ポンプ(23)の回転斜板(23a)の角度変更調節により変速モータ(24)の正逆回転と回転数の制御を行うもので、変速モータ(24)の回転出力を出力軸(31)の伝達ギヤ(42)から、各ギヤ(43)(44)(45)及び副変速機構(32)を介し、サンギヤ軸(39)に固定したセンタギヤ(46)に伝達してサンギヤ(36)を回転するように構成している。前記副変速機構(32)は、前記ギヤ(45)を有する副変速軸(47)と、前記センタギヤ(46)に噛合うギヤ(48)を有する駐車ブレーキ軸(49)とを備え、副変速軸(47)とブレーキ軸(49)間に、低速用ギヤ(50)(48)及び中速用ギヤ(51)(52)及び高速用ギヤ(53)(54)を設け、中央位置の副変速切換用ギヤ(51)のスライダ(51a)の摺動操作によって副変速の低速と中速と高速の切換を行うように構成している。なお、低速と中速の間及び中速と高速の間には中立ゾーンを有する。また前記駐車ブレーキ軸(49)に車速検出ギヤ(55)と、該ギヤ(55)の回転数によって車速を検出する車速センサ(56)を設けると共に、刈取部(8)に回転力を伝達する刈取PTO軸(57)のPTO入力ギヤ(58)に、前記出力軸(31)の伝達ギヤ(42)を噛合連結させている。
【0009】
そして、前記センタギヤ(46)を介しサンギヤ軸(39)に伝達された変速モータ(24)からの駆動力を、左右の遊星ギヤ機構(35)(35)を介して左右キャリヤ軸(40)(40)に伝達させると共に、各キャリヤ軸(40)(40)に伝達された回転出力を左右1対2組の減速ギヤ(60)(61)・(60)(61)を介して左右の駆動輪(34)(34)の車軸(34a)(34a)にそれぞれ伝えるように構成している。
【0010】
また、旋回用の油圧式無段変速機構(28)は、操向ポンプ(26)の回転斜板(26a)の角度変更調節により操向モータ(27)の正逆回転切換と回転数の制御を行うもので、操向モータ(27)の出力軸(62)の出力ギヤからギヤ伝達機構(63)を介し最終出力軸である旋回軸(64)の旋回ギヤ(65a)(65b)に回転出力を伝達し、右側のリングギヤ(38)の外歯(38b)に対して右旋回ギヤ(65a)を噛合させ、また左側のリングギヤ(38)の外歯(38b)に逆転軸(66)の逆転ギヤ(67)を介して左旋回ギヤ(65b)を連結させ、操向モータ(27)の正転時に左右のリングギヤ(38)(38)を左右同一回転数で回転させ、かつ左リングギヤ(38)を正転させ、右リングギヤ(38)を逆転させるように構成している。
【0011】
而して、旋回用の操向モータ(27)の駆動を停止させ、かつ左右リングギヤ(38)を静止固定させた状態で、走行用の変速モータ(24)を駆動させると、変速モータ(24)からの回転出力はセンタギヤ(46)から左右のサンギヤ(36)に同一回転数で伝達され、左右遊星ギヤ機構(35)のプラネタリギヤ(37)及びキャリヤ(41)及び減速ギヤ(60)(61)を介して左右の車軸(34a)(34a)に左右同一回転方向でかつ同一回転数で伝達され、機体の前後直進走行が行われる。一方、走行用の変速モータ(24)を停止させ、かつ左右のサンギヤ(36)(36)を静止固定させた状態で、旋回用の操向モータ(27)を正逆回転駆動すると、左側の遊星ギヤ機構(35)が正或いは逆回転し、また右側の遊星ギヤ機構(35)が逆或いは正回転し、左右走行クローラ(2)(2)の一方を前進回転させかつもう一方を後進回転させ、機体を左或いは右にその場でスピンターン(心地旋回)させ、圃場枕地での方向転換などを行うように構成している。
【0012】
また、走行用の変速モータ(24)を駆動させながら、旋回用の操向モータ(27)を駆動すると、左右走行クローラ(2)(2)の駆動速度に差が生じて機体を左右に旋回させ、旋回半径の大きい旋回によって走行方向が修正され、また前記旋回半径は左右走行クローラ(2)(2)の速度差に応じて決定されるように構成している。
【0013】
図5乃至図12に示す如く、前記走行用の油圧式無段変速機構(25)に連結する主変速レバー(68)と、旋回用の油圧式無段変速機構(28)に連結する操向レバー(19)とを、変速及び旋回連動機構(69)に連動連結させると共に、該連動機構(69)を走行変速及び操向リンクであるリンク機構(70)(71)介し走行及び旋回用の無段変速機構(25)(28)のコントロールレバー(72)(73)に連動連結させている。
【0014】
前記連動機構(69)は、主変速レバー(68)の基端折曲部(68a)を筒軸(74)に左右揺動自在に支持する回動板(75)と、機体側の本機フレーム(76)に固設して前記回動板(75)を左右方向の第1枢軸(77)を介し前後回動自在に支持する固定取付板(78)と、前記枢軸(77)と直交する前後方向の第2枢軸(79)を介して回動板(75)に連結させて該軸(79)回りに回動自在に設ける変速操作部材(80)と、前記第2枢軸(79)の軸回りに回動自在に連結させる操向操作部材(81)とを備え、変速及び操向操作部材(80)(81)の第2枢軸(79)とは偏心位置の各操作出力部(80a)(81a)を変速及び操向リンク機構(70)(71)に連動連結させている。
【0015】
前記変速及び操向リンク機構(70)(71)は、連動機構(69)後方位置で本機フレーム(76)側に揺動軸(82)外側の揺動筒軸(83)を介し支持する変速アーム(84)と、前記揺動軸(82)に基端を固設する操向アーム(85)と、前記出力部(80a)(81a)の各操作出力軸(86)(87)と各アーム(84)(85)間を連結する自在継手軸(88)(89)と、前記揺動軸(82)の右端に固設する操向出力アーム(90)と、前記運転キャビン(18)の回動支点軸(92)の支点軸受(93)に取付ける中間軸(94)に回転自在に設ける変速及び操向用第1揺動アーム(95)(96)と、前記アーム(84)(90)と第1揺動アーム(95)(96)の各先端間をそれぞれ連結する変速及び操向用自在継手形第1ロッド(97)(98)と、前記中間軸(94)に設けて第1揺動アーム(95)(96)に一体連結する変速及び操向用第2揺動アーム(99)(100)と、前記ミッションケース(22)上部の軸受板(101)に取付ける支軸(102)に回動自在に支持させる変速及び操向用筒軸(103)(104)と、該筒軸(103)(104)に基端を固設する第1揺動アーム(105)(106)と前記第2揺動アーム(99)(100)の各先端間を連結する変速及び操向用自在継手形第2ロッド(107)(108)と、前記筒軸(103)(104)に基端を固設する第2揺動アーム(109)(110)と前記コントロールレバー(72)(73)の各先端間を連結させる変速及び操向用自在継手形第3ロッド(111)(112)とを備え、前記第1枢軸(77)を中心とした変速操作部材(80)の回動によって走行用のコントロールレバー(72)を、また走行中の第2枢軸(79)を中心とした操向操作部材(81)の回動によって操向用のコントロールレバー(73)を操作して変速及び操向制御を行うように構成している。
【0016】
一方、前記操向レバー(19)下端の旋回操作軸(113)にギヤ(114)を設け、この後方の回転軸(115)に取付けるセクタギヤ(116)に前記ギヤ(114)を噛合せると共に、前記主変速レバー(68)位置下方に配設する操向軸(117)の第1揺動アーム(118)先端と、前記回転軸(115)に備える出力アーム機構(119)との間を自在継手形操向第1ロッド(120)を介して連結させ、操向軸(117)の第1揺動アーム(118)と一体の第2揺動アーム(121)を、前記自在継手軸(89)の前端に自在継手形操向第2ロッド(122)を介して連結させ、前記レバー(19)の左右傾動操作によって前記第2枢軸(79)を中心として操向操作部材(81)を回動するように構成している。
【0017】
また、前記旋回操作軸(113)のギヤ(114)下方に中立位置決め板(123)を設け、該位置決め板(123)下面の突出軸(124)に操向検出リンク(125)の一端を連結させ、前記回転軸(115)の右側に配設する減速アーム軸(126)の第1揺動アーム(127)と前記検出リンク(125)他端の長孔(125a)とを軸(128)を介し連結させると共に、前記操向軸(117)の減速アーム(129)と減速アーム軸(126)の第2揺動アーム(130)の各先端間を自在継手形第1減速ロッド(131)で連結させ、前記変速操作部材(80)の最右端の減速伝達軸(132)と第2揺動アーム(130)の他端間を自在継手形第2減速ロッド(133)で連結させ、走行状態で前記レバー(19)の操向操作量を大きくする程第2減速ロッド(133)を下方に引張り、操向操作量に比例させて走行速度を減速させるように構成している。
【0018】
而して、図12に示す如く、前記変速及び操向操作部材(80)(81)を軸回りに回動支持させる第2枢軸(79)と、操向アーム(85)に連結させる継手軸(89)の自在継手部(89a)とを前後方向の水平ライン(L1)上に位置させ、また前記操作出力軸(86)(87)に連結させる自在継手軸(88)(89)の自在継手部(88b)(89b)と、第1枢軸(77)とを前記ライン(L1)に直交させる左右水平ライン(L2)上に位置させ、さらに前記変速アーム(84)に連結させる継手軸(88)との自在継手部(88a)と前記継手部(89a)を前記ライン(L2)と平行な左右水平ライン(L3)上に位置させ、且つ継手部(89a)に継手部(88a)を可及的に接近(最大限近い位置)させて配置させ、主変速レバー(68)及び操向ハンドル(19)を中立位置に支持しているとき、前記レバー(68)またはハンドル(19)の何れか一方が操作されても、各操作部材(80)(81)を第1及び第2枢軸(77)(79)回りに回動させるだけで、継手軸(88)(89)にまで前記レバー(68)またはハンドル(19)の操作力が及ばないように構成している。
【0019】
そして、図9、図12に示す如く、主変速レバー(68)を前後進操作し、第1枢軸(77)を中心として操作部材(80)を前後に角度(α1)(α2)傾けるとき、前記継手軸(88)を引張り或いは押して変速アーム(84)を動作させ、走行速度の前後進切換を行うと共に、図10に示す如く主変速レバー(68)が中立以外の位置に操作されている状態で、操向ハンドル(19)を回動操作し、第2枢軸(79)を中心として操作部材(81)を上下に角度(β1)(β2)傾けるとき、継手軸(89)を引張り或いは押して操向アーム(85)を動作させ、機体を左及び右旋回させる操向動作を行わせるもので、主変速レバー(68)の中立時に旋回操作を行っても、継手部(89a)を支点として継手軸(89)はライン(L1)を中心とした円錐面上で回転移動し、ライン(L1)と軸(77)の交点を中心とする同一円周上を継手部(89b)が移動し、継手部(89b)とライン(L3)の距離が略一定に保たれ、したがって操向アーム(85)は動作しない。そして主変速レバー(68)が中立位置以外のときにハンドル(19)の旋回操作が行われると、操向アーム(85)は動作するもので、前後進に切換わるとき操向アーム(85)は前後逆方向に動作し、操向モータ(27)を前進時と後進時では逆方向に回転させるように構成したものである。
【0020】
例えば、走行用の変速モータ(24)の正回転時を前進時とすると、逆回転時の後進時には旋回用の操向モータ(27)による遊星ギヤ機構(35)の作用は前進時と後進時では逆となるもので、前進時と後進時のハンドル(19)操作による機体の旋回方向を一致させるため、変速モータ(24)の逆回転(後進)時には操向ポンプ(26)の斜板角度を逆方向に切換え、操向モータ(27)を前進時と後進時では逆方向に回転させるように構成している。
【0021】
また、前進操作時の操作部材(80)が中立より前方の角度(α1)側に傾き、ハンドル(19)の右回動操作によって第2ロッド(122)を引張り操作部材(81)を下方向の角度(β2)側に傾けることにより、操作部材(81)の出力部(81a)を操向アーム(85)側に近づけ、揺動軸(82)を中心として操向アーム(85)を操作部材(81)より遠ざける方向(図6中反時計方向)に回転させ、前記第1及び第2ロッド(98)(108)などを介しコントロールレバー(73)を下方向に回転させ、旋回用の操向モータ(27)を正回転させる。即ち、機体を前進で右旋回(走行クローラ(2)の速度を左側が大、右側が小)させるように構成している。
【0022】
さらに、主変速レバー(68)を前方に倒す前進操作時、ハンドル(19)の左回動操作によって第2ロッド(122)を押し上げ、操作部材(81)を上方向の角度(β1)側に傾けることにより、操作部材(81)の出力部(81a)を操作アーム(85)側より遠ざけ、揺動軸(82)を中心として操向アーム(85)を操作部材(81)側に近づける方向(図6中時計方向)に回転させ、前記コントロールレバー(73)を上方向に回転させ、前記操向モータ(27)を逆回転させる。即ち、機体を前進で左旋回(走行クローラ(2)の速度を右側が大、左側が小)させるように構成している。
【0023】
さらに、主変速レバー(68)を後方に倒す後進操作によって操作部材(80)が中立より後方の角度(α2)側に傾き、ハンドル(19)の右回動操作によって第2ロッド(122)を引張り操作部材(81)を下方向の角度(β2)側に傾けることにより、操作部材(81)の出力部(81a)を操向アーム(85)側より遠ざけ、揺動軸(82)を中心として操向アーム(85)を操作部材(81)側に近づける方向(図6中時計方向)に回転させ、前記コントロールレバー(73)を上方向に回転させ、前記操向モータ(27)を逆回転させる。即ち、機体を後進で右旋回(走行クローラ(2)の速度を左側が大、右側が小)させるように構成している。
【0024】
また、主変速レバー(68)後進操作時で、ハンドル(19)の左回動操作によって、操作部材(81)を上方向の角度(β1)側に傾けることにより、操作部材(81)の出力部(81a)を操作部材(81)側に近づけ、揺動軸(82)を中心として操向アーム(85)を操作部材(81)より遠ざける方向(図6中反時計方向)に回転させ、前記コントロールレバー(73)を下方向に回転させ、前記操向モータ(27)を正回転させる。即ち、機体を後進で左旋回(走行クローラ(2)の速度を右側が大、左側が小)させるように構成している。
【0025】
このように前進及び後進時の旋回操作において、操向アーム(85)を逆方向に回転させ、前後進の何れにおいても操向レバー(19)の傾動操作方向と機体の旋回方向とを一致させるように構成している。
【0026】
図21に示す如く、走行用及び旋回用の油圧式無段変速機構(25)(28)の油圧回路には、各ポンプ(23)(26)と連動してエンジン(21)より駆動する油圧チャージポンプ(134)と、走行変速レバー(68)手動操作によって切換える変速バルブ(135)と、前記チャージポンプ(134)に変速バルブ(135)を介して接続させる変速シリンダ(136)と、走行変速レバー(68)の中立操作時に電磁ソレノイド(137)を作動させて切換える中立バルブ(138)と、該バルブ(138)を介して前記チャージポンプ(134)に接続させるブレーキシリンダ(135)を設ける。そして、前記走行変速レバー(68)を操作して変速バルブ(135)を切換えると、変速シリンダ(136)が作動して変速ポンプ(23)の斜板(23a)角度を変更させ、変速モータ(24)の出力軸(31)の回転数を無段階に変化させたり、逆転させる走行変速動作を行わせ、また前記斜板(23a)の角度調節動作によって変速バルブ(136)が中立復帰するフィードバック動作を行わせ、走行変速レバー(68)の操作量に比例させて前記斜板(23a)角度を変化させ、変速モータ(24)の回転数を変更させると共に、前記走行変速レバー(68)の中立操作によって電磁ソレノイド(137)が励磁して中立バルブ(138)が自動的に切換わり、ブレーキシリンダ(135)を作動させて変速モータ(24)の出力軸(31)を制動し、中立操作時の出力軸(31)の前後進回転を阻止するように構成している。
【0027】
また、前記操向ハンドル(19)手動操作によって切換える操向バルブ(139)と、前記チャージポンプ(134)に操向バルブ(139)を介して接続させる操向シリンダ(140)と、操向ハンドル(19)の直進操作時に電磁直進ソレノイド(141)を作動させて切換える直進バルブ(142)と、該バルブ(142)を介して前記チャージポンプ(134)に接続させるブレーキシリンダ(143)を設ける。そして、前記操向ハンドル(19)を操作して操向バルブ(139)を切換えると、操向シリンダ(140)が作動して操向ポンプ(26)の斜板(26a)角度を変更させ、操向モータ(27)の出力軸(62)の回転数を無段階に変化させたり、逆転させる左右操向動作を行わせ、走行方向を左右に変更して圃場枕地で方向転換したり進路を修正する。また前記斜板(26a)の角度調節動作によって操向バルブ(139)が中立復帰するフィードバック動作を行わせ、操向ハンドル(19)の操作量に比例させて前記斜板(26a)角度を変化させ、操向モータ(27)の回転数を変更させると共に、前記操向ハンドル(19)の直進操作によって直進ソレノイド(141)が励磁して直進バルブ(142)が自動的に切換わり、ブレーキシリンダ(143)を作動させて操向モータ(27)の出力軸(62)を制動し、直進操作時の出力軸(62)の左右操向回転を阻止するように構成している。
【0028】
また、減速及び増速用ソレノイド(144)(145)を有する走行変速自動バルブ(146)と、左右旋回ソレノイド(147)(148)を有する操向自動バルブ(149)とを、変速及び操向バルブ(135)(139)に並列にそれぞれ接続させ、各自動バルブ(146)(149)と変速及び操向バルブ(136)(140)とで走行変速及び操向用の油圧サーボ機構(150)(151)を形成するもので、各サーボ機構(150)(151)は前記シリンダ(136)(140)のピストン(152)(153)を直進的に移動させて各ポンプ(23)(26)の斜板(23a)(26a)角度を変化させて、車速及び走行方向を変更するように構成している。
【0029】
次に、図13〜図18を参照しながら、走行変速用の油圧サーボ機構(150)について説明する。図13は2ポンプ2モータ型の無段変速機構(25)(28)からなる動力伝達機構の平面図(一部仮想線)を示し、図13の右側に走行用の油圧変速ポンプ(23)を、左側に旋回用の油圧操向ポンプ(26)を入力軸(29)にて駆動させるように配置し、図13の上側に走行用の油圧変速モータ(24)を配置する。なお、旋回用の油圧操向モータ(24)は前記油圧操向ポンプ(26)の下方側に配置し、前記変速ポンプ(23)の下方には、同じケースブロック(154)内に油圧サーボ機構(150)としての、車速用ピストン(152)と該車速用ピストン(152)の内径部に摺動可能に嵌挿されたスプール(155)とを配置する。
【0030】
また、ケースブロック(154)の外面側(図13の下方側)に突出するボス(156)の内径に回動枢軸(157)を回動可能に嵌合し、該回動枢軸(157)には、走行ストッパー杆(158)の中途部をナット(159)にて固定し、該走行ストッパー杆(158)の先端面に形成された中立保持カム面(158a)に対して当接する中立保持ローラ(160)を中立保持アーム(161)の先端に回動自在に設けている。中立保持アーム(161)は、前記ケースブロック(154)から突設する支軸(162)に回動自在に枢支し、付勢バネ(163)の付勢力にて中立保持ローラ(160)を中立保持カム面(158a)に常時押圧するように構成している。(図14及び図15参照)。
【0031】
前記ボス(156)に回動自在に嵌挿した筒軸(164)には、ストッパー板(165)及び前記コントロールレバー(72)の基端をそれぞれ固定連結し、筒軸(164)に巻回した衝撃吸収用の捩じりバネ(166)の両端部を前記走行ストッパー杆(158)に係止する。なお、走行ストッパー杆(158)の他端に設けた係合部材(167)とストッパー板(165)の係合切欠き部(165a)とが係合して、前記レバー(72)の所定角度以上の回動を規制するように構成している。
【0032】
前記回動枢軸(157)の内端に固定したクランクアーム(168)の自由端から突設したピン(169)を、スプール(155)の下部凹溝(170)に係合させて、レバー(72)の回動角度に応じてクランクアーム(168)の自由端側を回動させ、スプール(155)を車速用ピストン(152)の内径部(152a)に対して相対的に上下(軸線方向)に移動するように形成している。
【0033】
図17の(a)(b)(c)(d)(e)(f)に示す如く、ピストン(15)はスプール(155)が軸線に沿って移動可能な内径部(152a)を有し、外周の中途部を切欠いて形成した凹所の一側面には、前記ピン(169)の遊嵌できる挿通孔(152b)を穿設している。ケースブロック(154)に穿設したシリンダ(171)の一側周面には、チャージポンプ(134)から圧油が供給されるための油路(171a)を穿設し、ピストン(152)の外周一側面には、軸線方向に長手のポンプポート(173)を凹み形成し、該ポンプポート(173)からピストン(152)の内径部(152a)に向って油路(172)を連通させている。また、ピストン(152)の内径部(152a)には、前記油路(172)の部位を軸線方向に挾んだ位置に第1ポート(174)、第2ポート(175)を形成し、ピストン(152)の内径部(152a)より外側には、軸線方向に沿い且つピストン(152)の各端面に開放する2本の油路(176)(177)を穿設し、油路(176)は第1ポート(172)とシリンダ(171)の第1端室(178)とに連通するように形成し、他方の油路(177)は第2ポート(175)とシリンダ(171)の第2端室(179)とに連通するように形成している(図16及び図17参照)。
【0034】
図18の(a)(b)に示す如く、前記スプール(155)の内径部には軸線方向に沿いスプール(155)の両端面に貫通する内径通路(180)を備え、また、スプール(155)の外周面には、前記下部凹溝(170)の位置よりも上位置に、第1外周油路(181)、第2外周油路(182)、第3外周油路(183)をそれぞれ所定の間隔にて形成させ、第1外周油路(181)及び第3外周油路(183)にはそれぞれ前記内径通路(180)に連通する排出通路(184)(185)を穿設している。
【0035】
さらに、第1外周油路(181)と第2外周油路(182)との間のランド部(155a)には、軸線方向に所定寸法の矩形状の平行切欠き部(186)(187)を形成し、第2外周油路(182)と第3外周油路(183)との間のランド部(155b)には、軸線方向に所定寸法の矩形状の平行切欠き部(188)(189)を形成する。この平行切欠き部(186)と(187)とは、電磁制御弁(146)もしくは主変速レバー(68)の操作によりスプール(155)に対して相対的に上移動又は下移動したピストン(152)の第1ポート(174)とそれぞれオーバラップし、平行切欠き部(188)と(189)とは、同じくスプール(155)に対して相対的に上移動又は下移動したピストン(152)の第2ポート(175)とそれぞれオーバラップする。
【0036】
従って、スプール(155)とピストン(152)との上下方向の相対移動により、スプール(155)の第3外周油路(183)(及び平行切欠き部(189))がピストン(152)の第2ポート(175)と連通するとき、ピストン(152)における油路(177)とスプール(155)の内径通路(180)とが連通する。同様に、スプール(155)の第1外周通路(184)(及び平行切欠き部(186))がピストン(152)の第1ポート(174)と連通するとき、ピストン(152)における油路(176)とスプール(155)の内径通路(180)とが連通する。
【0037】
そして、前記上下移動するピストン(152)の外周凹所(190)に係合した連動機構(191)としての連結ピン(192)は、クレイドル型の変速ポンプ(23)の斜板(23a)に連結し、ピストン(152)の移動に応じて斜板(23a)の傾斜角度変更すべく当該斜板(23a)を回動させ、車速を制御するように構成している。図15は、自動バルブ(146)の減速用ソレノイド(144)及び増速用ソレノイド(145)に指令信号が入力されていない状態を示し、シリンダ(171)の第1端室(178)及び第2端室(179)のいずれにもチャージポンプ(134)からの圧油は作用しない。
【0038】
他方、主変速レバー(68)を中立位置に位置させると、レバー(72)及び中立保持アーム(161)を介して走行ストッパ杆(158)の中立保持カム面(158a)の中立位置に前記中立保持ローラ(160)を位置する一方、ストッパ杆(158)、回動枢軸(157)及びクランクアーム(169)を介してその先端のピン(169)を下部凹溝(170)に係合させるスプール(155)を前記ピストン(152)に対して所定位置で停止させる。この状態では、チャージポンプ(134)からの圧油が圧油孔(171a)を介してピストン(152)外周面のポンプポート(173)に供給されるが、スプール(155)が中立位置のため、当該スプール(155)の第2外周油路(182)に圧油が入るだけで、ランド部(155a)(155b)がピストン(152)の内周の第1ポート(174)及び第2ポート(175)を塞いで油圧カットし、ピストン(152)は上下移動させない。従って、コンバインの前進・後退は停止する。
【0039】
また、自動バルブ(146)がオフの状態において、主変速レバー(68)を中立位置よりも前方向に回動させて、その回動角度に応じた速度で前進させる制御では、該主変速レバー(68)の動きに連動するリンク(70)を介して前記レバー(72)が所定方向に回動し、この動きを走行ストッパ杆(158)、回動枢軸(157)を介してクランクアーム(168)を伝え所定方向に所定角度だけ回動させ、クランクアーム(168)先端のピン(169)を下部凹溝(170)に嵌合させるスプール(155)を上又は下位置に所定量だけ移動させる。そして、例えば、スプール(155)がピストン(152)に対して相対的に上移動し、第2外周油路(182)がピストン(152)の第2ポート(175)に連通する位置に来たときには、チャージポンプ(134)からの圧油を圧油孔(171a)→ポンプポート(173)→第2外周油路(182)→第2ポート(175)→油路(177)を介してピストン(152)の下端側の第2端室(179)に送り、当該ピストン(152)を上向きに移動させて、連結ピン(192)を介して変速ポンプ(23)の斜板を所定角度回動して、変速モータ(24)を所定速度にて回転駆動させる。なお、第1端室(178)からの戻り油は、油路(176)→第1ポート(174)→第1外周油路(181)→排出通路(184)→内径通路(180)を経てドレンに戻される。
【0040】
逆に中立位置よりも後方向に主変速レバー(68)を回動させて、その回動角度に応じた速度で後退するように制御するに当たり、前記スプール(155)が下降移動し、第2外周油路(182)がピストン(152)の第1ポート(174)に連通する位置となることにより、チャージポンプ(134)からの圧油が圧油孔(171a)→ポンプポート(173)→第2外周油路(182)→第1ポート(174)→油路(176)を介してピストン(152)の上端側の第1端室(178)に送られ、当該ピストン(152)を下向きに移動させ、ポンプ(23)の斜板(23a)を回動させてコンバインを後退移動させるべく変速モータ(24)に圧油を送る。このとき、第2端室(179)からの戻り油は、油路(177)→第2ポート(175)→第3外周油路(183)→排出通路(185)→内径通路(180)を介しドレンに戻される
【0041】
次に前記自動バルブ(146)の減速用ソレノイド(144)もしくは増速用ソレノイド(145)に所定の信号が入ると、ピストン(152)をスプール(155)に対して相対的に上移動または下移動させることで、前記走行用の変速ポンプ(23)の斜板(23a)の回動角度を変更制御すべく連結ピン(192)を上または下に所定量移動させるものである。例えば、前進の自動車速制御において、増速用ソレノイド(145)に所定のデューティ比のパルス信号を付与し、図16に示すように、第1端室(178)にチャージポンプ(134)からの圧油をバルブ(146)を介して送り始めると、ピストン(152)の上端に油圧が作用して当該ピストン(152)を下降させる。そして、スプール(155)の第1外周通路(181)とピストン(152)内径の第1ポート(174)とが連通すると、余剰の油は排出通路(184)から内径通路(180)を介してドレンに戻される。なお、スプール(155)の第1外周通路(181)に形成する平行切欠き部(186)が第1ポート(174)と連通すると、平行切欠き部(186)の絞り効果により流量制御を行う。さらに、ピストン(152)が下降すると、第2外周通路(182)と第2ポート(175)とが連通し、チャージポンプ(134)からの圧油がポンプポート(171a)→第2外周通路(182)→第2ポート(175)→油路(177)を介してピストン(152)の下端側の第2端室(179)に供給されるが、自動バルブ(146)側の戻り油回路を介してドレンに戻され、ピストン(152)を上移動させない安定時となる。
【0042】
つまりこの油圧サーボ機構(150)は主変速レバー(68)で設定された走行速度に対し、自動或いはスイッチ操作などによって一定量(微速)増減速させることを可能とさせたものである。
【0043】
なお、旋回用の油圧操向ポンプ(26)の斜板(26a)の角度を変更調節するための旋回用の油圧サーボ機構(151)も、図13の左側に示すごとく、油圧操向ポンプ(26)の近傍に配置され、この旋回用の油圧サーボ機構(151)と前記走行用(車速制御用)のサーボ機構(150)とはほぼ同じ構成であって、操向ハンドル(12)以外に油圧サーボ機構(151)を構成する前記操向自動バルブ(149)によっても機体操向制御を可能とさせるもので、操向の微調整用として用いられる。
【0044】
ところで、エンジンの負荷率と回転数に基づき、上述した油圧サーボ機構に代えて減速モータにより車速を制御することもできる。以下に減速モータを用いた車速制御を参考例として示す。この場合、図19、図20に示す如く、前記運転席(20)に座乗する作業者が足を載せる運転キャビン(18)の床フレーム(194)下面にブラケット(195)を固定させ、電動可逆型の減速モータ(196)を前記ブラケット(195)に取付け、減速モータ(196)の出力軸(197)に偏心ローラ(198)を固定させると共に、減速リミットスイッチ(199)と復帰リミットスイッチ(200)を減速モータ(196)に内設させる。また、前記第2揺動アーム(130)に減速アーム(130a)を固定させ、前記偏心ローラ(198)に当接させるベアリング型減速ローラ(201)を減速アーム(130a)に軸支させる。
【0045】
そして、操向ハンドル(19)を略中立位置に支持させて直進走行し乍ら収穫作業を行っているとき、減速モータ(196)制御によって偏心ローラ(198)を回転させることにより、減速ローラ(201)が押されて第2揺動アーム(130)を減速動作させ、前記減速ロッド(131)(133)を引張り、減速リミットスイッチ(199)がオフ操作された位置で減速モータ(198)を停止させ、前進走行速度を減速して脱穀部(4)及び刈取部(8)などの作業負荷を軽減させるように構成している。なお、偏心ローラ(198)の回転によって揺動アーム(130)が回転しても、長孔(125a)内を軸(128)が移動するから、操向検出リンク(125)が一定位置に支持され、第1揺動アーム(127)だけが回転するように構成している。
【0046】
図1に示す如く、エンジン(21)の燃料噴射ポンプの燃料噴射量を電子ガバナ(202)によって調節するラックソレノイドである燃料噴射ソレノイド(203)を備えるもので、ラック位置より燃料噴射量を検出する電子ガバナ(202)のラック位置センサ(204)と、エンジン(21)の回転数を検出するピックアップ型回転センサ(205)と、作業者が操作するアクセルレバーまたはペダルの操作量を検出するポテンショータ型アクセルセンサ(206)とを電子ガバナ(202)のガバナコントローラ(207)に接続させて、作業中にエンジン(21)の負荷率が一定値を越えると減速し、且つ、エンジン(21)の負荷率が一定値以下なら増速することによってエンジン(21)の回転数を定格回転数に維持して、エンジン負荷を適正に保持した作業を行うように構成している。
【0047】
また前記ガバナコントローラ(207)を接続させて作業用コントローラ(208)を備え、エンジン(21)の適正負荷率を設定する負荷率設定器(209)と、走行用無段変速機構(25)の出力などより車速を検出する車速センサ(210)と、刈取クラッチの入切を検出する刈取スイッチ(211)と、刈取部(8)の穀稈引起しケースの裏側に取付けて刈取られる穀稈を検出する穀稈センサ(212)と、前記主変速レバー(68)の変速位置を検出する主変速位置センサ(213)と、エンジン(21)の過負荷運転時に車速を減速制御するオーバーロードスイッチ(214)と、脱穀部(4)の左外側面に取付けて機体を微速で前後進させる押ボタン操作式の走行スイッチである微速前進スイッチ(215)及び後進スイッチ(216)と、前記リミットスイッチ(199)(200)とを前記コントローラ(208)に接続させると共に、オーバーロード制御ランプ(217)と、前記減速モータ(196)とコントローラ(208)を接続させている。
【0048】
而して図22のフローチャートに示す如く、刈取スイッチ(211)(刈取クラッチ)と、穀稈センサ(212)とオーバーロードスイッチ(214)の全てがオンとなるとき自動モードとなってエンジン(21)の過負荷運転時車速の自動減速制御が行われるもので、エンジン(21)の運転中、エンジン負荷率が設定(例えば95%)以上で、エンジン回転数が定格回転数より一定回転数(例えば100回転)低下した時に、減速モータ(196)を設定の減速リミット位置(例えば車速を15%減速)まで駆動し、この駆動中はオーバーロード制御ランプ(217)を点灯させる。
【0049】
またこの減速時に、エンジン負荷率が所定値(例えば90%)以下となったときには、設定される目標負荷率(例えば95%)と現在の負荷率との差から算出される偏差(目標負荷率−現在の負荷率)と、エンジン負荷率の時間当たりの変化量(例えば10ms前の変化率−現在の負荷率)で表わされる負荷変化率とのファジイマップに基づきファジイ推論を行って、車速を復帰させる増速の駆動指令信号(駆動デューティ)を出力させて、減速モータ(196)を上限の復帰リミット位置まで増速させる。そして、前記刈取スイッチ(211)或いは穀稈センサ(212)或いはオーバーロードスイッチ(214)の何れか一つでもオフとなるとき自動モードより手動モードに切換って減速モータ(196)は増速側の復帰リミット(車速復帰位置)まで駆動するもので、作業開始時の電源をオンとするときにも同様に上限の復帰リミット位置まで駆動するものである。
【0050】
以上のように電子ガバナ(194)制御によってエンジン回転数を一定維持させると共に、エンジンの負荷率が設定(略95%)以上となるときには車速を減速させ、所定値(略90%)以下となるときには車速を増速させて、エンジン回転数とエンジン負荷を適正に保持した安定したコンバイン作業を行うものである。
【0051】
一方、コンバイン機体の右側部で手扱ぎ作業など行っていて、排藁処理部(13)より放出される切藁が1ケ所に留まるような場合で、機体を少し移動させたいときなどには、運転席(20)にその都度戻ることなく脱穀部(4)近傍で前記スイッチ(215)(216)操作によって、停止状態から微速で機体を前後進させて、作業の能率向上化を図ることができるものである。またこの場合、一定量(微速)しか増減速しないため、運転席(20)以外でも機体の良好な走行操作が行える。さらに、このような前後進スイッチ(215)(216)を運転席(20)近傍に設けることによって、主変速レバー(68)がどの変速位置にあっても、その速度を基準とした増減速操作がスイッチ(215)(216)によって行えて、車速の微調整が容易に行える。
【0052】
なお前述実施例にあっては、走行用の油圧変速ポンプ(23)及び油圧変速モータ(24)と、旋回用の油圧操向ポンプ(26)及び油圧操向モータ(27)とからなる各2つのポンプ(23)(26)とモータ(24)(27)を用いて自動で走行速度と操向制御を可能とさせた構成を示したが、走行用のみに油圧変速ポンプ(23)及び油圧変速モータ(24)を用いて、自動で走行変速制御のみを可能とさせる構成でも同様である。
【0053】
らには減速モ−タ(196)を現状よりも増速可能な増減速モ−タにて、前記スイッチ(215)(216)操作でモ−タ(196)を駆動して微速による機体の前後進を行う構成でもよい。
【0054】
【発明の効果】
以上実施例から明らかなように本発明は、自動バルブの減速用ソレノイドまたは増速用ソレノイドによって、圧油をピストンに作用させ車速制御を行う移動農機の車速制御装置において、 主変速レバーでもって車速が変速操作されるとともに、エンジンの負荷率と回転数の検出に基づき前記自動バルブを備える油圧サーボ機構を用いて車速が増減速制御され、前記主変速レバーは、変速連動機構および変速リンク機構を介してコントロールレバーに連係するとともに、前記コントロールレバーは、走行ストッパー杆、回動枢軸およびクランクアームを介して、ピストン内の、該ピストンの軸線に沿って形成された内径部を移動可能に配設したスプールに連係し、前記主変速レバーの操作に伴う前記スプールの移動によって、ピストン内に導入した圧油によりピストンを移動させ、走行用変速ポンプの斜板の回転角度を変更させ車速制御を行うとともに、前記油圧サーボ機構は、前記エンジンの負荷率が設定以上、且つ前記エンジンの回転数が設定回転数より一定回転数低下したとき、前記自動バルブの前記減速用ソレノイドによって、圧油を前記ピストンに作用させることにより前記ピストンを移動させて、前記走行用変速ポンプの斜板の回転角度を変更し、前記主変速レバーで設定される車速を基準として一定値車速を減速させ、前記車速の減速時に前記エンジンの負荷率が所定値以下となったとき、前記自動バルブの前記増速用ソレノイドによって、圧油を前記ピストンに作用させることにより前記ピストンを移動させて、前記走行用変速ポンプの斜板の回転角度を変更し、前記主変速レバーで設定された元の車速に復帰させるものであるから、高精度な車速制御を行ってエンジン性能を安定維持させることができる。
【図面の簡単な説明】
【図1】車速制御回路図である。
【図2】コンバインの全体側面図である。
【図3】コンバインの全体平面図である。
【図4】ミッション駆動系の説明図である。
【図5】主変速レバー及び操向レバーの操作系の斜視説明図である。
【図6】走行変速及び操向操作部の側面説明図である。
【図7】操作部の正面説明図である。
【図8】操作部の平面説明図である。
【図9】操作部材の側面説明図である。
【図10】操作部材の正面説明図である。
【図11】操作部材の平面説明図である。
【図12】旋回操作軸部の平面説明図である。
【図13】無段変速機構の説明図である。
【図14】無段変速機構の部分説明図である。
【図15】油圧サーボ機構の説明図である。
【図16】油圧サーボ機構の説明図である。
【図17】ピストンの説明図である。
【図18】スプールの説明図である。
【図19】減速モータ部の平面説明図である。
【図20】減速モータ部の正面説明図である。
【図21】油圧回路図である。
【図22】フローチャートである。
【図23】フローチャートである。
【符号の説明】
(21) エンジン
(68) 主変速レバー
(70) リンク機構
(146) 変速自動バルブ(車速制御部材)
(150) 油圧サ−ボ機構
(196) モ−タ
(215)(216) スイッチ
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a vehicle speed control device for a mobile agricultural machine such as a combine that is configured to thresh a cereal husk harvested by a reaping unit, for example.
[0002]
[Problems to be solved by the invention]
  Conventionally, there is a means to reduce the vehicle speed when the engine load increases due to an increase in the work load, to keep the engine load constant, and to keep it constant such as the combine cylinder rotation speed. On the other hand, there is a drawback that the control becomes unstable because the vehicle speed is decelerated more than necessary.
[0003]
[Means for Solving the Problems]
  Therefore, the present invention provides an automatic valve deceleration solenoid or acceleration solenoid.ByIn the vehicle speed control device of a mobile agricultural machine that controls the vehicle speed by applying pressure oil to the piston,
  The vehicle speed is changed with the main speed change lever, and the vehicle speed is controlled to increase / decrease using a hydraulic servo mechanism equipped with the automatic valve based on detection of the load factor and the rotation speed of the engine.
  The main transmission lever is linked to a control lever through a transmission interlocking mechanism and a transmission link mechanism, and the control lever is connected to the axis of the piston in the piston through a travel stopper rod, a rotation pivot and a crank arm. The inner diameter part formed along is linked to a spool movably arranged,
  Due to the movement of the spool accompanying the operation of the main transmission lever, the piston is moved by the pressure oil introduced into the piston,Car speed control is performed by changing the rotation angle of the swash plate of the traveling transmission pumpWith
  The hydraulic servomechanism uses the deceleration solenoid of the automatic valve when the load factor of the engine is equal to or higher than a set value and the engine speed is lower than the set speed by a certain number. Then, by moving the piston by applying pressure oil to the piston, the rotation angle of the swash plate of the traveling transmission pump is changed,A constant value based on the vehicle speed set by the main shift leverDecrease the vehicle speed,
    When the load factor of the engine becomes a predetermined value or less during deceleration of the vehicle speed, the piston is moved by applying pressure oil to the piston by the solenoid for increasing the speed of the automatic valve, Change the rotation angle of the swash plate of the speed change pump and return to the original vehicle speed set by the main speed change leverThis is a vehicle speed control device for a mobile agricultural machine, which performs high-accuracy vehicle speed control and maintains engine performance stably.
[0004]
DETAILED DESCRIPTION OF THE INVENTION
  Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is an explanatory view of a steering operation section, FIG. 2 is an overall side view, FIG. 3 is a plan view thereof, and (1) is a track frame for mounting a traveling crawler (2) as a traveling section, 3) is a machine base installed on the track frame (1), (4) is a threshing section in which a feed chain (5) is stretched on the left side and a handling cylinder (6) and a processing cylinder (7) are built in ( 8) is a cutting part provided with a cutting blade (9) and a grain feeder mechanism (10), (11) is a hydraulic lifting cylinder for raising and lowering the cutting part (8) via a cutting frame (12), and (13) A waste disposal unit (14) facing the end of the waste chain (14), (15) is a grain tank that carries the grain from the threshing unit (4) via the milling cylinder (16), (17) is the tank ( 15) A discharge auger that carries the grain out of the machine, (18) has a steering handle (19), a driver seat (20), etc. That operating cabin, and configured to threshing harvests (21) the driver cabin (18) an engine provided below, continuously culms.
[0005]
  As shown in FIG. 4, the transmission case (22) for driving the traveling crawler (2) is a traveling hydraulic continuously variable transmission comprising a pair of hydraulic transmission pumps (23) and a hydraulic transmission motor (24). A mechanism (25), and a hydraulic continuously variable transmission mechanism (28) for turning composed of a pair of hydraulic steering pump (26) and a hydraulic steering motor (27), and an output shaft of the engine (21) The driving force of (21a) is transmitted to the input shaft (29) of the speed change and steering pumps (23) and (26) via the counter case (30), and the pumps (23) and (26) are driven. It is composed.
[0006]
  The drive wheels (34), (34) of the left and right traveling crawlers (2), (2) are connected to the output shaft (31) of the transmission motor (24) via the auxiliary transmission mechanism (32) and the forced differential mechanism (33). The differential mechanism (33) has a pair of left and right planetary gear mechanisms (35) and (35), and the planetary gear mechanism (35) is connected to one sun gear (36). The planetary gears (37)... Meshed with the outer periphery of the sun gear (36) and the ring gears (38) meshed with the planetary gears (37).
[0007]
  Further, each planetary gear (37) is rotatably supported by a carrier (41) of a carrier shaft (40) coaxial with the sun gear shaft (39), so that the left and right sun gears (36) (36) are supported. The ring gear (38) has inner teeth (38a) that mesh with the planetary gears (37), and the carrier shaft (on the same axis as the sun gear shaft (39)). 40) is rotatably supported.
[0008]
  Furthermore, the traveling hydraulic continuously variable transmission mechanism (25) controls the forward / reverse rotation and the rotational speed of the transmission motor (24) by adjusting the angle of the rotary swash plate (23a) of the transmission pump (23). Therefore, the rotational output of the speed change motor (24) is transmitted from the transmission gear (42) of the output shaft (31) via the gears (43) (44) (45) and the auxiliary speed change mechanism (32) to the sun gear shaft (39). The sun gear (36) is rotated by being transmitted to the center gear (46) fixed to the center gear (46). The auxiliary transmission mechanism (32) includes an auxiliary transmission shaft (47) having the gear (45) and a parking brake shaft (49) having a gear (48) meshing with the center gear (46). A low speed gear (50) (48), a medium speed gear (51) (52), and a high speed gear (53) (54) are provided between the shaft (47) and the brake shaft (49), and the auxiliary gear at the center position is provided. The sub-shift is configured to be switched between a low speed, a medium speed, and a high speed by a sliding operation of the slider (51a) of the speed change gear (51). There is a neutral zone between the low speed and the medium speed and between the medium speed and the high speed. The parking brake shaft (49) is provided with a vehicle speed detection gear (55) and a vehicle speed sensor (56) for detecting the vehicle speed based on the number of rotations of the gear (55), and the rotational force is transmitted to the cutting part (8). The transmission gear (42) of the output shaft (31) is meshedly connected to the PTO input gear (58) of the cutting PTO shaft (57).
[0009]
  Then, the driving force from the transmission motor (24) transmitted to the sun gear shaft (39) through the center gear (46) is transmitted to the left and right carrier shafts (40) (40) through the left and right planetary gear mechanisms (35) (35). 40), and the rotational output transmitted to each carrier shaft (40) (40) is driven left and right via a pair of left and right reduction gears (60), (61), (60), and (61). The wheels (34) and (34) are configured to transmit to the axles (34a) and (34a), respectively.
[0010]
  In addition, the hydraulic continuously variable transmission mechanism (28) for turning is controlled by switching the forward / reverse rotation of the steering motor (27) and controlling the rotational speed by adjusting the angle of the rotary swash plate (26a) of the steering pump (26). Rotating from the output gear of the output shaft (62) of the steering motor (27) to the turning gears (65a) (65b) of the turning shaft (64) as the final output shaft through the gear transmission mechanism (63). The output is transmitted, the right turning gear (65a) is engaged with the external teeth (38b) of the right ring gear (38), and the reverse rotation shaft (66) is engaged with the external teeth (38b) of the left ring gear (38). The left turning gear (65b) is connected via the reverse rotation gear (67) of the left and right, the left and right ring gears (38) and (38) are rotated at the same left and right rotational speed when the steering motor (27) is rotated forward, and the left ring gear (38) is rotated forward and the right ring gear (38) is rotated backward. It is configured to so that.
[0011]
  Thus, when the driving of the traveling motor (24) is stopped in a state where the driving of the steering motor (27) for turning is stopped and the left and right ring gears (38) are fixed stationary, the transmission motor (24 ) Is transmitted from the center gear (46) to the left and right sun gears (36) at the same rotational speed, and the planetary gear (37), the carrier (41) and the reduction gears (60) (61) of the left and right planetary gear mechanism (35). ) Is transmitted to the left and right axles (34a) and (34a) in the same rotational direction in the left and right and at the same rotational speed, and the aircraft is driven straight forward and backward. On the other hand, when the turning steering motor (27) is driven to rotate in the forward and reverse directions while the traveling speed changing motor (24) is stopped and the left and right sun gears (36) and (36) are stationary and fixed, The planetary gear mechanism (35) rotates forward or backward, and the right planetary gear mechanism (35) rotates backward or forward, causing one of the left and right traveling crawlers (2) and (2) to rotate forward and the other to rotate backward. The aircraft is configured to spin or turn on the spot to the left or right to change the direction at the field headland.
[0012]
  In addition, when the steering motor (27) for driving is driven while driving the transmission motor (24) for driving, a difference occurs in the driving speed of the left and right driving crawlers (2) and (2), and the aircraft is turned left and right. The traveling direction is corrected by turning with a large turning radius, and the turning radius is determined according to the speed difference between the left and right traveling crawlers (2) and (2).
[0013]
  As shown in FIGS. 5 to 12, the main transmission lever (68) connected to the traveling hydraulic continuously variable transmission mechanism (25) and the steering connected to the turning hydraulic continuously variable transmission mechanism (28). The lever (19) is interlocked and connected to the gear shifting and turning interlocking mechanism (69), and the interlocking mechanism (69) is connected to the gear shifting and steering links via the link mechanisms (70) and (71). The continuously variable transmission mechanisms (25) and (28) are interlocked with the control levers (72) and (73).
[0014]
  The interlocking mechanism (69) includes a rotating plate (75) for supporting the base end bent portion (68a) of the main transmission lever (68) on the cylindrical shaft (74) so as to be swingable in the left-right direction, and the main body side machine. A fixed mounting plate (78) fixed to a frame (76) and supporting the rotating plate (75) through a first pivot (77) in the left-right direction so as to be able to pivot back and forth, and orthogonal to the pivot (77). A speed change operation member (80) which is connected to a rotary plate (75) via a second pivot (79) in the front-rear direction and is provided to be rotatable around the axis (79); and the second pivot (79) And a steering operation member (81) that is pivotably connected around the axis of the second pivot (79) of the speed change and steering operation members (80) (81). 80a) (81a) are interlockingly connected to the shifting and steering link mechanisms (70) (71).
[0015]
  The shift and steering link mechanisms (70) (71) are supported on the frame (76) side of the machine mechanism (69) via the swinging cylinder shaft (83) outside the swinging shaft (82) at the rear position of the interlocking mechanism (69). A transmission arm (84), a steering arm (85) having a base end fixed to the swing shaft (82), and each operation output shaft (86) (87) of the output sections (80a) (81a) Universal joint shafts (88) and (89) for connecting the arms (84) and (85), a steering output arm (90) fixed to the right end of the swing shaft (82), and the operating cabin (18) ) And the first swing arm (95) (96) for shifting and steering provided on the intermediate shaft (94) attached to the fulcrum bearing (93) of the rotation fulcrum shaft (92), and the arm (84) (90) and the first swing arm (95) (96) and the respective ends of the first swing arm (95) (96) are connected to each other. Joint-type first rods (97) (98) and a second swing arm (99) for shifting and steering that is provided on the intermediate shaft (94) and is integrally connected to the first swing arm (95) (96). (100), a shift and steering cylinder shaft (103) (104) rotatably supported by a support shaft (102) attached to the bearing plate (101) on the transmission case (22), and the cylinder shaft (103) (104) The first swing arm (105) (106) having a base end fixed to the distal end of the second swing arm (99) (100) and the second swing arm (99) (100) are connected to each other for free shifting and steering. Joint-type second rods (107) (108), second swinging arms (109) (110) having base ends fixed to the cylindrical shafts (103) (104), and the control levers (72) (73) Universal joint-type third rod for shifting and steering (1 1) (112), and a traveling control lever (72) is rotated by rotation of the speed change operation member (80) about the first pivot (77), and the second pivot (79) during traveling. The steering control lever (73) is operated by rotating the steering operation member (81) centering on the gears, thereby performing speed change and steering control.
[0016]
  On the other hand, a gear (114) is provided on the turning operation shaft (113) at the lower end of the steering lever (19), and the gear (114) is engaged with a sector gear (116) attached to the rear rotation shaft (115). Freely between the tip of the first swing arm (118) of the steering shaft (117) disposed below the position of the main transmission lever (68) and the output arm mechanism (119) provided on the rotating shaft (115). The second swing arm (121) integrated with the first swing arm (118) of the steering shaft (117) is connected via the joint-type steering first rod (120) to the universal joint shaft (89). ) Is connected to the front end via a universal joint type steering second rod (122), and the steering operation member (81) is rotated about the second pivot (79) by tilting the lever (19) to the left and right. It is configured to move.
[0017]
  A neutral positioning plate (123) is provided below the gear (114) of the turning operation shaft (113), and one end of the steering detection link (125) is connected to the protruding shaft (124) on the lower surface of the positioning plate (123). The first swing arm (127) of the reduction arm shaft (126) disposed on the right side of the rotation shaft (115) and the long hole (125a) at the other end of the detection link (125) are connected to the shaft (128). And a universal joint type first reduction rod (131) between the tips of the reduction arm (129) of the steering shaft (117) and the second swing arm (130) of the reduction arm shaft (126). And the rightmost speed reduction transmission shaft (132) of the speed change operation member (80) and the other end of the second swing arm (130) are connected by a universal joint type second speed reduction rod (133) to travel. Steering of the lever (19) in the state Tension enough to increase the amount the second reduction rod (133) downward, is configured so as to decelerate the running speed in proportion to the steering operation amount.
[0018]
  Thus, as shown in FIG. 12, a second pivot (79) for pivotally supporting the shifting and steering operation members (80) (81) around the axis and a joint shaft connected to the steering arm (85). The universal joint shaft (88) (89) is connected to the operation output shaft (86) (87) by positioning the universal joint portion (89a) of (89) on the horizontal line (L1) in the front-rear direction. The joint shaft (88b) (89b) and the first pivot (77) are positioned on the left and right horizontal line (L2) perpendicular to the line (L1), and are further coupled to the speed change arm (84) ( 88) and the universal joint portion (88a) and the joint portion (89a) are positioned on the horizontal horizontal line (L3) parallel to the line (L2), and the joint portion (89a) is provided with the joint portion (88a). Place as close as possible (closest position), When the transmission lever (68) and the steering handle (19) are supported at the neutral position, even if either the lever (68) or the handle (19) is operated, the operation members (80) (81) ) Around the first and second pivots (77) and (79) so that the operating force of the lever (68) or handle (19) does not reach the joint shafts (88) and (89). It is composed.
[0019]
  Then, as shown in FIGS. 9 and 12, when the main transmission lever (68) is moved forward and backward and the operation member (80) is tilted back and forth by an angle (α1) (α2) about the first pivot (77), The transmission shaft (84) is operated by pulling or pushing the joint shaft (88) to switch the traveling speed forward and backward, and the main transmission lever (68) is operated to a position other than neutral as shown in FIG. In this state, when the steering handle (19) is rotated and the operating member (81) is tilted up and down by an angle (β1) (β2) about the second pivot (79), the joint shaft (89) is pulled or Pushing and operating the steering arm (85) to perform the steering operation to turn the aircraft to the left and right. Even if the turning operation is performed when the main transmission lever (68) is neutral, the joint (89a) As a fulcrum, the joint shaft (89) is a line (L1 The joint part (89b) moves on the same circumference centered at the intersection of the line (L1) and the shaft (77), and the joint part (89b) and the line (L3 ) Is kept substantially constant, so the steering arm (85) does not operate. If the turning operation of the handle (19) is performed when the main transmission lever (68) is not in the neutral position, the steering arm (85) operates, and the steering arm (85) is switched when switching back and forth. Is configured to operate in the reverse direction, and to rotate the steering motor (27) in the reverse direction during forward and reverse travel.
[0020]
  For example, assuming that the forward speed of the traveling speed change motor (24) is forward, the planetary gear mechanism (35) is operated by the turning steering motor (27) when moving backward and reverse. In order to match the turning direction of the machine body by operating the handle (19) during forward movement and reverse movement, the swash plate angle of the steering pump (26) is reversed during reverse rotation (reverse movement) of the transmission motor (24). The steering motor (27) is configured to rotate in the reverse direction during forward and reverse travel.
[0021]
  Further, the operation member (80) at the time of forward operation is tilted to the front angle (α1) side from the neutral position, and the second rod (122) is pulled by the right rotation operation of the handle (19), and the operation member (81) is moved downward. Of the operating member (81) is brought closer to the steering arm (85) side, and the steering arm (85) is operated around the swing shaft (82). Rotate in a direction away from the member (81) (counterclockwise in FIG. 6), rotate the control lever (73) downward through the first and second rods (98) (108), etc. The steering motor (27) is rotated forward. That is, the aircraft is configured to turn right (the speed of the traveling crawler (2) is large on the left side and small on the right side) by moving forward.
[0022]
  Further, during the forward operation of tilting the main transmission lever (68) forward, the second rod (122) is pushed up by the left turning operation of the handle (19), and the operating member (81) is moved upward to the angle (β1) side. By tilting, the output portion (81a) of the operation member (81) is moved away from the operation arm (85) side, and the steering arm (85) is moved closer to the operation member (81) side with the swing shaft (82) as a center. (Clockwise in FIG. 6), the control lever (73) is rotated upward, and the steering motor (27) is rotated reversely. That is, it is configured to turn the aircraft forward (turn the speed of the traveling crawler (2) large on the right side and small on the left side).
[0023]
  Further, the operation member (80) is tilted to the rear angle (α2) side from the neutral position by the backward operation by tilting the main transmission lever (68) backward, and the second rod (122) is moved by the right rotation operation of the handle (19). By tilting the pulling operation member (81) to the downward angle (β2) side, the output part (81a) of the operation member (81) is moved away from the steering arm (85) side, and the swing shaft (82) is centered. The steering arm (85) is rotated in a direction (clockwise in FIG. 6) to approach the operation member (81), the control lever (73) is rotated upward, and the steering motor (27) is reversed. Rotate. In other words, the vehicle is configured to turn backward (turn the crawler (2) at a higher speed on the left side and lower on the right side).
[0024]
  In addition, when the main speed change lever (68) is operated backward, the operation member (81) is tilted to the upward angle (β1) side by rotating the handle (19) counterclockwise, thereby outputting the operation member (81). The portion (81a) is moved closer to the operation member (81) side, and the steering arm (85) is rotated in the direction away from the operation member (81) (counterclockwise in FIG. 6) about the swing shaft (82). The control lever (73) is rotated downward, and the steering motor (27) is rotated forward. That is, the aircraft is configured to turn backward (turn the crawler (2) at a higher speed on the right side and lower on the left side).
[0025]
  In this way, the turning arm (85) is rotated in the reverse direction during the forward and backward turning operations, and the tilting operation direction of the steering lever (19) and the turning direction of the airframe are made to coincide with each other in both forward and backward movements. It is configured as follows.
[0026]
  As shown in FIG. 21, in the hydraulic circuit of the hydraulic continuously variable transmission mechanism (25) (28) for traveling and turning, the hydraulic pressure driven from the engine (21) in conjunction with each pump (23) (26). A charge pump (134), a speed change valve (135) that is manually switched, a speed change cylinder (136) that is connected to the charge pump (134) via a speed change valve (135), and a speed change A neutral valve (138) that operates and switches the electromagnetic solenoid (137) during neutral operation of the lever (68) and a brake cylinder (135) that is connected to the charge pump (134) via the valve (138) are provided. When the travel speed change lever (68) is operated to switch the speed change valve (135), the speed change cylinder (136) is actuated to change the angle of the swash plate (23a) of the speed change pump (23). 24) feedback that causes the speed change operation of the output shaft (31) to change stepwise or reverse, and that the speed change valve (136) returns to neutral by the angle adjustment operation of the swash plate (23a). The operation is performed, the angle of the swash plate (23a) is changed in proportion to the amount of operation of the travel speed change lever (68), the rotation speed of the speed change motor (24) is changed, and the travel speed change lever (68) As a result of the neutral operation, the electromagnetic solenoid (137) is excited and the neutral valve (138) is automatically switched to operate the brake cylinder (135) to output the speed change motor (24). (31) to brake the, and configured to block reverse rotation prior to the output shaft at the neutral operation (31).
[0027]
  The steering handle (19), a steering valve (139) that is switched by manual operation, a steering cylinder (140) that is connected to the charge pump (134) via the steering valve (139), and a steering handle A rectilinear valve (142) for switching by operating the electromagnetic rectilinear solenoid (141) during the rectilinear operation of (19), and a brake cylinder (143) connected to the charge pump (134) via the valve (142) are provided. When the steering handle (19) is operated to switch the steering valve (139), the steering cylinder (140) is activated to change the swash plate (26a) angle of the steering pump (26), Steering motor (27) changes the rotation speed of output shaft (62) steplessly or reverses left and right steering operation, changes the traveling direction to left and right, changes direction on field headland, or course To correct. In addition, a feedback operation is performed in which the steering valve (139) returns to neutral by adjusting the angle of the swash plate (26a), and the angle of the swash plate (26a) is changed in proportion to the operation amount of the steering handle (19). And the rotational speed of the steering motor (27) is changed, and the linear solenoid (141) is excited by the linear operation of the steering handle (19), so that the linear valve (142) is automatically switched, and the brake cylinder (143) is actuated to brake the output shaft (62) of the steering motor (27), thereby preventing the left-right steering rotation of the output shaft (62) during the straight-ahead operation.
[0028]
  In addition, an automatic traveling speed change valve (146) having a solenoid for decelerating and increasing speed (144) (145) and a steering automatic valve (149) having a left / right turning solenoid (147) (148) are shifted and steered. Valves (135) and (139) are connected in parallel to each other, and each automatic valve (146) (149) and a shift and steering valve (136) (140) are used for hydraulic shift mechanism and traveling hydraulic servo mechanism (150). (151), and each servo mechanism (150) (151)Cylinder(136) Pistons (152) and (153) of (140) are linearly moved to change the swash plates (23a) and (26a) angles of the pumps (23) and (26), thereby changing the vehicle speed and traveling direction. It is configured to do.
[0029]
  Next, the hydraulic servomechanism (150) for traveling speed change will be described with reference to FIGS. FIG. 13 is a plan view (partly imaginary line) of a power transmission mechanism comprising a two-pump two-motor type continuously variable transmission mechanism (25) (28), and a hydraulic transmission pump (23) for traveling is shown on the right side of FIG. Is arranged on the left side so as to drive the hydraulic steering pump (26) for turning by the input shaft (29), and the hydraulic transmission motor (24) for traveling is arranged on the upper side of FIG. The turning hydraulic steering motor (24) is arranged below the hydraulic steering pump (26), and below the transmission pump (23) is a hydraulic servo mechanism in the same case block (154). A vehicle speed piston (152) and a spool (155) slidably fitted in the inner diameter portion of the vehicle speed piston (152) are arranged as (150).
[0030]
  In addition, a rotation pivot (157) is rotatably fitted to an inner diameter of a boss (156) protruding to the outer surface side (lower side in FIG. 13) of the case block (154), and the rotation pivot (157) is fitted to the rotation pivot (157). Is a neutral holding roller in which a middle portion of the travel stopper 杆 (158) is fixed with a nut (159) and abuts against a neutral holding cam surface (158a) formed on the front end surface of the travel stopper 杆 (158). (160) is rotatably provided at the tip of the neutral holding arm (161). The neutral holding arm (161) is pivotally supported on a support shaft (162) protruding from the case block (154), and the neutral holding roller (160) is moved by the urging force of the urging spring (163). The neutral holding cam surface (158a) is always pressed. (See FIGS. 14 and 15).
[0031]
  A stopper shaft (165) and a base end of the control lever (72) are fixedly connected to a cylindrical shaft (164) that is rotatably fitted to the boss (156), and wound around the cylindrical shaft (164). The both ends of the impact-absorbing torsion spring (166) are engaged with the travel stopper rod (158). The engagement member (167) provided at the other end of the travel stopper 走 行 (158) is engaged with the engagement notch (165a) of the stopper plate (165), so that the lever (72) has a predetermined angle or more. It is comprised so that rotation of may be controlled.
[0032]
  A pin (169) protruding from the free end of the crank arm (168) fixed to the inner end of the pivot (157) is engaged with the lower groove (170) of the spool (155), and the lever ( 72), the free end side of the crank arm (168) is rotated according to the rotation angle of the crank arm (168), and the spool (155) is moved up and down (axial direction) relative to the inner diameter portion (152a) of the piston (152) for vehicle speed. Formed to move to)HaveThe
[0033]
  As shown in FIGS. 17 (a), (b), (c), (d), (e), and (f), the piston (15) has an inner diameter portion (152a) in which the spool (155) can move along the axis. An insertion hole (152b) into which the pin (169) can be loosely fitted is formed in one side surface of a recess formed by cutting out the middle part of the outer periphery. An oil passage (171a) for supplying pressure oil from the charge pump (134) is formed in one side peripheral surface of the cylinder (171) formed in the case block (154), and the piston (152) A pump port (173) elongated in the axial direction is formed on one side of the outer periphery, and an oil passage (172) is communicated from the pump port (173) toward the inner diameter portion (152a) of the piston (152). Yes. Further, the first port (174) and the second port (175) are formed in the inner diameter portion (152a) of the piston (152) at a position where the oil passage (172) is sandwiched in the axial direction. Two oil passages (176) and (177) that open along the axial direction and open to each end face of the piston (152) are formed outside the inner diameter portion (152a) of the (152), and the oil passage (176). Is formed so as to communicate with the first port (172) and the first end chamber (178) of the cylinder (171), and the other oil passage (177) is connected to the second port (175) and the cylinder (171). It is formed so as to communicate with the two-end chamber (179) (see FIGS. 16 and 17).
[0034]
  18 (a) and 18 (b), the inner diameter portion of the spool (155) is provided with an inner diameter passage (180) penetrating the both end faces of the spool (155) along the axial direction, and the spool (155). ), The first outer peripheral oil passage (181), the second outer peripheral oil passage (182), and the third outer peripheral oil passage (183) are positioned above the position of the lower groove (170). The first outer peripheral oil passage (181) and the third outer peripheral oil passage (183) are respectively formed with discharge passages (184) and (185) communicating with the inner diameter passage (180). Yes.
[0035]
  Further, the land portion (155a) between the first outer peripheral oil passage (181) and the second outer peripheral oil passage (182) has a rectangular parallel cutout portion (186) (187) having a predetermined dimension in the axial direction. The land portion (155b) between the second outer peripheral oil passage (182) and the third outer peripheral oil passage (183) is formed with a rectangular parallel cutout portion (188) having a predetermined dimension in the axial direction ( 189). The parallel cutout portions (186) and (187) are pistons (152) which are moved upward or downward relative to the spool (155) by the operation of the electromagnetic control valve (146) or the main transmission lever (68). ) And the parallel notches (188) and (189) of the piston (152) moved up or down relative to the spool (155). Each overlaps the second port (175).
[0036]
  Therefore, due to the relative movement in the vertical direction between the spool (155) and the piston (152), the third outer peripheral oil passage (183) (and the parallel notch (189)) of the spool (155) When communicating with the two ports (175), the oil passage (177) in the piston (152) communicates with the inner diameter passage (180) of the spool (155). Similarly, when the first outer peripheral passage (184) (and the parallel cutout (186)) of the spool (155) communicates with the first port (174) of the piston (152), the oil passage ( 176) and the inner diameter passage (180) of the spool (155) communicate with each other.
[0037]
  The connecting pin (192) as the interlocking mechanism (191) engaged with the outer peripheral recess (190) of the piston (152) moving up and down moves to the swash plate (23a) of the cradle type transmission pump (23). The swash plate (23a) is rotated to change the inclination angle of the swash plate (23a) according to the movement of the piston (152), and the vehicle speed is controlled. FIG. 15 shows a state in which no command signal is input to the deceleration solenoid (144) and the acceleration solenoid (145) of the automatic valve (146), and the first end chamber (178) and the first end chamber (178) of the cylinder (171). No pressure oil from the charge pump (134) acts on any of the two end chambers (179).
[0038]
  On the other hand, when the main transmission lever (68) is positioned at the neutral position, the neutral position of the neutral stopper cam surface (158a) of the travel stopper rod (158) is neutralized via the lever (72) and the neutral holding arm (161). A spool that positions the holding roller (160), and engages the pin (169) at the tip of the holding roller (160) with the lower groove (170) via the stopper rod (158), the pivot shaft (157), and the crank arm (169). (155) is stopped at a predetermined position with respect to the piston (152). In this state, the pressure oil from the charge pump (134) is supplied to the pump port (173) on the outer peripheral surface of the piston (152) via the pressure oil hole (171a), but the spool (155) is in the neutral position. The land portions (155a) and (155b) are connected to the first peripheral port (174) and the second port on the inner periphery of the piston (152) only by the pressure oil entering the second outer peripheral oil passage (182) of the spool (155). (175) is closed to cut the hydraulic pressure, and the piston (152) is not moved up and down. Therefore, the forward / backward movement of the combine is stopped.
[0039]
  When the automatic valve (146) is off, the main transmission lever (68) is rotated forward from the neutral position and moved forward at a speed corresponding to the rotation angle. The lever (72) rotates in a predetermined direction via a link (70) interlocked with the movement of (68), and this movement is changed to a crank arm (158) via a travel stopper rod (158) and a rotation pivot (157). 168) is transmitted and rotated by a predetermined angle in a predetermined direction, and the spool (155) for fitting the pin (169) at the tip of the crank arm (168) into the lower groove (170) is moved up or down by a predetermined amount. Let For example, the spool (155) moves upward relative to the piston (152), and the second outer peripheral oil passage (182) comes to a position where it communicates with the second port (175) of the piston (152). Sometimes, the pressure oil from the charge pump (134) is transferred to the piston through the pressure oil hole (171a) → the pump port (173) → the second outer peripheral oil passage (182) → the second port (175) → the oil passage (177). (152) is sent to the second end chamber (179) on the lower end side, the piston (152) is moved upward, and the swash plate of the transmission pump (23) is rotated by a predetermined angle via the connecting pin (192). Then, the transmission motor (24) is rotationally driven at a predetermined speed. The return oil from the first end chamber (178) passes through the oil passage (176) → the first port (174) → the first outer peripheral oil passage (181) → the discharge passage (184) → the inner diameter passage (180). Returned to drain.
[0040]
  Conversely, when the main transmission lever (68) is rotated backward from the neutral position and controlled to move backward at a speed corresponding to the rotation angle, the spool (155) is moved downward, The peripheral oil passage (182) is in a position where it communicates with the first port (174) of the piston (152), so that the pressure oil from the charge pump (134) is pressurized oil hole (171a) → pump port (173) → It is sent to the first end chamber (178) on the upper end side of the piston (152) via the second outer peripheral oil passage (182) → the first port (174) → the oil passage (176), and the piston (152) faces downward. The pressure oil is sent to the transmission motor (24) to rotate the swash plate (23a) of the pump (23) to move the combine backward. At this time, the return oil from the second end chamber (179) passes through the oil passage (177) → the second port (175) → the third outer peripheral oil passage (183) → the discharge passage (185) → the inner diameter passage (180). Returned to drain.
[0041]
  Next, when a predetermined signal is input to the deceleration solenoid (144) or the acceleration solenoid (145) of the automatic valve (146), the piston (152) moves up or down relative to the spool (155). By moving, the connecting pin (192) is moved up or down by a predetermined amount to change and control the rotation angle of the swash plate (23a) of the traveling transmission pump (23). For example, in forward vehicle speed control, a pulse signal having a predetermined duty ratio is applied to the acceleration solenoid (145), and the first end chamber (178) is supplied from the charge pump (134) as shown in FIG. When the pressure oil starts to be sent through the valve (146), the hydraulic pressure acts on the upper end of the piston (152) to lower the piston (152). When the first outer peripheral passage (181) of the spool (155) and the first port (174) having the inner diameter of the piston (152) communicate with each other, excess oil passes from the discharge passage (184) through the inner diameter passage (180). Returned to drain. When the parallel notch (186) formed in the first outer peripheral passage (181) of the spool (155) communicates with the first port (174), the flow rate is controlled by the throttling effect of the parallel notch (186). . Further, when the piston (152) descends, the second outer peripheral passage (182) and the second port (175) communicate with each other, and the pressure oil from the charge pump (134) flows into the pump port (171a) → the second outer peripheral passage ( 182) → the second port (175) → the oil passage (177) is supplied to the second end chamber (179) on the lower end side of the piston (152), but the return oil circuit on the automatic valve (146) side is connected to the second end chamber (179). Then, it is returned to the drain and the piston (152) is in a stable state where it does not move upward.
[0042]
  That is, the hydraulic servo mechanism (150) can increase or decrease the traveling speed set by the main speed change lever (68) by a certain amount (slow speed) automatically or by a switch operation.
[0043]
  Note that the turning hydraulic servo mechanism (151) for changing and adjusting the angle of the swash plate (26a) of the turning hydraulic steering pump (26) is also shown in the left side of FIG. 26), the turning hydraulic servo mechanism (151) and the traveling (vehicle speed control) servo mechanism (150) have substantially the same configuration except for the steering handle (12). The steering automatic valve (149) constituting the hydraulic servo mechanism (151) also enables the aircraft steering control, and is used for fine adjustment of steering.
[0044]
  by the way,Based on the engine load factor and the rotational speed, the vehicle speed can be controlled by a reduction motor instead of the hydraulic servo mechanism described above. A vehicle speed control using a reduction motor is shown below as a reference example. in this case,As shown in FIGS. 19 and 20, a bracket (195) is fixed to the lower surface of the floor frame (194) of the driving cabin (18) on which the operator who sits on the driver seat (20) puts his / her foot. The reduction motor (196) is attached to the bracket (195), the eccentric roller (198) is fixed to the output shaft (197) of the reduction motor (196), and the reduction limit switch (199) and the return limit switch (200) are attached. It is installed in the reduction motor (196). Further, the speed reduction arm (130a) is fixed to the second swing arm (130), and the bearing type speed reduction roller (201) to be brought into contact with the eccentric roller (198) is pivotally supported on the speed reduction arm (130a).
[0045]
  When the steering handle (19) is supported in a substantially neutral position and is traveling straight ahead while the harvesting operation is being performed, the eccentric roller (198) is rotated by controlling the reduction motor (196), thereby reducing the reduction roller ( 201) is pushed, the second swing arm (130) is decelerated, the decelerating rod (131) (133) is pulled, and the decelerating limit switch (199) is turned off, and the decelerating motor (198) is operated. It is made to stop and to reduce forward work speed and to reduce work loads, such as a threshing part (4) and a cutting part (8). Even if the swing arm (130) is rotated by the rotation of the eccentric roller (198), the shaft (128) moves in the elongated hole (125a), so that the steering detection link (125) is supported at a fixed position. Thus, only the first swing arm (127) is configured to rotate.
[0046]
  As shown in FIG. 1, a fuel injection solenoid (203) which is a rack solenoid for adjusting the fuel injection amount of the fuel injection pump of the engine (21) by an electronic governor (202) is detected, and the fuel injection amount is detected from the rack position. A rack position sensor (204) of the electronic governor (202), a pickup type rotation sensor (205) for detecting the rotational speed of the engine (21), and a potentiotor for detecting an operation amount of an accelerator lever or a pedal operated by an operator A type accelerator sensor (206) is connected to the governor controller (207) of the electronic governor (202). When the load factor of the engine (21) exceeds a certain value during the operation, the engine is decelerated, and the engine (21) If the load factor is below a certain value, the engine speed (21) is maintained at the rated speed by increasing the speed, and the engine speed is increased. It is configured to perform work properly hold the down load.
[0047]
  The governor controller (207) is connected to a work controller (208), a load factor setting unit (209) for setting an appropriate load factor of the engine (21), and a traveling continuously variable transmission mechanism (25). A vehicle speed sensor (210) for detecting the vehicle speed from the output, etc., a cutting switch (211) for detecting the on / off state of the cutting clutch, and a grain basket that is attached to the back side of the case and is harvested. A grain shift sensor (212) for detecting, a main shift position sensor (213) for detecting a shift position of the main shift lever (68), and an overload switch (decelerating control of the vehicle speed during overload operation of the engine (21)) 214), a slow speed forward switch (215) and a reverse switch which are push button operation type travel switches which are attached to the left outer surface of the threshing portion (4) and move the body forward and backward at a slow speed. And 216), causes connected to said limit switch (199) (200) said controller (208)TheA bar load control lamp (217), the reduction motor (196),TheA controller (208) is connected.
[0048]
  Thus, as shown in the flowchart of FIG. 22, when the cutting switch (211) (cutting clutch), the culm sensor (212), and the overload switch (214) are all turned on, the automatic mode is set. ), The vehicle speed is automatically decelerated during overload operation. During the operation of the engine (21), the engine load factor is set (for example, 95%) or more, and the engine speed is a fixed speed ( When the speed is reduced (for example, 100 revolutions), the reduction motor (196) is driven to a set deceleration limit position (for example, the vehicle speed is reduced by 15%), and the overload control lamp (217) is lit during this driving.
[0049]
  Further, when the engine load factor becomes a predetermined value (for example, 90%) or less during this deceleration, a deviation (target load factor) calculated from the difference between the set target load factor (for example, 95%) and the current load factor. -Fuzzy inference based on a fuzzy map between the current load factor) and the load change rate represented by the amount of change in engine load factor per hour (e.g., the change rate before 10 ms-the current load factor). An acceleration drive command signal (drive duty) to be returned is output, and the speed reduction motor (196) is accelerated to the upper limit return limit position. When any one of the cutting switch (211), the grain sensor (212), or the overload switch (214) is turned off, the automatic mode is switched to the manual mode, and the reduction motor (196) is on the speed increasing side. When the power supply at the start of work is turned on, it is similarly driven to the upper limit return limit position.
[0050]
  As described above, the engine speed is maintained constant by the electronic governor (194) control, and the vehicle speed is reduced when the engine load factor exceeds the set value (approximately 95%), and becomes a predetermined value (approximately 90%) or less. Sometimes, the vehicle speed is increased to perform a stable combine operation while maintaining the engine speed and the engine load appropriately.
[0051]
  On the other hand, when handling the right side of the combiner and the cuttings released from the waste disposal unit (13) remain in one place, when you want to move the aircraft slightly In order to improve work efficiency, the aircraft is moved forward and backward at a slow speed from the stopped state by operating the switches (215) and (216) in the vicinity of the threshing section (4) without returning to the driver seat (20) each time. Is something that can be done. Further, in this case, since only a certain amount (slow speed) is increased / decreased, it is possible to perform a favorable traveling operation of the aircraft other than the driver's seat (20). Further, by providing such forward / reverse switches (215) and (216) in the vicinity of the driver's seat (20), regardless of the shift position of the main shift lever (68), the speed increasing / decreasing operation is based on the speed. Can be performed by the switches (215) and (216), and the vehicle speed can be easily finely adjusted.
[0052]
  In the above-described embodiment, each of the hydraulic transmission pump (23) and the hydraulic transmission motor (24) for traveling, and the hydraulic steering pump (26) and the hydraulic steering motor (27) for turning are used. Although the configuration in which the traveling speed and the steering control can be automatically performed using the two pumps (23) and (26) and the motors (24) and (27) is shown, the hydraulic transmission pump (23) and the hydraulic pressure are used only for traveling. The same applies to a configuration in which only the traveling shift control can be automatically performed using the transmission motor (24).
[0053]
  TheIn addition, the deceleration motor (196) is changed to an acceleration / deceleration motor that can increase the speed from the current level.ShiThe motor (196) may be driven by operating the switches (215) and (216) to move the aircraft forward and backward at a slow speed.
[0054]
【The invention's effect】
  As is apparent from the above embodiments, the present invention is directed to a solenoid for decelerating or a solenoid for increasing speed of an automatic valve.ByIn the vehicle speed control device of a mobile agricultural machine that controls the vehicle speed by applying pressure oil to the piston,The vehicle speed is controlled by the main speed change lever, and the vehicle speed is controlled to increase / decrease using the hydraulic servo mechanism equipped with the automatic valve based on the detection of the engine load factor and the rotation speed. The control lever is linked to a control lever via a mechanism and a speed change link mechanism, and the control lever has an inner diameter portion formed along the axis of the piston in the piston via a travel stopper rod, a rotating pivot and a crank arm. The piston is moved by the pressure oil introduced into the piston by the movement of the spool accompanying the operation of the main transmission lever,Car speed control is performed by changing the rotation angle of the swash plate of the traveling transmission pumpThe hydraulic servomechanism is configured such that when the load factor of the engine is equal to or higher than a set value and the engine speed is lower than the set speed by a certain number of times, the hydraulic valve causes pressure oil to be discharged by the solenoid for deceleration of the automatic valve. To change the rotation angle of the swash plate of the traveling transmission pump,A constant value based on the vehicle speed set by the main shift leverThe vehicle speed is decelerated, and when the load factor of the engine falls below a predetermined value when the vehicle speed is decelerated, the piston is moved by applying pressure oil to the piston by the acceleration solenoid of the automatic valve. The rotational angle of the swash plate of the traveling transmission pump is changed to return to the original vehicle speed set by the main transmission lever.The engine performance can be maintained stably by performing highly accurate vehicle speed control.
[Brief description of the drawings]
FIG. 1 is a vehicle speed control circuit diagram.
FIG. 2 is an overall side view of the combine.
FIG. 3 is an overall plan view of the combine.
FIG. 4 is an explanatory diagram of a mission drive system.
FIG. 5 is a perspective explanatory view of an operation system of a main transmission lever and a steering lever.
FIG. 6 is an explanatory side view of a traveling shift and steering operation unit.
FIG. 7 is an explanatory front view of an operation unit.
FIG. 8 is an explanatory plan view of an operation unit.
FIG. 9 is an explanatory side view of an operation member.
FIG. 10 is a front explanatory view of an operation member.
FIG. 11 is an explanatory plan view of an operation member.
FIG. 12 is an explanatory plan view of a turning operation shaft portion.
FIG. 13 is an explanatory diagram of a continuously variable transmission mechanism.
FIG. 14 is a partial explanatory view of a continuously variable transmission mechanism.
FIG. 15 is an explanatory diagram of a hydraulic servo mechanism.
FIG. 16 is an explanatory diagram of a hydraulic servo mechanism.
FIG. 17 is an explanatory diagram of a piston.
FIG. 18 is an explanatory diagram of a spool.
FIG. 19 is an explanatory plan view of a reduction motor unit.
FIG. 20 is an explanatory front view of a reduction motor unit.
FIG. 21 is a hydraulic circuit diagram.
FIG. 22 is a flowchart.
FIG. 23 is a flowchart.
[Explanation of symbols]
      (21) Engine
      (68) Main transmission lever
      (70) Link mechanism
      (146) Automatic shift valve (vehicle speed control member)
      (150) Hydraulic servo mechanism
      (196) Motor
      (215) (216) Switch

Claims (1)

自動バルブの減速用ソレノイドまたは増速用ソレノイドによって、圧油をピストンに作用させ車速制御を行う移動農機の車速制御装置において、
主変速レバーでもって車速が変速操作されるとともに、エンジンの負荷率と回転数の検出に基づき前記自動バルブを備える油圧サーボ機構を用いて車速が増減速制御され、
前記主変速レバーは、変速連動機構および変速リンク機構を介してコントロールレバーに連係するとともに、前記コントロールレバーは、走行ストッパー杆、回動枢軸およびクランクアームを介して、ピストン内の、該ピストンの軸線に沿って形成された内径部を移動可能に配設したスプールに連係し、
前記主変速レバーの操作に伴う前記スプールの移動によって、ピストン内に導入した圧油によりピストンを移動させ、走行用変速ポンプの斜板の回転角度を変更させ車速制御を行うとともに、
前記油圧サーボ機構は、前記エンジンの負荷率が設定以上、且つ前記エンジンの回転数が設定回転数より一定回転数低下したとき、前記自動バルブの前記減速用ソレノイドによって、圧油を前記ピストンに作用させることにより前記ピストンを移動させて、前記走行用変速ポンプの斜板の回転角度を変更し、前記主変速レバーで設定される車速を基準として一定値車速を減速させ、
前記車速の減速時に前記エンジンの負荷率が所定値以下となったとき、前記自動バルブの前記増速用ソレノイドによって、圧油を前記ピストンに作用させることにより前記ピストンを移動させて、前記走行用変速ポンプの斜板の回転角度を変更し、前記主変速レバーで設定された元の車速に復帰させることを特徴とする、移動農機の車速制御装置。
In the vehicle speed control device for a mobile agricultural machine that controls the vehicle speed by applying pressure oil to the piston by the solenoid for speed reduction or the solenoid for speed increase of the automatic valve,
The vehicle speed is changed with the main speed change lever, and the vehicle speed is controlled to increase / decrease using a hydraulic servo mechanism equipped with the automatic valve based on detection of the load factor and the rotation speed of the engine.
The main transmission lever is linked to a control lever through a transmission interlocking mechanism and a transmission link mechanism, and the control lever is connected to the axis of the piston in the piston through a travel stopper rod, a rotation pivot and a crank arm. The inner diameter part formed along is linked to a spool movably arranged,
The movement of the spool accompanying the operation of the main transmission lever moves the piston by the pressure oil introduced into the piston , changes the rotation angle of the swash plate of the traveling transmission pump, performs vehicle speed control ,
The hydraulic servo mechanism applies pressure oil to the piston by the solenoid for deceleration of the automatic valve when the load factor of the engine is equal to or higher than a set value and the engine speed is lower than the set speed by a certain number. The piston is moved by changing the rotation angle of the swash plate of the traveling transmission pump, and the vehicle speed set by the main transmission lever is decelerated to a constant value ,
When the load factor of the engine becomes a predetermined value or less during deceleration of the vehicle speed, the piston is moved by applying pressure oil to the piston by the solenoid for increasing speed of the automatic valve, and A vehicle speed control device for a mobile agricultural machine , wherein a rotation angle of a swash plate of a transmission pump is changed to return to the original vehicle speed set by the main transmission lever .
JP31429297A 1997-10-29 1997-10-29 Vehicle speed control device for mobile agricultural machines Expired - Lifetime JP4219430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31429297A JP4219430B2 (en) 1997-10-29 1997-10-29 Vehicle speed control device for mobile agricultural machines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31429297A JP4219430B2 (en) 1997-10-29 1997-10-29 Vehicle speed control device for mobile agricultural machines

Publications (2)

Publication Number Publication Date
JPH11127668A JPH11127668A (en) 1999-05-18
JP4219430B2 true JP4219430B2 (en) 2009-02-04

Family

ID=18051616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31429297A Expired - Lifetime JP4219430B2 (en) 1997-10-29 1997-10-29 Vehicle speed control device for mobile agricultural machines

Country Status (1)

Country Link
JP (1) JP4219430B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220202A (en) * 2005-02-09 2006-08-24 Yanmar Co Ltd Controller for work vehicle
JP6783216B2 (en) * 2017-11-08 2020-11-11 株式会社クボタ Speed change control device and work vehicle

Also Published As

Publication number Publication date
JPH11127668A (en) 1999-05-18

Similar Documents

Publication Publication Date Title
JP4430181B2 (en) Crawler work vehicle
JP4219430B2 (en) Vehicle speed control device for mobile agricultural machines
JP3998109B2 (en) Mobile farm machine
JPH11151022A (en) Speed control system for mobile farm machine
JP3836233B2 (en) Vehicle speed control device for mobile agricultural machines
JP3174952B2 (en) Moving agricultural machine
JP3681871B2 (en) Mobile farm machine
JPH11157359A (en) Vehicle speed control device for mobile agricultural machinery
JP3652457B2 (en) Mobile farm machine
JPH11247755A (en) Movable swash plate control device for variable deliverty hydraulic pump
JP3141134B2 (en) Moving agricultural machine
JP3190987B2 (en) Moving agricultural machine
JP3816645B2 (en) Mobile farm machine
JP3190986B2 (en) Moving agricultural machine
JP3691703B2 (en) Mobile farm machine
JP3174950B2 (en) Moving agricultural machine
JP3208542B2 (en) Moving agricultural machine
JP3730378B2 (en) Mobile farm machine
JPH1149018A (en) Combine
JP3208541B2 (en) Moving agricultural machine
JP3174951B2 (en) Moving agricultural machine
JPH09262022A (en) Speed control unit for farm working vehicle
JP3596692B2 (en) Work vehicle steering system
JP3429252B2 (en) Combine
JP3883484B2 (en) Work vehicle turning control device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040510

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060601

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060824

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060929

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20061124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141121

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term