JP3816647B2 - Mobile farm machine - Google Patents
Mobile farm machine Download PDFInfo
- Publication number
- JP3816647B2 JP3816647B2 JP27222097A JP27222097A JP3816647B2 JP 3816647 B2 JP3816647 B2 JP 3816647B2 JP 27222097 A JP27222097 A JP 27222097A JP 27222097 A JP27222097 A JP 27222097A JP 3816647 B2 JP3816647 B2 JP 3816647B2
- Authority
- JP
- Japan
- Prior art keywords
- steering
- speed
- turning
- shaft
- traveling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Guiding Agricultural Machines (AREA)
- Harvester Elements (AREA)
- Arrangement Or Mounting Of Control Devices For Change-Speed Gearing (AREA)
- Non-Deflectable Wheels, Steering Of Trailers, Or Other Steering (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は例えば未刈り穀稈を連続的に刈取って脱穀するコンバインなどの移動農機に関する。
【0002】
【発明が解決しようとする課題】
従来、操向ハンドルの操向出力は、減速用のステアリングギヤを介し操向部に伝達され、操向ハンドルの操作量に対してステアリングギヤの操向出力を略直線的に変化させて機体の旋回が行われている。このような従来構造では、例えばコンバインを未刈り穀稈列に沿わせて移動させ乍ら収穫作業を行うとき、走行クローラがスリップし易い圃場は、操向ハンドルの操作量よりも旋回動作が小さくなり易く、また走行クローラのスリップが一般の圃場よりも少ないときは、操向ハンドルの操作量よりも旋回動作が大きくなり易く、操向ハンドルの操作によってコンバインを未刈り穀稈列に沿わせる条合せ操作性の向上などを容易に図り得ず、走行クローラのスリップの多少による旋回動作の不具合を作業者の運転感覚によって補う必要があり、旋回遅れまたは蛇行走行によって未刈り穀稈列から進路を外し易い等の問題がある。
【0003】
【課題を解決するための手段】
そこで、本発明では、変速操作部材の走行変速操作によりエンジンの駆動力を左右走行部に変速伝達する走行変速部材と、操向操作部材の操向操作により左右走行部の駆動速度に差を生じさせる操向部材を設ける移動農機において、操向操作部材に非円形状の不等速ギヤに形成した第1及び第2の不等速運動部材を介して操向部材を連結させて、操向操作部材の直進位置を中心とした略一定範囲における操向操作部材による操向部材の旋回制御量の変化率を前記範囲以外の変化率よりも大きくするようにして、操向操作部材の操作初期における操向部材の旋回制御量の立上りを大とするように構成したことを特徴とする移動農機を提供するものである。
【0004】
また、本発明は、第1の不等速運動部材は、操作軸から歯部までの距離が他よりも長い長径部を一部突出させて形成する一方、第2の不等速運動部材は、円周中央部に回転軸から歯部までの距離が短い短径部を一部陥設させて形成して、操向操作部材の直進位置時に第1の不等速運動部材の長径部と第2の不等速運動部材の短径部とが結合状態となるように構成したことにも特徴を有する。
【0005】
【発明の実施の形態】
以下、本発明の実施例を図面に基づいて詳述する。図1は操向ハンドル部の平面説明図、図2はコンバインの全体側面図、図3は同平面図であり、図中(1)は走行クローラ(2)を装設するトラックフレーム、(3)は前記トラックフレーム(1)に架設する機台、(4)はフィードチェン(5)を左側に張架し扱胴(6)及び処理胴(7)を内蔵している脱穀機である脱穀部、(8)は刈刃(9)及び穀稈搬送機構(10)などを備える刈取部、(11)は刈取フレーム(12)を介して刈取部(8)を昇降させる油圧シリンダ、(13)は排藁チェン(14)終端を臨ませる排藁処理部、(15)は脱穀部(4)からの穀粒を揚穀筒(16)を介して搬入する穀物タンク、(17)は前記タンク(15)の穀粒を機外に搬出する排出オーガ、(18)は丸形操向ハンドル(19)及び運転席(20)などを備える運転キャビン、(21)は運転キャビン(18)下方に設けるエンジンであり、連続的に穀稈を刈取って脱穀するように構成している。
【0006】
図4に示す如く、前記走行クローラ(2)を駆動するミッションケース(22)は、1対の第1油圧ポンプ(23)及び第1油圧モータ(24)からなる主変速機構である走行用の油圧式無段変速機構(25)と、1対の第2油圧ポンプ(26)及び第2油圧モータ(27)からなる操向機構である旋回用の油圧式無段変速機構(28)とを備え、前記エンジン(21)の出力軸(21a)に第1及び第2油圧ポンプ(23)(26)の入力軸(29)を伝達ベルト(30)を介し連動連結させて、これら油圧ポンプ(23)(26)の駆動を行うように構成している。
【0007】
そして前記第1油圧モータ(24)の出力軸(31)に、副変速機構(32)及び差動機構(33)を介し走行クローラ(2)の駆動輪(34)を連動連結させるもので、前記差動機構(33)は左右対称の1対の遊星ギヤ機構(35)(35)を有し、各遊星ギヤ機構(35)は1つのサンギヤ(36)と、該サンギヤ(36)の外周で噛合う3つのプラネタリギヤ(37)と、これらプラネタリギヤ(37)に噛合うリングギヤ(38)などで形成している。
【0008】
前記プラネタリギヤ(37)はサンギヤ軸(39)と同軸線上とのキャリヤ軸(40)のキャリヤ(41)にそれぞれ回転自在に軸支させ、左右のサンギヤ(36)(36)を挾んで左右のキャリヤ(41)を対向配置させると共に、前記リングギヤ(38)は各プラネタリギヤ(37)に噛み合う内歯(38a)を有してサンギヤ軸(39)とは同一軸芯上に配置させ、キャリヤ軸(40)に回転自在に軸支させている。
【0009】
また、走行用の油圧式無段変速機構(25)は第1油圧ポンプ(23)の回転斜板の角度変更調節により第1油圧モータ(24)の正逆回転と回転数の制御を行うもので、第1油圧モータ(24)の回転出力を出力軸(31)の伝達ギヤ(42)より各ギヤ(43)(44)(45)及び副変速機構(32)を介して、サンギヤ軸(39)に固定したセンタギヤ(46)に伝達してサンギヤ(36)を回転するように構成している。前記副変速機構(32)は、前記ギヤ(45)を有する副変速軸(47)と、前記センタギヤ(46)に噛合うギヤ(48)を有する駐車ブレーキ軸(49)とを備え、副変速軸(47)とブレーキ軸(49)間に各1対の低速用ギヤ(50)(48)・中速用ギヤ(51)(52)・高速用ギヤ(53)(54)を設けて、中央位置のギヤ(51)のスライド操作によってこれら低速・中速・高速の切換えを可能とさせるように構成している(なお低速・中速間及び中速・高速間には中立を有するものである)。また前記ブレーキ軸(49)には車速検出ギヤ(55)を設けると共に、該ギヤ(55)の回転数より車速を検出する車速センサ(56)を設けている。なお、刈取部(8)に回転力を伝達する刈取PTO軸(57)のPTO入力ギヤ(58)に、前記出力軸(31)の伝達ギヤ(42)を噛合連結させている。
【0010】
そして、前記センタギヤ(46)を介しサンギヤ軸(39)に伝達された第1油圧モータ(24)からの駆動力を、左右の遊星ギヤ機構(35)を介しキャリヤ軸(40)に伝達させると共に、該キャリヤ軸(40)に伝達された回転を左右各一対の減速ギヤ(60)(61)を介し左右の駆動輪(34)の左右輪軸(34a)にそれぞれ伝えるように構成している。
【0011】
さらに、旋回用の油圧式無段変速機構(28)は第2油圧ポンプ(26)の回転斜板の角度変更調節により第2油圧モータ(27)の正逆回転と回転数の制御を行うもので、第2油圧モータ(27)の出力軸(62)の出力ギヤからギヤ伝達機構(63)を介し旋回入力軸(64)の入力ギヤ(65a)(65b)に回転出力を伝達し、右側のリングギヤ(38)の外歯(38b)を対しては直接的に、また左側のリングギヤ(38)の外歯(38b)に対しては逆転軸(66)の逆転ギヤ(67)を介し伝えて、第2油圧モータ(27)の正転時に左右のリングギヤ(38)を左右同一回転数で左ギヤ(38)を正転、右ギヤ(38)を逆転とさせるように構成している。
【0012】
而して旋回用の第2油圧モータ(27)の駆動を停止させ左右リングギヤ(38)を静止固定させた状態で、走行用の第1油圧モータ(24)の駆動を行うと、第1油圧モータ(24)からの回転出力はセンタギヤ(46)から左右のサンギヤ(36)に同一回転数で伝達され、左右遊星ギヤ機構(35)のプラネタリギヤ(37)・キャリヤ(41)及び減速ギヤ(60)(61)を介し左右の輪軸(34a)に左右同回転方向の同一回転数で伝達されて、機体の前後直進走行が行われる。一方、走行用の第1油圧モータ(24)の駆動を停止させ左右のサンギヤ(36)を静止固定させた状態で、旋回用の第2油圧モータ(27)を正逆回転駆動すると、左側の遊星ギヤ機構(35)が正或いは逆回転、また右側の遊星ギヤ機構(35)が逆或いは正回転して、左右走行クローラ(2)の駆動方向を前後逆方向とさせて機体を左或いは右にその場でスピンターンさせるものである。
【0013】
また走行用の第1油圧モータ(24)を駆動させながら、旋回用の第2油圧モータ(27)を駆動して機体を左右に旋回させる場合には旋回半径の大きい旋回を可能にできるもので、その旋回半径は左右走行クローラ(2)の速度に応じ決定される。
【0014】
図5乃至図13に示す如く、前記走行用の油圧式無段変速機構(25)に連結する主変速レバー(68)と、旋回用の油圧式無段変速機構(28)に連結する操向ハンドル(19)とを、変速及び旋回連動機構(69)に連動連結させると共に、該連動機構(69)を走行変速及び操向リンク系であるリンク機構(70)(71)を介し走行及び操向用の無段変速機構(25)(28)のコントロールレバーであるアーム(72)(73)に連動連結させている。
【0015】
前記連動機構(69)は、主変速レバー(68)の基端折曲部(68a)を筒軸(74)に左右揺動自在に支持する回動板(75)と、機体側の本機フレーム(76)に固設して前記回動板(75)を左右方向の第1枢軸(77)を介し前後回動自在に支持する固定取付板(78)と、前記枢軸(77)とは直交する前後方向の第2枢軸(79)を介して回動板(75)に連結させて該軸(79)回りに回動自在に設ける変速操作部材(80)と、前記第2枢軸(79)の軸回りに回動自在に連結させる操向操作部材(81)とを備え、変速及び操向操作部材(80)(81)の第2枢軸(79)とは偏心位置の各操作出力部(80a)(81a)を変速及び操向リンク機構(70)(71)に連動連結させている。
【0016】
前記変速及び操向リンク機構(70)(71)は、連動機構(69)後方位置で本機フレーム(76)側に揺動軸(82)外側の揺動筒軸(83)を介し支持する変速アーム(84)と、前記揺動軸(82)に基端を固設する旋回出力逆転手段である操向アーム(85)と、前記出力部(80a)(81a)の各操作出力軸(86)(87)と各アーム(84)(85)間を連結する自在継手軸(88)(89)と、前記揺動軸(82)の右端に固設する操向出力アーム(91)と、前記運転キャビン(18)の回動支点軸(92)の支点軸受(93)に取付ける中間軸(94)に回転自在に設ける変速及び操向用第1揺動アーム(95)(96)と、前記アーム(84)(91)と第1揺動アーム(95)(96)の各先端間をそれぞれ連結する変速及び操向用自在継手形第1ロッド(97)(98)と、前記中間軸(94)に設けて第1揺動アーム(95)(96)に一体連結する変速及び操向用第2揺動アーム(99)(100)と、前記ミッションケース(22)上部の軸受板(101)に取付ける支軸(102)に回動自在に支持させる変速及び操向用筒軸(103)(104)と、該筒軸(103)(104)に基端を固設する第1揺動アーム(105)(106)と前記第2揺動アーム(99)(100)の各先端間を連結する変速及び操向用自在継手形第2ロッド(107)(108)と、前記筒軸(103)(104)に基端を固設する第2揺動アーム(109)(110)と前記コントロールアーム(72)(73)の各先端間を連結させる変速及び操向用自在継手形第3ロッド(111)(112)とを備え、前記第1枢軸(77)を中心とした変速操作部材(80)の回動によって走行用のコントロールアーム(72)を、また走行中の第2枢軸(79)を中心とした操向操作部材(81)の回動によって操向用のコントロールアーム(73)を操作して変速及び操向制御を行うように構成している。
【0017】
一方前記操向ハンドル(19)下端のハンドル操作軸(113)にギヤ(114)を設けて、この後方の回転軸(115)に取付けるセクタギヤ(116)に前記ギヤ(114)を噛合せると共に、前記主変速レバー(68)位置下方に配設する操向軸(117)の第1揺動アーム(118)と、前記回転軸(115)に基端を固設する出力アーム(119)との各先端間を操向リンク機構である自在継手形操向第1ロッド(120)を介して連結させ、操向軸(117)の第1揺動アーム(118)と一体の第2揺動アーム(121)を、前記自在継手軸(89)の前端に自在継手形操向第2ロッド(122)を介して連結させ、前記ハンドル(19)の回動操作によって前記第2枢軸(79)を中心として操向操作部材(81)を回動するように構成している。
【0018】
また、前記ハンドル操作軸(113)のギヤ(114)下方に中立位置決め板(123)を設けていて、該位置決め板(123)下面の突出軸(124)に操向検出リンク(125)の一端を連結させ、前記回転軸(115)の右側に配設する減速アーム軸(126)に第1揺動アーム(127)を設け、この第1揺動アーム(127)の軸(128)と前記検出リンク(125)他端の長孔(125a)とを摺動自在に連結させると共に、前記操向軸(117)の減速アーム(129)と減速アーム軸(126)の第2揺動アーム(130)との各先端間を減速リンク機構である自在継手形第1減速ロッド(131)で連結させ、前記変速操作部材(80)の最右端の減速伝達軸(132)と第2揺動アーム(130)の他端間を自在継手形第2減速ロッド(133)で連結させて、走行状態で前記ハンドル(19)の操向量を大とする程第2減速ロッド(133)を下方に引張って走行速度を減速させるように構成している。また、前記回動板(75)と変速操作部材(80)の間にバネ(S1)を張設させ、操向ハンドル(19)を直進位置に戻して検出リンク(125)を元に戻したとき、該バネ(S1)によって前記部材(80)を戻し、操向ハンドル(19)直進復帰操作によって走行速度を元に戻すように構成している。
【0019】
而して、前記変速及び操向操作部材(80)(81)を軸回りに回動可能とさせる第2枢軸(79)と、操向アーム(85)と継手軸(89)との自在継手部(89a)とを前後方向の水平ライン(L1)上に位置させ、また前記操作出力軸(86)(87)と自在継手軸(88)(89)との自在継手部(88b)(89b)と、第1枢軸(77)とを前記ライン(L1)に直交させる左右水平ライン(L2)上に位置させ、さらに前記変速アーム(84)と継手軸(88)との自在継手部(88a)と前記継手部(89a)とを前記ライン(L2)と平行な左右水平ライン(L3)上に略一致させ、且つ継手部(89a)に継手部(88a)を可及的に接近(最大限近い位置)させて、主変速レバー(68)及び操向ハンドル(19)の中立保持時に、これら何れか一方が操作されても、各操作部材(80)(81)を第1及び第2枢軸(77)(79)の軸回りに回動させるのみとさせて、継手軸(88)(89)には操作力を作用させないものである。
【0020】
そして図10にも示す如く、主変速レバー(68)の前後進操作で、第1枢軸(77)を中心として操作部材(80)を前後に角度(α1)(α2)傾けるとき前記継手軸(88)を引張って或いは押して変速アーム(84)を動作させて走行速度の前後進の切換えを行うと共に、図11に示す如くこの状態中(主変速レバー(68)が中立以外のとき)に操向ハンドル(19)の回動操作で第2枢軸(79)を中心として操作部材(81)を上下に角度(β1)(β2)傾けるとき継手軸(89)を引張って或いは押して操向アーム(85)を動作させて機体の左及び右旋回を行うものである。即ち主変速の中立時に旋回操作を行っても継手軸(89)はライン(L1)を中心とした略円錐面上で移動する状態となって継手部(89a)(89b)間の距離は変化せず、したがって操向アーム(85)は動作しない。そして主変速の中立以外で旋回操作が行われるとき操向アーム(85)は動作するもので、前後進に切換わるとき操向アーム(85)は前後逆方向に動作して、第2油圧モータ(27)の回転を前進時と後進時では逆方向とさせるように構成したものである。
【0021】
つまり、走行用の第1油圧モータ(24)の正回転時を前進時とすると、逆回転時の後進時には旋回用の第2油圧モータ(27)による遊星ギヤ機構(35)の作用は前進時と後進時では逆となるもので、前進時と後進時のハンドル(19)操作による機体の旋回方向を一致させるため、第1油圧モータ(24)の逆回転(後進)時には第2油圧ポンプ(26)の斜板角度を逆方向に切換えて(第1及び第2油圧ポンプ(23)(26)の入力軸の回転方向は一定)、第2油圧モータ(27)の回転を前進時と後進時では逆方向とさせるものである。
【0022】
つまりこの場合、前進操作時の操作部材(80)が中立より前方の角度(α1)側に傾いて、ハンドル(19)の右回動操作によって第2ロッド(122)を引張り操作部材(81)を下方向の角度(β2)側に傾けるとき、操作部材(81)の出力部(81a)を操向アーム(85)側に近づけて、揺動軸(82)を中心として操向アーム(85)を操作部材(81)より遠ざける方向(図6中反時計方向)に回転させ、前記第1及び第2ロッド(98)(108)などを介しコントロールアーム(73)を下方向に回転させて、旋回用の第2油圧モータ(27)を正回転させる。即ち、機体を前進で右旋回(走行クローラ(2)の速度を左側が大、右側が小)させる。
【0023】
また、上述の前進操作時で、ハンドル(19)の左回動操作によって第2ロッド(122)を押し上げ操作部材(81)を上方向の角度(β1)側に傾けるとき、操作部材(81)の出力部(81a)を操作アーム(85)側より遠ざけて、揺動軸(82)を中心として操向アーム(85)を操作部材(81)側に近づける方向(図6中時計方向)に回転させ、前記コントロールアーム(73)を上方向に回転させて、前記第2油圧モータ(27)を逆回転させる。即ち、機体を前進で左旋回(走行クローラ(2)の速度を右側が大、左側が小)させる。
【0024】
さらに、後進操作時の操作部材(80)が中立より後方の角度(α2)側に傾いて、ハンドル(19)の右回動操作によって第2ロッド(122)を引張り操作部材(81)を下方向の角度(β2)側に傾けるとき、操作部材(81)の出力部(81a)を操向アーム(85)側より遠ざけて、揺動軸(82)を中心として操向アーム(85)を操作部材(81)側に近づける方向(図6中時計方向)に回転させ、前記コントロールアーム(73)を上方向に回転させて、前記第2油圧モータ(27)を逆回転させる。即ち、機体を後進で右旋回(走行クローラ(2)の速度を左側が大、右側が小)させる。
【0025】
またさらに、上述とは逆に後進操作時で、ハンドル(19)の左回動操作によって、操作部材(81)を上方向の角度(β1)側に傾けるとき、操作部材(81)の出力部(81a)を操作部材(81)側に近づけて、揺動軸(82)を中心として操向アーム(85)を操作部材(81)より遠ざける方向(図6中反時計方向)に回転させ、前記コントロールアーム(73)を下方向に回転させて、前記第2油圧モータ(27)を正回転させる。即ち、機体を後進で左旋回(走行クローラ(2)の速度を右側が大、左側が小)とさせる。
【0026】
このように前進及び後進時における旋回操作にあっては、操向アーム(85)の動きを逆方向とさせて、前後進の何れにおいても操向ハンドル(19)の回動操作方向と機体の旋回方向とを一致させるもので、回転操作する丸形の操向ハンドル(19)によって操向操作部材を構成し、前記ハンドル(19)の回転操作によって例えばトラクタまたは田植機と同様の運転感覚で進路修正及び方向転換などを行うと共に、操向操作部材を走行変速部材または操向部材に機械的に連結させるリンク機構(70)(71)を設け、前記リンク機構(70)(71)の動作及び機能が経時的に殆んど低下することがなく、操向動作の信頼性向上などを容易に図れるように構成している。
【0027】
また図1にも示す如く、前記操向ハンドル(19)に設ける検出リンク(125)は中立位置より右或いは左旋回操作の何れにおいても第1揺動アーム(127)を同一方向に角度(θ)の範囲で回動させて第2減速ロッド(133)を常に引張る状態とさせて、前進操作時の操作部材(80)が角度(α1)側に傾いてるときには、継手部(88a)(88b)間の距離を縮め、また後進操作時の操作部材(80)が角度(α2)側に傾いているときには、継手部(88a)(88b)間の距離を大きくして、変速アーム(84)をそれぞれ中立方向の低速側に変位させて、その旋回量に応じた減速を行うものである。
【0028】
さらに、変速及び操向の操作力を伝達する前記第1ロッド(97)(98)と揺動アーム(95)(96)の自在継手部(97a)(98a)の中心を、運転キャビン(18)の回動支点軸(92)位置に一致させて、変速及び操向の中立保持においてはこれらの操作系を取外すことなく運転キャビン(18)の前方向への回動を可能とさせるように構成している。
【0029】
図4及び図14に示す如く、前記第1及び第2油圧ポンプ(23)(26)と第1及び第2油圧モータ(24)(27)とをそれぞれループ油圧回路(134)(135)を介し正逆自在に接続させ、前記第1及び第2油圧モータ(24)(27)の出力軸(31)(62)には、電磁弁(136)(137)の作動によって出力軸(31)(62)を静止保持する走行停止及び直進固定用の走行及び旋回用ブレーキ装置(138)(139)を設けると共に、前記駐車ブレーキ軸(49)にはブレーキ軸(49)を静止保持する駐車ブレーキ装置(140)を設けている。
【0030】
ところで、図15乃至図18に示す如く、操向ハンドル(19)の操向出力を変速機構(28)に伝達する前記1対の不等速運動部材としてのギヤ(114)(116)は、非円形状の不等速ギヤに形成して、ハンドル(19)の操向出力を不等速に伝達するもので、操作軸(113)のギヤ(114)の円周一部に軸(113)から歯部までの距離が他より長い長径部(114a)を突出形成すると共に、セクタギヤ(116)の円周中央部に軸(115)から歯部までの距離の短い短径部(116a)を陥設形成して、ハンドル(19)の中立(直進)位置時に前記長径部(114a)と短径部(116a)とを結合状態とさせて、図18のライン(A)に示す如く、ハンドル(19)の操作初期のハンドル角度が小のとき、従来の等速ギヤより操向出力を大にコントロールアーム(73)に伝達させ、ハンドル(19)の操作初期の立上りを大とさせて、ハンドル(19)の初期操作に敏感に反応させた旋回を行うように構成している。
【0032】
また図19に示すものは、前述とは逆に前記ギヤ(114)の円周一部に軸(113)から歯部までの距離が他より短い短径部(114b)を形成すると共に、セクタギヤ(116)の円周中央部に軸(115)から歯部までの距離の長い長径部(116b)を形成して、ハンドル(19)の中立位置時に前記短径部(114b)と長径部(116b)とを結合状態とさせて、図18のライン(B)に示す如く、ハンドル(19)の操作初期の立上りを小とさせ、ハンドル(19)の初期操作に鈍感に反応させた旋回を行うように構成している。
【0033】
このような結果、例えばハンドル角度が30°のときに機体が実際の旋回を開始するような条件のものにおいては、操作初期の立上り出力を大とさせるものにおいてハンドル角度が略18°となるとき、また小とさせるものにおいて略40°となるとき、実際の旋回を開始させることができて、作業者の熱練度や性格などに最適に適応させた旋回作業を可能とさせることができるものである。
【0034】
さらに、図18はハンドル(19)の左或いは右旋回時のハンドル角度に対応させたものであり、アーム角度はコントロールアーム(73)の揺動角を表わしたもので、変速操作部材である主変速レバー(68)の走行変速操作によりエンジン(21)の駆動力を左右走行部である走行クローラ(2)(2)に変速伝達する走行変速部材である第1油圧ポンプ(23)及び第1油圧モータ(24)と、操向操作部材である操向ハンドル(19)の操向操作により左右走行クローラ(2)(2)の駆動速度に差を生じさせる操向部材である第2油圧ポンプ(26)及び第2油圧モータ(27)を設ける移動農機において、操向ハンドル(19)に不等速運動部材であるギヤ(114)及びセクタギヤ(116)を介して第2油圧ポンプ(26)及び第2油圧モータ(27)を連結させ、操向ハンドル(19)による第2油圧ポンプ(26)及び第2油圧モータ(27)の旋回制御量を曲線変化させ、未刈り穀稈列(作物)列または畦などに沿って移動する収穫(農)作業時に、左右走行クローラ(2)(2)のスリップ率が圃場の性状(湿田、乾田、泥土、砂地)によって異なっても、操向ハンドル(19)の操作量と旋回動作を作業者の運転感覚と一致させ、鈍感な旋回による旋回遅れまたは過敏な旋回による蛇行走行などの不具合をなくし、収穫作業時の進路修正など運転操作性の向上を図れるように構成している。
【0035】
また、操向ハンドル(19)の直進位置を中心とした略一定範囲における操向ハンドル(19)による第2油圧ポンプ(26)及び第2油圧モータ(27)の旋回制御量を曲線変化させ、前記範囲外の旋回制御量を直線変化させ、未刈り穀稈(作物)列または畦などに沿わせる収穫(農)作業中の進路修正など大きな旋回半径のとき、即ち高速で圃場を移動するとき、旋回遅れまたは蛇行走行などを防止すると共に、圃場枕地での方向転換(スピンターン動作)など大きな旋回半径のとき、即ち低速で圃場を移動するとき、従来の運転感覚で操向ハンドル(19)を操作でき、高速での収穫作業並びに低速での方向転換などの運転操作性の向上を図るもので、操向ハンドル(19)の直進位置を中心とした略一定範囲における操向ハンドル(19)による第2油圧ポンプ(26)及び第2油圧モータ(27)の旋回制御量の変化率が、前記範囲外の旋回制御量の変化率よりも大きくし、条合わせ、すなわち、収穫作業中において、刈取部(8)を未刈り穀稈列または畦などに沿わせる機体の進路修正を機敏に行え、旋回遅れ防止並びに収穫作業速度の高速化などを図ると共に、操向ハンドル(19)の直進位置を中心とした略一定範囲における操向ハンドル(19)による第2油圧ポンプ(26)及び第2油圧モータ(27)の旋回制御量の変化率が、前記範囲外の旋回制御量の変化率よりも小さくし、走行クローラ(2)のスリップが少ない圃場での収穫作業中における機体の進路修正(条合せ)を従来と同様の運転感覚で適正に行え、蛇行走行の防止並びに収穫作業速度の高速化などを図れるように構成している。
【0037】
さらに、図20に示す如く、直進位置の操向ハンドル(19)を左方向(右方向)に約15度回転させると、前記長孔(125a)内を軸(128)が移動し、バネ(S1)によって第1減速ロッド(131)が直進と同一位置に維持されると共に、各ギヤ(114)(116)を介して操向第1ロッド(120)が押出(引張)移動し、第2油圧ポンプ(26)及びモータ(27)の操向出力によって左方向(右方向)に旋回する。このとき、旋回内側の走行クローラ(2)の減速量と、旋回外側の走行クローラ(2)の増速量が略等しくなり、機体中心速度が直進と略同一速度に保たれる。また、操向ハンドル(19)を直進位置から15度以上回転させると、バネ(S1)に抗して第1減速ロッド(131)が左旋回及び右旋回のいずれでも引張られて減速動作し、第1油圧ポンプ(23)及びモータ(24)の走行変速出力を減速させ、左右走行クローラ(2)(2)を同一方向に回転駆動させて前進(または後進)させ、左右走行クローラ(2)(2)の内、旋回内側の走行クローラ(2)の回転駆動を減速させることにより、同一方向の走行速度差により左方向(右方向)に旋回するブレーキターン動作を行わせる。さらに、操向ハンドル(19)を約135度回転させると、機体中心速度が直進時の約4分の1に減速され、旋回内側の走行クローラ(2)が逆転駆動され、旋回内側の走行クローラ(2)を中心として機体が旋回するスピンターン動作が行われるもので、図1818にも示す如く、ハンドル角度0度からハンドル角度135度の範囲で操向ハンドル(19)を回転させて左または右方向の旋回操作を行い、直進位置を中心とした左右15度のハンドル(19)回転範囲で未刈り穀稈列に沿って移動する条合せ進路修正を、直進時の走行速度を維持し乍ら行うと共に、直進位置から左右135度のハンドル(19)回転により、圃場枕地で機体を方向転換させて次作業工程に移動させるスピンターン動作を、直進時の約4分の1の走行速度に自動的に減速して行うように構成している。
【0038】
上記から明らかなように、操向ハンドル(19)の直進乃至最大操向範囲内に条合せ位置及び走行速度差ターン位置及びスピンターン位置を設け、収穫作業中の条合せ操向(未刈り穀稈列に対する進路修正)と、走行速度差ターン操向と、圃場枕地でのスピンターン操向(次作業工程への方向転換)を、操向ハンドル(19)の連続操作により行え、操向ハンドル(19)の操作角度の設定だけで片手で操向操作でき、もう一方の手で農作業部である刈取部(8)の昇降など他の方向転換に伴う操作を同時に行え、操向操作と他の作業操作を略同時に行う複合操作性の向上などを図れるもので、直進時の走行速度を維持させ乍ら旋回させる条合せ位置と、旋回内側の走行部(2)を逆転させるスピンターン位置の間に、走行速度差ターン位置を形成し、旋回半径の大きな条合せ操向操作と旋回半径の小さいスピンターン操作の間に中間の走行速度差ターン操作を介在させることによって急激な旋回角度の変更を防止すると共に、操向ハンドル(19)の一方向の最大切れ角度を約135度とし、操向ハンドル(19)の切れ角度が零乃至約15度の範囲を条合せ位置に設定し、作業者が操向ハンドル(19)を片手で連続回転させる135度の回転でスピンターン操作して圃場枕地での機体の方向転換を行え、また作物列などの緩やかな曲がりに応じて操向ハンドル(19)の約15度の回転による緩やかな旋回によって条合せ操作を適正に行えるように構成している。
【0039】上記から明らかなように、操向ハンドル(19)の直進乃至最大操向範囲内に条合せ位置及びブレーキターン位置及びスピンターン位置を設け、収穫作業中の条合せ操向(未刈り穀稈列に対する進路修正)と、ブレーキターン操向と、圃場枕地でのスピンターン操向(次作業工程への方向転換)を、操向ハンドル(19)の連続操作により行え、操向ハンドル(19)の操作角度の設定だけで片手で操向操作でき、もう一方の手で農作業部である刈取部(8)の昇降など他の方向転換に伴う操作を同時に行え、操向操作と他の作業操作を略同時に行う複合操作性の向上などを図れるもので、直進時の走行速度を維持させ乍ら旋回させる条合せ位置と、旋回内側の走行部(2)を逆転させるスピンターン位置の間に、ブレーキターン位置を形成し、旋回半径の大きな条合せ操向操作と旋回半径の小さいスピンターン操作の間に中間のブレーキターン操作を介在させることによって急激な旋回角度の変更を防止すると共に、操向ハンドル(19)の一方向の最大切れ角度を約135度とし、操向ハンドル(19)の切れ角度が零乃至約15度の範囲を条合せ位置に設定し、作業者が操向ハンドル(19)を片手で連続回転させる135度の回転でスピンターン操作して圃場枕地での機体の方向転換を行え、また作物列などの緩やかな曲がりに応じて操向ハンドル(19)の約15度の回転による緩やかな旋回によって条合せ操作を適正に行えるように構成している。
【0040】
さらに、図21に示す如く、副変速を標準(秒速1.5メートル)速度に保ち、操向ハンドル(19)を90度回転させたとき、主変速レバー(68)操作により主変速出力を高速及び3分の2及び3分の1に変更しても、機体の旋回半径が略一定に保たれた状態で、旋回速度(機体中心速度)だけが変化するように構成している。
【0041】
さらに、図22は、上記操向ハンドル(19)に代えて操向レバー(141)を設けたもので、操向レバー(141)を軸(142)回りに左右方向に揺動自在に取付け、操向レバー(141)基部に固定させるベベルギヤ(143a)と、ハンドル操作軸(113)上端に固定させるベベルギヤ(143b)を噛合させ、操向レバー(141)の左右揺動によって操作軸(113)を正転または逆転させ、上記と同様に、リンク機構(70)(71)を作動させて操向制御させ、揺動操作する操向レバー(141)によって操向操作部材を構成し、前記レバー(141)を例えば左右方向に揺動させるだけで左右いずれの進路修正及び方向転換を行えるように構成している。
【0042】
(参考例)
さらに、図23に示す如く、例えば電動モータまたは油圧シリンダなどで形成する変速アクチュエータ(144)及び操向アクチュエータ(145)を設け、無段変速機構(25)(28)の第1及び第2油圧ポンプ(23)(26)に設けるトラニオンを形成するコントロールレバー(72)(73)に前記各アクチュエータ(144)(145)を連結させると共に、主変速レバー(68)の変速操作位置を検出するポテンショメータ型主変速センサ(146)と、前記レバー(68)の前進または後進操作を検出する切換スイッチ型前後進センサ(147)と、操向ハンドル(19)の回転操作位置を検出するポテンショメータ型操向ハンドルセンサ(148)と、前記ハンドルの回転方向(左または右)を検出する切換スイッチ型左右旋回センサ(149)と、副変速機構(32)の副変速操作位置を検出する切換スイッチ型副変速センサ(150)と、変速用コントロールレバー(72)の走行変速位置を検出するポテンショメータ型変速位置センサ(151)と、旋回用コントロールレバー(73)の旋回変速位置を検出するポテンショメータ型旋回位置センサ(152)と、走行クローラ(1)の走行速度を検出するピックアップ型車速センサ(153)を設け、マイクロコンピュータで形成するコントローラ(154)に前記各センサ(146)〜(153)並びに各アクチュエータ(144)(145)を電気接続させる。そして、上記したリンク機構(70)(71)を省き、かつ上記と同様に、操向ハンドル(19)及び主変速レバー(68)の操作に基づき、各センサ(146)〜(153)を介して各アクチュエータ(144)(145)を制御し、各コントロールレバー(72)(73)を作動させ、走行変速並びに左右旋回の各動作を行わせるもので、操向操作部材である操向ハンドル(19)を走行変速部材である第1油圧ポンプ(23)及び第1油圧モータ(24)または操向部材である第2油圧ポンプ(26)及び第2油圧モータ(27)に電気的に連結させるコントローラ(154)を設け、操向制御機能の多機能化並びに製造コストの低減などを容易に図れるように構成している。
【0043】
【発明の効果】
(1)請求項1記載の本発明では、変速操作部材(68)の走行変速操作によりエンジン(21)の駆動力を左右走行部(2)(2)に変速伝達する走行変速部材(23)(24)と、操向操作部材(19)の操向操作により左右走行部(2)(2)の駆動速度に差を生じさせる操向部材(26)(27)を設ける移動農機において、操向操作部材(19)に非円形状の不等速ギヤに形成した第1及び第2の不等速運動部材(114)(116)を介して操向部材(26)(27)を連結させて、操向操作部材(19)の直進位置を中心とした略一定範囲における操向操作部材(19)による操向部材(26)(27)の旋回制御量の変化率を前記範囲以外の変化率よりも大きくするようにして、操向操作部材(19)の操作初期における操向部材(26)(27)の旋回制御量の立上りを大とするように構成している。
【0044】
従って、作物列または畦などに沿って移動する農作業時に、左右走行部(2)(2)のスリップ率が圃場の性状によって異なっても、操向操作部材(19)の操作量と旋回動作を作業者の運転感覚と一致させることができ、鈍感な旋回による旋回遅れまたは過敏な旋回による蛇行走行などの不具合をなくすことができ、農作業時の進路修正など運転操作性の向上を容易に図ることができる。
【0045】
(2)請求項2記載の本発明では、第1の不等速運動部材(114)は、操作軸(113)から歯部までの距離が他よりも長い長径部(114a)を一部突出させて形成する一方、第2の不等速運動部材(116)は、円周中央部に回転軸(115)から歯部までの距離が短い短径部(116a)を一部陥設させて形成して、操向操作部材(19)の直進位置時に第1の不等速運動部材(114)の長径部(114a)と第2の不等速運動部材(116)の短径部(116a)とが結合状態となるように構成している。
【0046】
従って、操向操作部材(19)の操作初期の操向操作角度が小のとき、操向操作部材(19)の操作初期の立上がりを大とさせて、操向操作部材(19)の初期操作に敏感に反応させた旋回を行うことができる。
【0047】
しかも、作物列または畦などに沿わせる農作業中の進路修正など大きな旋回半径のとき、即ち高速で圃場を移動するとき、旋回遅れまたは蛇行走行などを容易に防止できると共に、圃場枕地での方向転換(スピンターン動作)など大きな旋回半径のとき、即ち低速で圃場を移動するとき、従来の運転感覚で操向操作部材(19)を操作でき、高速での農作業並びに低速での方向転換などの運転操作性の向上を容易に図ることができる。
【0048】
さらには、作物列または畦などに沿わせる農作業中の進路修正(条合せ)を機敏に行うことができ、旋回遅れ防止並びに農作業速度の高速化などを容易に図ることができる。
【図面の簡単な説明】
【図1】操向ハンドル部の平面説明図。
【図2】コンバインの全体側面図。
【図3】コンバインの全体平面図。
【図4】ミッション駆動系の説明図。
【図5】種変速レバー及び操向ハンドルの操作系の斜視説明図。
【図6】走行変速及び操向操作部の側面説明図。
【図7】操作部の正面説明図。
【図8】操作部の平面説明図。
【図9】操作部の側面説明図。
【図10】操作部材の側面説明図。
【図11】操作部材の正面説明図。
【図12】操作部材の平面説明図。
【図13】リンク機構部の平面説明図。
【図14】油圧回路図。
【図15】不等速ギヤの平面説明図。
【図16】不等速ギヤの中立結合状態を示す斜視説明図。
【図17】不等速ギヤの旋回結合状態を示す斜視説明図。
【図18】ハンドル角度とコントロールアーム角度の関係を表わす線図。
【図19】不等速ギヤの他の説明図。
【図20】操向ハンドル操作と走行減速の関係を表わす線図。
【図21】主変速切換と走行減速の関係を表わす線図。
【図22】操向レバーを設けた説明図。
【図23】コントローラを設けた説明図。
【符号の説明】
(2) 走行クローラ(走行部)
(19) 操向ハンドル(操向操作部材)
(21) エンジン
(23) 第1油圧ポンプ(走行変速部材)
(24) 第1油圧モータ(走行変速部材)
(26) 第2油圧ポンプ(操向部材)
(27) 第2油圧モータ(操向部材)
(114) ギヤ(不等速運動部材)
(116) セクタギヤ(不等速運動部材)
(70)(71) リンク機構
(141) 操向レバー
(154) コントローラ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a mobile agricultural machine such as a combine harvester that continuously cuts and thresh uncut cereal meal.
[0002]
[Problems to be solved by the invention]
Conventionally, the steering output of the steering handle is transmitted to the steering unit via the steering gear for deceleration, and the steering output of the steering gear is changed substantially linearly with respect to the operation amount of the steering handle. A turn is taking place. In such a conventional structure, for example, when a harvesting operation is performed while moving a combine along an uncut grain row, the field where the traveling crawler is likely to slip is smaller in turn than the operation amount of the steering handle. When the slip of the traveling crawler is less than that of a general field, the turning motion tends to be larger than the amount of operation of the steering handle, and the condition for causing the combine to follow the uncut grain row by the operation of the steering handle. It is not easy to improve the alignment operability, etc., and it is necessary to compensate for the malfunction of the turning operation due to the slip of the traveling crawler by the operator's driving feeling, and the course from the uncut grain row due to turning delay or meandering traveling There are problems such as easy removal.
[0003]
[Means for Solving the Problems]
Therefore, in the present invention, a difference occurs in the driving speed between the traveling speed change member that transmits the driving force of the engine to the left and right traveling parts by the traveling speed change operation of the speed change operation member and the left and right traveling parts by the steering operation of the steering operation member. In a mobile agricultural machine provided with a steering member to be formed, a non-circular inconstant gear is formed on the steering member.First and secondSteering member turning control amount by a steering operation member in a substantially constant range centered on the straight position of the steering operation member by connecting the steering member via an inconstant speed motion memberThe change rate of the steering member is set to be larger than the change rate outside the above range, so that the rise of the turning control amount of the steering member in the initial operation of the steering member is increased.The present invention provides a mobile agricultural machine that is configured as described above.
[0004]
The present invention also provides:FirstWhile the inconstant speed motion member is formed by projecting a part of the long diameter part where the distance from the operation shaft to the tooth part is longer than others,SecondThe non-uniform velocity member is located at the center of the circumference.rotationA part of the short diameter part with a short distance from the shaft to the tooth part is formed to be recessed, and when the steering operation member is moved straightOf the first inconstant motion memberWith the long diameter partOf the second inconstant motion memberIt is also characterized in that it is configured such that the short diameter portion is in a coupled state.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is an explanatory plan view of a steering handle, FIG. 2 is an overall side view of the combine, FIG. 3 is a plan view thereof, and (1) is a track frame for mounting a traveling crawler (2), (3 ) Is a machine base installed on the track frame (1), and (4) is a threshing machine that has a feed chain (5) stretched to the left and incorporates a handling cylinder (6) and a processing cylinder (7). (8) is a cutting part provided with a cutting blade (9) and a grain conveying mechanism (10), (11) is a hydraulic cylinder for raising and lowering the cutting part (8) via a cutting frame (12), (13 ) Is a waste processing section that faces the end of the waste chain (14), (15) is a grain tank that carries the grain from the threshing section (4) through the milling cylinder (16), A discharge auger that transports the grain of the tank (15) out of the machine, (18) is a round steering handle (19) and Seats (20) operating cabin comprising etc., constitute (21) as is an engine provided with the operating cabin (18) downward, threshing continuously harvests culms.
[0006]
As shown in FIG. 4, the transmission case (22) for driving the travel crawler (2) is a main transmission mechanism comprising a pair of first hydraulic pump (23) and first hydraulic motor (24). A hydraulic continuously variable transmission mechanism (25) and a turning hydraulic continuously variable transmission mechanism (28) which is a steering mechanism including a pair of second hydraulic pump (26) and a second hydraulic motor (27). And the input shaft (29) of the first and second hydraulic pumps (23), (26) is linked to the output shaft (21a) of the engine (21) via the transmission belt (30), and these hydraulic pumps ( 23) The driving of (26) is performed.
[0007]
The drive shaft (34) of the traveling crawler (2) is interlockedly connected to the output shaft (31) of the first hydraulic motor (24) via the subtransmission mechanism (32) and the differential mechanism (33). The differential mechanism (33) has a pair of left and right symmetrical planetary gear mechanisms (35) and (35). Each planetary gear mechanism (35) has one sun gear (36) and an outer periphery of the sun gear (36). Are formed by three planetary gears (37) meshed with each other and a ring gear (38) meshed with these planetary gears (37).
[0008]
The planetary gear (37) is rotatably supported by a carrier (41) of a carrier shaft (40) coaxial with the sun gear shaft (39), and the left and right sun gears (36) (36) are sandwiched between the left and right carriers. The ring gear (38) has an inner tooth (38a) that meshes with each planetary gear (37) and is arranged on the same axis as the sun gear shaft (39), so that the carrier shaft (40 ) Is rotatably supported.
[0009]
The traveling hydraulic continuously variable transmission mechanism (25) performs forward / reverse rotation and rotation speed control of the first hydraulic motor (24) by adjusting and changing the angle of the rotary swash plate of the first hydraulic pump (23). Thus, the rotational output of the first hydraulic motor (24) is transmitted from the transmission gear (42) of the output shaft (31) through the gears (43) (44) (45) and the auxiliary transmission mechanism (32) to the sun gear shaft ( The sun gear (36) is rotated by being transmitted to the center gear (46) fixed to 39). The auxiliary transmission mechanism (32) includes an auxiliary transmission shaft (47) having the gear (45) and a parking brake shaft (49) having a gear (48) meshing with the center gear (46). A pair of low speed gears (50) (48), medium speed gears (51) (52), and high speed gears (53) (54) are provided between the shaft (47) and the brake shaft (49). It is configured to enable switching between low speed, medium speed, and high speed by sliding the gear (51) at the center position (note that it has neutrality between low speed and medium speed and between medium speed and high speed). is there). The brake shaft (49) is provided with a vehicle speed detection gear (55) and a vehicle speed sensor (56) for detecting the vehicle speed from the rotational speed of the gear (55). The transmission gear (42) of the output shaft (31) is meshedly connected to the PTO input gear (58) of the cutting PTO shaft (57) that transmits the rotational force to the cutting unit (8).
[0010]
The driving force from the first hydraulic motor (24) transmitted to the sun gear shaft (39) via the center gear (46) is transmitted to the carrier shaft (40) via the left and right planetary gear mechanisms (35). The rotation transmitted to the carrier shaft (40) is transmitted to the left and right wheel shafts (34a) of the left and right drive wheels (34) via a pair of left and right reduction gears (60) and (61), respectively.
[0011]
Further, the turning hydraulic continuously variable transmission mechanism (28) controls the forward and reverse rotation of the second hydraulic motor (27) and the rotational speed by adjusting the angle change of the rotary swash plate of the second hydraulic pump (26). The rotation output is transmitted from the output gear of the output shaft (62) of the second hydraulic motor (27) to the input gears (65a) and (65b) of the swing input shaft (64) via the gear transmission mechanism (63). Is transmitted directly to the outer teeth (38b) of the ring gear (38) and to the outer teeth (38b) of the left ring gear (38) via the reverse gear (67) of the reverse shaft (66). Thus, when the second hydraulic motor (27) is rotated forward, the left and right ring gears (38) are configured to rotate the left gear (38) forward and the right gear (38) reversely at the same left and right rotational speed.
[0012]
Thus, when the driving of the first hydraulic motor (24) for driving is performed in a state where the driving of the second hydraulic motor (27) for turning is stopped and the left and right ring gears (38) are fixed stationary, the first hydraulic pressure is obtained. The rotational output from the motor (24) is transmitted from the center gear (46) to the left and right sun gears (36) at the same rotational speed, and the planetary gear (37), carrier (41) and reduction gear (60) of the left and right planetary gear mechanism (35). ) (61) is transmitted to the left and right wheel axles (34a) at the same rotational speed in the same direction of left and right, so that the airframe travels straight forward and backward. On the other hand, when the driving of the first hydraulic motor (24) for traveling is stopped and the left and right sun gears (36) are stationary, the second hydraulic motor (27) for turning is driven to rotate forward and reverse. The planetary gear mechanism (35) is rotated forward or backward, and the right planetary gear mechanism (35) is rotated backward or forward so that the driving direction of the left and right traveling crawler (2) is reversed in the front-rear direction. Spin-turn on the spot.
[0013]
Further, when the aircraft is turned left and right by driving the second hydraulic motor (27) for turning while driving the first hydraulic motor (24) for traveling, it is possible to enable turning with a large turning radius. The turning radius is determined according to the speed of the left and right traveling crawler (2).
[0014]
As shown in FIGS. 5 to 13, the main transmission lever (68) connected to the traveling hydraulic continuously variable transmission mechanism (25) and the steering connected to the turning hydraulic continuously variable transmission mechanism (28). The steering wheel (19) is linked and linked to the gear shifting and turning interlocking mechanism (69), and the interlocking mechanism (69) is traveled and operated via the link mechanisms (70) and (71) which are traveling gear shifting and steering link systems. It is linked to the arms (72) and (73) which are control levers of the continuously variable transmission mechanism (25) and (28).
[0015]
The interlocking mechanism (69) includes a rotating plate (75) for supporting the base end bent portion (68a) of the main transmission lever (68) on the cylindrical shaft (74) so as to be swingable in the left-right direction, and the main body side machine. A fixed mounting plate (78) fixed to a frame (76) and supporting the rotating plate (75) through a first pivot (77) in the left-right direction so as to be capable of pivoting back and forth, and the pivot (77). A speed change operation member (80) that is connected to a rotating plate (75) through a second pivot (79) in the front-rear direction orthogonal to the shaft (79) and is rotatable about the shaft (79), and the second pivot (79) ) And a steering operation member (81) that is pivotally connected around the axis of the gear, and the second pivot (79) of the speed change and steering operation members (80) and (81) is each operation output portion at an eccentric position. (80a) (81a) are interlockingly connected to the speed change and steering link mechanism (70) (71).
[0016]
The shift and steering link mechanisms (70) (71) are supported on the frame (76) side of the machine mechanism (69) via the swinging cylinder shaft (83) outside the swinging shaft (82) at the rear position of the interlocking mechanism (69). A transmission arm (84), a steering arm (85) which is a turning output reversing means for fixing a base end to the swing shaft (82), and each output shaft (80a) (81a) 86) (87) and universal joint shafts (88) (89) connecting the arms (84) (85), and a steering output arm (91) fixed to the right end of the swing shaft (82). A first swing arm (95) (96) for shifting and steering provided rotatably on an intermediate shaft (94) attached to a fulcrum bearing (93) of a pivot fulcrum shaft (92) of the operating cabin (18). The tips of the arms (84) (91) and the first swing arms (95) (96) are connected to each other. And a universal joint type first rod (97) (98) for shifting and steering, and a first gear for shifting and steering provided on the intermediate shaft (94) and integrally connected to the first swing arm (95) (96). Two swinging arm (99) (100) and a shift and steering cylinder shaft (103) (103) (which is rotatably supported by a support shaft (102) attached to the bearing plate (101) on the transmission case (22). 104) and the distal ends of the first swing arm (105) (106) and the second swing arm (99) (100), the base ends of which are fixed to the cylindrical shafts (103) (104), are connected. Universal joint-type second rods (107) (108) for shifting and steering, second swinging arms (109) (110) having base ends fixed to the cylindrical shafts (103) (104), and the control Shifting and steering gears for connecting the tips of the arms (72) and (73) Joint-type third rods (111) and (112), and the traveling control arm (72) is moved by the rotation of the speed change operation member (80) about the first pivot (77). The steering control arm (73) is operated by turning the steering operating member (81) about the second pivot (79) to perform speed change and steering control.
[0017]
On the other hand, a gear (114) is provided on the handle operating shaft (113) at the lower end of the steering handle (19), and the gear (114) is engaged with a sector gear (116) attached to the rear rotating shaft (115). A first swing arm (118) of a steering shaft (117) disposed below the position of the main transmission lever (68), and an output arm (119) having a base end fixed to the rotating shaft (115). A second swinging arm integrated with the first swinging arm (118) of the steering shaft (117) is connected between the respective ends via a universal joint type steering first rod (120) which is a steering link mechanism. (121) is connected to the front end of the universal joint shaft (89) via a universal joint type steering second rod (122), and the second pivot (79) is connected by rotating the handle (19). The steering operation member (81) is rotated as the center. It is configured so as.
[0018]
Further, a neutral positioning plate (123) is provided below the gear (114) of the handle operating shaft (113), and one end of the steering detection link (125) is attached to the protruding shaft (124) on the lower surface of the positioning plate (123). And a first swing arm (127) is provided on a reduction arm shaft (126) disposed on the right side of the rotation shaft (115). The shaft (128) of the first swing arm (127) and the shaft A long hole (125a) at the other end of the detection link (125) is slidably connected, and the speed reducing arm (129) of the steering shaft (117) and the second swing arm (126) of the speed reducing arm shaft (126) ( 130) are connected to each other by a universal joint type first reduction rod (131) which is a reduction link mechanism, and the rightmost reduction transmission shaft (132) and the second swing arm of the transmission operation member (80). Universal joint between the other ends of (130) The second decelerating rod (133) is connected, and the traveling speed is reduced by pulling the second decelerating rod (133) downward as the steering amount of the handle (19) increases in the traveling state. Yes. Further, a spring (S1) is stretched between the rotating plate (75) and the speed change operation member (80), the steering handle (19) is returned to the straight position, and the detection link (125) is returned to the original position. At this time, the member (80) is returned by the spring (S1), and the traveling speed is returned to the original by the steering handle (19).
[0019]
Thus, a universal joint of the second pivot (79) that allows the shifting and steering operation members (80) and (81) to rotate about the axis, the steering arm (85), and the joint shaft (89). And the universal joint portion (88b) (89b) between the operation output shaft (86) (87) and the universal joint shaft (88) (89). ) And the first pivot (77) are positioned on a horizontal horizontal line (L2) orthogonal to the line (L1), and a universal joint portion (88a) between the transmission arm (84) and the joint shaft (88). ) And the joint part (89a) are substantially aligned on a horizontal horizontal line (L3) parallel to the line (L2), and the joint part (88a) is as close as possible to the joint part (89a) (maximum The main transmission lever (68) and the steering handle (19) Even if any one of these is operated during the standing holding, each operating member (80) (81) is merely rotated around the axis of the first and second pivots (77) (79), and the joint shaft (88) The operating force is not applied to (89).
[0020]
As shown in FIG. 10, when the main transmission lever (68) is moved forward and backward, when the operation member (80) is tilted back and forth by an angle (α1) (α2) about the first pivot (77), the joint shaft ( 88) is pulled or pushed to operate the speed change arm (84) to switch the traveling speed forward and backward, and as shown in FIG. 11, it is operated during this state (when the main speed change lever (68) is other than neutral). When the operating member (81) is tilted up and down by an angle (β1) (β2) about the second pivot (79) by rotating the direction handle (19), the steering shaft (89) is pulled or pushed to operate the steering arm ( 85) is operated to turn the aircraft left and right. That is, even if the turning operation is performed at the neutral position of the main gear shift, the joint shaft (89) moves on a substantially conical surface centered on the line (L1), and the distance between the joint portions (89a) (89b) changes. Therefore, the steering arm (85) does not operate. Then, the steering arm (85) operates when the turning operation is performed at a position other than the neutral of the main speed change, and when switching to the forward / reverse operation, the steering arm (85) operates in the backward / forward direction, and the second hydraulic motor. The rotation of (27) is configured to be reversed in the forward and reverse directions.
[0021]
In other words, if the forward rotation of the first hydraulic motor (24) for traveling is defined as forward travel, the planetary gear mechanism (35) by the second hydraulic motor (27) for rotation during reverse travel during reverse rotation is the forward travel. When the first hydraulic motor (24) rotates backward (reverse), the second hydraulic pump (in order to match the turning direction of the machine body by the operation of the handle (19) during forward movement and reverse movement is reversed. 26) by switching the swash plate angle to the opposite direction (the rotation direction of the input shafts of the first and second hydraulic pumps (23) and (26) is constant), the rotation of the second hydraulic motor (27) is made forward and backward. Sometimes it is the opposite direction.
[0022]
That is, in this case, the operation member (80) during the forward operation is tilted to the angle (α1) ahead of the neutral position, and the second rod (122) is pulled by the right rotation operation of the handle (19), thereby operating the operation member (81). Is tilted to the downward angle (β2) side, the output portion (81a) of the operating member (81) is brought closer to the steering arm (85) side, and the steering arm (85) is centered on the swing shaft (82). ) In a direction away from the operation member (81) (counterclockwise in FIG. 6), and the control arm (73) is rotated downward via the first and second rods (98) (108). Then, the second hydraulic motor (27) for turning is rotated forward. That is, the aircraft is turned to the right (the speed of the traveling crawler (2) is large on the left side and small on the right side).
[0023]
Further, during the forward operation described above, when the second rod (122) is pushed up by the left turning operation of the handle (19) and the operation member (81) is tilted to the upward angle (β1) side, the operation member (81) The output portion (81a) is further away from the operation arm (85) side, and the steering arm (85) is moved closer to the operation member (81) side about the swing shaft (82) (clockwise in FIG. 6). The second hydraulic motor (27) is rotated in the reverse direction by rotating the control arm (73) in the upward direction. In other words, the aircraft is turned leftward (the speed of the traveling crawler (2) is large on the right side and small on the left side).
[0024]
Further, the operation member (80) during the backward operation is inclined toward the angle (α2) behind the neutral position, and the second rod (122) is pulled by the right rotation operation of the handle (19) to lower the operation member (81). When tilting to the direction angle (β2) side, the output portion (81a) of the operating member (81) is moved away from the steering arm (85) side, and the steering arm (85) is centered on the swing shaft (82). The second hydraulic motor (27) is rotated in the reverse direction by rotating in the direction approaching the operation member (81) (clockwise in FIG. 6), rotating the control arm (73) upward. That is, the aircraft turns backward and turns right (the speed of the traveling crawler (2) is large on the left side and small on the right side).
[0025]
Furthermore, contrary to the above, when the operation member (81) is tilted to the upward angle (β1) side by the left rotation operation of the handle (19) during the reverse operation, the output portion of the operation member (81) (81a) is moved closer to the operating member (81) side, and the steering arm (85) is rotated in the direction away from the operating member (81) (counterclockwise in FIG. 6) about the swing shaft (82). The control arm (73) is rotated downward, and the second hydraulic motor (27) is rotated forward. In other words, the aircraft is turned backward to turn left (the speed of the traveling crawler (2) is large on the right side and small on the left side).
[0026]
Thus, in the turning operation at the time of forward and backward movement, the movement of the steering arm (85) is reversed, and the turning operation direction of the steering handle (19) and the direction of the machine body are both forward and backward. The steering operation member is constituted by a circular steering handle (19) that is rotated, and the driving feeling is similar to that of, for example, a tractor or a rice transplanter by rotating the handle (19). Link mechanisms (70) (71) for performing course correction and direction change and for mechanically connecting the steering operation member to the traveling speed change member or the steering member are provided, and the operation of the link mechanism (70) (71) In addition, the configuration is such that the reliability of the steering operation can be easily improved without substantially reducing the function over time.
[0027]
Further, as shown in FIG. 1, the detection link (125) provided on the steering handle (19) has the first swing arm (127) angled in the same direction (θ) in either the right or left turn operation from the neutral position. ), The second deceleration rod (133) is always pulled, and when the operation member (80) during forward operation is inclined to the angle (α1) side, the joint portions (88a) (88b) ), And when the operation member (80) during reverse operation is inclined to the angle (α2) side, the distance between the joint portions (88a) (88b) is increased to increase the speed change arm (84). Are respectively displaced toward the low speed side in the neutral direction, and the vehicle is decelerated in accordance with the turning amount.
[0028]
Further, the center of the universal joints (97a) and (98a) of the first rods (97) and (98) and the swing arms (95) and (96) for transmitting the operating force for shifting and steering are arranged in the driving cabin (18 ) To coincide with the position of the pivot fulcrum shaft (92) so that the driving cabin (18) can be rotated in the forward direction without removing these operating systems in the neutral holding of shifting and steering. It is composed.
[0029]
As shown in FIGS. 4 and 14, the first and second hydraulic pumps (23) and (26) and the first and second hydraulic motors (24) and (27) are respectively connected to loop hydraulic circuits (134) and (135). The output shafts (31) and (62) of the first and second hydraulic motors (24) and (27) are connected to the output shaft (31) by the operation of the solenoid valves (136) and (137). A parking brake (138) for stopping and moving straight and (139) for fixedly moving and turning is provided, and the parking brake shaft (49) is a parking brake for holding the brake shaft (49) stationary. A device (140) is provided.
[0030]
Incidentally, as shown in FIGS. 15 to 18, the gears (114) and (116) as the pair of inconstant speed motion members that transmit the steering output of the steering handle (19) to the speed change mechanism (28), A non-circular non-uniform gear is formed to transmit the steering output of the handle (19) at a non-uniform speed. A shaft (113) is provided on a part of the circumference of the gear (114) of the operating shaft (113). A long diameter portion (114a) having a longer distance from the tooth portion to the tooth portion is formed so as to protrude, and a short diameter portion (116a) having a short distance from the shaft (115) to the tooth portion is formed at the circumferential center portion of the sector gear (116). When the handle (19) is in a neutral (straight forward) position, the long diameter portion (114a) and the short diameter portion (116a) are combined to form a handle as shown in line (A) in FIG. (19) When the initial handle angle is small, the conventional constant speed The steering output is greatly transmitted to the control arm (73) from the control unit (73), the rising of the initial operation of the handle (19) is increased, and the turn that is sensitive to the initial operation of the handle (19) is performed. It is composed.
[0032]
Further, in FIG. 19, contrary to the above, a short-diameter portion (114b) having a shorter distance from the shaft (113) to the tooth portion is formed on a part of the circumference of the gear (114) than the others, and a sector gear ( 116), a long-diameter portion (116b) having a long distance from the shaft (115) to the tooth portion is formed at the circumferential center of the handle (19), and the short-diameter portion (114b) and the long-diameter portion (116b) at the neutral position of the handle (19). ) In a coupled state, and as shown in the line (B) of FIG. 18, the initial rise of the handle (19) is made small, and a turn that is insensitive to the initial operation of the handle (19) is performed. It is configured as follows.
[0033]
As a result, for example, in the condition that the aircraft starts actual turning when the handle angle is 30 °, the handle angle becomes approximately 18 ° in the case where the rising output at the initial stage of operation is increased. In addition, when it becomes approximately 40 ° in the thing to be made small, the actual turning can be started, and the turning work optimally adapted to the thermal kneading degree and personality of the worker can be made possible It is.
[0034]
Further, FIG. 18 corresponds to the handle angle when the handle (19) is turned left or right, and the arm angle represents the swing angle of the control arm (73), which is a speed change operation member. The first hydraulic pump (23) and the first hydraulic pump (23), which are traveling gearshift members that transmit the driving force of the engine (21) to the traveling crawlers (2) and (2) that are the left and right traveling parts by the traveling gearshift operation of the main transmission lever (68) 1st hydraulic motor (24) and 2nd hydraulic pressure which is a steering member which makes a difference in the drive speed of right-and-left traveling crawler (2) (2) by steering operation of steering handle (19) which is a steering operation member In the mobile agricultural machine provided with the pump (26) and the second hydraulic motor (27), the second hydraulic pump (26) is connected to the steering handle (19) via the gear (114) and the sector gear (116) which are non-uniform motion members. ) And the second hydraulic motor (27) are connected, and the turning control amount of the second hydraulic pump (26) and the second hydraulic motor (27) by the steering handle (19) is changed in a curve so that an uncut grain row (crop ) Steering handle even if the slip rate of the left and right traveling crawlers (2) and (2) varies depending on the nature of the field (wet field, dry field, mud, sandy field) during harvesting (farming) work moving along a row or row (19) The amount of operation and the turning motion are matched with the operator's driving sensation, troubles such as turning delay due to insensitive turning or meandering running due to sensitive turning are eliminated, and improvement in driving operability such as course correction during harvesting work It is comprised so that it can plan.
[0035]
Further, the amount of turning control of the second hydraulic pump (26) and the second hydraulic motor (27) by the steering handle (19) in a substantially constant range centering on the straight traveling position of the steering handle (19) is changed in a curve, When the turning control amount outside the above range is changed linearly and the turning radius is large, such as a course correction during harvesting (farming) work along an uncut grain culm (crop) row or culm, that is, when the field is moved at high speed In addition to preventing turning delay or meandering, the steering handle (19) can be used in a conventional manner as when turning at a large turning radius, such as turning in the field headland (spin turn operation), that is, when moving the field at a low speed. ) To improve driving operability such as high-speed harvesting and low-speed direction change, and the steering handle (19) in a substantially constant range centered on the straight position of the steering handle (19). 9), the change rate of the turning control amount of the second hydraulic pump (26) and the second hydraulic motor (27) is larger than the change rate of the turning control amount outside the above range, and the adjustment, that is, during the harvesting operation , The course of the machine body can be agilely adjusted so that the cutting part (8) is aligned with the uncut grain rows or ridges, the turning delay can be prevented and the harvesting work speed can be increased, and the steering handle (19) The change rate of the turning control amount of the second hydraulic pump (26) and the second hydraulic motor (27) by the steering handle (19) in a substantially constant range centered on the straight traveling position is a change in the turning control amount outside the range. It is possible to correct the course of the aircraft during the harvesting work in the field where the slip of the traveling crawler (2) is less than the rate, and to properly adjust the path with the same driving feeling as before, to prevent meandering travel and the harvesting work speed Fast It is configured so as attained, and the like.
[0037]
Furthermore, as shown in FIG. 20, when the steering handle (19) in the straight traveling position is rotated about 15 degrees in the left direction (right direction), the shaft (128) moves in the elongated hole (125a), and the spring ( The first decelerating rod (131) is maintained at the same position as the straight traveling by S1), and the steering first rod (120) is pushed (pulled) through each gear (114) (116), and the second It turns leftward (rightward) by the steering output of the hydraulic pump (26) and motor (27). At this time, the deceleration amount of the traveling crawler (2) inside the turning and the acceleration amount of the traveling crawler (2) outside the turning become substantially equal, and the body center speed is kept at substantially the same speed as the straight traveling. Further, when the steering handle (19) is rotated by 15 degrees or more from the straight traveling position, the first deceleration rod (131) is pulled in both the left turn and the right turn against the spring (S1) and decelerates. , The traveling shift output of the first hydraulic pump (23) and the motor (24) is decelerated, the left and right traveling crawlers (2) and (2) are driven to rotate in the same direction to move forward (or reverse), and the left and right traveling crawlers (2 ) In (2), by reducing the rotational drive of the traveling crawler (2) inside the turn, a brake turn operation is performed to turn leftward (rightward) due to the difference in traveling speed in the same direction. Further, when the steering handle (19) is rotated about 135 degrees, the center speed of the aircraft is reduced to about one fourth of the straight traveling speed, the traveling crawler (2) inside the turning is driven in reverse, and the traveling crawler inside the turning is driven. As shown in FIG. 1818, the steering handle (19) is rotated within the range of the steering wheel angle from 0 degrees to the steering wheel angle of 135 degrees, and left or Rotate rightward and adjust the alignment course to move along the uncut grain row within the 15 ° left and right handle (19) rotation range centered on the straight running position, while maintaining the straight running speed And a spin turn operation in which the body turns in the field headland and moves to the next work process by rotating the steering wheel (19) left and right from the straight position to about a quarter of the traveling speed during straight travel. In It is configured to perform dynamically decelerated.
[0038]
As is clear from the above, the alignment position, the traveling speed difference turn position, and the spin turn position are provided within the straight or maximum steering range of the steering handle (19), and the alignment steering (uncut grain) during the harvesting operation is provided. (Correcting the course with respect to the row), turn speed difference turn steering, and spin turn steering at the field headland (direction change to the next work process) can be performed by continuous operation of the steering handle (19). Only by setting the operation angle of the handle (19), the steering operation can be performed with one hand, and the other hand can simultaneously perform operations associated with other direction changes, such as raising and lowering the cutting unit (8), which is the agricultural work unit. It is intended to improve the combined operability to perform other work operations almost simultaneously, such as the alignment position for turning while maintaining the straight traveling speed, and the spin turn position for reversing the traveling part (2) inside the turning. During the travel speed difference turn position By forming an intermediate traveling speed difference turn operation between a turning operation with a large turning radius and a spin turn operation with a small turning radius, a sudden turning angle change is prevented and a steering handle ( 19) The maximum turning angle in one direction is about 135 degrees, the turning angle of the steering handle (19) is set in the range of zero to about 15 degrees, and the operator holds the steering handle (19). Spin turn operation with 135 degree rotation with continuous rotation with one hand to change the direction of the body in the field headland, and about 15 degree rotation of the steering handle (19) according to the gentle turn of the crop row etc. It is configured so that the alignment operation can be properly performed by the gentle turning of the.
As is clear from the above, the alignment position, the brake turn position, and the spin turn position are provided within the straight or maximum steering range of the steering handle (19), and the alignment steering (uncutting) during the harvesting operation is performed. (Course correction for grain row), Brake turn steering, Spin turn steering (change of direction to the next work process) in the field headland by continuous operation of steering handle (19), steering handle Only the setting of the operation angle in (19) enables the steering operation with one hand, and the other hand can simultaneously perform operations accompanying other direction changes such as raising and lowering of the cutting part (8) which is the agricultural work unit. It is possible to improve the combined operability of performing the work operations at the same time, such as the alignment position for turning while maintaining the straight traveling speed and the spin turn position for reversing the traveling part (2) inside the turning. In between, brake By forming an intermediate position between the steering operation with a large turning radius and the spin turn operation with a small turning radius, an abrupt change in the turning angle is prevented and a steering handle ( 19) The maximum turning angle in one direction is about 135 degrees, the turning angle of the steering handle (19) is set in the range of zero to about 15 degrees, and the operator holds the steering handle (19). Spin turn operation with 135 degree rotation that is continuously rotated with one hand to change the direction of the body on the field headland, and about 15 degree rotation of the steering handle (19) according to the gentle bend of the crop row etc. It is configured so that the alignment operation can be properly performed by the gentle turning by.
[0040]
Furthermore, as shown in FIG. 21, when the sub-shift is maintained at a standard speed (1.5 meters per second) and the steering handle (19) is rotated by 90 degrees, the main shift output is increased by operating the main shift lever (68). And even if it changes to 2/3 and 1/3, it is comprised so that only the turning speed (aircraft center speed) may change, with the turning radius of the airframe kept substantially constant.
[0041]
Further, FIG. 22 is provided with a steering lever (141) in place of the steering handle (19), and the steering lever (141) is pivotably mounted in the left-right direction around the axis (142). The bevel gear (143a) fixed to the base of the steering lever (141) and the bevel gear (143b) fixed to the upper end of the handle operating shaft (113) are engaged with each other, and the operating shaft (113) is swung left and right by the steering lever (141). The steering operation member is constituted by a steering lever (141) that is rotated forward or backward, operates the link mechanism (70) (71) and controls steering, and swings in the same manner as described above. For example, it is configured such that the course correction and the direction change of either the left or right can be performed by merely swinging (141) in the left-right direction.
[0042]
(Reference example)
Further, as shown in FIG. 23, a speed change actuator (144) and a steering actuator (145) formed by, for example, an electric motor or a hydraulic cylinder are provided, and the first and second hydraulic pressures of the continuously variable transmission mechanism (25) (28) are provided. Potentiometers for connecting the actuators (144) and (145) to control levers (72) and (73) forming trunnions provided in the pumps (23) and (26), and detecting the speed change operation position of the main speed change lever (68). Type main shift sensor (146), changeover switch type forward / reverse sensor (147) for detecting forward or reverse operation of the lever (68), and potentiometer type steering for detecting the rotational operation position of the steering handle (19) Handle switch (148) and changeover switch type left that detects the direction of rotation of the handle (left or right) A turn sensor (149), a changeover switch type sub-shift sensor (150) for detecting the sub-shift operation position of the sub-transmission mechanism (32), and a potentiometer-type shift position for detecting the travel shift position of the shift control lever (72). A sensor (151), a potentiometer type turning position sensor (152) for detecting the turning shift position of the turning control lever (73), and a pickup type vehicle speed sensor (153) for detecting the traveling speed of the traveling crawler (1) are provided. The sensors (146) to (153) and the actuators (144) and (145) are electrically connected to a controller (154) formed by a microcomputer. Then, the link mechanism (70) (71) is omitted, and, similarly to the above, based on the operation of the steering handle (19) and the main speed change lever (68), the sensors (146) to (153) are used. The actuators (144) and (145) are controlled and the control levers (72) and (73) are operated to perform various operations such as traveling speed change and left and right turning. 19) is electrically connected to the first hydraulic pump (23) and the first hydraulic motor (24), which are travel transmission members, or the second hydraulic pump (26) and the second hydraulic motor (27), which are steering members. A controller (154) is provided so that the steering control function can be multifunctional and the manufacturing cost can be easily reduced.
[0043]
【The invention's effect】
(1) In the first aspect of the present invention, the travel speed change member (23) transmits the drive force of the engine (21) to the left and right travel portions (2) (2) by the travel speed change operation of the speed change operation member (68). (24) and a mobile agricultural machine provided with steering members (26) and (27) that cause a difference in the driving speed of the left and right traveling units (2) and (2) by the steering operation of the steering operation member (19). The non-circular non-uniform gear is formed on the direction control member (19).First and secondThe steering operation members (26) and (27) are connected via the inconstant velocity motion members (114) and (116), and the steering operation members in a substantially constant range centered on the straight position of the steering operation member (19). Rotation control amount of steering member (26) (27) by (19)The change rate of the steering member (26) (27) at the initial stage of operation of the steering operation member (19) is increased so that the change rate of the steering wheel is larger than the change rate outside the above range.It is configured as follows.
[0044]
Therefore, during the agricultural work moving along the crop row or the fence, even if the slip rate of the left and right traveling units (2) and (2) varies depending on the nature of the field, the operation amount and the turning operation of the steering operation member (19) It can be matched with the operator's driving sensation, can eliminate problems such as turning delay due to insensitive turning or meandering driving due to sensitive turning, and easily improve driving operability such as course correction during agricultural work Can do.
[0045]
(2) In the present invention described in
[0046]
Therefore, when the steering operation angle of the steering operation member (19) at the initial stage of operation is small, the initial startup of the steering operation member (19) is increased and the initial operation of the steering operation member (19) is performed. It is possible to make a turn that is sensitive to the movement.
[0047]
Moreover, when turning at a large turning radius, such as a course correction during farming along a row of crops or ridges, that is, when moving the field at high speed, it is possible to easily prevent turning delay or meandering, and the direction at the field headland. For large turning radii such as turning (spin-turning), that is, when moving the field at low speed, the steering operation member (19) can be operated as if it were a conventional driving sense, such as high-speed farm work and low-speed direction change. Driving operability can be easily improved.
[0048]
Furthermore, course correction (arrangement) during farm work along a crop line or a fence can be performed quickly, and turning delay can be prevented and farm work speed can be easily increased.
[Brief description of the drawings]
FIG. 1 is an explanatory plan view of a steering handle portion.
FIG. 2 is an overall side view of the combine.
FIG. 3 is an overall plan view of the combine.
FIG. 4 is an explanatory diagram of a mission drive system.
FIG. 5 is a perspective explanatory view of an operation system of a seed transmission lever and a steering handle.
FIG. 6 is an explanatory side view of a traveling speed change and steering operation unit.
FIG. 7 is an explanatory front view of an operation unit.
FIG. 8 is an explanatory plan view of an operation unit.
FIG. 9 is an explanatory side view of an operation unit.
FIG. 10 is an explanatory side view of an operation member.
FIG. 11 is a front explanatory view of an operation member.
FIG. 12 is an explanatory plan view of an operation member.
FIG. 13 is an explanatory plan view of a link mechanism unit.
FIG. 14 is a hydraulic circuit diagram.
FIG. 15 is an explanatory plan view of an inconstant speed gear.
FIG. 16 is a perspective explanatory view showing a neutral coupling state of the inconstant speed gear.
FIG. 17 is a perspective explanatory view showing a swivel coupling state of an inconstant speed gear.
FIG. 18 is a diagram showing the relationship between the handle angle and the control arm angle.
FIG. 19 is another explanatory diagram of an inconstant speed gear.
FIG. 20 is a diagram showing the relationship between steering wheel operation and travel deceleration.
FIG. 21 is a diagram showing the relationship between main shift switching and travel deceleration.
FIG. 22 is an explanatory view provided with a steering lever.
FIG. 23 is an explanatory diagram provided with a controller.
[Explanation of symbols]
(2) Traveling crawler (traveling part)
(19) Steering handle (steering member)
(21) Engine
(23) First hydraulic pump (traveling transmission member)
(24) First hydraulic motor (traveling transmission member)
(26) Second hydraulic pump (steering member)
(27) Second hydraulic motor (steering member)
(114) Gear (non-uniform motion member)
(116) Sector gear (non-uniform motion member)
(70) (71) Link mechanism
(141) Steering lever
(154) Controller
Claims (2)
操向操作部材(19)に非円形状の不等速ギヤに形成した第1及び第2の不等速運動部材(114)(116)を介して操向部材(26)(27)を連結させて、
操向操作部材(19)の直進位置を中心とした略一定範囲における操向操作部材(19)による操向部材(26)(27)の旋回制御量の変化率を前記範囲以外の変化率よりも大きくするようにして、操向操作部材(19)の操作初期における操向部材(26)(27)の旋回制御量の立上りを大とするように構成したことを特徴とする移動農機。Traveling transmission members (23) and (24) that transmit the driving force of the engine (21) to the left and right traveling units (2) and (2) by a traveling transmission operation of the transmission operation member (68), and a steering operation member (19) In a mobile agricultural machine provided with steering members (26) and (27) that cause a difference in the driving speed of the left and right traveling parts (2) and (2) by the steering operation of
Steering members (26) and (27) are connected to the steering member (19) via first and second inconstant speed motion members (114) and (116) formed in non-circular inconstant speed gears. Let me
The change rate of the turning control amount of the steering members (26) and (27) by the steering operation member (19) in a substantially constant range centered on the straight position of the steering operation member (19) is based on a change rate other than the above range. And a large increase in the turning control amount of the steering members (26) and (27) in the initial operation of the steering operation member (19) .
第2の不等速運動部材(116)は、円周中央部に回転軸(115)から歯部までの距離が短い短径部(116a)を一部陥設させて形成して、
操向操作部材(19)の直進位置時に第1の不等速運動部材(114)の長径部(114a)と第2の不等速運動部材(116)の短径部(116a)とが結合状態となるように構成したことを特徴とする請求項1記載の移動農機。 The first inconstant velocity motion member (114) is formed by partially projecting a long diameter portion (114a) whose distance from the operation shaft (113) to the tooth portion is longer than the other,
The second inconstant velocity motion member (116) is formed by partially indenting a short diameter portion (116a) having a short distance from the rotation shaft (115) to the tooth portion at the center of the circumference,
When the steering operation member (19) moves straight, the long diameter portion (114a) of the first inconstant velocity motion member (114 ) and the short diameter portion (116a) of the second inconstant velocity motion member (116) are coupled. The mobile agricultural machine according to claim 1, wherein the mobile agricultural machine is configured to be in a state.
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27222097A JP3816647B2 (en) | 1997-01-23 | 1997-09-17 | Mobile farm machine |
US09/155,496 US6152248A (en) | 1997-01-23 | 1997-11-14 | Mobile agricultural machine |
CNB011439955A CN1162292C (en) | 1997-01-23 | 1997-11-14 | Moving agricultural machine |
DE69738924T DE69738924D1 (en) | 1997-01-23 | 1997-11-14 | MOBILE LANDING MACHINE |
KR10-1998-0707517A KR100516665B1 (en) | 1997-01-23 | 1997-11-14 | Mobile |
CN97193254A CN1094104C (en) | 1997-01-23 | 1997-11-14 | Mobile agricultural machine |
PCT/JP1997/004163 WO1998032645A1 (en) | 1997-01-23 | 1997-11-14 | Mobile agricultural machine |
EP97912470A EP0891913B1 (en) | 1997-01-23 | 1997-11-14 | Mobile agricultural machine |
AU49659/97A AU4965997A (en) | 1997-01-23 | 1997-11-14 | Mobile agricultural machine |
US09/668,160 US6408960B1 (en) | 1997-01-23 | 2000-09-25 | Mobile agricultural machine |
US10/058,372 US6484828B2 (en) | 1997-01-23 | 2002-01-30 | Mobile agricultural machine |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9-25920 | 1997-01-23 | ||
JP1997025920 | 1997-01-23 | ||
JP27222097A JP3816647B2 (en) | 1997-01-23 | 1997-09-17 | Mobile farm machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10264845A JPH10264845A (en) | 1998-10-06 |
JP3816647B2 true JP3816647B2 (en) | 2006-08-30 |
Family
ID=26363623
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27222097A Expired - Fee Related JP3816647B2 (en) | 1997-01-23 | 1997-09-17 | Mobile farm machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3816647B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3028481B1 (en) * | 1998-12-16 | 2000-04-04 | ヤンマー農機株式会社 | Moving agricultural machine |
JP5665600B2 (en) * | 2011-02-24 | 2015-02-04 | ヤンマー株式会社 | Tractor |
-
1997
- 1997-09-17 JP JP27222097A patent/JP3816647B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH10264845A (en) | 1998-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1998032645A1 (en) | Mobile agricultural machine | |
JP3816647B2 (en) | Mobile farm machine | |
JP3681871B2 (en) | Mobile farm machine | |
JP3174952B2 (en) | Moving agricultural machine | |
JP3749358B2 (en) | Mobile farm machine | |
JP3816645B2 (en) | Mobile farm machine | |
JP3730378B2 (en) | Mobile farm machine | |
JP3609589B2 (en) | Combine | |
JP3691703B2 (en) | Mobile farm machine | |
JP3141135B2 (en) | Moving agricultural machine | |
JP3652457B2 (en) | Mobile farm machine | |
JP3190987B2 (en) | Moving agricultural machine | |
JP3727761B2 (en) | Mobile farm machine | |
JP3174950B2 (en) | Moving agricultural machine | |
JP3190986B2 (en) | Moving agricultural machine | |
JP3429252B2 (en) | Combine | |
JP3652445B2 (en) | Combine operating device | |
JP3174951B2 (en) | Moving agricultural machine | |
JP3208542B2 (en) | Moving agricultural machine | |
JP3429253B2 (en) | Moving agricultural machine | |
JP3198410B2 (en) | Moving agricultural machine | |
JP3626002B2 (en) | Combine | |
JP3208541B2 (en) | Moving agricultural machine | |
JP2000085614A (en) | Moving agricultural machinery | |
JP2000025643A (en) | Mobile farm working machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20040510 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20040628 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20040830 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050712 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050912 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060104 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060306 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060509 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060608 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100616 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |