JP3998109B2 - Mobile farm machine - Google Patents

Mobile farm machine Download PDF

Info

Publication number
JP3998109B2
JP3998109B2 JP21194898A JP21194898A JP3998109B2 JP 3998109 B2 JP3998109 B2 JP 3998109B2 JP 21194898 A JP21194898 A JP 21194898A JP 21194898 A JP21194898 A JP 21194898A JP 3998109 B2 JP3998109 B2 JP 3998109B2
Authority
JP
Japan
Prior art keywords
steering
hydraulic pump
speed
hydraulic
hydraulic motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21194898A
Other languages
Japanese (ja)
Other versions
JP2000025642A (en
Inventor
高 茂 實 日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanma Agricultural Equipment Co Ltd
Original Assignee
Yanma Agricultural Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanma Agricultural Equipment Co Ltd filed Critical Yanma Agricultural Equipment Co Ltd
Priority to JP21194898A priority Critical patent/JP3998109B2/en
Publication of JP2000025642A publication Critical patent/JP2000025642A/en
Application granted granted Critical
Publication of JP3998109B2 publication Critical patent/JP3998109B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Motor Power Transmission Devices (AREA)
  • Non-Deflectable Wheels, Steering Of Trailers, Or Other Steering (AREA)
  • Control Of Fluid Gearings (AREA)
  • Guiding Agricultural Machines (AREA)
  • Harvester Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は例えば未刈り穀稈を連続的に刈取って脱穀するコンバインなどの移動農機に関する。
【0002】
【発明が解決しようとする課題】
従来、左右走行クローラを駆動する第1油圧ポンプ及び第1油圧モータと、左右走行クローラの駆動速度に差を生じさせる第2油圧ポンプ及び第2油圧モータを設け、第1油圧ポンプに主変速レバーを機械的に連結させ、第2油圧ポンプに操向ハンドルを機械的に連結させ、第1及び第2油圧ポンプを関連させて作動させる技術を開発したが、第1油圧ポンプの主変速レバー連結機構と、第2油圧ポンプの操向ハンドル連結機構を相互に連結させる機構が必要であり、また副変速が中立のときに操向ハンドルを操作しても第2油圧ポンプの操向動作を阻止するロック機構が必要であり、組立時の調整作業並びに構成部品の管理などの簡略化を容易に行い得ず、取扱い作業性の向上並びに走行変速及び操向性能の多様化などを容易に図り得ない等の問題がある。
【0009】
【課題を解決するための手段】
そこで、本発明では、左右走行クローラを駆動する第1油圧ポンプ及び第1油圧モータと、左右走行クローラの駆動速度に差を生じさせる第2油圧ポンプ及び第2油圧モータを設ける移動農機において、操向ハンドル操作量を検出して第2油圧ポンプの出力制御を行う操向アクチュエータを設け、副変速の中立を検出して第2油圧ポンプ及び第2油圧モータによる操向動作を中止させるようにして、操向ハンドルの切れ角度が小さいときに操向制御出力の変化が大きくなるように構成したことを特徴とする動農機を提供するものである。
【0010】
また、本発明では、左右走行クローラを駆動する第1油圧ポンプ及び第1油圧モータと、左右走行クローラの駆動速度に差を生じさせる第2油圧ポンプ及び第2油圧モータを設ける移動農機において、操向ハンドル操作量を検出して第2油圧ポンプの出力制御を行う操向アクチュエータを設け、副変速の中立を検出して第2油圧ポンプ及び第2油圧モータによる操向動作を中止させるようにして、操向ハンドルの切れ角度が小さいときに敏感な操向制御を行い、操向ハンドルの切れ角度が大きいときに鈍感な操向制御を行うように構成したことを特徴とする動農機を提供するものである。
【0012】
【発明の実施の形態】
以下、本発明の実施例を図面に基づいて詳述する。図1は全体側面図、図2は同平面図であり、図中(1)は走行クローラ(2)を装設するトラックフレーム、(3)は前記トラックフレーム(1)に架設する機台、(4)はフィードチェン(5)を左側に張架し扱胴(6)及び処理胴(7)を内蔵している脱穀部、(8)は刈刃(9)及び穀稈搬送機構(10)などを備える刈取部、(11)は刈取フレーム(12)を介して刈取部(8)を昇降させる油圧昇降シリンダ、(13)は排藁チェン(14)終端を臨ませる排藁処理部、(15)は脱穀部(4)からの穀粒を揚穀筒(16)を介して搬入する穀物タンク、(17)は前記タンク(15)の穀粒を機外に搬出する排出オーガ、(18)は丸形操向ハンドル(19)及び運転席(20)などを備える運転キャビン、(21)は運転キャビン(18)下方に設けるエンジンであり、連続的に穀稈を刈取って脱穀するように構成している。
【0013】
さらに、図3、図4に示す如く、前記走行クローラ(2)を駆動するミッションケース(22)上面に、1対の第1油圧ポンプ(23)及び第1油圧モータ(24)からなる主変速機構である走行用の油圧式無段変速機構(25)と、1対の第2油圧ポンプ(26)及び第2油圧モータ(27)からなる操向機構である旋回用の油圧式無段変速機構(28)を並設させ、前記エンジン(21)の出力軸(21a)駆動力を変速及び操向用の第1及び第2油圧ポンプ(23)(26)の入力軸(29)にカウンタケース(30)を介してベルト伝動させ、各油圧ポンプ(23)(26)を駆動するように構成している。
【0014】
そして、前記第1油圧モータ(24)の出力軸(31)に、副変速機構(32)及び差動機構(33)を介し、左右走行クローラ(2)(2)の駆動輪(34)(34)を連動連結させるもので、前記差動機構(33)は左右対称の1対の遊星ギヤ機構(35)(35)を有する。前記遊星ギヤ機構(35)は1つのサンギヤ(36)と、該サンギヤ(36)の外周で噛合う3つのプラネタリギヤ(37)…と、各プラネタリギヤ(37)…に噛合うリングギヤ(38)などで形成している。
【0015】
また、前記各プラネタリギヤ(37)…は、サンギヤ軸(39)と同軸線上とのキャリヤ軸(40)のキャリヤ(41)にそれぞれ回転自在に軸支させ、左右のサンギヤ(36)(36)を挾んで左右のキャリヤ(41)を対向配置させると共に、前記リングギヤ(38)は、各プラネタリギヤ(37)に噛み合う内歯を有し、サンギヤ軸(39)と同一軸芯上のキャリヤ軸(40)に回転自在に軸支させている。
【0016】
また、走行用の油圧式無段変速機構(25)は、第1油圧ポンプ(23)の回転斜板の角度変更調節により第1油圧モータ(24)の正逆回転と回転数の制御を行うもので、第1油圧モータ(24)の回転出力を出力軸(31)の伝達ギヤ(42)から、各ギヤ(43)(44)(45)及び副変速機構(32)を介し、サンギヤ軸(39)に固定したセンタギヤ(46)に伝達し、サンギヤ(36)を回転するように構成している。前記副変速機構(32)は、前記ギヤ(45)を有する副変速軸(47)と、前記センタギヤ(46)に噛合うギヤ(48)を有する駐車ブレーキ軸(49)とを備え、副変速軸(47)とブレーキ軸(49)間に、低速用ギヤ(50)(48)及び中速用ギヤ(51)(52)及び高速用ギヤ(53)(54)を設け、中央位置の副変速切換用ギヤ(51)のスライダ摺動操作によって副変速の低速と中速と高速の切換を行う。また、副変速の低速と中速の間及び中速と高速の間には副変速中立(出力オフ)を有する。なお、刈取部(8)に回転力を伝達する刈取PTO軸(55)のPTO入力ギヤ(56)に、前記出力軸(31)の伝達ギヤ(42)を噛合連結させている。
【0017】
そして、前記センタギヤ(46)を介しサンギヤ軸(39)に伝達された第1油圧モータ(24)からの駆動力を、左右の遊星ギヤ機構(35)(35)を介して左右キャリヤ軸(40)(40)に伝達させ、各キャリヤ軸(40)(40)に伝達された回転出力を左右一対二組の減速ギヤ(57)(57)(58)(58)を介して左右の駆動輪(34)(34)の左右車軸(59)(59)にそれぞれ伝えると共に、左右のギヤ(58)(58)の回転数によって左右走行クローラ(2)(2)の車速を検出する左右車速センサ(60)(61)を設けている。
【0018】
さらに、旋回用の油圧式無段変速機構(28)は、第2油圧ポンプ(26)の回転斜板の角度変更調節により第2油圧モータ(27)の正逆回転切換と回転数の制御を行うもので、第2油圧モータ(27)の出力軸(62)の出力ギヤからギヤ伝達機構(63)を介し旋回入力軸(64)の左右の入力ギヤ(65)(66)に回転出力を伝達し、右側のリングギヤ(38)の外歯に対して左入力ギヤ(65)を噛合させ、また左側のリングギヤ(38)の外歯に逆転ギヤ(67)を介して右入力ギヤ(66)を連結させ、第2油圧モータ(27)の正転時に左右のリングギヤ(38)(38)を左右同一回転数で回転させ、かつ左リングギヤ(38)を正転させ、右リングギヤ(38)を逆転させるように構成している。
【0019】
そして、旋回用の第2油圧モータ(27)の駆動を停止させ、かつ左右リングギヤ(38)を静止固定させた状態で、走行用の第1油圧モータ(24)を駆動させると、第1油圧モータ(24)からの回転出力はセンタギヤ(46)から左右のサンギヤ(36)に同一回転数で伝達され、左右遊星ギヤ機構(35)のプラネタリギヤ(37)及びキャリヤ(41)及び減速ギヤ(57)(58)を介して左右の車軸(59)(59)に左右同一回転方向でかつ同一回転数で伝達され、機体の前後直進走行が行われる。一方、走行用の第1油圧モータ(24)を停止させ、かつ左右のサンギヤ(36)(36)を静止固定させた状態で、旋回用の第2油圧モータ(27)を正逆回転駆動すると、左側の遊星ギヤ機構(35)が正或いは逆回転し、また右側の遊星ギヤ機構(35)が逆或いは正回転し、左右走行クローラ(2)(2)の一方を前進回転させかつもう一方を後進回転させ、機体を左或いは右にその場で方向転換(心地旋回)させ、圃場枕地での方向転換などを行うように構成している。
【0020】
さらに、走行用の第1油圧モータ(24)を駆動させながら、旋回用の第2油圧モータ(27)を駆動すると、左右走行クローラ(2)(2)の駆動速度に差が生じて機体を左右に旋回させ、旋回半径の大きい旋回によって走行方向が修正され、また前記旋回半径は左右走行クローラ(2)(2)の速度差に応じて決定されると共に、左右走行クローラ(2)(2)の駆動速度の差を大きくすることにより、一方の走行クローラ(2)を停止または逆転させて該クローラ(2)を中心にもう一方の走行クローラ(2)を旋回させ、略V字形に方向転換するスピンターンを行えるように構成している。
【0021】
さらに、図5に示す如く、前記入力軸(29)上に設けて各ポンプ(23)(26)と連動してエンジン(21)により駆動する油圧チャージポンプ(68)と、走行変速レバー(69)手動操作によって切換える電動変速モータ(70)と、走行変速レバー(69)の中立操作時に電磁中立ソレノイド(71)を作動させて切換える中立バルブ(72)と、該バルブ(72)を介して前記チャージポンプ(68)に接続させる変速ブレーキシリンダ(73)を設ける。そして、前記走行変速レバー(69)を操作して変速モータ(70)を作動させて変速ポンプ(23)の斜板(23a)角度を変更させ、第1油圧モータ(24)の出力軸(31)の回転数を無段階に変化させたり、逆転させる前後進切換動作を行わせ、走行変速レバー(69)の操作量に比例させて前記斜板(23a)角度を変化させ、第1油圧モータ(24)の回転数を変更させると共に、前記走行変速レバー(69)の中立操作によって電磁中立ソレノイド(71)が励磁して中立バルブ(72)が自動的に切換わり、変速ブレーキシリンダ(73)を作動させて第2油圧モータ(24)の出力軸(31)を制動し、中立操作時の出力軸(31)の前後進回転を阻止するように構成している。
【0022】
さらに、前記操向ハンドル(19)手動操作によって切換える電動操向モータ(74)と、操向ハンドル(19)の直進操作並びに副変速機構(32)中立切換によって電磁直進ソレノイド(75)を作動させて切換える直進バルブ(76)と、該バルブ(76)を介して前記チャージポンプ(68)に接続させる操向ブレーキシリンダ(77)及びクラッチシリンダ(78)を設ける。そして、前記操向ハンドル(19)を操作して操向モータ(74)を作動させて第2油圧ポンプ(26)の斜板(26a)角度を変更させ、第2油圧モータ(27)の出力軸(62)の回転数を無段階に変化させたり、逆転させる左右操向動作を行わせ、走行方向を左右に変更して圃場枕地で方向転換したり進路を修正する。また操向ハンドル(19)の操作量に比例させて前記斜板(26a)角度を変化させ、操向モータ(27)の回転数を変更させると共に、前記操向ハンドル(19)の直進操作並びに副変速機構(32)の中立操作によって直進ソレノイド(75)が励磁して直進バルブ(76)が自動的に切換わり、操向ブレーキシリンダ(77)を作動させて第2油圧モータ(27)の出力軸(62)を制動し、直進操作時の出力軸(62)の左右操向回転を阻止する一方、副変速機構(32)の中立操作によって直進ソレノイド(75)が励磁してクラッチシリンダ(78)を作動させ、第2油圧モータ(27)の駆動力を出力軸(62)に伝える操向クラッチ(79)をクラッチシリンダ(78)によって切動作させ、操向駆動を中止させるように構成している。
【0023】
さら、図6に示す如く、前記操向ハンドル(19)を固定させるハンドル操作軸(80)下端部にギヤ(81)を設け、この後方の回転軸(82)に取付けるセクタギヤ(83)に前記ギヤ(81)を噛合せると共に、前記ギヤ(81)下方のハンドル操作軸(80)下端に直進位置決めカム板(84)を固定させ、軸(85)回りに回転自在な直進アーム(86)先端のローラ(87)をカム板(84)のノッチ(88)にバネ(89)によって係脱自在に弾圧係入させ、操向ハンドル(19)を左右回転自在に直進位置に支持させ、操向ハンドル(19)の直進支持を直進アーム(86)を介して検出するオンオフスイッチ型直進センサ(90)を設けている。また、前記回転軸(82)に操向出力アーム(91)の一端を固定させ、操向ハンドル(19)を直進位置に戻す左右一対の直進バネ(92)(92)と、前記バネ(92)に抗して操向ハンドル(19)の回転速度を遅くする戻り抵抗アブソーバ(93)を、前記出力アーム(91)に連結させ、操向ハンドル(19)を左右に回転させる手動操作を行ったとき、ハンドル(19)から作業者が手を離すことにより、ハンドル(19)を緩やかに直進位置に自動的に戻し、作業者によるハンドル(19)直進戻し操作を省くと共に、スライドポテンショメータ型操向角度センサ(94)を前記出力アーム(91)に連結させ、操向ハンドル(19)の操向操作量を操向角度センサ(94)によって検出させるように構成している。
【0024】
さらに、図7に示す如く、前記主変速レバー(69)の変速操作位置及び中立位置及び前後進切換動作を検出するポテンショメータ型主変速センサ(95)と、前記副変速機構(32)を切換える副変速レバー(96)の変速操作位置及び中立位置を検出するポテンショメータ型副変速センサ(97)と、作業者が切換える撮形手元操作部材(98)の操作によって操向ハンドル(19)の切れ角増大に対する車速の減速比を変更させるボリューム形旋回感度設定器(99)と、前記左右車速センサ(60)(61)及び直進センサ(90)を、マイクロコンピュータで形成する変速操向コントローラ(100)に入力接続させる。
【0025】
さらに、前記変速モータ(70)を正転または逆転させる増速及び減速回路(101)(102)を前記コントローラ(100)に接続させ、主変速レバー(69)操作量(操作角度)に対して変速モータ(70)による第1油圧ポンプ(23)の斜板(23a)角を略正比例させて変化させ、主変速レバー(69)の傾き操作に応じた車速を得ると共に、前記中立バルブ(72)を切換えて変速ブレーキシリンダ(73)を作動させる主変速回路(103)を前記コントローラ(100)に接続させ、主変速レバー(69)中立時に第1油圧モータ(24)の出力軸(31)を停止維持させ、主変速レバー(69)中立操作状態下での第1油圧モータ(24)による走行クローラ(2)の駆動を阻止している。
【0026】
さらに、前記操向モータ(74)を正転または逆転させる左右旋回回路(104)(105)を前記コントローラ(100)に接続させ、操向ハンドル(19)の操向操作量(左右回転角度)に対して操向モータ(74)による第2油圧ポンプ(26)の斜板(26a)を略正比例させて変化させ、また図8の旋回出力線図に示す如く、主変速レバー(69)の前進操作時と後進操作時とでは、操向ハンドル(19)の左右回転に対して左右旋回出力を逆にし、前進時と後進時とで逆ハンドルになるのを防ぎ、四輪自動車と同じ操向動作を行わせて前後進させる。また、主変速レバー(69)が中立のときは、第2油圧ポンプ(26)の斜板(26a)角を零に保ち、第2油圧モータ(27)の出力軸(62)を停止維持し、主変速中立状態下でのハンドル(19)操作による旋回動作を阻止すると共に、操向ハンドル(19)切れ角に応じて大きくなる第2油圧ポンプ(26)の斜板(26a)角の絶対値を主変速レバー(69)操作角度の絶対値と比例するように制御し、操向ハンドル(19)切れ角が一定のときに車速を変化させても旋回半径を一定に保ち、四輪自動車と同じ操向動作で旋回させる。また、直進バルブ(76)を切換えて操向ブレーキシリンダ(77)及びクラッチシリンダ(78)を作動させる直進回路(106)を前記コントローラ(100)に接続させ、副変速中立またはハンドル(19)直進によって出力軸(62)を自動的に停止させる。また、未刈り穀稈列に対する刈取部(8)の位置を検出させる操向センサ(111)と、前記センサ(111)の検出結果に基づき操向モータ(74)を自動制御する操向回路(112)を設け、操向ハンドル(19)の手動操作による操向角度センサ(94)入力を優先させ乍ら操向センサ(111)入力によって操向モータ(74)を作動させ、未刈り穀稈列に沿わせて進路を自動的に修正させ、収穫作業を行わせる。
【0027】
上記から明らかなように、左右走行クローラ(2)(2)を駆動する第1油圧ポンプ(23)及び第1油圧モータ(24)と、左右走行クローラ(2)(2)の駆動速度に差を生じさせる第2油圧ポンプ(26)及び第2油圧モータ(27)を設ける移動農機において、主変速レバー(69)操作量を検出して第1油圧ポンプ(23)の出力制御を行う変速アクチュエータである変速モータ(70)と、操向ハンドル(19)操作量を検出して第2油圧ポンプ(26)の出力制御を行う操向アクチュエータである操向モータ(74)を設け、変速モータ(70)と操向モータ(74)を作動させる変速操向コントローラ(100)に主変速レバー(69)操作量と操向ハンドル(19)操作量を各センサ(95)(94)から入力させて走行変速制御と操向制御を行い、主変速レバー(69)及び操向ハンドル(19)と第1及び第2油圧ポンプ(23)(26)を相互に連結させる機構を不要にし、組立調整作業及び部品管理の簡略化などを行い、取扱い作業性の向上並びに走行変速及び操向性能の多様化などを図る。
【0028】
また、主変速レバー(69)操作量に対して第1油圧モータ(24)出力を比例させて変化させ、主変速レバー(69)の操作角度に応じた車速を得ると共に、主変速レバー(69)の前進操作と後進操作とで操向アクチュエータ(74)による左右走行クローラ(2)(2)の操向制御動作を逆にし、前後輪を備える走行車と同様の感覚で操向操作を行わせる。
【0029】
また、主変速レバー(69)が中立のときに第2油圧モータ(27)の出力をオフ維持させ、停止時に操向ハンドル(19)の操作によって走行クローラ(2)が旋回動作するの防止すると共に、操向ハンドル(19)操作量と第2油圧モータ(27)出力を比例させて変化させ、操向ハンドル(19)の操作量が略一定に維持されている状態下で、第2油圧モータ(27)出力である第2油圧ポンプ(26)の斜板(26a)角の絶対値を主変速レバー(69)操作量であるレバー(69)傾き角の絶対値と比例させることにより、操向ハンドル(19)操作量が一定のとき、車速を変化させても走行クローラ(2)の旋回半径が同一に保たれる。
【0030】
さらに、図9、図10の車速出力線図に示す如く、操向ハンドル(19)の切れ角の増大に伴い、主変速レバー(69)変速位置で決定される車速を減速させるもので、主変速レバー(69)を一定位置に保ち乍らハンドル(19)切れ角に比例させて減速させ、ハンドル(19)を直進に戻すだけでレバー(69)速度に自動的に戻ると共に、ハンドル(19)最大切り角でスピンターン速度に減速され、またハンドル(19)の直進を中心とする不感帯(約15度の回転角度)でレバー(69)速度を保たせ、収穫作業中に未刈り穀稈列に沿わせる条合せ(進路修正)のための操向操作を行っても、走行速度が減速されたり増速されて収穫作業途中に走行速度が不均一に変化するのを防ぎ、作業者の運転感覚とコンバインの走行動作との間にずれが生じることなく適正な操向操作を行わせる。
【0031】
また、前記副変速センサ(97)によって検出する副変速レバー(96)の低速及び中速お呼び高速の切換(低速収穫作業、標準収穫作業、路上走行の切換)、または手元操作部材(98)を用いた作業者の手動切換により、図10のように、鋭敏な旋回、通常間旋回、滑らかな旋回となるように減速比を変化させる制御を、前記センサ(97)の自動または前記部材(98)の手動によって行わせ、作業内容、圃場条件、作物状況などに適応させた旋回性能を得る。
【0032】
上記から明らかなように、主変速レバー(69)操作量によって決定される車速を操向ハンドル(19)操作量に比例させて減速させ、走行クローラ(2)を駆動するエンジン(21)負荷を旋回時に低減させると共に、一方の走行クローラ(2)を中心にもう一方の走行クローラ(2)を旋回させるスピンターン動作に直進動作から連続的に減速させ乍ら移行させると共に、操向ハンドル(19)操作量に対して車速の減速比を変更させ、圃場条件に適した操向動作を得るもので、操向ハンドル(19)操作量に対して車速の減速比を変更させる手元操作部材(98)を設け、運転作業者に適した操向動作を得る。
【0033】
また、操向ハンドル(19)の最大操作によってスピンターン動作を行わせ、主変速レバー(69)の操作を行うことなく、圃場枕地での方向転換乃至直進走行作業を操向ハンドル(19)操作だけで適正走行速度によって行い、農作業中の直進走行及び進路修正動作と、圃場枕地で次作業工程位置に向けて方向転換させるスピンターン動作とを、連続した一連の操向操作だけでスムーズに行わせると共に、操向ハンドル(19)の直進付近の操作に対して車速を略一定に保ち、農作業中に作物列または畦などに機体を沿わせる操向操作を行っても走行速度が不均一に変化するのを防止し、略同一走行速度を保ち乍ら農作業中の進路修正を行い、作業者の運転感覚と機体の走行動作とを略一致させて適正な操向操作を行わせる。
【0034】
さらに、左右走行クローラ(2)(2)を駆動する第1油圧ポンプ(23)及び第1油圧モータ(24)と、左右走行クローラ(2)(2)の駆動速度に差を生じさせる第2油圧ポンプ(26)及び第2油圧モータ(27)を設ける移動農機において、操向ハンドル(19)操作量を検出して第2油圧ポンプ(26)の出力制御を行う操向モータ(74)を設け、副変速レバー(96)の中立を副変速センサ(97)によって検出して第2油圧ポンプ(26)及び第2油圧モータ(27)による操向動作を中止させ、操向モータ(74)を作動させるコントローラ(100)に操向ハンドル(19)操作量を入力させて操向制御を行い、副変速機構(32)の中立によって第2油圧モータ(27)の操向動作を禁止させるロック機構を不要にし、組立調整作業及び部品管理の簡略化などを行い、取扱い作業性の向上並びに走行変速及び操向性能の多様化などを図るもので、副変速レバー(96)の中立を副変速センサ(97)によって検出して第2油圧ポンプ(26)の斜板(26a)を中立に維持させるように操向モータ(74)を中立復帰動作させることにより、副変速の中立によって操向モータ(74)の動作を制限するだけで副変速中立時の旋回動作を自動的に阻止できると共に、副変速レバー(96)の中立を副変速センサ(97)によって検出して第2油圧モータ(27)の出力をオフにする旋回クラッチ(79)を設けることにより、第2油圧モータ(27)による走行クローラ(2)の旋回駆動力を旋回クラッチ(79)によって入切し、副変速中立時に自動的に旋回クラッチ(79)を切にして走行クローラ(2)の旋回動作を阻止できる。
【0035】
さらに、図11の旋回出力線図に示す如く、前記主変速レバー(69)の操作角度を検出する主変速センサ(95)入力に対し、操向角度センサ(94)に基づきコントローラ(100)から出力される操向モータ(74)制御出力を二次曲線形に変化させ、容積効率が低い斜板(26a)の小さいときに車速が遅くても操向ハンドル(19)を少し切るだけで斜板(26a)を大きく変化させ、第2油圧ポンプ(26)及び油圧モータ(27)の特性を電気的に補正して遅い車速であっても敏感に操向モータ(74)により第2油圧ポンプ(26)を旋回制御し、主変速レバー(69)の変速全域で操向ハンドル(19)の切れ角に対して走行クローラ(2)の旋回半径を略同一に保つもので、主変速レバー(69)が高速のときよりも低速のときの操向ハンドル(19)操作量に対する第2油圧ポンプ(26)制御量の割合を大きくし、第2油圧ポンプ(26)出力が低効率になる低速域で車速が遅いときであっても操向ハンドル(19)の少量操作によって適正な旋回動作を行わせ、操向ハンドル(19)の操作量と走行クローラ(2)の旋回半径を一致させる。
【0036】
また、走行速度が遅くて動力伝達効率が低いときの第2油圧ポンプ(26)の操向制御を敏感に行わせ、主変速レバー(67)変速全域並びに操向ハンドル(19)操作全域において操向ハンドル(19)操作量と走行クローラ(2)旋回半径を一致させ、操向操作性及び操向機能の向上を図ると共に、主変速レバー(69)の中立を主変速センサ(95)によって検出して第2油圧ポンプ(26)を中立に維持させ、停止時の走行クローラ(2)の旋回動作を阻止し乍ら低速域の旋回性能を向上させ、操向ハンドル(19)の操作性向上並びに運転操作の簡略化などを図る。
【0037】
さらに、図12の旋回出力線図に示す如く、操向ハンドル(19)の切れ角を検出する操向角度センサ(94)入力に対し、直進位置を基準にしてハンドル(19)切れ角が小さい(約0〜10度の範囲)ときにコントローラ(100)から出力させる操向モータ(74)制御出力を大きく変化させ、ハンドル(19)切れ角が大きい(約10〜70度の範囲)ときにコントローラ(100)から出力させる操向モータ(74)制御出力を小さく変化させ、第2油圧ポンプ(26)及びモータ(27)の特性を電気的に補正して小さい切れ角のときにハンドル(19)操作に対して操向モータ(74)制御を敏感にし、低効率となる低出力域での第2油圧ポンプ(26)及びモータ(27)による走行クローラ(2)旋回を機敏に行わせるもので、操向ハンドル(19)の切れ角度が小さいときに操向制御出力の変化を大きくし、畦または作物列に走行進路を一致させる条合せ等の微少進路修正を行わせ、農作業中の直進走行時の操向性能の向上などを図る。
【0038】
また、操向ハンドル(19)の切れ角度が小さいときに敏感な操向制御を行い、操向ハンドル(19)の切れ角度が大きいときに鈍感な操向制御を行い、直進作業時の進路修正を適正に行い、また操向ハンドル(19)の誤操作による過剰進路修正を防止し、高速走行での方向転換などを安定良く行わせると共に、操向ハンドル(19)の操作量に対して第2油圧ポンプ(26)の制御出力を非直線的に変化させ、第2油圧ポンプ(26)の特性または農作業内容などに適応させた操向動作を設定し、操向機能並びに取扱い操作性の向上などを図る。
【0039】
本実施例は上記の如く構成するもので、図13のフローチャートに示す如く、主変速センサ(95)、副変速センサ(97)、操向角度センサ(94)、旋回感度設定器(99)、直進センサ(90)、左右車速センサ(60)(61)からコントローラ(100)に入力させる。そして、副変速レバー(96)が中立のときに旋回出力切制御を行って第2油圧モータ(27)を停止維持し、かつ操向クラッチ(79)を切動作させると共に、副変速高速切換によって図8の旋回出力による路上走行モードで旋回制御を行い、副変速中速切換並びに副変速低速切換によって図10乃至図12の出力線図に基づき主変速制御及び操向制御を行わせるもので、主変速レバー(69)が中立のとき、旋回出力切制御によって第2油圧モータ(27)の出力軸(62)を停止させ、かつ主変速制動制御によって第1油圧モータ(24)の出力軸(31)を停止させると共に、操向ハンドル(19)が直進位置のとき、操向制動制御によって第2油圧モータ(27)の出力軸(62)を停止させる。また、副変速が中速または低速で、主変速が中立以外で、操向ハンドル(19)が直進以外に操作されることにより、主変速センサ(95)入力と操向角度センサ(94)入力によって走行速度(車速)及び操向角度及び操向方向が演算されて決定され、主変速及び操向制御によって変速モータ(70)及び操向モータ(74)を作動させ、左右走行クローラ(2)(2)の駆動速度を変更して条合せ進路修正並びに圃場枕地でのスピンターンによる方向転換を行い、連続的に穀稈を刈取って脱穀する収穫作業を行う。
【0040】
さらに、図14、図15に示す如く、主変速センサ(95)によって切換える電磁変速バルブ(107)と、前記チャージポンプ(68)に変速バルブ(107)を介して接続させる変速シリンダ(108)を設け、図7に示す変速モータ(70)を省き、増速及び減速回路(101)(102)を介してコントローラ(100)に変速バルブ(107)の増速ソレノイド及び減速ソレノイドを接続させ、前記主変速センサ(95)の検出結果に基づき変速バルブ(107)を自動的に切換え、変速シリンダ(108)を作動させて第1油圧ポンプ(23)の斜板(23a)角度を変更させ、第1油圧モータ(24)の出力軸(31)の回転数を無段階に変化させたり、逆転させる走行変速動作を行わせ、また前記斜板(23a)の角度調節動作によって変速バルブ(107)が中立復帰するフィードバック動作を行わせ、主変速レバー(69)の操作量に比例させて前記斜板(23a)角度を変化させ、第1油圧モータ(24)の回転数を変更させる。さらに、操向角度センサ(94)によって切換える電磁操向バルブ(109)と、前記チャージポンプ(68)に操向バルブ(109)を介して接続させる操向シリンダ(110)を設け、図7に示す操向モータ(74)を省き、左及び右旋回回路(104)(105)を介してコントローラ(100)に操向バルブ(109)の左旋回ソレノイド及び右旋回ソレノイドを接続させ、前記操向角度センサ(94)の検出結果に基づき操向バルブ(109)を自動的に切換え、操向シリンダ(110)を作動させて第2油圧ポンプ(26)の斜板(26a)角度を変更させ、第2油圧モータ(27)の出力軸(62)の回転数を無段階に変化させたり、逆転させる左右操向動作を行わせ、走行方向を左右に変更して圃場枕地で方向転換させるスピンターン動作と進路を修正する条合せ動作を行わせる。また前記斜板(26a)の角度調節動作によって操向バルブ(109)が中立復帰するフィードバック動作を行わせ、操向ハンドル(19)の操作量に比例させて前記斜板(26a)角度を変化させ、第2油圧モータ(27)の回転数を変更させる。また、未刈り穀稈列に対する刈取部(8)の位置を検出させる操向センサ(111)と、前記センサ(111)の検出結果に基づき操向バルブ(109)を自動制御する操向回路(112)を設け、操向ハンドル(19)の手動操作による操向角度センサ(94)入力を優先させ乍ら操向センサ(111)入力によって操向シリンダ(110)を作動させ、未刈り穀稈列に沿わせて進路を自動的に修正させ、収穫作業を行わせる。上記のように、変速アクチュエータとして変速モータ(70)または変速シリンダ(108)を用い、操向アクチュエータとして操向モータ(74)または操向シリンダ(110)を用いる。なお、図14において、操向バルブ(109)に電磁比例弁(113)(114)を設け、前記各回路(104)(105)によって比例弁(113)(114)とバルブ(109)を作動させる。
【0047】
【発明の効果】
(1)請求項1記載の本発明では、例えば、電動モータまたは油圧シリンダなどの操向アクチュエータ(74)を作動させるコントローラ(100)に操向ハンドル(19)操作量を入力させて操向制御を行うことができ、副変速機構(32)の中立によって第2油圧モータ(27)の操向動作を禁止させるロック機構を不要にし、組立調整作業及び部品管理の簡略化などを容易に行うことができ、取扱い作業性の向上並びに走行変速及び操向性能の多様化などを容易に図ることができるものである。
しかも、操向ハンドル(19)の切れ角度が小さいときに操向制御出力の変化が大きくなるように構成したもので、畦または作物列に走行進路を一致させる条合せ等の微少進路修正を容易に行うことができ、農作業中の直進走行時の操向性能の向上などを容易に図ることができ
【0048】
(2)請求項2記載の本発明では、例えば、電動モータまたは油圧シリンダなどの操向アクチュエータ(74)を作動させるコントローラ(100)に操向ハンドル(19)操作量を入力させて操向制御を行うことができ、副変速機構(32)の中立によって第2油圧モータ(27)の操向動作を禁止させるロック機構を不要にし、組立調整作業及び部品管理の簡略化などを容易に行うことができ、取扱い作業性の向上並びに走行変速及び操向性能の多様化などを容易に図ることができるものである。
しかも、操向ハンドル(19)の切れ角度が小さいときに敏感な操向制御を行い、操向ハンドル(19)の切れ角度が大きいときに鈍感な操向制御を行うように構成したもので、直進作業時の進路修正を適正に行うことができ、また操向ハンドル(19)の誤操作による過剰進路修正を容易に防止でき、高速走行での方向転換などを安定良く行うことができ
【図面の簡単な説明】
【図1】コンバインの全体側面図。
【図2】同平面図。
【図3】走行ミッション部の側面図。
【図4】変速及び操向駆動説明図。
【図5】変速及び操向油圧回路図。
【図6】操向ハンドル部の平面説明図。
【図7】変速及び操向制御回路図。
【図8】操向ハンドルと旋回出力を示す線図。
【図9】操向ハンドルと変速出力を示す線図。
【図10】操向ハンドルと変速出力を示す線図。
【図11】主変速レバーと旋回出力を示す線図。
【図12】操向ハンドルと旋回出力を示す線図。
【図13】図7の変速操向制御フローチャート。
【図14】図5の変形例を示す油圧回路図。
【図15】図7の変形例を示す制御回路図。
【符号の説明】
(2) 走行クローラ
(19) 操向ハンドル
(23) 第1油圧ポンプ
(24) 第1油圧モータ
(26) 第2油圧ポンプ
(27) 第2油圧モータ
(74) 操向モータ(操向アクチュエータ)
(79) 旋回クラッチ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a mobile agricultural machine such as a combine harvester that continuously cuts and thresh uncut cereal meal.
[0002]
[Problems to be solved by the invention]
Conventionally, a first hydraulic pump and a first hydraulic motor that drive the left and right traveling crawlers, and a second hydraulic pump and a second hydraulic motor that cause a difference in driving speed between the left and right traveling crawlers are provided. Has been developed to connect the steering handle to the second hydraulic pump mechanically and operate the first and second hydraulic pumps in relation to each other. The mechanism and the steering handle coupling mechanism of the second hydraulic pump are required to be connected to each other, and the steering operation of the second hydraulic pump is prevented even if the steering handle is operated when the sub-shift is neutral. A locking mechanism is required, and adjustment work during assembly and management of component parts cannot be easily performed, and handling workability can be improved and traveling speed change and steering performance can be diversified easily. Absent There is a problem.
[0009]
[Means for Solving the Problems]
  Therefore, in the present invention,Detecting the steering handle operation amount in a mobile agricultural machine provided with a first hydraulic pump and a first hydraulic motor that drive the left and right traveling crawlers and a second hydraulic pump and a second hydraulic motor that cause a difference in the driving speed of the left and right traveling crawlers And providing a steering actuator for controlling the output of the second hydraulic pump, detecting neutrality of the sub-shift and stopping the steering operation by the second hydraulic pump and the second hydraulic motor,It is characterized in that the change of the steering control output becomes large when the steering handle turning angle is smallTransferIt provides a moving machine.
[0010]
  Further, according to the present invention, in a mobile agricultural machine provided with a first hydraulic pump and a first hydraulic motor that drive the left and right traveling crawlers, and a second hydraulic pump and a second hydraulic motor that cause a difference in the driving speed of the left and right traveling crawlers. A steering actuator that detects the direction of the steering handle and controls the output of the second hydraulic pump is provided, detects the neutral of the sub-shift and stops the steering operation by the second hydraulic pump and the second hydraulic motor. ,It is configured to perform sensitive steering control when the steering handle turning angle is small, and to perform insensitive steering control when the steering handle turning angle is large.TransferMoving machineIs to provide.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is an overall side view, and FIG. 2 is a plan view thereof. In FIG. 1, (1) is a track frame on which a traveling crawler (2) is installed, (3) is a machine base installed on the track frame (1), (4) is a threshing section in which the feed chain (5) is stretched on the left side and the handling cylinder (6) and the processing cylinder (7) are built in. (8) is the cutting blade (9) and the culm feeding mechanism (10 ), Etc., (11) is a hydraulic lifting cylinder that raises and lowers the cutting part (8) via the cutting frame (12), (13) is a rejection processing part that faces the end of the rejection chain (14), (15) is a grain tank that carries the grain from the threshing section (4) through the milled cylinder (16), (17) is a discharge auger that carries the grain of the tank (15) out of the machine, 18) is a driving cabin equipped with a round steering handle (19) and a driver's seat (20), and (21) is a driving key. Bottle (18) an engine provided below, are configured to threshing continuously harvests culms.
[0013]
Further, as shown in FIGS. 3 and 4, a main speed change comprising a pair of first hydraulic pump (23) and first hydraulic motor (24) on the upper surface of the transmission case (22) that drives the traveling crawler (2). The hydraulic continuously variable transmission mechanism (25) for traveling, which is a mechanism, and the hydraulic continuously variable transmission for turning, which is a steering mechanism including a pair of second hydraulic pump (26) and a second hydraulic motor (27). A mechanism (28) is juxtaposed, and the driving force of the output shaft (21a) of the engine (21) is countered to the input shaft (29) of the first and second hydraulic pumps (23) and (26) for shifting and steering. The belt is transmitted through the case (30), and each hydraulic pump (23) (26) is driven.
[0014]
Then, the output shaft (31) of the first hydraulic motor (24) is driven through the auxiliary transmission mechanism (32) and the differential mechanism (33) through the drive wheels (34) ( 34), the differential mechanism (33) has a pair of symmetrical planetary gear mechanisms (35) (35). The planetary gear mechanism (35) includes one sun gear (36), three planetary gears (37) that mesh with the outer periphery of the sun gear (36), and a ring gear (38) that meshes with each planetary gear (37). Forming.
[0015]
The planetary gears (37) are rotatably supported by carriers (41) of a carrier shaft (40) coaxial with the sun gear shaft (39), and left and right sun gears (36) (36) are supported. The ring gear (38) has internal teeth that mesh with each planetary gear (37), and the carrier shaft (40) on the same axis as the sun gear shaft (39). It is pivotally supported by the shaft.
[0016]
The traveling hydraulic continuously variable transmission mechanism (25) controls forward / reverse rotation and rotation speed of the first hydraulic motor (24) by adjusting the angle of the rotating swash plate of the first hydraulic pump (23). The rotation output of the first hydraulic motor (24) is transmitted from the transmission gear (42) of the output shaft (31) to the sun gear shaft via the gears (43) (44) (45) and the auxiliary transmission mechanism (32). It transmits to the center gear (46) fixed to (39), and it is comprised so that a sun gear (36) may rotate. The auxiliary transmission mechanism (32) includes an auxiliary transmission shaft (47) having the gear (45) and a parking brake shaft (49) having a gear (48) meshing with the center gear (46). A low speed gear (50) (48), a medium speed gear (51) (52), and a high speed gear (53) (54) are provided between the shaft (47) and the brake shaft (49), and the auxiliary gear at the center position is provided. The sub-shift is switched between a low speed, a medium speed, and a high speed by a slider sliding operation of the speed change gear (51). Further, there is a sub-shift neutral (output off) between the low speed and medium speed of the sub-shift and between the medium speed and high speed. The transmission gear (42) of the output shaft (31) is meshedly connected to the PTO input gear (56) of the cutting PTO shaft (55) that transmits the rotational force to the cutting unit (8).
[0017]
Then, the driving force from the first hydraulic motor (24) transmitted to the sun gear shaft (39) through the center gear (46) is transferred to the left and right carrier shafts (40) through the left and right planetary gear mechanisms (35) and (35). ) (40), and the rotational output transmitted to each carrier shaft (40) (40) is transmitted to the left and right drive wheels via a pair of left and right reduction gears (57) (57) (58) (58). (34) The left and right vehicle speed sensors that transmit to the left and right axles (59) and (59) of the (34) and detect the vehicle speed of the left and right traveling crawlers (2) and (2) based on the rotational speeds of the left and right gears (58) and (58). (60) and (61) are provided.
[0018]
Further, the turning hydraulic continuously variable transmission mechanism (28) performs forward / reverse rotation switching and rotation speed control of the second hydraulic motor (27) by adjusting the angle change of the rotary swash plate of the second hydraulic pump (26). Rotation output is output from the output gear of the output shaft (62) of the second hydraulic motor (27) to the left and right input gears (65) and (66) of the turning input shaft (64) via the gear transmission mechanism (63). The left input gear (65) is engaged with the external teeth of the right ring gear (38), and the right input gear (66) is engaged with the external teeth of the left ring gear (38) via the reverse gear (67). And the left and right ring gears (38) and (38) are rotated at the same left and right rotational speed, and the left ring gear (38) is rotated forward to rotate the right ring gear (38). It is configured to reverse.
[0019]
When the driving of the second hydraulic motor (27) for turning is stopped and the first hydraulic motor (24) for driving is driven in a state where the left and right ring gears (38) are fixed stationary, the first hydraulic pressure is obtained. The rotational output from the motor (24) is transmitted from the center gear (46) to the left and right sun gears (36) at the same rotational speed, and the planetary gear (37), carrier (41) and reduction gear (57) of the left and right planetary gear mechanism (35). ) (58) is transmitted to the left and right axles (59) and (59) in the same rotational direction on the left and right and at the same rotational speed, and the machine body travels straight forward and backward. On the other hand, when the second hydraulic motor (27) for turning is driven to rotate in the forward and reverse directions while the first hydraulic motor (24) for traveling is stopped and the left and right sun gears (36) (36) are stationary and fixed. The left planetary gear mechanism (35) is rotated forward or reverse, and the right planetary gear mechanism (35) is rotated reversely or forwardly to rotate one of the left and right traveling crawlers (2) and (2) forward and the other. Is rotated backward, and the body is turned to the left or right (turning comfortably) on the spot to change the direction at the field headland.
[0020]
Further, when the second hydraulic motor (27) for turning is driven while the first hydraulic motor (24) for driving is driven, a difference occurs in the driving speed of the left and right traveling crawlers (2) and (2), and the airframe is moved. The left and right traveling crawlers (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) ) To increase the driving speed difference, stop or reverse one traveling crawler (2), turn the other traveling crawler (2) around the crawler (2), and move in a substantially V-shape. It is configured to allow a spin turn to change.
[0021]
Further, as shown in FIG. 5, a hydraulic charge pump (68) provided on the input shaft (29) and driven by the engine (21) in conjunction with the pumps (23) (26), and a travel shift lever (69). ) The electric transmission motor (70) to be switched by manual operation, the neutral valve (72) to be switched by operating the electromagnetic neutral solenoid (71) during the neutral operation of the travel transmission lever (69), and the valve (72) through the valve (72). A shift brake cylinder (73) connected to the charge pump (68) is provided. Then, the travel speed change lever (69) is operated to operate the speed change motor (70) to change the angle of the swash plate (23a) of the speed change pump (23), and the output shaft (31) of the first hydraulic motor (24). ) Is changed steplessly or reversely, and the forward / backward switching operation is performed to change the angle of the swash plate (23a) in proportion to the amount of operation of the traveling speed change lever (69). The rotational speed of (24) is changed, and the neutral valve (72) is automatically switched by the neutral operation of the electromagnetic neutral solenoid (71) by the neutral operation of the traveling speed change lever (69), so that the speed change brake cylinder (73) Is actuated to brake the output shaft (31) of the second hydraulic motor (24) to prevent forward and backward rotation of the output shaft (31) during the neutral operation.
[0022]
Further, the electromagnetic steering solenoid (75) is operated by the electric steering motor (74) which is switched by manual operation of the steering handle (19), and the linear operation of the steering handle (19) and neutral switching of the subtransmission mechanism (32). And a steering brake cylinder (77) and a clutch cylinder (78) connected to the charge pump (68) through the valve (76). Then, the steering handle (19) is operated to operate the steering motor (74) to change the swash plate (26a) angle of the second hydraulic pump (26), and the output of the second hydraulic motor (27). A left-right steering operation is performed to change the rotational speed of the shaft (62) steplessly or reversely, change the traveling direction to the left and right, change the direction at the field headland, and correct the course. Further, the angle of the swash plate (26a) is changed in proportion to the amount of operation of the steering handle (19) to change the rotational speed of the steering motor (27), and the steering handle (19) is operated in a straight line. By the neutral operation of the subtransmission mechanism (32), the linear solenoid (75) is excited and the linear valve (76) is automatically switched, and the steering brake cylinder (77) is operated to activate the second hydraulic motor (27). While braking the output shaft (62) and preventing the left and right steering rotation of the output shaft (62) during the rectilinear operation, the rectilinear solenoid (75) is excited by the neutral operation of the subtransmission mechanism (32), and the clutch cylinder ( 78), the steering clutch (79) for transmitting the driving force of the second hydraulic motor (27) to the output shaft (62) is turned off by the clutch cylinder (78), and the steering drive is stopped. It is.
[0023]
Further, as shown in FIG. 6, a gear (81) is provided at the lower end of the handle operating shaft (80) for fixing the steering handle (19), and the sector gear (83) attached to the rear rotating shaft (82) is provided with the gear (81). A linear movement cam (84) is fixed to the lower end of the handle operating shaft (80) below the gear (81) so that the gear (81) is engaged, and the front end of the linear movement arm (86) is rotatable around the axis (85). The roller (87) of the cam plate (84) is elastically engaged with the notch (88) of the cam plate (84) by a spring (89), and the steering handle (19) is supported at a straight position so as to be rotatable left and right. An on / off switch type linear sensor (90) for detecting the linear support of the handle (19) via the linear arm (86) is provided. In addition, one end of the steering output arm (91) is fixed to the rotating shaft (82), and the pair of left and right linear springs (92) (92) for returning the steering handle (19) to the linear movement position, and the spring (92 The return resistance absorber (93), which slows down the rotational speed of the steering handle (19) against this, is connected to the output arm (91), and the steering handle (19) is rotated left and right manually. When the operator removes the hand from the handle (19), the handle (19) is automatically returned to the straight position gently and automatically, and the operator does not need to return the handle (19) to go straight, and the slide potentiometer type operation is performed. A steering angle sensor (94) is connected to the output arm (91), and the steering operation amount of the steering handle (19) is detected by the steering angle sensor (94).
[0024]
Further, as shown in FIG. 7, a potentiometer-type main transmission sensor (95) for detecting a shift operation position, a neutral position and a forward / reverse switching operation of the main transmission lever (69) and a sub transmission mechanism (32) for switching the sub transmission mechanism (32). The turning angle of the steering handle (19) is increased by the operation of the potentiometer-type auxiliary transmission sensor (97) for detecting the shift operation position and the neutral position of the shift lever (96) and the photographing hand operating member (98) switched by the operator. The volume-type turning sensitivity setting device (99) for changing the reduction ratio of the vehicle speed with respect to the vehicle, the left and right vehicle speed sensors (60) (61), and the straight-ahead sensor (90) are arranged in a shift steering controller (100) formed by a microcomputer. Connect input.
[0025]
Further, an acceleration / deceleration circuit (101) (102) for rotating the transmission motor (70) forward or backward is connected to the controller (100), so that the operation amount (operation angle) of the main transmission lever (69) is reduced. The angle of the swash plate (23a) of the first hydraulic pump (23) by the speed change motor (70) is changed in a substantially direct proportion to obtain the vehicle speed according to the tilting operation of the main speed change lever (69), and the neutral valve (72 ) Is switched to operate the shift brake cylinder (73) and the controller (100) is connected to the controller (100), and the output shaft (31) of the first hydraulic motor (24) when the main shift lever (69) is neutral. Is stopped and the driving crawler (2) is prevented from being driven by the first hydraulic motor (24) under the neutral operation state of the main transmission lever (69).
[0026]
Further, a left / right turning circuit (104) (105) for rotating the steering motor (74) forward or backward is connected to the controller (100), and the steering operation amount (left / right rotation angle) of the steering handle (19) is connected. The swash plate (26a) of the second hydraulic pump (26) by the steering motor (74) is changed in a substantially direct proportion, and the main transmission lever (69) of the main transmission lever (69) is changed as shown in the turning output diagram of FIG. During forward operation and reverse operation, the left / right turning output is reversed with respect to the left / right rotation of the steering handle (19) to prevent reverse steering during forward and reverse movements. Move forwards and backwards. When the main transmission lever (69) is neutral, the swash plate (26a) angle of the second hydraulic pump (26) is kept at zero, and the output shaft (62) of the second hydraulic motor (27) is stopped and maintained. The absolute rotation angle of the swash plate (26a) of the second hydraulic pump (26) is prevented while the turning operation by the steering wheel (19) operation in the neutral state of the main speed change is prevented and the steering wheel (19) is increased in accordance with the turning angle. The value is controlled to be proportional to the absolute value of the operation angle of the main transmission lever (69), and the turning radius is kept constant even if the vehicle speed is changed when the steering angle of the steering handle (19) is constant. Rotate with the same steering motion as. Further, a straight travel circuit (106) for operating the steering brake cylinder (77) and the clutch cylinder (78) by switching the straight travel valve (76) is connected to the controller (100), so that the sub-shift neutral or the handle (19) straight travels. To automatically stop the output shaft (62). Further, a steering sensor (111) for detecting the position of the cutting unit (8) with respect to the uncut grain row, and a steering circuit for automatically controlling the steering motor (74) based on the detection result of the sensor (111) ( 112), the steering angle sensor (94) input by manual operation of the steering handle (19) is prioritized, and the steering motor (74) is operated by the steering sensor (111) input to The course is automatically corrected along the line, and the harvesting work is performed.
[0027]
As is apparent from the above, there is a difference between the driving speeds of the first hydraulic pump (23) and the first hydraulic motor (24) that drive the left and right traveling crawlers (2) and (2) and the left and right traveling crawlers (2) and (2). Shift actuator that controls the output of the first hydraulic pump (23) by detecting the operation amount of the main transmission lever (69) in a mobile agricultural machine provided with the second hydraulic pump (26) and the second hydraulic motor (27) And a steering motor (74) which is a steering actuator for detecting the operation amount of the steering handle (19) and controlling the output of the second hydraulic pump (26). 70) and the shift control controller (100) for operating the steering motor (74), the operation amount of the main transmission lever (69) and the operation amount of the steering handle (19) are input from the sensors (95) (94). Traveling A mechanism for performing speed control and steering control, connecting the main transmission lever (69) and the steering handle (19), and the first and second hydraulic pumps (23) and (26) to each other is eliminated, and assembly adjustment work and By simplifying parts management, etc., we will improve handling workability and diversify traveling speed and steering performance.
[0028]
Further, the output of the first hydraulic motor (24) is changed in proportion to the operation amount of the main transmission lever (69) to obtain the vehicle speed according to the operation angle of the main transmission lever (69), and the main transmission lever (69 ), The steering control operation of the left and right traveling crawlers (2) and (2) by the steering actuator (74) is reversed between the forward operation and the reverse operation, and the steering operation is performed in the same manner as a traveling vehicle having front and rear wheels. Make it.
[0029]
Further, the output of the second hydraulic motor (27) is kept off when the main transmission lever (69) is neutral, and the traveling crawler (2) is prevented from turning by operating the steering handle (19) when stopped. At the same time, the operation amount of the steering handle (19) and the output of the second hydraulic motor (27) are changed in proportion to each other, and the second hydraulic pressure is maintained in a state where the operation amount of the steering handle (19) is maintained substantially constant. By making the absolute value of the swash plate (26a) angle of the second hydraulic pump (26) as the motor (27) output proportional to the absolute value of the lever (69) tilt angle as the operation amount of the main transmission lever (69), When the operation amount of the steering handle (19) is constant, the turning radius of the traveling crawler (2) is kept the same even if the vehicle speed is changed.
[0030]
Furthermore, as shown in the vehicle speed output diagrams of FIGS. 9 and 10, the vehicle speed determined at the shift position of the main transmission lever (69) is reduced as the turning angle of the steering handle (19) increases. While the speed change lever (69) is maintained at a fixed position, the speed is reduced in proportion to the turning angle of the handle (19), and the lever (69) is automatically returned to the speed by simply returning the handle (19) to the straight line. ) Reduced to the spin turn speed at the maximum cutting angle, and kept the lever (69) speed in a dead zone (rotation angle of about 15 degrees) centered on the straight travel of the handle (19), and unharmed cereals during harvesting Even if the steering operation for the alignment along the line (the course correction) is performed, the traveling speed is reduced or increased to prevent the traveling speed from changing unevenly during the harvesting work. Between driving sensation and combine driving To perform proper steering operation without deviation occurs in.
[0031]
Further, the auxiliary transmission lever (96) detected by the auxiliary transmission sensor (97) is switched between a low speed and a medium speed and a high speed (low speed harvesting work, standard harvesting work, switching on the road), or a hand operating member (98). As shown in FIG. 10, the control of changing the reduction ratio so as to make a sharp turn, a normal turn, and a smooth turn can be performed automatically by the sensor (97) or by the member (98). ) Is performed manually to obtain turning performance adapted to the work content, field conditions, crop conditions, and the like.
[0032]
As apparent from the above, the vehicle speed determined by the operation amount of the main transmission lever (69) is decelerated in proportion to the operation amount of the steering handle (19), and the engine (21) load for driving the traveling crawler (2) is reduced. The speed is reduced during turning, and the spin turn operation for turning the other traveling crawler (2) around the one traveling crawler (2) is continuously decelerated from the straight traveling operation, and the steering handle (19 ) The speed reduction ratio of the vehicle speed is changed with respect to the operation amount to obtain a steering operation suitable for the field conditions. The hand operating member (98) for changing the speed reduction ratio of the vehicle speed with respect to the steering handle (19) ) To obtain a steering operation suitable for the driving worker.
[0033]
Further, the steering handle (19) performs a spin turn operation by the maximum operation of the steering handle (19) and performs a direction change or a straight traveling operation on the field headland without operating the main transmission lever (69). Performs straight running and course correction operations during farm work and spin turn operation to change the direction to the next work process position in the field headland with just a series of steering operations. In addition, the vehicle speed is kept substantially constant with respect to the operation of the steering handle (19) in the vicinity of the straight line, and the traveling speed is not affected even if the steering operation is performed along the crop row or the fence during farming. A uniform change is prevented, the course is corrected during farm work while maintaining substantially the same traveling speed, and the operator's driving sensation and the traveling motion of the aircraft are substantially matched to perform an appropriate steering operation.
[0034]
Furthermore, the first hydraulic pump (23) and the first hydraulic motor (24) that drive the left and right traveling crawlers (2) and (2) and the second traveling speed that causes a difference between the driving speeds of the left and right traveling crawlers (2) and (2). In the mobile agricultural machine provided with the hydraulic pump (26) and the second hydraulic motor (27), the steering motor (74) for detecting the operation amount of the steering handle (19) and controlling the output of the second hydraulic pump (26) is provided. The neutral position of the auxiliary transmission lever (96) is detected by the auxiliary transmission sensor (97) to stop the steering operation by the second hydraulic pump (26) and the second hydraulic motor (27), and the steering motor (74) The controller (100) is operated to input the operation amount of the steering handle (19) to perform the steering control, and the lock for prohibiting the steering operation of the second hydraulic motor (27) by the neutral of the auxiliary transmission mechanism (32). Eliminate mechanism In order to improve assembly work and parts management, improve handling workability, diversify traveling speed and steering performance, etc., the neutral position of the auxiliary transmission lever (96) is changed to the auxiliary transmission sensor (97). The steering motor (74) is made to return to neutral so that the swash plate (26a) of the second hydraulic pump (26) is maintained neutral, and the neutralization of the sub-shift is performed. Only by restricting the operation, the turning operation at the neutral position of the sub-shift can be automatically prevented, and the neutral of the sub-shift lever (96) is detected by the sub-shift sensor (97) and the output of the second hydraulic motor (27) is detected. By providing the turning clutch (79) to be turned off, the turning driving force of the traveling crawler (2) by the second hydraulic motor (27) is turned on and off by the turning clutch (79), and automatically when the sub-shift is neutral. Rotating the turning operation of the clutch (79) and earnestly to travel crawlers (2) can be prevented.
[0035]
Further, as shown in the turning output diagram of FIG. 11, in response to the input of the main transmission sensor (95) for detecting the operation angle of the main transmission lever (69), from the controller (100) based on the steering angle sensor (94). By changing the control output of the steering motor (74) output to a quadratic curve shape, even if the steering speed (19) is slightly turned even if the vehicle speed is slow when the swash plate (26a) having low volumetric efficiency is small, The plate (26a) is greatly changed, and the characteristics of the second hydraulic pump (26) and the hydraulic motor (27) are electrically corrected to make the second hydraulic pump sensitively by the steering motor (74) even at a slow vehicle speed. (26) is controlled to turn, and the turning radius of the traveling crawler (2) is kept substantially the same with respect to the turning angle of the steering handle (19) over the entire shift range of the main transmission lever (69). 69) lower than at high speed The ratio of the control amount of the second hydraulic pump (26) to the operation amount of the steering handle (19) at the time is increased, and the vehicle speed is slow in the low speed range where the output of the second hydraulic pump (26) becomes low efficiency. In addition, an appropriate turning motion is performed by a small amount of operation of the steering handle (19), and the operation amount of the steering handle (19) and the turning radius of the traveling crawler (2) are matched.
[0036]
Further, the steering control of the second hydraulic pump (26) when the traveling speed is low and the power transmission efficiency is low is made sensitive, and the steering operation is performed in the entire range of the main transmission lever (67) and the steering handle (19). The steering wheel (19) operation amount and the traveling crawler (2) turn radius are matched to improve steering operability and steering function and detect the neutral position of the main transmission lever (69) by the main transmission sensor (95). As a result, the second hydraulic pump (26) is maintained in a neutral state to prevent the traveling crawler (2) from turning when it is stopped, while improving the turning performance in the low speed region and the operability of the steering handle (19). In addition, simplification of driving operations will be attempted.
[0037]
Furthermore, as shown in the turning output diagram of FIG. 12, the steering angle of the steering wheel (19) is small relative to the steering angle sensor (94) input for detecting the steering angle of the steering steering wheel (19) with respect to the straight traveling position. When the steering motor (74) control output to be output from the controller (100) is greatly changed (in the range of about 0 to 10 degrees) and the steering wheel (19) has a large turning angle (in the range of about 10 to 70 degrees) The steering motor (74) control output outputted from the controller (100) is changed small, and the characteristics of the second hydraulic pump (26) and the motor (27) are electrically corrected, and the handle (19 ) The steering motor (74) control is made sensitive to the operation, and the traveling crawler (2) turning by the second hydraulic pump (26) and the motor (27) in the low output range where the efficiency is low is made agile. Then, when the turning angle of the steering handle (19) is small, the change of the steering control output is increased, and the minor course correction such as the matching of the traveling course with the culvert or the crop row is performed, and the straight traveling during the farm work To improve steering performance during driving.
[0038]
In addition, sensitive steering control is performed when the steering handle (19) has a small turning angle, and insensitive steering control is performed when the steering handle (19) has a large cutting angle. In addition, the excessive course correction due to an erroneous operation of the steering handle (19) is prevented, the direction change at a high speed is performed stably, and the second operation is performed with respect to the operation amount of the steering handle (19). The control output of the hydraulic pump (26) is changed non-linearly, and the steering operation adapted to the characteristics of the second hydraulic pump (26) or the contents of farm work is set to improve the steering function and handling operability, etc. Plan.
[0039]
This embodiment is configured as described above. As shown in the flowchart of FIG. 13, the main transmission sensor (95), the auxiliary transmission sensor (97), the steering angle sensor (94), the turning sensitivity setting device (99), The controller (100) is inputted from the straight traveling sensor (90) and the left and right vehicle speed sensors (60) and (61). Then, when the auxiliary speed change lever (96) is neutral, the turning output cut-off control is performed to keep the second hydraulic motor (27) stopped and the steering clutch (79) is turned off. Turn control is performed in the road running mode with the turn output of FIG. 8, and the main shift control and the steering control are performed based on the output diagrams of FIGS. When the main speed change lever (69) is neutral, the output shaft (62) of the second hydraulic motor (27) is stopped by the turning output cut-off control, and the output shaft ( 31) and the output shaft (62) of the second hydraulic motor (27) is stopped by steering braking control when the steering handle (19) is in the straight traveling position. In addition, when the sub-shift is at medium speed or low speed, the main shift is other than neutral, and the steering handle (19) is operated other than straight travel, the main shift sensor (95) and steering angle sensor (94) are input. The traveling speed (vehicle speed), the steering angle and the steering direction are calculated and determined by the above, and the transmission motor (70) and the steering motor (74) are operated by the main transmission and the steering control, and the left and right traveling crawler (2). (2) The drive speed of (2) is changed, the alignment course is corrected, the direction is changed by the spin turn at the field headland, and the harvesting operation is performed in which the cereal is continuously harvested and threshed.
[0040]
Further, as shown in FIGS. 14 and 15, an electromagnetic transmission valve (107) switched by a main transmission sensor (95) and a transmission cylinder (108) connected to the charge pump (68) via the transmission valve (107). 7, the speed-up motor (70) shown in FIG. 7 is omitted, and the speed-up and speed-down solenoids of the speed-change valve (107) are connected to the controller (100) via the speed-up and speed-down circuits (101) and (102), Based on the detection result of the main transmission sensor (95), the transmission valve (107) is automatically switched, the transmission cylinder (108) is operated to change the swash plate (23a) angle of the first hydraulic pump (23), and 1 The running speed of the output shaft (31) of the hydraulic motor (24) is changed steplessly or reversely, and the angle of the swash plate (23a) is adjusted. As a result, a feedback operation is performed to return the transmission valve (107) to neutral, the angle of the swash plate (23a) is changed in proportion to the operation amount of the main transmission lever (69), and the first hydraulic motor (24) rotates. Let the number change. Further, an electromagnetic steering valve (109) switched by the steering angle sensor (94) and a steering cylinder (110) connected to the charge pump (68) via the steering valve (109) are provided. The steering motor (74) shown is omitted, and the left and right turning solenoids of the steering valve (109) are connected to the controller (100) via the left and right turning circuits (104) and (105), The steering valve (109) is automatically switched based on the detection result of the steering angle sensor (94), and the steering cylinder (110) is operated to change the swash plate (26a) angle of the second hydraulic pump (26). Change the rotation direction of the output shaft (62) of the second hydraulic motor (27) steplessly or perform a left-right steering operation to reverse the direction, change the traveling direction to the left and right, and change direction on the field headland To make To perform the conditions combined operations to modify the Ntan operation and course. In addition, the angle adjustment operation of the swash plate (26a) causes a feedback operation to return the steering valve (109) to neutral, and the angle of the swash plate (26a) is changed in proportion to the operation amount of the steering handle (19). And the rotational speed of the second hydraulic motor (27) is changed. Further, a steering sensor (111) for detecting the position of the cutting part (8) with respect to the uncut grain row and a steering circuit for automatically controlling the steering valve (109) based on the detection result of the sensor (111) ( 112), giving priority to the steering angle sensor (94) input by manual operation of the steering handle (19), and operating the steering cylinder (110) by the steering sensor (111) input, The course is automatically corrected along the line, and the harvesting work is performed. As described above, the transmission motor (70) or the transmission cylinder (108) is used as the transmission actuator, and the steering motor (74) or the steering cylinder (110) is used as the steering actuator. In FIG. 14, the proportional valve (113) (114) is provided in the steering valve (109), and the proportional valve (113) (114) and the valve (109) are operated by the circuits (104) (105). Let
[0047]
【The invention's effect】
(1) In the present invention described in claim 1, for example, steering control is performed by inputting a steering handle (19) operation amount to a controller (100) that operates a steering actuator (74) such as an electric motor or a hydraulic cylinder. The lock mechanism that prohibits the steering operation of the second hydraulic motor (27) by the neutral of the sub-transmission mechanism (32) is unnecessary, and the assembly adjustment work and the parts management can be easily performed. Therefore, it is possible to easily improve handling workability, diversify traveling speed change, and steering performance.
  Moreover,It is configured so that the change of the steering control output becomes large when the turning angle of the steering handle (19) is small, and it is easy to make a fine course correction such as a condition for matching the running course with the basket or the crop line. And can easily improve the steering performance during straight running during farming.Ru.
[0048]
(2) In the present invention described in claim 2, for example, steering control is performed by inputting a steering handle (19) operation amount to a controller (100) that operates a steering actuator (74) such as an electric motor or a hydraulic cylinder. The lock mechanism that prohibits the steering operation of the second hydraulic motor (27) by the neutral of the sub-transmission mechanism (32) is unnecessary, and the assembly adjustment work and the parts management can be easily performed. Therefore, it is possible to easily improve the handling workability and diversify the traveling speed change and the steering performance.
  Moreover,It is configured to perform sensitive steering control when the steering handle (19) has a small turning angle, and to perform insensitive steering control when the steering handle (19) has a large cutting angle. It is possible to properly correct the course at the time, to easily prevent excessive course correction due to an erroneous operation of the steering handle (19), and to stably change the direction at high speeds.Ru.
[Brief description of the drawings]
FIG. 1 is an overall side view of a combine.
FIG. 2 is a plan view of the same.
FIG. 3 is a side view of a traveling mission unit.
FIG. 4 is an explanatory diagram of gear shifting and steering drive.
FIG. 5 is a shift and steering hydraulic circuit diagram.
FIG. 6 is an explanatory plan view of a steering handle portion.
FIG. 7 is a shift and steering control circuit diagram.
FIG. 8 is a diagram showing a steering handle and a turning output.
FIG. 9 is a diagram showing a steering handle and a shift output.
FIG. 10 is a diagram showing a steering handle and a shift output.
FIG. 11 is a diagram showing a main transmission lever and a turning output.
FIG. 12 is a diagram showing a steering handle and a turning output.
FIG. 13 is a flowchart of the shift steering control in FIG. 7;
FIG. 14 is a hydraulic circuit diagram showing a modification of FIG. 5;
FIG. 15 is a control circuit diagram showing a modification of FIG. 7;
[Explanation of symbols]
(2) Traveling crawler
(19) Steering handle
(23) First hydraulic pump
(24) First hydraulic motor
(26) Second hydraulic pump
(27) Second hydraulic motor
(74) Steering motor (steering actuator)
(79) Swing clutch

Claims (2)

左右走行クローラを駆動する第1油圧ポンプ及び第1油圧モータと、左右走行クローラの駆動速度に差を生じさせる第2油圧ポンプ及び第2油圧モータを設ける移動農機において、
操向ハンドル操作量を検出して第2油圧ポンプの出力制御を行う操向アクチュエータを設け、副変速の中立を検出して第2油圧ポンプ及び第2油圧モータによる操向動作を中止させるようにして、操向ハンドルの切れ角度が小さいときに操向制御出力の変化が大きくなるように構成したことを特徴とする動農機。
In a mobile agricultural machine provided with a first hydraulic pump and a first hydraulic motor that drive a left and right traveling crawler, and a second hydraulic pump and a second hydraulic motor that cause a difference in the driving speed of the left and right traveling crawlers,
A steering actuator for detecting the steering handle operation amount and controlling the output of the second hydraulic pump is provided, and the steering operation by the second hydraulic pump and the second hydraulic motor is stopped by detecting the neutral of the sub-shift. Te, transfer Dono machine, characterized by being configured such that the change in the steering control output becomes large when cutting angle of the steering wheel is small.
左右走行クローラを駆動する第1油圧ポンプ及び第1油圧モータと、左右走行クローラの駆動速度に差を生じさせる第2油圧ポンプ及び第2油圧モータを設ける移動農機において、
操向ハンドル操作量を検出して第2油圧ポンプの出力制御を行う操向アクチュエータを設け、副変速の中立を検出して第2油圧ポンプ及び第2油圧モータによる操向動作を中止させるようにして、操向ハンドルの切れ角度が小さいときに敏感な操向制御を行い、操向ハンドルの切れ角度が大きいときに鈍感な操向制御を行うように構成したことを特徴とする動農機。
In a mobile agricultural machine provided with a first hydraulic pump and a first hydraulic motor that drive a left and right traveling crawler, and a second hydraulic pump and a second hydraulic motor that cause a difference in the driving speed of the left and right traveling crawlers,
A steering actuator for detecting the steering handle operation amount and controlling the output of the second hydraulic pump is provided, and the steering operation by the second hydraulic pump and the second hydraulic motor is stopped by detecting the neutral of the sub-shift. Te performs sensitive steering control when cutting angle of the steering wheel is small, transfer Dono machine, characterized by being configured to perform insensitive steering control when cutting angle of the steering wheel is large.
JP21194898A 1998-07-10 1998-07-10 Mobile farm machine Expired - Fee Related JP3998109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21194898A JP3998109B2 (en) 1998-07-10 1998-07-10 Mobile farm machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21194898A JP3998109B2 (en) 1998-07-10 1998-07-10 Mobile farm machine

Publications (2)

Publication Number Publication Date
JP2000025642A JP2000025642A (en) 2000-01-25
JP3998109B2 true JP3998109B2 (en) 2007-10-24

Family

ID=16614358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21194898A Expired - Fee Related JP3998109B2 (en) 1998-07-10 1998-07-10 Mobile farm machine

Country Status (1)

Country Link
JP (1) JP3998109B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4513174B2 (en) * 2000-06-07 2010-07-28 井関農機株式会社 Combine steering device
JP4570285B2 (en) * 2001-06-20 2010-10-27 ヤンマー株式会社 Tractor
KR20170077537A (en) * 2015-12-28 2017-07-06 현대건설기계 주식회사 Control system and method for hydraulic motor in working equipment
JP6473091B2 (en) 2016-02-09 2019-02-20 ヤンマー株式会社 Work vehicle
JP6487869B2 (en) * 2016-03-18 2019-03-20 ヤンマー株式会社 Work vehicle

Also Published As

Publication number Publication date
JP2000025642A (en) 2000-01-25

Similar Documents

Publication Publication Date Title
WO1998032645A1 (en) Mobile agricultural machine
JP4430181B2 (en) Crawler work vehicle
JP3998109B2 (en) Mobile farm machine
JP4390960B2 (en) Crawler car
JP3174952B2 (en) Moving agricultural machine
JP4485623B2 (en) Mobile farm machine
JP3902343B2 (en) Mobile farm machine
JP3681871B2 (en) Mobile farm machine
JP4267774B2 (en) Mobile farm machine
JP3816645B2 (en) Mobile farm machine
JP3691703B2 (en) Mobile farm machine
JP3749358B2 (en) Mobile farm machine
JP4219430B2 (en) Vehicle speed control device for mobile agricultural machines
JP3141134B2 (en) Moving agricultural machine
JP4422241B2 (en) Mobile farm machine
JP4112738B2 (en) Mobile farm machine
JP3730378B2 (en) Mobile farm machine
JP3635607B2 (en) Combine
JP2000102318A (en) Mobile agricultural machine
JP3190987B2 (en) Moving agricultural machine
JP3174950B2 (en) Moving agricultural machine
JPH1149018A (en) Combine
JP3836233B2 (en) Vehicle speed control device for mobile agricultural machines
JP3190986B2 (en) Moving agricultural machine
JP3174951B2 (en) Moving agricultural machine

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040604

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20050215

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050408

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees