JP3691703B2 - Mobile farm machine - Google Patents

Mobile farm machine Download PDF

Info

Publication number
JP3691703B2
JP3691703B2 JP34842199A JP34842199A JP3691703B2 JP 3691703 B2 JP3691703 B2 JP 3691703B2 JP 34842199 A JP34842199 A JP 34842199A JP 34842199 A JP34842199 A JP 34842199A JP 3691703 B2 JP3691703 B2 JP 3691703B2
Authority
JP
Japan
Prior art keywords
steering
speed
traveling
shaft
turning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34842199A
Other languages
Japanese (ja)
Other versions
JP2000128015A (en
Inventor
茂實 日高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanma Agricultural Equipment Co Ltd
Original Assignee
Yanma Agricultural Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanma Agricultural Equipment Co Ltd filed Critical Yanma Agricultural Equipment Co Ltd
Priority to JP34842199A priority Critical patent/JP3691703B2/en
Publication of JP2000128015A publication Critical patent/JP2000128015A/en
Application granted granted Critical
Publication of JP3691703B2 publication Critical patent/JP3691703B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は例えば圃場の穀稈を連続的に刈取って脱穀するコンバインなどの移動農機に関する。
【0002】
【発明が解決しようとする課題】
従来、左右走行クローラを装設したコンバインを圃場の未刈り穀稈列に沿わせて走行移動させ乍ら収穫作業を行うと共に、圃場枕地で前記コンバインを方向転換させて次工程の未刈り穀稈列に移動させていたが、エンジン出力を変速伝達するミッションケースの左右走行出力を左右サイドクラッチを介して左右走行クローラに伝達させ、左右サイドクラッチの継断操作により左右走行クローラの一方を一時的に停止させて旋回させることにより、左右サイドクラッチ操作と走行変速操作の両方を作業者が略同時期に行う必要があり、また圃場枕地で方向転換するときの旋回半径が大きくなる不具合がある。
【0003】
そこで、エンジンの動力を各別に伝える左右油圧無段変速機を設けて左右走行クローラを駆動することにより、旋回時の減速並びに旋回半径の縮少などを容易に行えるが、直進性能が低下し易く、未刈り穀稈列に沿わせて走行移動させる操向操作が面倒になる不具合がある。
【0004】
また、左右走行クローラにエンジン動力を変速伝達する単一の油圧無段変速機構と、旋回内側の走行クローラを減速しかつ旋回外側の走行クローラを増速させる油圧無段操向機構を設けることにより、直進性能を良好に維持して操向操作性を向上させ、かつ旋回半径も容易に縮少できるが、直進時と旋回時とで走行速度が略一定に保たれ、直進に比べて走行負荷が大きくなる旋回時にエンジンが過負荷になる不具合があり、旋回半径が小さいスピンターン動作などを行うときに走行変速により減速操作を行う必要があり、圃場枕地で方向転換するときに旋回操作と走行変速操作の両方を行う必要がある。
【0005】
さらに、前記操向機構を伝動させる旋回操作と連動させて走行速度を自動的に減速させ、かつ直進走行に戻す操作と連動させて元の走行速度に自動的に増速させることにより、旋回操作だけでスピンターン動作などを適正走行速度に減速させて行え、面倒な走行変速操作を省けるが、収穫作業中に未刈り穀稈列に沿わせる条合せ(進路修正)のための操向操作を行っても、走行速度が減速されたり増速されて収穫作業途中に走行速度が不均一に変化し、作業者の運転感覚とコンバインの走行動作との間にずれが生じて適正な操向操作を容易に行い得ない等の問題がある。
【0006】
【課題を解決するための手段】
そこで、本発明では、変速操作部材の走行変速操作によりエンジンの駆動力を左右走行部に変速伝達する走行変速部材と、操向操作部材の操作により左右走行部の駆動速度に差を生じさせる操向部材を設ける移動農機において、操向操作部材を直進位置を基準に左右方向に約15度未満で左右旋回操作した場合に、左右走行部を相対的に略同量増減速させて機体中心速度を略一定に保つ走行速度減速の不感帯域を設け、左右方向に約15度を超えた操向操作部材の操作量に応じて走行速度を減速し、かつ、左右走行部の速度差を連続的に変化させて、操向操作部材の操作量が直進位置から左右方向に約135度ではスピンターン動作に移行されているようにしたことを特徴とする移動農機を提供するものである。
【0010】
【発明の実施の形態】
以下、本発明の実施例を図面に基づいて詳述する。図1は主変速レバー及び操向ハンドルの操作系の斜視説明図、図2はコンバインの全体側面図、図3は同平面図であり、図中(1)は走行クローラ(2)を装設するトラックフレーム、(3)は前記トラックフレーム(1)に架設する機台、(4)はフィードチェン(5)を左側に張架し扱胴(6)及び処理胴(7)を内蔵している脱穀機である脱穀部、(8)は刈刃(9)及び穀稈搬送機構(10)などを備える刈取部、(11)は刈取フレーム(12)を介して刈取部(8)を昇降させる油圧シリンダ、(13)は排藁チェン(14)終端を臨ませる排藁処理部、(15)は脱穀部(4)からの穀粒を揚穀筒(16)を介して搬入する穀物タンク、(17)は前記タンク(15)の穀粒を機外に搬出する排出オーガ、(18)は丸形操向ハンドル(19)及び運転席(20)などを備える運転キャビン、(21)は運転キャビン(18)下方に設けるエンジンであり、連続的に穀稈を刈取って脱穀するように構成している。
【0011】
図4に示す如く、前記走行クローラ(2)を駆動するミッションケース(22)は、1対の第1油圧ポンプ(23)及び第1油圧モータ(24)からなる主変速機構である走行用の油圧式無段変速機構(25)と、1対の第2油圧ポンプ(26)及び第2油圧モータ(27)からなる操向機構である旋回用の油圧式無段変速機構(28)とを備え、前記エンジン(21)の出力軸(21a)に第1及び第2油圧ポンプ(23)(26)の入力軸(29)を伝達ベルト(30)を介し連動連結させて、これら油圧ポンプ(23)(26)の駆動を行うように構成している。
【0012】
そして前記第1油圧モータ(24)の出力軸(31)に、副変速機構(32)及び差動機構(33)を介し走行クローラ(2)の駆動輪(34)を連動連結させるもので、前記差動機構(33)は左右対称の1対の遊星ギヤ機構(35)(35)を有し、各遊星ギヤ機構(35)は1つのサンギヤ(36)と、該サンギヤ(36)の外周で噛合う3つのプラネタリギヤ(37)と、これらプラネタリギヤ(37)に噛合うリングギヤ(38)などで形成している。
【0013】
前記プラネタリギヤ(37)はサンギヤ軸(39)と同軸線上とのキャリヤ軸(40)のキャリヤ(41)にそれぞれ回転自在に軸支させ、左右のサンギヤ(36)(36)を挾んで左右のキャリヤ(41)を対向配置させると共に、前記リングギヤ(38)は各プラネタリギヤ(37)に噛み合う内歯(38a)を有してサンギヤ軸(39)とは同一軸芯上に配置させ、キャリヤ軸(40)に回転自在に軸支させている。
【0014】
また、走行用の油圧式無段変速機構(25)は第1油圧ポンプ(23)の回転斜板の角度変更調節により第1油圧モータ(24)の正逆回転と回転数の制御を行うもので、第1油圧モータ(24)の回転出力を出力軸(31)の伝達ギヤ(42)より各ギヤ(43)(44)(45)及び副変速機構(32)を介して、サンギヤ軸(39)に固定したセンタギヤ(46)に伝達してサンギヤ(36)を回転するように構成している。前記副変速機構(32)は、前記ギヤ(45)を有する副変速軸(47)と、前記センタギヤ(46)に噛合うギヤ(48)を有する駐車ブレーキ軸(49)とを備え、副変速軸(47)とブレーキ軸(49)間に各1対の低速用ギヤ(50)(48)・中速用ギヤ(51)(52)・高速用ギヤ(53)(54)を設けて、中央位置のギヤ(51)のスライド操作によってこれら低速・中速・高速の切換えを可能とさせるように構成している(なお低速・中速間及び中速・高速間には中立を有するものである)。また前記ブレーキ軸(49)には車速検出ギヤ(55)を設けると共に、該ギヤ(55)の回転数より車速を検出する車速センサ(56)を設けている。なお、刈取部(8)に回転力を伝達する刈取PTO軸(57)のPTO入力ギヤ(58)に、前記出力軸(31)の伝達ギヤ(42)を噛合連結させている。
【0015】
そして、前記センタギヤ(46)を介しサンギヤ軸(39)に伝達された第1油圧モータ(24)からの駆動力を、左右の遊星ギヤ機構(35)を介しキャリヤ軸(40)に伝達させると共に、該キャリヤ軸(40)に伝達された回転を左右各一対の減速ギヤ(60)(61)を介し左右の駆動輪(34)の左右輪軸(34a)にそれぞれ伝えるように構成している。
【0016】
さらに、旋回用の油圧式無段変速機構(28)は第2油圧ポンプ(26)の回転斜板の角度変更調節により第2油圧モータ(27)の正逆回転と回転数の制御を行うもので、第2油圧モータ(27)の出力軸(62)の出力ギヤからギヤ伝達機構(63)を介し旋回入力軸(64)の入力ギヤ(65a)(65b)に回転出力を伝達し、右側のリングギヤ(38)の外歯(38b)を対しては直接的に、また左側のリングギヤ(38)の外歯(38b)に対しては逆転軸(66)の逆転ギヤ(67)を介し伝えて、第2油圧モータ(27)の正転時に左右のリングギヤ(38)を左右同一回転数で左ギヤ(38)を正転、右ギヤ(38)を逆転とさせるように構成している。
【0017】
而して旋回用の第2油圧モータ(27)の駆動を停止させ左右リングギヤ(38)を静止固定させた状態で、走行用の第1油圧モータ(24)の駆動を行うと、第1油圧モータ(24)からの回転出力はセンタギヤ(46)から左右のサンギヤ(36)に同一回転数で伝達され、左右遊星ギヤ機構(35)のプラネタリギヤ(37)・キャリヤ(41)及び減速ギヤ(60)(61)を介し左右の輪軸(34a)に左右同回転方向の同一回転数で伝達されて、機体の前後直進走行が行われる。一方、走行用の第1油圧モータ(24)の駆動を停止させ左右のサンギヤ(36)を静止固定させた状態で、旋回用の第2油圧モータ(27)を正逆回転駆動すると、左側の遊星ギヤ機構(35)が正或いは逆回転、また右側の遊星ギヤ機構(35)が逆或いは正回転して、左右走行クローラ(2)の駆動方向を前後逆方向とさせて機体を左或いは右にその場でスピンターンさせるものである。
【0018】
また走行用の第1油圧モータ(24)を駆動させながら、旋回用の第2油圧モータ(27)を駆動して機体を左右に旋回させる場合には旋回半径の大きい旋回を可能にできるもので、その旋回半径は左右走行クローラ(2)の速度に応じ決定される。
【0019】
図5乃至図13に示す如く、前記走行用の油圧式無段変速機構(25)に連結する主変速レバー(68)と、旋回用の油圧式無段変速機構(28)に連結する操向ハンドル(19)とを、変速及び旋回連動機構(69)に連動連結させると共に、該連動機構(69)を走行変速及び操向リンク系であるリンク機構(70)(71)を介し走行及び操向用の無段変速機構(25)(28)のコントロールレバー(72)(73)に連動連結させている。
【0020】
前記連動機構(69)は、主変速レバー(68)の基端折曲部(68a)を筒軸(74)に左右揺動自在に支持する回動板(75)と、機体側の本機フレーム(76)に固設して前記回動板(75)を左右方向の第1枢軸(77)を介し前後回動自在に支持する固定取付板(78)と、前記枢軸(77)とは直交する前後方向の第2枢軸(79)を介して回動板(75)に連結させて該軸(79)回りに回動自在に設ける変速操作部材(80)と、前記第2枢軸(79)の軸回りに回動自在に連結させる操向操作部材(81)とを備え、変速及び操向操作部材(80)(81)の第2枢軸(79)とは偏心位置の各操作出力部(80a)(81a)を変速及び操向リンク機構(70)(71)に連動連結させている。
【0021】
前記変速及び操向リンク機構(70)(71)は、連動機構(69)後方位置で本機フレーム(76)側に揺動軸(82)外側の揺動筒軸(83)を介し支持する変速アーム(84)と、前記揺動軸(82)に基端を固設する旋回出力逆転手段である操向アーム(85)と、前記出力部(80a)(81a)の各操作出力軸(86)(87)と各アーム(84)(85)間を連結する自在継手軸(88)(89)と、前記揺動軸(82)の右端に固設する操向出力アーム(91)と、前記運転キャビン(18)の回動支点軸(92)の支点軸受(93)に取付ける中間軸(94)に回転自在に設ける変速及び操向用第1揺動アーム(95)(96)と、前記アーム(84)(91)と第1揺動アーム(95)(96)の各先端間をそれぞれ連結する変速及び操向用自在継手形第1ロッド(97)(98)と、前記中間軸(94)に設けて第1揺動アーム(95)(96)に一体連結する変速及び操向用第2揺動アーム(99)(100)と、前記ミッションケース(22)上部の軸受板(101)に取付ける支軸(102)に回動自在に支持させる変速及び操向用筒軸(103)(104)と、該筒軸(103)(104)に基端を固設する第1揺動アーム(105)(106)と前記第2揺動アーム(99)(100)の各先端間を連結する変速及び操向用自在継手形第2ロッド(107)(108)と、前記筒軸(103)(104)に基端を固設する第2揺動アーム(109)(110)と前記コントロールレバー(72)(73)の各先端間を連結させる変速及び操向用自在継手形第3ロッド(111)(112)とを備え、前記第1枢軸(77)を中心とした変速操作部材(80)の回動によって走行用のコントロールレバー(72)を、また走行中の第2枢軸(79)を中心とした操向操作部材(81)の回動によって操向用のコントロールレバー(73)を操作して変速及び操向制御を行うように構成している。
【0022】
一方前記操向ハンドル(19)下端のハンドル操作軸(113)にギヤ(114)を設けて、この後方の回転軸(115)に取付けるセクタギヤ(116)に前記ギヤ(114)を噛合せると共に、前記主変速レバー(68)位置下方に配設する操向軸(117)の第1揺動アーム(118)と、前記回転軸(115)に基端を固設する出力アーム(119)との各先端間を操向リンク機構である自在継手形操向第1ロッド(120)を介して連結させ、操向軸(117)の第1揺動アーム(118)と一体の第2揺動アーム(121)を、前記自在継手軸(89)の前端に自在継手形操向第2ロッド(122)を介して連結させ、前記ハンドル(19)の回動操作によって前記第2枢軸(79)を中心として操向操作部材(81)を回動するように構成している。
【0023】
また、前記ハンドル操作軸(113)のギヤ(114)下方に中立位置決め板(123)を設けていて、該位置決め板(123)下面の突出軸(124)に操向検出リンク(125)の一端を連結させ、前記回転軸(115)の右側に配設する減速アーム軸(126)に第1揺動アーム(127)を設け、この第1揺動アーム(127)の軸(128)と前記検出リンク(125)他端の長孔(125a)とを摺動自在に連結させると共に、前記操向軸(117)の減速アーム(129)と減速アーム軸(126)の第2揺動アーム(130)との各先端間を減速リンク機構である自在継手形第1減速ロッド(131)で連結させ、前記変速操作部材(80)の最右端の減速伝達軸(132)と第2揺動アーム(130)の他端間を自在継手形第2減速ロッド(133)で連結させて、走行状態で前記ハンドル(19)の操向量を大とする程第2減速ロッド(133)を下方に引張って走行速度を減速させるように構成している。また、前記回動板(75)と変速操作部材(80)の間にバネ(S1)を張設させ、操向ハンドル(19)を直進位置に戻して検出リンク(125)を元に戻したとき、該バネ(S1)によって前記部材(80)を戻し、操向ハンドル(19)直進復帰操作によって走行速度を元に戻すように構成している。
【0024】
而して、前記変速及び操向操作部材(80)(81)を軸回りに回動可能とさせる第2枢軸(79)と、操向アーム(85)と継手軸(89)との自在継手部(89a)とを前後方向の水平ライン(L1)上に略一致させ、また前記操作出力軸(86)(87)と自在継手軸(88)(89)との自在継手部(88b)(89b)と、第1枢軸(77)とを前記ライン(L1)に直交させる左右水平ライン(L2)上に位置させ、さらに前記変速アーム(84)と継手軸(88)との自在継手部(88a)と前記継手部(89a)とを前記ライン(L2)と平行な左右水平ライン(L3)上に位置させ、且つ継手部(89a)に継手部(88a)を可及的に接近(最大限近い位置)させて、主変速レバー(68)及び操向ハンドル(19)の中立保持時に、これら何れか一方が操作されても、各操作部材(80)(81)を第1及び第2枢軸(77)(79)の軸回りに回動させるのみとさせて、継手軸(88)(89)には操作力を作用させないものである。
【0025】
そして図9にも示す如く、主変速レバー(68)の前後進操作で、第1枢軸(77)を中心として操作部材(80)を前後に角度(α1)(α2)傾けるとき前記継手軸(88)を引張って或いは押して変速アーム(84)を動作させて走行速度の前後進の切換えを行うと共に、図11に示す如くこの状態中(主変速レバー(68)が中立以外のとき)に操向ハンドル(19)の回動操作で第2枢軸(79)を中心として操作部材(81)を上下に角度(β1)(β2)傾けるとき継手軸(89)を引張って或いは押して操向アーム(85)を動作させて機体の左及び右旋回を行うものである。即ち主変速の中立時に旋回操作を行っても継手軸(89)はライン(L1)を中心とした略円錐面上で移動する状態となって継手部(89a)(89b)間の距離は変化せず、したがって操向アーム(85)は動作しない。そして主変速の中立以外で旋回操作が行われるとき操向アーム(85)は動作するもので、前後進に切換わるとき操向アーム(85)は前後逆方向に動作して、第2油圧モータ(27)の回転を前進時と後進時では逆方向とさせるように構成したものである。
【0026】
つまり、走行用の第1油圧モータ(24)の正回転時を前進時とすると、逆回転時の後進時には旋回用の第2油圧モータ(27)による遊星ギヤ機構(35)の作用は前進時と後進時では逆となるもので、前進時と後進時のハンドル(19)操作による機体の旋回方向を一致させるため、第1油圧モータ(24)の逆回転(後進)時には第2油圧ポンプ(26)の斜板角度を逆方向に切換えて(第1及び第2油圧ポンプ(23)(26)の入力軸の回転方向は一定)、第2油圧モータ(27)の回転を前進時と後進時では逆方向とさせるものである。
【0027】
つまりこの場合、前進操作時の操作部材(80)が中立より前方の角度(α1)側に傾いて、ハンドル(19)の右回動操作によって第2ロッド(122)を引張り操作部材(81)を下方向の角度(β2)側に傾けるとき、操作部材(81)の出力部(81a)を操向アーム(85)側に近づけて、揺動軸(82)を中心として操向アーム(85)を操作部材(81)より遠ざける方向(図5中反時計方向)に回転させ、前記第1及び第2ロッド(98)(108)などを介しコントロールレバー(73)を下方向に回転させて、旋回用の第2油圧モータ(27)を正回転させる。即ち、機体を前進で右旋回(走行クローラ(2)の速度を左側が大、右側が小)させる。
【0028】
また、上述の前進操作時で、ハンドル(19)の左回動操作によって第2ロッド(122)を押し上げ、操作部材(81)を上方向の角度(β1)側に傾けるとき、操作部材(81)の出力部(81a)を操作アーム(85)側より遠ざけて、揺動軸(82)を中心として操向アーム(85)を操作部材(81)側に近づける方向(図5中時計方向)に回転させ、前記コントロールレバー(73)を上方向に回転させて、前記第2油圧モータ(27)を逆回転させる。即ち、機体を前進で左旋回(走行クローラ(2)の速度を右側が大、左側が小)させる。
【0029】
さらに、後進操作時の操作部材(80)が中立より後方の角度(α2)側に傾いて、ハンドル(19)の右回動操作によって第2ロッド(122)を引張り操作部材(81)を下方向の角度(β2)側に傾けるとき、操作部材(81)の出力部(81a)を操向アーム(85)側より遠ざけて、揺動軸(82)を中心として操向アーム(85)を操作部材(81)側に近づける方向(図5中時計方向)に回転させ、前記コントロールレバー(73)を上方向に回転させて、前記第2油圧モータ(27)を逆回転させる。即ち、機体を後進で右旋回(走行クローラ(2)の速度を左側が大、右側が小)させる。
【0030】
またさらに、上述とは逆に後進操作時で、ハンドル(19)の左回動操作によって、操作部材(81)を上方向の角度(β1)側に傾けるとき、操作部材(81)の出力部(81a)を操作部材(81)側に近づけて、揺動軸(82)を中心として操向アーム(85)を操作部材(81)より遠ざける方向(図5中反時計方向)に回転させ、前記コントロールレバー(73)を下方向に回転させて、前記第2油圧モータ(27)を正回転させる。即ち、機体を後進で左旋回(走行クローラ(2)の速度を右側が大、左側が小)とさせる。
【0031】
このように前進及び後進時における旋回操作にあっては、操向アーム(85)の動きを逆方向とさせて、前後進の何れにおいても操向ハンドル(19)の回動操作方向と機体の旋回方向とを一致させるもので、回転操作する丸形の操向ハンドル(19)によって操向操作部材を構成し、前記ハンドル(19)の回転操作によって例えばトラクタまたは田植機と同様の運転感覚で進路修正及び方向転換などを行うと共に、操向操作部材を走行変速部材または操向部材に機械的に連結させるリンク機構(70)(71)を設け、前記リンク機構(70)(71)の動作及び機能が経時的に殆んど低下することがなく、操向動作の信頼性向上などを容易に図れるように構成している。
【0032】
さらに、図15、図16は機体の左旋回時における操向ハンドル(19)の切れ角と左右走行クローラ(2)の速度の関係を示すもので、ハンドル(19)の切れ角が大となる程左右走行クローラ(2)の速度差は大となると共に、これら左右走行クローラ(2)の平均速度となる機体中心速度も走行速度(高速・標準・低速)状態に応じて減速されるものであって、機体の右旋回時においても左右クローラ(2)が逆の関係となるだけで同様のものであり、図15及び図16から明らかなように、直進位置の操向ハンドル(19)を左方向(右方向)に約15度回転させると、前記長孔(125a)内を軸(128)が移動し、バネ(S1)によって第1減速ロッド(131)が直進と同一位置に維持されると共に、各ギヤ(114)(116)を介して操向第1ロッド(120)が押出(引張)移動し、第2油圧ポンプ(26)及びモータ(27)の操向出力によって左方向(右方向)に旋回する。このとき、旋回内側の走行クローラ(2)の減速量と、旋回外側の走行クローラ(2)の増速量が略等しくなり、機体中心速度が直進と略同一速度に保たれる。また、操向ハンドル(19)を直進位置から約15度以上回転させると、バネ(S1)に抗して第1減速ロッド(131)が左旋回及び右旋回のいずれでも引張られて減速動作し、第1油圧ポンプ(23)及びモータ(24)の走行変速出力を減速させ、左右走行クローラ(2)(2)を同一方向に回転駆動させて前進(または後進)させ、左右走行クローラ(2)(2)の同一方向の走行速度差により左方向(右方向)に旋回するブレーキターン動作を行わせる。さらに、操向ハンドル(19)を約135度回転させると、機体中心速度が直進時の約4分の1に減速され、旋回内側の走行クローラ(2)が逆転駆動され、旋回内側の走行クローラ(2)を中心として機体が旋回するスピンターン動作が行われるもので、図17にも示す如く、ハンドル角度0度からハンドル角度135度の範囲で操向ハンドル(19)を回転させて左または右方向の旋回操作を行い、直進位置を中心とした左右方向に約15度のハンドル(19)回転範囲で未刈り穀稈列に沿って移動する条合せ進路修正を、直進時の走行速度を維持し乍ら行うと共に、直進位置から左右方向に約135度のハンドル(19)回転により、圃場枕地で機体を方向転換させて次作業工程に移動させるスピンターン動作を、直進時の約4分の1の走行速度に自動的に減速して行うように構成している。
【0033】
さらに、図17に示す如く、副変速を標準(秒速1.5メートル)速度に保ち、操向ハンドル(19)を90度回転させたとき、主変速レバー(68)操作により主変速出力を高速及び3分の2及び3分の1に変更しても、機体の旋回半径が略一定に保たれた状態で、旋回速度(機体中心速度)だけが変化するように構成している。
【0034】
上記から明らかなように、変速操作部材である主変速レバー(68)の走行変速操作によりエンジン(21)の駆動力を左右走行部である左右走行クローラ(2)(2)に変速伝達する走行変速部材である第1油圧ポンプ(23)及び第1油圧モータ(24)と、操向操作部材である操向ハンドル(19)の操向操作により左右走行クローラ(2)(2)の駆動速度に差を生じさせる操向部材である第2油圧ポンプ(26)及び第2油圧モータ(27)を設ける移動農機において、操向ハンドル(19)の操作量に応じて走行速度を減速し、かつ左右走行クローラ(2)(2)の速度差を連続的に変化させて操向ハンドル(19)の操作量が所定量を越えたときにスピンターン動作に移行させ、操向ハンドル(19)操作だけで減速させて圃場枕地で方向転換させ、次作業工程に移動して直進走行に戻す操作によって前工程の作業走行速度まで増速させて作業を再開させ、操向操作に伴う走行変速操作を省け、農作業中の直進走行及び進路修正動作と、圃場枕地で次作業工程位置に向けて方向転換させるスピンターン動作とを、連続した一連の操向操作だけでスムーズに行わせると共に、操向ハンドル(19)を最大操向操作したときに走行速度を約4分の1に減速させ、農作業を行う直進走行速度と、圃場枕地で方向転換させるスピンターン走行速度の差を、低速走行作業に比べて高速走行作業の方が走行速度に比例して大きくなり、高速走行作業を行っても低速時と同様に圃場枕地でのスピンターン操作を安定良く行え、かつ低速走行作業を行っても高速時と同様に圃場枕地での方向転換を速やかに行え、農作業を行う直進走行時の変速範囲を大きく設定してもスピンターン操作時の減速後の走行速度範囲を小さくして機動性の向上並びに操向操作性の向上などを図れるように構成している。
【0035】
また、操向ハンドル(19)を最大操向操作したときに第2油圧ポンプ(26)及び第2油圧モータ(27)の出力が最大になり、直進走行する農作業時に比べて走行負荷が大きくなる圃場枕地での方向転換に必要な走行クローラ(2)駆動力を確保させ、方向転換時の走行過負荷によるエンジン(21)停止などのトラブルを防止し、エンジン(21)アクセル操作などを省けて方向転換時の運転操作性の向上などを図れると共に、操向ハンドル(19)を直進位置を基準に所定量の左右旋回操作した場合に、左右走行クローラ(2)(2)を相対的に略同量増減速させて機体中心速度を略一定に保つ走行速度減速の不感帯域を設け、農作業中に作物列または畦などに機体を沿わせる操向操作を行っても走行速度が不均一に変化するのを防止し、略同一走行速度を保ち乍ら農作業中の進路修正を行い得、作業者の運転感覚と機体の走行動作とを略一致させて適正な操向操作を行える。また、主変速レバー(68)の変速基準値を切換える副変速操作により操向ハンドル(19)による旋回半径を変化させ、第1油圧ポンプ(23)及び第1油圧モータ(24)と走行クローラ(2)間の減速比並びに第2油圧ポンプ(26)及び第2油圧モータ(27)と走行クローラ(2)間の減速比の設定、或いはスピンターン動作に必要な小半径旋回に必要な走行駆動力の確保などを図る。また、主変速レバー(68)の変速操作により旋回半径を略一定に保った状態で旋回速度を変化させ、作業者の熟練度などに応じた運転操作を行え、機動性の向上並びに運転操作性の向上などを図れると共に、機体中心速度(車速)の変化に対して旋回半径が略一定に保たれることにより、トラクタまたは田植機などの四輪走行車の運転感覚で、左右一対の走行クローラ(2)を装設したコンバインなどのクローラ走行車の進路修正及び方向転換などを行えるように構成している。
【0036】
また、左右走行クローラ(2)を同一方向に同一速度で駆動する第1油圧ポンプ(23)及び第1油圧モータ(24)と、左右走行クローラ(2)を逆方向に同一速度で駆動する第2油圧ポンプ(26)及び第2油圧モータ(27)を設け、第1油圧ポンプ(23)及び第1油圧モータ(24)の変速量に比例させて第2油圧ポンプ(26)及び第2油圧モータ(27)の操向量を自動的に変化させ、操向操作が一定のとき、変速操作だけで、旋回半径を一定に保つ操向動作を行わせ、車速を増減速変化させ、車速の変更に対して旋回内側走行クローラ(2)の速度と旋回外側走行クローラ(2)の速度の比を一定に保ち、走行クローラ(2)の走行変速及び操向機能の向上並びに走行変速及び操向制御の簡略化などを図ると共に、車速を変更する変速操作によって第2油圧ポンプ(26)及び第2油圧モータ(27)の操向量を自動的に変化させ、操向操作を行うことなく、旋回半径を略一定に保ち乍ら車速を変更し、四輪自動車のアクセルペダルに近似した走行クローラ(2)の変速操作と旋回動作を行わせ、走行クローラ(2)の車速制御及び操向制御機能の向上並びに変速操作及び操向操作の簡略化などを図る。
【0037】
また図12にも示す如く、前記操向ハンドル(19)に設ける検出リンク(125)は中立位置より右或いは左旋回操作の何れにおいても第1揺動アーム(127)を同一方向に角度(θ)の範囲で回動させて第2減速ロッド(133)を常に引張る状態とさせて、前進操作時の操作部材(80)が角度(α1)側に傾いてるときには、継手部(88a)(88b)間の距離を縮め、また後進操作時の操作部材(80)が角度(α2)側に傾いているときには、継手部(88a)(88b)間の距離を大きくして、変速アーム(84)をそれぞれ中立方向の低速側に変位させて、その旋回量に応じた減速を行うものである。
【0038】
さらに、変速及び操向の操作力を伝達する前記第1ロッド(97)(98)と揺動アーム(95)(96)の自在継手部(97a)(98a)の中心を、運転キャビン(18)の回動支点軸(92)位置に一致させて、変速及び操向の中立保持においてはこれらの操作系を取外すことなく運転キャビン(18)の前方向への回動を可能とさせるように構成している。
【0039】
ところで、図4及び図14に示す如く、前記第1及び第2油圧ポンプ(23)(26)と第1及び第2油圧モータ(24)(27)とをそれぞれループ油圧回路(134)(135)を介し正逆自在に接続させ、前記第1及び第2油圧モータ(24)(27)の出力軸(31)(62)には、電磁弁(136)(137)の作動によって出力軸(31)(62)を静止保持する走行停止及び直進固定用の走行及び旋回用ブレーキ装置(138)(139)を設けると共に、前記駐車ブレーキ軸(49)にはブレーキ軸(49)を静止保持する駐車ブレーキ装置(140)を設けている。
【0040】
さらに、図18は、上記操向ハンドル(19)に代えて操向レバー(141)を設けたもので、操向レバー(141)を軸(142)回りに左右方向に揺動自在に取付け、操向レバー(141)基部に固定させるベベルギヤ(143a)と、ハンドル操作軸(113)上端に固定させるベベルギヤ(143b)を噛合させ、操向レバー(141)の左右揺動によって操作軸(113)を正転または逆転させ、上記と同様に、リンク機構(70)(71)を作動させて操向制御させ、揺動操作する操向レバー(141)によって操向操作部材を構成し、前記レバー(141)を例えば左右方向に揺動させるだけで左右いずれの進路修正及び方向転換を行えるように構成している。
【0041】
さらに、図19に示す如く、例えば電動モータまたは油圧シリンダなどで形成する変速アクチュエータ(144)及び操向アクチュエータ(145)を設け、無段変速機構(25)(28)の第1及び第2油圧ポンプ(23)(26)に設けるトラニオンを形成するコントロールレバー(72)(73)に前記各アクチュエータ(144)(145)を連結させると共に、主変速レバー(68)の変速操作位置を検出するポテンショメータ型主変速センサ(146)と、前記レバー(68)の前進または後進操作を検出する切換スイッチ型前後進センサ(147)と、操向ハンドル(19)の回転操作位置を検出するポテンショメータ型操向ハンドルセンサ(148)と、前記ハンドルの回転方向(左または右)を検出する切換スイッチ型左右旋回センサ(149)と、副変速機構(32)の副変速操作位置を検出する切換スイッチ型副変速センサ(150)と、変速用コントロールレバー(72)の走行変速位置を検出するポテンショメータ型変速位置センサ(151)と、旋回用コントロールレバー(73)の旋回変速位置を検出するポテンショメータ型旋回位置センサ(152)と、走行クローラ(1)の走行速度を検出するピックアップ型車速センサ(153)を設け、マイクロコンピュータで形成するコントローラ(154)に前記各センサ(146)〜(153)並びに各アクチュエータ(144)(145)を電気接続させる。そして、上記したリンク機構(70)(71)を省き、かつ上記と同様に、操向ハンドル(19)及び主変速レバー(68)の操作に基づき、各センサ(146)〜(153)を介して各アクチュエータ(144)(145)を制御し、各コントロールレバー(72)(73)を作動させ、走行変速並びに左右旋回の各動作を行わせるもので、操向操作部材である操向ハンドル(19)を走行変速部材である第1油圧ポンプ(23)及び第1油圧モータ(24)または操向部材である第2油圧ポンプ(26)及び第2油圧モータ(27)に電気的に連結させるコントローラ(154)を設け、操向制御機能の多機能化並びに製造コストの低減などを容易に図れるように構成している。
【0042】
【発明の効果】
本発明では、操向操作部材を直進位置を基準に左右方向に約15度未満で左右旋回操作した場合に、左右走行部を相対的に略同量増減速させて機体中心速度を略一定に保つ走行速度減速の不感帯域を設けているため、かかる不感帯域において、農作業中に作物列または畦などに機体を沿わせる操向操作を行っても、走行速度が不均一に変化するのを防止することができると共に、略同一走行速度を保ち乍ら農作業中の進路修正を行うことができる。
【0043】
その結果、作業者は、運転感覚と機体の走行動作とを略一致させることができて、適正な操向操作を行うことができる。
【0044】
しかも、左右方向に約15度を超えた操向操作部材の操作量に応じて走行速度を減速し、かつ、左右走行部の速度差を連続的に変化させて、操向操作部材の操作量が直進位置から左右方向に約135度ではスピンターン動作に移行されているようにしているため、操向操作部材の操作により減速させて圃場枕地で方向転換させ、次作業工程に移動して直進走行に戻す操作によって、前工程の作業走行速度まで増速させて作業を再開させることができる。
【0045】
その結果、農作業中の直進走行及び進路修正動作と、圃場枕地で次作業工程位置に向けて方向転換させるスピンターン動作とを、連続した一連の操向操作によりスムーズに行うことができる。
【図面の簡単な説明】
【図1】主変速レバー及び操向ハンドルの操作系の斜視説明図。
【図2】コンバインの全体側面図。
【図3】コンバインの全体平面図。
【図4】ミッション駆動系の説明図。
【図5】走行変速及び操向操作部の説明図。
【図6】操作部の正面説明図。
【図7】操作部の平面説明図。
【図8】操作部の側面説明図。
【図9】操作部材の側面説明図。
【図10】操作部材の正面説明図。
【図11】操作部材の平面説明図。
【図12】操向ハンドル部の平面説明図。
【図13】リンク機構部の平面説明図。
【図14】油圧回路図。
【図15】機体旋回時のハンドル切れ角とクローラ速度との関係を示す線図。
【図16】操向ハンドル操作と走行減速の関係を表わす線図。
【図17】主変速切換と走行減速の関係を表わす線図。
【図18】操向レバーを設けた説明図。
【図19】コントローラを設けた説明図。
【符号の説明】
(2) 走行クローラ(走行部)
(19) 操向ハンドル(操向操作部材)
(21) エンジン
(23) 第1油圧ポンプ(走行変速部材)
(24) 第1油圧モータ(走行変速部材)
(26) 第2油圧ポンプ(操向部材)
(27) 第2油圧モータ(操向部材)
(68) 主変速レバー(変速操作部材)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a mobile agricultural machine such as a combine harvester that continuously harvests and thresh grain cereals in a field.
[0002]
[Problems to be solved by the invention]
Conventionally, a combine equipped with a left and right traveling crawler is moved and moved along an uncut grain culm row in the field, and harvesting is performed while turning the combine at a field headland to change the combine in the next process. Although it was moved in a row, the left and right traveling output of the transmission case transmitting the engine output is transmitted to the left and right traveling crawlers via the left and right side clutches, and one of the left and right traveling crawlers is temporarily suspended by the intermittent operation of the left and right side clutches. When the vehicle is stopped and turned, it is necessary for the operator to perform both the left and right side clutch operations and the traveling speed change operation at substantially the same time, and the turning radius when turning in the field headland increases. is there.
[0003]
Therefore, by installing left and right hydraulic continuously variable transmissions that transmit the engine power separately and driving the left and right traveling crawlers, it is possible to easily reduce the turning radius and reduce the turning radius, but the straight running performance tends to deteriorate. There is a problem that the steering operation for traveling along the uncut grain row is troublesome.
[0004]
In addition, by providing a single hydraulic continuously variable transmission mechanism that shifts engine power to the left and right traveling crawlers, and a hydraulic continuously variable steering mechanism that decelerates the traveling crawler inside the turn and accelerates the traveling crawler outside the turn. While maintaining straight running performance and improving steering operability, the turning radius can also be reduced easily, but the running speed is kept almost constant during straight running and turning, and the running load compared to straight running There is a problem that the engine becomes overloaded when turning, and when performing a spin turn operation with a small turning radius, it is necessary to perform a deceleration operation by traveling speed change, and when turning at a field headland, It is necessary to carry out both travel gear shifting operations.
[0005]
Further, the turning operation is automatically reduced by interlocking with the turning operation for transmitting the steering mechanism and automatically increased to the original traveling speed in conjunction with the operation for returning to the straight traveling. It is possible to reduce the spin-turning operation to an appropriate traveling speed and to save troublesome traveling speed change operation, but to perform steering operation for the condition (course correction) along the uncut grain row during harvesting work. Even if it goes, the running speed is decelerated or increased, and the running speed changes unevenly during the harvesting work, and there is a difference between the operator's driving feeling and the combine's running action, and proper steering operation There is a problem that it cannot be easily performed.
[0006]
[Means for Solving the Problems]
Therefore, in the present invention, a traveling speed change member that shifts the driving force of the engine to the left and right traveling parts by a traveling speed change operation of the speed change operation member and an operation that causes a difference in the driving speeds of the left and right traveling parts by the operation of the steering operation member. In a mobile agricultural machine provided with a direction member, when the steering operation member is turned left and right at less than about 15 degrees in the left-right direction with respect to the straight traveling position, the left and right traveling parts are increased and decelerated relatively by the same amount, and the machine center speed A dead zone for reducing the traveling speed is maintained, the traveling speed is decelerated according to the operation amount of the steering operation member exceeding about 15 degrees in the left-right direction , and the speed difference between the left and right traveling sections is continuously increased. by changing, in the approximately 135 degrees in the left-right direction operation amount of the steering operating member from the straight position there is provided a mobile agricultural machine is characterized in that the so that have been migrated to spin turn operation.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a perspective explanatory view of an operation system of a main transmission lever and a steering handle, FIG. 2 is an overall side view of the combine, FIG. 3 is a plan view thereof, and (1) is a traveling crawler (2). (3) is a machine base installed on the track frame (1), (4) is provided with a feed cylinder (5) stretched on the left side, and a handling cylinder (6) and a processing cylinder (7) are built in. The threshing unit, which is a threshing machine, (8) is a cutting part provided with a cutting blade (9) and a culm transport mechanism (10), and (11) is moved up and down the cutting part (8) via a cutting frame (12). (13) is a waste disposal section that faces the end of the waste chain (14), (15) is a grain tank that carries the grain from the threshing section (4) via the milling cylinder (16) , (17) is a discharge auger that transports the grain of the tank (15) out of the machine, and (18) is a round steering. Bundle (19) and the driver's seat (20) operating cabin comprising etc., constitute (21) as is an engine provided with the operating cabin (18) downward, threshing continuously harvests culms.
[0011]
As shown in FIG. 4, the transmission case (22) for driving the travel crawler (2) is a main transmission mechanism comprising a pair of first hydraulic pump (23) and first hydraulic motor (24). A hydraulic continuously variable transmission mechanism (25) and a turning hydraulic continuously variable transmission mechanism (28) which is a steering mechanism including a pair of second hydraulic pump (26) and a second hydraulic motor (27). And the input shaft (29) of the first and second hydraulic pumps (23), (26) is linked to the output shaft (21a) of the engine (21) via the transmission belt (30), and these hydraulic pumps ( 23) The driving of (26) is performed.
[0012]
The drive shaft (34) of the traveling crawler (2) is interlockedly connected to the output shaft (31) of the first hydraulic motor (24) via the subtransmission mechanism (32) and the differential mechanism (33). The differential mechanism (33) has a pair of left and right symmetrical planetary gear mechanisms (35) and (35). Each planetary gear mechanism (35) has one sun gear (36) and an outer periphery of the sun gear (36). Are formed by three planetary gears (37) meshed with each other and a ring gear (38) meshed with these planetary gears (37).
[0013]
The planetary gear (37) is rotatably supported by the carrier (41) of the carrier shaft (40) coaxial with the sun gear shaft (39), and the left and right sun gears (36) (36) are sandwiched between the left and right carriers. The ring gear (38) has an inner tooth (38a) that meshes with each planetary gear (37) and is arranged on the same axis as the sun gear shaft (39), so that the carrier shaft (40 ) Is rotatably supported.
[0014]
The traveling hydraulic continuously variable transmission mechanism (25) performs forward / reverse rotation and rotation speed control of the first hydraulic motor (24) by adjusting and changing the angle of the rotary swash plate of the first hydraulic pump (23). Thus, the rotational output of the first hydraulic motor (24) is transmitted from the transmission gear (42) of the output shaft (31) through the gears (43) (44) (45) and the auxiliary transmission mechanism (32) to the sun gear shaft ( The sun gear (36) is rotated by being transmitted to the center gear (46) fixed to 39). The auxiliary transmission mechanism (32) includes an auxiliary transmission shaft (47) having the gear (45) and a parking brake shaft (49) having a gear (48) meshing with the center gear (46). A pair of low speed gears (50) (48), medium speed gears (51) (52), and high speed gears (53) (54) are provided between the shaft (47) and the brake shaft (49). It is configured to enable switching between low speed, medium speed, and high speed by sliding the gear (51) at the center position (note that it has neutrality between low speed and medium speed and between medium speed and high speed). is there). The brake shaft (49) is provided with a vehicle speed detection gear (55) and a vehicle speed sensor (56) for detecting the vehicle speed from the rotational speed of the gear (55). The transmission gear (42) of the output shaft (31) is meshedly connected to the PTO input gear (58) of the cutting PTO shaft (57) that transmits the rotational force to the cutting unit (8).
[0015]
The driving force from the first hydraulic motor (24) transmitted to the sun gear shaft (39) via the center gear (46) is transmitted to the carrier shaft (40) via the left and right planetary gear mechanisms (35). The rotation transmitted to the carrier shaft (40) is transmitted to the left and right wheel shafts (34a) of the left and right drive wheels (34) via a pair of left and right reduction gears (60) and (61), respectively.
[0016]
Further, the turning hydraulic continuously variable transmission mechanism (28) controls the forward and reverse rotation of the second hydraulic motor (27) and the rotational speed by adjusting the angle change of the rotary swash plate of the second hydraulic pump (26). The rotation output is transmitted from the output gear of the output shaft (62) of the second hydraulic motor (27) to the input gears (65a) and (65b) of the swing input shaft (64) via the gear transmission mechanism (63). Is transmitted directly to the outer teeth (38b) of the ring gear (38) and to the outer teeth (38b) of the left ring gear (38) via the reverse gear (67) of the reverse shaft (66). Thus, when the second hydraulic motor (27) is rotated forward, the left and right ring gears (38) are configured to rotate the left gear (38) forward and the right gear (38) reversely at the same left and right rotational speed.
[0017]
Thus, when the driving of the first hydraulic motor (24) for driving is performed in a state where the driving of the second hydraulic motor (27) for turning is stopped and the left and right ring gears (38) are fixed stationary, the first hydraulic pressure is obtained. The rotational output from the motor (24) is transmitted from the center gear (46) to the left and right sun gears (36) at the same rotational speed, and the planetary gear (37), carrier (41) and reduction gear (60) of the left and right planetary gear mechanism (35). ) (61) is transmitted to the left and right wheel shafts (34a) at the same rotational speed in the same direction of left and right, so that the aircraft moves straight forward and backward. On the other hand, when the driving of the first hydraulic motor (24) for traveling is stopped and the left and right sun gears (36) are stationary, the second hydraulic motor (27) for turning is driven to rotate forward and reverse. The planetary gear mechanism (35) is rotated forward or backward, and the right planetary gear mechanism (35) is rotated backward or forward so that the driving direction of the left and right traveling crawler (2) is reversed in the front-rear direction. Spin-turn on the spot.
[0018]
Further, when the aircraft is turned left and right by driving the second hydraulic motor (27) for turning while driving the first hydraulic motor (24) for traveling, it is possible to enable turning with a large turning radius. The turning radius is determined according to the speed of the left and right traveling crawler (2).
[0019]
As shown in FIGS. 5 to 13, the main transmission lever (68) connected to the traveling hydraulic continuously variable transmission mechanism (25) and the steering connected to the turning hydraulic continuously variable transmission mechanism (28). The steering wheel (19) is linked and linked to the gear shifting and turning interlocking mechanism (69), and the interlocking mechanism (69) is traveled and operated via the link mechanisms (70) and (71) which are traveling gear shifting and steering link systems. It is interlocked with the control levers (72) and (73) of the continuously variable transmission mechanism (25) and (28).
[0020]
The interlocking mechanism (69) includes a rotating plate (75) for supporting the base end bent portion (68a) of the main transmission lever (68) on the cylindrical shaft (74) so as to be swingable in the left-right direction, and the main body side machine. A fixed mounting plate (78) fixed to a frame (76) and supporting the rotating plate (75) through a first pivot (77) in the left-right direction so as to be capable of pivoting back and forth, and the pivot (77). A speed change operation member (80) that is connected to a rotating plate (75) through a second pivot (79) in the front-rear direction orthogonal to the shaft (79) and is rotatable about the shaft (79), and the second pivot (79) ) And a steering operation member (81) that is pivotally connected around the axis of the gear, and the second pivot (79) of the speed change and steering operation members (80) and (81) is each operation output portion at an eccentric position. (80a) (81a) are interlockingly connected to the speed change and steering link mechanism (70) (71).
[0021]
The shift and steering link mechanisms (70) (71) are supported on the frame (76) side of the machine mechanism (69) via the swinging cylinder shaft (83) outside the swinging shaft (82) at the rear position of the interlocking mechanism (69). A transmission arm (84), a steering arm (85) which is a turning output reversing means for fixing a base end to the swing shaft (82), and each output shaft (80a) (81a) 86) (87) and universal joint shafts (88) (89) connecting the arms (84) (85), and a steering output arm (91) fixed to the right end of the swing shaft (82). A first swing arm (95) (96) for shifting and steering provided rotatably on an intermediate shaft (94) attached to a fulcrum bearing (93) of a pivot fulcrum shaft (92) of the operating cabin (18). The tips of the arms (84) (91) and the first swing arms (95) (96) are connected to each other. And a universal joint type first rod (97) (98) for shifting and steering, and a first gear for shifting and steering provided on the intermediate shaft (94) and integrally connected to the first swing arm (95) (96). Two swinging arm (99) (100) and a shift and steering cylinder shaft (103) (103) (which is rotatably supported by a support shaft (102) attached to the bearing plate (101) on the transmission case (22). 104) and the distal ends of the first swing arm (105) (106) and the second swing arm (99) (100), the base ends of which are fixed to the cylindrical shafts (103) (104), are connected. Universal joint-type second rods (107) (108) for shifting and steering, second swinging arms (109) (110) having base ends fixed to the cylindrical shafts (103) (104), and the control Shifting and steering gears for connecting the tips of the levers (72) and (73) A joint-type third rod (111) (112), and a control lever (72) for traveling by turning the speed change operation member (80) about the first pivot (77), Shifting and steering control is performed by operating the steering control lever (73) by turning the steering operating member (81) about the second pivot (79).
[0022]
On the other hand, a gear (114) is provided on the handle operating shaft (113) at the lower end of the steering handle (19), and the gear (114) is engaged with a sector gear (116) attached to the rear rotating shaft (115). A first swing arm (118) of a steering shaft (117) disposed below the position of the main transmission lever (68), and an output arm (119) having a base end fixed to the rotating shaft (115). A second swinging arm integrated with the first swinging arm (118) of the steering shaft (117) is connected between the respective ends via a universal joint type steering first rod (120) which is a steering link mechanism. (121) is connected to the front end of the universal joint shaft (89) via a universal joint type steering second rod (122), and the second pivot (79) is connected by rotating the handle (19). The steering operation member (81) is rotated as the center. It is configured so as.
[0023]
Further, a neutral positioning plate (123) is provided below the gear (114) of the handle operating shaft (113), and one end of the steering detection link (125) is attached to the protruding shaft (124) on the lower surface of the positioning plate (123). And a first swing arm (127) is provided on a reduction arm shaft (126) disposed on the right side of the rotation shaft (115). The shaft (128) of the first swing arm (127) and the shaft A long hole (125a) at the other end of the detection link (125) is slidably connected, and the speed reducing arm (129) of the steering shaft (117) and the second swing arm (126) of the speed reducing arm shaft (126) ( 130) are connected to each other by a universal joint type first reduction rod (131) which is a reduction link mechanism, and the rightmost reduction transmission shaft (132) and the second swing arm of the transmission operation member (80). Universal joint between the other ends of (130) The second decelerating rod (133) is connected, and the traveling speed is reduced by pulling the second decelerating rod (133) downward as the steering amount of the handle (19) increases in the traveling state. Yes. Further, a spring (S1) is stretched between the rotating plate (75) and the speed change operation member (80), the steering handle (19) is returned to the straight position, and the detection link (125) is returned to the original position. At this time, the member (80) is returned by the spring (S1), and the traveling speed is returned to the original by the steering handle (19).
[0024]
Thus, a universal joint of the second pivot (79) that allows the shifting and steering operation members (80) and (81) to rotate about the axis, the steering arm (85), and the joint shaft (89). The portion (89a) is made to substantially coincide with the horizontal line (L1) in the front-rear direction, and the universal joint portion (88b) between the operation output shaft (86) (87) and the universal joint shaft (88) (89) ( 89b) and the first pivot (77) are positioned on a horizontal horizontal line (L2) orthogonal to the line (L1), and a universal joint portion between the transmission arm (84) and the joint shaft (88) ( 88a) and the joint part (89a) are positioned on a horizontal horizontal line (L3) parallel to the line (L2), and the joint part (88a) is as close as possible to the joint part (89a) (maximum The main transmission lever (68) and the steering handle (19) Even if any one of these is operated during the standing holding, each operating member (80) (81) is merely rotated around the axis of the first and second pivots (77) (79), and the joint shaft (88) The operating force is not applied to (89).
[0025]
As shown in FIG. 9, when the main transmission lever (68) is moved forward and backward, when the operation member (80) is tilted back and forth by an angle (α1) (α2) about the first pivot (77), the joint shaft ( 88) is pulled or pushed to operate the speed change arm (84) to switch the traveling speed forward and backward, and as shown in FIG. 11, it is operated during this state (when the main speed change lever (68) is other than neutral). When the operating member (81) is tilted up and down by an angle (β1) (β2) about the second pivot (79) by rotating the direction handle (19), the steering shaft (89) is pulled or pushed to operate the steering arm ( 85) is operated to turn the aircraft left and right. That is, even if the turning operation is performed at the neutral position of the main gear shift, the joint shaft (89) moves on a substantially conical surface centered on the line (L1), and the distance between the joint portions (89a) (89b) changes. Therefore, the steering arm (85) does not operate. Then, the steering arm (85) operates when the turning operation is performed at a position other than the neutral of the main speed change, and when switching to the forward / reverse operation, the steering arm (85) operates in the backward / forward direction, and the second hydraulic motor. The rotation of (27) is configured to be reversed in the forward and reverse directions.
[0026]
In other words, if the forward rotation of the first hydraulic motor (24) for traveling is defined as forward travel, the planetary gear mechanism (35) by the second hydraulic motor (27) for rotation during reverse travel during reverse rotation is the forward travel. When the first hydraulic motor (24) rotates backward (reverse), the second hydraulic pump (in order to match the turning direction of the machine body by the operation of the handle (19) during forward movement and reverse movement is reversed. 26) by switching the swash plate angle to the opposite direction (the rotation direction of the input shafts of the first and second hydraulic pumps (23) and (26) is constant), the rotation of the second hydraulic motor (27) is made forward and backward. Sometimes it is the opposite direction.
[0027]
That is, in this case, the operation member (80) during the forward operation is tilted to the angle (α1) ahead of the neutral position, and the second rod (122) is pulled by the right rotation operation of the handle (19), thereby operating the operation member (81). Is tilted to the downward angle (β2) side, the output portion (81a) of the operating member (81) is brought closer to the steering arm (85) side, and the steering arm (85) is centered on the swing shaft (82). ) In a direction away from the operation member (81) (counterclockwise in FIG. 5), and the control lever (73) is rotated downward through the first and second rods (98) (108). Then, the second hydraulic motor (27) for turning is rotated forward. That is, the aircraft is turned to the right (the speed of the traveling crawler (2) is large on the left side and small on the right side).
[0028]
Further, during the forward operation described above, when the second rod (122) is pushed up by the left turning operation of the handle (19) and the operation member (81) is tilted to the upward angle (β1) side, the operation member (81 ) Of the steering arm (85) closer to the operating member (81) side with the pivot shaft (82) as the center (clockwise in FIG. 5). And the control lever (73) is rotated upward to reversely rotate the second hydraulic motor (27). In other words, the aircraft is turned leftward (the speed of the traveling crawler (2) is large on the right side and small on the left side).
[0029]
Further, the operation member (80) during the backward operation is inclined toward the angle (α2) behind the neutral position, and the second rod (122) is pulled by the right rotation operation of the handle (19) to lower the operation member (81). When tilting to the direction angle (β2) side, the output portion (81a) of the operating member (81) is moved away from the steering arm (85) side, and the steering arm (85) is centered on the swing shaft (82). The second hydraulic motor (27) is rotated in the reverse direction by rotating in the direction approaching the operation member (81) (clockwise in FIG. 5) and rotating the control lever (73) upward. That is, the aircraft turns backward and turns right (the speed of the traveling crawler (2) is large on the left side and small on the right side).
[0030]
Furthermore, contrary to the above, when the operation member (81) is tilted to the upward angle (β1) side by the left rotation operation of the handle (19) during the reverse operation, the output portion of the operation member (81) (81a) is moved closer to the operation member (81) side, and the steering arm (85) is rotated away from the operation member (81) around the swing shaft (82) (counterclockwise in FIG. 5). The control lever (73) is rotated downward to rotate the second hydraulic motor (27) forward. In other words, the aircraft is turned backward to turn left (the speed of the traveling crawler (2) is large on the right side and small on the left side).
[0031]
Thus, in the turning operation at the time of forward and backward movement, the movement of the steering arm (85) is reversed, and the turning operation direction of the steering handle (19) and the direction of the machine body are both forward and backward. The steering operation member is constituted by a circular steering handle (19) that is rotated, and the driving feeling is similar to that of, for example, a tractor or a rice transplanter by rotating the handle (19). Link mechanisms (70) (71) for performing course correction and direction change and for mechanically connecting the steering operation member to the traveling speed change member or the steering member are provided, and the operation of the link mechanism (70) (71) In addition, it is configured such that the reliability of the steering operation can be easily improved without substantially reducing the function over time.
[0032]
15 and 16 show the relationship between the turning angle of the steering handle (19) and the speed of the left and right traveling crawler (2) when the aircraft is turning to the left, and the turning angle of the handle (19) is large. As the speed difference between the left and right traveling crawlers (2) increases, the center speed of the aircraft, which is the average speed of the left and right traveling crawlers (2), is also reduced according to the traveling speed (high speed, standard, low speed) state. Even when the aircraft is turning right, the left and right crawlers (2) are the same except that the left and right crawlers (2) are reversed. As is apparent from FIGS. When the shaft is rotated about 15 degrees in the left direction (right direction), the shaft (128) moves in the elongated hole (125a), and the first deceleration rod (131) is maintained at the same position as the straight travel by the spring (S1). And each gear (114) (1 Steering first rod (120) is extruded (tensile) Go through 6), pivoted to the left (right) by steering the output of the second hydraulic pump (26) and the motor (27). At this time, the deceleration amount of the traveling crawler (2) inside the turning and the acceleration amount of the traveling crawler (2) outside the turning become substantially equal, and the body center speed is kept at substantially the same speed as the straight traveling. Further, when the steering handle (19) is rotated about 15 degrees or more from the straight traveling position, the first deceleration rod (131) is pulled in both the left turn and the right turn against the spring (S1), and the deceleration operation is performed. Then, the traveling shift output of the first hydraulic pump (23) and the motor (24) is decelerated, the left and right traveling crawlers (2) and (2) are driven to rotate in the same direction to move forward (or reverse), and the left and right traveling crawlers ( 2) A brake turn operation is performed to turn leftward (rightward) due to the difference in traveling speed in the same direction of (2). Further, when the steering handle (19) is rotated about 135 degrees, the center speed of the aircraft is reduced to about one fourth of the straight traveling speed, the traveling crawler (2) inside the turning is driven in reverse, and the traveling crawler inside the turning is driven. As shown in FIG. 17, the steering wheel (19) is rotated within the range of the steering wheel angle from 0 degrees to the steering wheel angle of 135 degrees and the left or right as shown in FIG. Turn rightward and correct the alignment course that moves along the uncut grain row within the range of rotation of the handle (19) about 15 degrees in the left and right direction centered on the straight running position. The spin-turn operation is performed by rotating the handle (19) about 135 degrees in the left-right direction from the straight position and moving the machine body in the field headland to move to the next work process. One part It is configured to perform automatically decelerated to the running speed.
[0033]
Further, as shown in FIG. 17, when the sub-shift is maintained at a standard speed (1.5 meters per second) and the steering handle (19) is rotated by 90 degrees, the main shift output is increased by operating the main shift lever (68). And even if it changes to 2/3 and 1/3, it is comprised so that only the turning speed (aircraft center speed) may change, with the turning radius of the airframe kept substantially constant.
[0034]
As is apparent from the above description, the travel for transmitting the driving force of the engine (21) to the left and right traveling crawlers (2) and (2), which are the left and right traveling portions, by the traveling speed change operation of the main speed change lever (68) that is the speed change operating member. Driving speeds of the left and right traveling crawlers (2) and (2) by the steering operation of the first hydraulic pump (23) and the first hydraulic motor (24) as the speed change members and the steering handle (19) as the steering operation member. In the mobile agricultural machine provided with the second hydraulic pump (26) and the second hydraulic motor (27) which are steering members that cause a difference between the two, the traveling speed is reduced according to the operation amount of the steering handle (19), and When the operation amount of the steering handle (19) exceeds a predetermined amount by continuously changing the speed difference between the left and right traveling crawlers (2) and (2), the steering handle (19) is operated. Just slow down the field Change the direction at the headland, move to the next work process and return to straight running, speed up to the work speed of the previous process and restart the work, omit the traveling speed change operation accompanying the steering operation, The straight turn and the course correction operation and the spin turn operation for changing the direction toward the next work process position in the field headland can be smoothly performed by only a series of continuous steering operations, and the steering handle (19) is operated. When the maximum steering operation is performed, the traveling speed is reduced to about one-fourth, and the difference between the straight traveling speed at which the farm works and the spin turn traveling speed at which the direction is changed at the field headland is higher than that at the lower speed. The work becomes larger in proportion to the traveling speed, and even if the high-speed traveling work is performed, the spin turn operation at the field headland can be stably performed similarly to the low-speed operation, and the low-speed traveling work is the same as at the high speed. On the field headland Even if the speed range can be changed quickly and the shift range during straight running is set to be large, the travel speed range after deceleration during spin turn operation can be reduced to improve maneuverability and steering operability. It is configured as shown.
[0035]
In addition, when the steering handle (19) is fully steered, the outputs of the second hydraulic pump (26) and the second hydraulic motor (27) are maximized, and the travel load is greater than during farming that travels straight ahead. Ensuring the driving crawler (2) driving force necessary for direction change in the field headland, preventing troubles such as engine (21) stop due to traveling overload during direction change, and saving engine (21) accelerator operation, etc. The driving operability at the time of turning can be improved, and the left and right traveling crawlers (2) and (2) can be relatively moved when the steering handle (19) is turned by a predetermined amount on the basis of the straight traveling position. A dead zone for slowing down the running speed that keeps the aircraft's center speed approximately constant by increasing and decelerating the same amount is provided, and the running speed is uneven even if steering operation is performed along the row of crops or straw during agricultural work. Prevent change And, resulting performed course modifications in notwithstanding et farm maintaining substantially the same speed, substantially aligned with the traveling operation of the operator's driving sense and aircraft perform an appropriate steering operation. Further, the turning radius by the steering handle (19) is changed by the sub-shift operation for switching the shift reference value of the main shift lever (68), and the first hydraulic pump (23), the first hydraulic motor (24) and the traveling crawler ( 2) the reduction ratio between the second hydraulic pump (26) and the second hydraulic motor (27) and the traveling crawler (2), or the traveling drive necessary for the small radius turning necessary for the spin turn operation. Ensuring power. Further, the speed of the main speed change lever (68) is changed to change the turning speed while keeping the turning radius substantially constant, so that the driving operation can be performed according to the skill level of the operator, thereby improving the mobility and driving operability. A pair of left and right traveling crawlers with the feeling of driving a four-wheeled vehicle such as a tractor or rice transplanter by keeping the turning radius substantially constant with respect to changes in the vehicle center speed (vehicle speed) (2) It is comprised so that the course correction and direction change of crawler traveling vehicles, such as a combine equipped with (2), can be performed.
[0036]
In addition, the first hydraulic pump (23) and the first hydraulic motor (24) that drive the left and right traveling crawler (2) in the same direction at the same speed, and the first hydraulic pump (23) that drives the left and right traveling crawler (2) in the opposite direction at the same speed. Two hydraulic pumps (26) and a second hydraulic motor (27) are provided, and the second hydraulic pump (26) and the second hydraulic pressure are proportional to the shift amount of the first hydraulic pump (23) and the first hydraulic motor (24). The steering amount of the motor (27) is automatically changed. When the steering operation is constant, the steering operation is performed by keeping the turning radius constant only by the speed change operation, the vehicle speed is increased or decreased, and the vehicle speed is changed. In contrast, the ratio of the speed of the inside crawler (2) and the outside crawler (2) is kept constant to improve the travel shift and steering function of the travel crawler (2), and the travel shift and steering control. And changing the vehicle speed The steering amount of the second hydraulic pump (26) and the second hydraulic motor (27) is automatically changed by the shifting operation to change the vehicle speed while maintaining the turning radius substantially constant without performing the steering operation. The shift operation and turning operation of the traveling crawler (2) similar to the accelerator pedal of a four-wheeled vehicle are performed, the vehicle speed control and steering control functions of the traveling crawler (2) are improved, and the shifting operation and steering operation are simplified. Etc.
[0037]
Also, as shown in FIG. 12, the detection link (125) provided on the steering handle (19) has the first swing arm (127) angled in the same direction (θ) in either the right or left turn operation from the neutral position. ), The second deceleration rod (133) is always pulled, and when the operation member (80) during forward operation is inclined to the angle (α1) side, the joint portions (88a) (88b) ), And when the operation member (80) during reverse operation is inclined to the angle (α2) side, the distance between the joint portions (88a) (88b) is increased to increase the speed change arm (84). Are respectively displaced toward the low speed side in the neutral direction, and the vehicle is decelerated according to the turning amount.
[0038]
Further, the center of the universal joints (97a) and (98a) of the first rods (97) and (98) and the swing arms (95) and (96) for transmitting the operating force for shifting and steering are arranged in the driving cabin (18 ) To coincide with the position of the pivot fulcrum shaft (92) so that the driving cabin (18) can be rotated in the forward direction without removing these operating systems in the neutral holding of shifting and steering. It is composed.
[0039]
4 and 14, the first and second hydraulic pumps (23) and (26) and the first and second hydraulic motors (24) and (27) are respectively connected to loop hydraulic circuits (134) and (135). ), The output shafts (31) and (62) of the first and second hydraulic motors (24) and (27) are connected to the output shaft (136) and (137) by the operation of the solenoid valves (136) and (137). 31) A travel and turning brake device (138) (139) for stationary travel and a straight-forward fixing is provided, and the brake shaft (49) is held stationary on the parking brake shaft (49). A parking brake device (140) is provided.
[0040]
Further, FIG. 18 is provided with a steering lever (141) in place of the steering handle (19), and the steering lever (141) is attached so as to be swingable in the left-right direction around the axis (142). The bevel gear (143a) fixed to the base of the steering lever (141) and the bevel gear (143b) fixed to the upper end of the handle operating shaft (113) are engaged with each other, and the operating shaft (113) is swung left and right by the steering lever (141). The steering operation member is constituted by a steering lever (141) that is rotated forward or backward, operates the link mechanism (70) (71) and controls steering, and swings in the same manner as described above. For example, it is configured such that the course correction and the direction change of either the left or right can be performed by merely swinging (141) in the left-right direction.
[0041]
Further, as shown in FIG. 19, a shift actuator (144) and a steering actuator (145) formed by, for example, an electric motor or a hydraulic cylinder are provided, and the first and second hydraulic pressures of the continuously variable transmission mechanism (25) (28) are provided. Potentiometers for connecting the actuators (144) and (145) to control levers (72) and (73) forming trunnions provided in the pumps (23) and (26), and detecting the speed change operation position of the main speed change lever (68). Type main shift sensor (146), changeover switch type forward / reverse sensor (147) for detecting forward or reverse operation of the lever (68), and potentiometer type steering for detecting the rotational operation position of the steering handle (19) Handle sensor (148) and changeover switch type left that detects the direction of rotation of the handle (left or right) A turn sensor (149), a changeover switch type sub-shift sensor (150) for detecting the sub-shift operation position of the sub-transmission mechanism (32), and a potentiometer-type shift position for detecting the travel shift position of the shift control lever (72). A sensor (151), a potentiometer type turning position sensor (152) for detecting the turning shift position of the turning control lever (73), and a pickup type vehicle speed sensor (153) for detecting the traveling speed of the traveling crawler (1) are provided. The sensors (146) to (153) and the actuators (144) and (145) are electrically connected to a controller (154) formed by a microcomputer. Then, the link mechanism (70) (71) is omitted, and, similarly to the above, based on the operation of the steering handle (19) and the main speed change lever (68), the sensors (146) to (153) are used. The actuators (144) and (145) are controlled and the control levers (72) and (73) are operated to perform various operations such as traveling speed change and left and right turning. 19) is electrically connected to the first hydraulic pump (23) and the first hydraulic motor (24), which are travel transmission members, or the second hydraulic pump (26) and the second hydraulic motor (27), which are steering members. A controller (154) is provided so that the steering control function can be multifunctional and the manufacturing cost can be reduced easily.
[0042]
【The invention's effect】
In the present invention, when the steering operation member is turned left and right by less than about 15 degrees in the left and right direction with respect to the straight traveling position, the left and right traveling parts are relatively increased and decreased by substantially the same amount so that the aircraft center speed becomes substantially constant. Since the dead zone for maintaining the running speed is maintained, it is possible to prevent the running speed from changing unevenly even if the steering operation is carried out along the crop row or fence during farming in such dead zone. In addition, the course can be corrected during farm work while maintaining substantially the same traveling speed.
[0043]
As a result, the operator can substantially match the driving sensation with the traveling motion of the aircraft, and can perform an appropriate steering operation.
[0044]
In addition, the operation speed of the steering operation member is reduced by continuously reducing the traveling speed according to the operation amount of the steering operation member exceeding about 15 degrees in the left-right direction and continuously changing the speed difference between the left and right traveling portions. There for the approximately 135 degrees in the horizontal direction from the straight-ahead position is in so that have been migrated to spin turn operation, it is reduced by the operation of the steering operating member diverting in the field pillow areas and to move to the next operation step Thus, the operation can be resumed by increasing the speed to the work travel speed of the previous process by the operation of returning to the straight travel.
[0045]
As a result, it is possible to smoothly perform a straight traveling and a course correction operation during farm work and a spin turn operation for changing the direction toward the next work process position in the field headland by a continuous series of steering operations.
[Brief description of the drawings]
FIG. 1 is a perspective explanatory view of an operation system of a main transmission lever and a steering handle.
FIG. 2 is an overall side view of the combine.
FIG. 3 is an overall plan view of the combine.
FIG. 4 is an explanatory diagram of a mission drive system.
FIG. 5 is an explanatory diagram of a traveling speed change and steering operation unit.
FIG. 6 is an explanatory front view of an operation unit.
FIG. 7 is an explanatory plan view of an operation unit.
FIG. 8 is an explanatory side view of an operation unit.
FIG. 9 is an explanatory side view of an operation member.
FIG. 10 is a front explanatory view of an operation member.
FIG. 11 is an explanatory plan view of an operation member.
FIG. 12 is an explanatory plan view of a steering handle portion.
FIG. 13 is an explanatory plan view of a link mechanism unit.
FIG. 14 is a hydraulic circuit diagram.
FIG. 15 is a diagram illustrating a relationship between a handle turning angle and a crawler speed when the aircraft is turning.
FIG. 16 is a diagram showing the relationship between steering wheel operation and travel deceleration.
FIG. 17 is a diagram showing the relationship between main shift switching and travel deceleration.
FIG. 18 is an explanatory diagram provided with a steering lever.
FIG. 19 is an explanatory diagram provided with a controller.
[Explanation of symbols]
(2) Traveling crawler (traveling part)
(19) Steering handle (steering member)
(21) Engine (23) First hydraulic pump (traveling transmission member)
(24) First hydraulic motor (traveling transmission member)
(26) Second hydraulic pump (steering member)
(27) Second hydraulic motor (steering member)
(68) Main speed change lever (speed change operation member)

Claims (1)

変速操作部材の走行変速操作によりエンジンの駆動力を左右走行部に変速伝達する走行変速部材と、操向操作部材の操作により左右走行部の駆動速度に差を生じさせる操向部材を設ける移動農機において、
操向操作部材を直進位置を基準に左右方向に約15度未満で左右旋回操作した場合に、左右走行部を相対的に略同量増減速させて機体中心速度を略一定に保つ走行速度減速の不感帯域を設け、
左右方向に約15度を超えた操向操作部材の操作量に応じて走行速度を減速し、かつ、左右走行部の速度差を連続的に変化させて、操向操作部材の操作量が直進位置から左右方向に約135度ではスピンターン動作に移行されているようにしたことを特徴とする移動農機。
A traveling agricultural machine provided with a traveling speed change member that shifts and transmits the driving force of the engine to the left and right traveling portions by a traveling speed change operation of the speed change operation member, and a steering member that causes a difference in the driving speed of the left and right traveling portions by operating the steering operation member In
When the steering operation member is turned left and right at less than about 15 degrees in the left-right direction with reference to the straight-ahead position, the left and right running parts are relatively increased by approximately the same amount to keep the aircraft center speed substantially constant. The dead band of
The travel speed is reduced in accordance with the operation amount of the steering operation member exceeding about 15 degrees in the left-right direction , and the speed difference between the left and right traveling portions is continuously changed, so that the operation amount of the steering operation member goes straight. mobile agricultural machine is characterized in that the so that have been migrated to spin turn operation is about 135 degrees in the horizontal direction from the position.
JP34842199A 1999-12-08 1999-12-08 Mobile farm machine Expired - Fee Related JP3691703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34842199A JP3691703B2 (en) 1999-12-08 1999-12-08 Mobile farm machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34842199A JP3691703B2 (en) 1999-12-08 1999-12-08 Mobile farm machine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP26280797A Division JP3816645B2 (en) 1996-09-20 1997-09-09 Mobile farm machine

Publications (2)

Publication Number Publication Date
JP2000128015A JP2000128015A (en) 2000-05-09
JP3691703B2 true JP3691703B2 (en) 2005-09-07

Family

ID=18396905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34842199A Expired - Fee Related JP3691703B2 (en) 1999-12-08 1999-12-08 Mobile farm machine

Country Status (1)

Country Link
JP (1) JP3691703B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103661592B (en) * 2013-12-11 2016-05-18 中联重科股份有限公司 Vehicle bridge turns to centering method for control speed, equipment, system and engineering machinery

Also Published As

Publication number Publication date
JP2000128015A (en) 2000-05-09

Similar Documents

Publication Publication Date Title
WO1998032645A1 (en) Mobile agricultural machine
JP3681871B2 (en) Mobile farm machine
JP3174952B2 (en) Moving agricultural machine
JP3816645B2 (en) Mobile farm machine
JP3691703B2 (en) Mobile farm machine
JP3749358B2 (en) Mobile farm machine
JP3730378B2 (en) Mobile farm machine
JP3816647B2 (en) Mobile farm machine
JP3141134B2 (en) Moving agricultural machine
JP3652457B2 (en) Mobile farm machine
JP3190987B2 (en) Moving agricultural machine
JP3727761B2 (en) Mobile farm machine
JP3208542B2 (en) Moving agricultural machine
JP3190986B2 (en) Moving agricultural machine
JP3429252B2 (en) Combine
JP3429253B2 (en) Moving agricultural machine
JP3174950B2 (en) Moving agricultural machine
JP3208541B2 (en) Moving agricultural machine
JP3174951B2 (en) Moving agricultural machine
JP3198410B2 (en) Moving agricultural machine
JP3626002B2 (en) Combine
JP3198411B2 (en) Moving agricultural machine
JP2000085614A (en) Moving agricultural machinery
JP3256850B2 (en) Moving agricultural machine
JP2000102316A (en) Mobile agricultural machine

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040517

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040727

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees