JP4219201B2 - Imaging system - Google Patents

Imaging system Download PDF

Info

Publication number
JP4219201B2
JP4219201B2 JP2003089720A JP2003089720A JP4219201B2 JP 4219201 B2 JP4219201 B2 JP 4219201B2 JP 2003089720 A JP2003089720 A JP 2003089720A JP 2003089720 A JP2003089720 A JP 2003089720A JP 4219201 B2 JP4219201 B2 JP 4219201B2
Authority
JP
Japan
Prior art keywords
light
imaging
amount
captured image
captured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003089720A
Other languages
Japanese (ja)
Other versions
JP2004297645A (en
Inventor
栄一郎 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003089720A priority Critical patent/JP4219201B2/en
Publication of JP2004297645A publication Critical patent/JP2004297645A/en
Application granted granted Critical
Publication of JP4219201B2 publication Critical patent/JP4219201B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Studio Devices (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、監視カメラなどに用いられる撮像システムに関する。
【0002】
【従来の技術】
昼間などの被写体照度が十分である時には、撮像部前面側に赤外カットフィルタを装着することで色再現性に優れたカラーカメラとして機能させ、夜間など被写体照度が著しく不足する時には、例えば近赤外線照明にて照明を行うと共に前記赤外カットフィルタを離脱させて高感度な白黒カメラとして機能させる、いわゆる昼/夜切り替え式の監視カメラが知られている(特許文献1参照)。赤外カットフィルタは被写体の明るさや照明の状態に応じて自動的にモーター等のアクチュエータにて着脱される。近赤外線は、人間の目には全く感知できない波長領域であるが、監視カメラで使用されるCCDなどのイメージセンサは当該近赤外線に対して高い感度を有し、十分に撮像が可能である。このような近赤外線照明の光源としては、近赤外LEDや近赤外線電球が用いられる。
【0003】
【特許文献1】
特開2001−45512号公報
【0004】
【発明が解決しようとする課題】
しかしながら、前述した近赤外LEDや近赤外線電球は、一般にその照射方向に指向性があり、近赤外線照明を直接受けた人物などの被写体は非常に明るくなるのに対し、それ以外の背景などには照明光が均一には照射されないため、全体的には非常に暗い画像となる傾向がある。ここで、通常、監視カメラで広く用いられる測光方法である平均値測光を用いた場合、画面全体の映像信号の平均値としては背景の影響が大きいために画面全体として暗いと判断される。このため、レンズ絞りが開き、図3(b)に示すように、真に撮影することが必要な被写体の映像信号レベルが高くなりすぎて飽和し、白くつぶれて監視不能になる。なお、図3(a)では、画面全体が暗い場合において、同図(b)の絞り値と同じ絞り値が設定される様子を示している。
【0005】
そこで、例えば、夜間のみカメラの測光方法をピーク重視の測光に切り替える方法が考えられる。この方法であれば、映像信号のピーク成分に重点が置かれて測光されるため、平均値測光に比べればレンズ絞りが絞り込まれ、真に撮影することが必要な被写体の映像信号レベルは適切となる。しかしながら、図4(a)(b)に示すように、画面の一部に例えば非常灯などの高輝度の領域が常に撮影されることとなる場合には、この非常灯などの高輝度領域を適正に撮影するように制御がなされるため、常にレンズ絞りが絞り込まれた状態となり、監視が困難となる欠点がある。
【0006】
この発明は、上記の事情に鑑み、近赤外線照明等を用いた夜間撮影において、真に撮影することが必要な被写体が適切に撮影されなくなるといった事態を回避することができる撮像システムを提供することを目的とする。
【0007】
【課題を解決するための手段】
この発明の撮像システムは、上記の課題を解決するために、所定の波長帯域の光に対して感度を有する撮像手段と、撮像方向に向けて所定波長帯域の光を照射する照明装置と、前記撮像手段にて撮像された撮像映像における輝度値に応じて前記照明装置の出射光量を制御する照明制御手段と、を備え、前記撮像手段にて撮像された撮像映像内の各部分の輝度レベルをV、輝度レベル閾値をVa、撮像映像内でV≧Vaとなる部分の総量又は前記部分の撮像映像内に占める割合をS、閾値をNとするとき、前記照明制御手段は、S>Nのときには前記照明装置の出射光量を下げ、N>Sのときには前記照明装置の出射光量を上げる制御を行うことを特徴とする。
【0008】
上記構成において、例えば、輝度レベル閾値Vaがハレーションを生じさせる程度の輝度値とすれば、撮像映像内においてハレーションを生じている部分の総量又は割合がSとなるように光量制御が行われる。この場合、前記Sは撮像映像内において例えば僅かとなる総量又は割合とすればよい。すなわち、できるだけ照明装置の出射光量を上げることで暗い画面となるのを回避しつつ、S>Nのときには出射光量を下げることで、出射光量が多すぎてハレーションを生じさせる部分が多くなってしまうという事態を回避できることになる。
【0009】
また、この発明の撮像システムは、所定の波長帯域の光に対して感度を有する撮像手段と、撮像方向に向けて所定波長帯域の光を照射する照明装置と、前記撮像手段にて撮像された撮像映像における輝度値に応じて前記照明装置の出射光量を制御する照明制御手段と、を備え、前記撮像手段にて撮像された撮像映像内の各部分の輝度レベルをV、輝度レベル閾値をVa、撮像映像内でV≧Vaとなる部分の総量又は前記部分の撮像映像内に占める割合をS、第1の閾値及び第2の閾値を各々N1,N2(N1>N2)とするとき、前記照明制御手段は、S≧N1のときには前記照明装置の出射光量を下げ、N2≧Sのときには前記照明装置の出射光量を上げる制御を行うことを特徴とする。
【0010】
上記構成においては、N1>S>N2の範囲、すなわち所定幅の範囲で例えばハレーションが生じる程度となるように出射光量制御が行われることになり、かかる構成においても、できるだけ照明装置の出射光量を上げることで暗い画面となるのを回避しつつ、S≧N1のときには出射光量を下げることで、出射光量が多すぎてハレーションを生じさせる部分が多くなってしまうという事態を回避できることになる。
【0011】
前記照明装置の出射光量を最も下げた後もS>N又はS≧N1の状態が続くときには、前記撮像手段の絞りを所定量閉じるように制御するのがよい。また、前記撮像手段の絞りを最も開放した後もN>S又はN2≧Sの状態が続くときには、前記照明装置の出射光量を所定量上げるように制御するのがよい。
【0012】
前記撮像映像内の各部分は各画素であってもよいし、或いは、撮像映像を複数に領域分割した各領域としてもよい。
【0013】
【発明の実施の形態】
以下、この発明の実施形態における撮像システムを図1及び図2に基づいて説明する。
【0014】
図1は撮像システムの構成を示したブロック図である。レンズ1は被写体にて反射された光を受光し、集光して撮像部3に導く。絞り部2は前記撮像部3に導かれる光量を調節する。撮像部3は例えばCCDから成り、各画素ごとに受光量に応じた信号を出力する。信号処理部4はASIC(大規模集積回路)やマイクロコンピュータから成り、撮像部3から出力された信号を入力し、例えば、NTSC信号を生成し、図示しないモニタや録画装置に供給する。また、信号処理部4は、撮像部3から出力された信号に基づいて絞り制御部5や照明制御部6に指令信号を出力する。
【0015】
絞り部2には図示しないアクチュエータが設けられており、このアクチュエータは絞り制御部5から与えられる駆動制御信号によって動作し、絞り羽根を駆動して絞りの開き量を調節する。
【0016】
照明装置7は近赤外LEDや近赤外線電球などから成り、これら近赤外LEDや近赤外線電球に供給される電圧が変化すると近赤外の出射光量を変化させることになる。照明制御部6は、信号処理部4からの指令に基づいて照明装置7における駆動電圧を制御する。例えば、前記指令を8ビット信号で行うとすれば、256段階の出射光量制御が行えることになる。
【0017】
信号処理部4は、例えば撮像映像を16×16の256領域に分割(従来項の図3参照)し、各領域における平均の輝度値Vを算出する処理を行う。図示しないメモリ(例えば、不揮発性メモリ)は、輝度レベル閾値Vaを記憶している。輝度レベル閾値Vaとしては、ハレーションを生じるような程度(別言すれば、撮像部3におけるCCDの飽和値程度)の輝度値に設定される。この輝度レベル閾値Vaは固定的に設定されるものでもよいが、ユーザによる変更設定が行えるようにしてもよい。更に、信号処理部4は、各領域の輝度値Vと輝度レベル閾値Vaとを比較する処理を行い、V≧Vaとなる領域の個数S を算出する処理を行う。前記個数Sに対する閾値N1及び閾値N2(N1>N2)も前記メモリに記憶されている。例えば、ハレーションを生じる領域が20個程度在っても撮影された被写体の認識において十分であるのであれば、前記閾値N1として「20」を設定すればよいことになる。また、閾値N2については、例えば「5」を設定すればよい。勿論、かかる閾値についても、ユーザによる変更設定が行えるようにしてもよい。ここで、撮像範囲内に非常灯が存在する場合、照明装置7による照明が無い状態でも、非常灯に対応する映像領域は飽和状態となり得るものであり、幾つかの数の領域でV≧Vaとなる。この数が例えば「3」であるならば、前記閾値N2として、「8」(5+3)を設定すればよい。夜間撮影用の設定時には、例えば、照明装置7による照明を行わず、絞りを全開に設定し、V≧Vaとなった数を例えばモニターに表示させる。設定者は、モニターに表示された前記数に対応して前記の閾値N2や閾値N1を設定することもできる。
【0018】
次に、図2のフローチャートに基づいて、夜間撮影時の照明制御及び絞り制御について説明していく。
【0019】
夜間撮影モードを実行するときには、信号処理部4は、まず、照明装置7の出射光量を最大とし、カメラのレンズ絞りを全開とする指令を照明制御部6及び絞り制御部5に与える(ステップS1)。そして、信号処理部4は、各領域の輝度値Vと輝度レベル閾値Vaとを比較する処理を行い、V≧Vaとなる領域の個数Sを算出する(ステップS2)。次に、信号処理部4は、N1>S>N2であるかどうかを判断し(ステップS3)、YESであればステップS2に戻る。一方、ステップS3でNOとされたときには、S≧N1かどうかを判断する(ステップS4)。S≧N1であるときには、照明装置7の出射光量が最小かどうかを判断する(ステップS5)。最小でなければ光量を1段階低下させる(ステップS6)。光量が最小であるならば、絞りの方を1段階閉じる(ステップS7)。これにより、侵入者がカメラの撮像範囲内に入り、侵入者に反射してカメラに入る近赤外線量が多いために侵入者映像部分がハレーションを生じて前記Sが前記N1以上となったときには、まず出射光量が少なくされ、更には絞りが閉じられていくことにより、侵入者に反射してカメラに入る近赤外線量が低下し、侵入者映像部分でのハレーションが回避されることになる。
【0020】
ステップS4でYESとされたとき(N2≧Sのとき)、絞りが全開か否かを判断する(ステップS8)。絞りが全開でなければ絞りを1段階開く(ステップS9)。絞りが全開ならば照明装置7の出射光量の方を1段階向上させる(ステップS10)。すなわち、ハレーションを生じているような領域の個数SがN2以下となったときには、まず、絞りを開いていき、絞りが全開となった後に出射光量を上げていく。
【0021】
以上説明した制御と図3及び図4に示した従来制御との違いを整理する。上述した制御においては、撮像画面全体の平均値測光ではなく、画面全体のなかでのハレーションを生じているような領域の面積に着目している。従って、従来項で示した図3(a)の状態と図3(b)の状態との違いをシステム自身が認識できるものとなる。また、撮像画面全体の平均値測光では、その測光値に基づいて照明光量を制御しようとしても、上記両状態の区別はできないため、かかる照明光量の制御も適切に行えない。これに対し、かかる実施形態の制御であれば、上記両状態を区別することができ、図3(b)の状態がS≧N1であるならば、まず出射光量が少なくされ、更には絞りが閉じられていくことになる。また、かかる実施形態の制御においては、撮像範囲内に非常灯が存在する場合、非常灯などの高輝度領域も単に前記個数Sのなかの幾つかとなるにすぎず、非常灯の高輝度領域を適正に撮影する従来制御のごとく、必要以上にレンズ絞りが絞り込まれるといった不都合も生じない。
【0022】
なお、図2のフローチャートに示した処理では、撮像映像内の各領域の輝度レベルをV、輝度レベル閾値をVa、撮像映像内でV≧Vaとなる領域個数をS、第1の閾値及び第2の閾値を各々N1,N2(N1>N2)とし、S≧N1のときには出射光量を下げ、N2≧Sのときには出射光量を上げる制御を行ったが、これに限るものではない。例えば、撮像映像内の各領域の輝度レベルをV、輝度レベル閾値をVa、撮像映像内でV≧Vaとなる領域個数をS、閾値をNとし、S>Nのときには出射光量を下げ、N>Sのときには出射光量を上げる制御を行うこととしてもよい。かかる構成でも、できるだけ照明装置の出射光量を上げて暗い画面となるのを回避しつつ、S>Nのときには出射光量を下げることで、出射光量が多すぎてハレーションを生じさせる部分が多くなってしまうという事態を回避できることになる。
【0023】
輝度レベル閾値Vaはハレーションを生じさせる程度の値としたが、これよりも低い値を設定してもよい。ただし、低い値とすればするほど、できるだけ照明装置の出射光量を上げるという点が不十分となり、暗い映像が撮像されてしまう可能性が大きくなる。
【0024】
また、上記の例では、撮像映像内でV≧Vaとなる領域個数を検出することとしたが、個数ではなく、撮像映像全体に対する割合としてもよい。また、領域分割を例示したが、画素単位でV≧Vaとなる個数を検出したり、撮像映像全体に対する画素割合を生成するようにしてもよいものである。
【0025】
【発明の効果】
以上説明したように、この発明によれば、できるだけ照明装置の出射光量を上げて暗い画面となるのを回避しつつ、例えばハレーションを生じさせる領域数が閾値を超えるときには出射光量を下げることで、出射光量が多すぎてハレーションを生じさせる部分が多くなってしまうという事態を回避でき、鮮明な撮像画像によって監視等が良好に行えるという効果を奏する。
【図面の簡単な説明】
【図1】この発明の撮像システムを示したブロック図である。
【図2】制御内容を示したフローチャートである。
【図3】同図(a)(b)は平均値測光による不具合を説明する説明図である。
【図4】同図(a)(b)はピーク重視の測光による不具合を説明する説明図である。
【符号の説明】
1 レンズ
2 絞り
3 撮像部
4 信号処理部
5 絞り制御部
6 照明制御部
7 照明装置
[0001]
[Industrial application fields]
The present invention relates to an imaging system used for surveillance cameras and the like.
[0002]
[Prior art]
When the illuminance of the subject is sufficient, such as in the daytime, it can function as a color camera with excellent color reproducibility by mounting an infrared cut filter on the front side of the imaging unit. There is known a so-called day / night switching type surveillance camera that illuminates with illumination and functions as a highly sensitive black-and-white camera by removing the infrared cut filter (see Patent Document 1). The infrared cut filter is automatically attached and detached by an actuator such as a motor in accordance with the brightness of the subject and the illumination state. Near-infrared light is a wavelength region that cannot be detected by human eyes at all. However, an image sensor such as a CCD used in a surveillance camera has high sensitivity to the near-infrared light, and can sufficiently capture an image. As a light source for such near infrared illumination, a near infrared LED or a near infrared bulb is used.
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-45512
[Problems to be solved by the invention]
However, the near-infrared LEDs and near-infrared light bulbs described above are generally directional in the direction of illumination, and subjects such as persons directly exposed to near-infrared illumination are very bright, while other backgrounds are used. Since illumination light is not uniformly irradiated, the whole image tends to be very dark. Here, when average value metering, which is a photometric method widely used in surveillance cameras, is used, the average value of the video signal of the entire screen is determined to be dark as a whole screen because the influence of the background is large. For this reason, the lens aperture is opened, and as shown in FIG. 3B, the video signal level of the subject that needs to be truly photographed becomes too high and becomes saturated and becomes white and cannot be monitored. FIG. 3A shows a state in which the same aperture value as that in FIG. 3B is set when the entire screen is dark.
[0005]
Therefore, for example, a method of switching the photometry method of the camera to peak-priority photometry only at night can be considered. With this method, photometry is performed with emphasis on the peak component of the video signal, so the lens aperture is narrowed compared to average value metering, and the video signal level of the subject that needs to be truly photographed is appropriate. Become. However, as shown in FIGS. 4A and 4B, when a high-luminance area such as an emergency light is always photographed on a part of the screen, the high-luminance area such as the emergency light is not displayed. Since control is performed so as to capture images properly, there is a drawback that the lens aperture is always in a narrowed state and monitoring becomes difficult.
[0006]
In view of the above circumstances, the present invention provides an imaging system capable of avoiding a situation in which a subject that truly needs to be captured is not properly captured in night shooting using near-infrared illumination or the like. With the goal.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, an imaging system according to the present invention includes an imaging unit having sensitivity to light of a predetermined wavelength band, an illumination device that irradiates light of a predetermined wavelength band toward an imaging direction, Illumination control means for controlling the amount of light emitted from the illumination device in accordance with the luminance value in the captured video imaged by the imaging means, and the brightness level of each part in the captured video imaged by the imaging means When V, the luminance level threshold value is Va, the total amount of the portion where V ≧ Va in the captured image or the ratio of the portion in the captured image is S, and the threshold value is N, the illumination control means satisfies S> N In some cases, the amount of light emitted from the illumination device is decreased, and when N> S, the amount of light emitted from the illumination device is increased.
[0008]
In the above configuration, for example, if the luminance level threshold value Va is set to a luminance value that causes halation, the light amount control is performed so that the total amount or the ratio of the portions that cause halation in the captured image is S. In this case, the S may be a total amount or a ratio that is small, for example, in the captured video. That is, while avoiding a dark screen by increasing the amount of emitted light from the illumination device as much as possible, by reducing the amount of emitted light when S> N, the amount of emitted light is too much and halation is increased. This situation can be avoided.
[0009]
The imaging system of the present invention is imaged by the imaging means having sensitivity to light of a predetermined wavelength band, an illumination device that irradiates light of the predetermined wavelength band toward the imaging direction, and the imaging means. Illumination control means for controlling the amount of light emitted from the illuminating device in accordance with the luminance value in the captured image, and the brightness level of each part in the captured image captured by the imaging means is V, and the brightness level threshold is Va. , When the total amount of the portion where V ≧ Va in the captured image or the ratio of the portion in the captured image is S, and the first threshold and the second threshold are N1, N2 (N1> N2), The illumination control means controls to decrease the emitted light amount of the illumination device when S ≧ N1, and to increase the emitted light amount of the illumination device when N2 ≧ S.
[0010]
In the above configuration, the amount of emitted light is controlled so that halation occurs, for example, in a range of N1>S> N2, that is, a range of a predetermined width. While avoiding a dark screen by increasing, by reducing the amount of emitted light when S ≧ N1, it is possible to avoid a situation in which the amount of emitted light is too much and halation is increased.
[0011]
When the state of S> N or S ≧ N1 continues even after the amount of light emitted from the illuminating device is reduced to the minimum, it is preferable to control the diaphragm of the imaging unit to be closed by a predetermined amount. Further, when the state of N> S or N2 ≧ S continues even after the aperture of the image pickup unit is fully opened, it is preferable to control the amount of light emitted from the illumination device to be increased by a predetermined amount.
[0012]
Each part in the captured image may be each pixel, or each region obtained by dividing the captured image into a plurality of regions.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an imaging system according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2.
[0014]
FIG. 1 is a block diagram showing the configuration of the imaging system. The lens 1 receives the light reflected by the subject, collects it, and guides it to the imaging unit 3. The diaphragm unit 2 adjusts the amount of light guided to the imaging unit 3. The imaging unit 3 is composed of a CCD, for example, and outputs a signal corresponding to the amount of received light for each pixel. The signal processing unit 4 is composed of an ASIC (Large Scale Integrated circuit) or a microcomputer, inputs the signal output from the imaging unit 3, generates an NTSC signal, for example, and supplies it to a monitor or a recording device (not shown). Further, the signal processing unit 4 outputs a command signal to the aperture control unit 5 and the illumination control unit 6 based on the signal output from the imaging unit 3.
[0015]
The diaphragm unit 2 is provided with an actuator (not shown). This actuator is operated by a drive control signal given from the diaphragm control unit 5 and drives the diaphragm blades to adjust the opening amount of the diaphragm.
[0016]
The illuminating device 7 includes a near infrared LED, a near infrared light bulb, and the like. When the voltage supplied to the near infrared LED or the near infrared light bulb changes, the amount of emitted light in the near infrared is changed. The illumination control unit 6 controls the drive voltage in the illumination device 7 based on a command from the signal processing unit 4. For example, if the command is performed with an 8-bit signal, the emitted light quantity control in 256 steps can be performed.
[0017]
For example, the signal processing unit 4 divides the captured image into 16 × 16 256 regions (see FIG. 3 of the conventional section), and performs a process of calculating an average luminance value V in each region. A memory (not shown) (not shown) stores a luminance level threshold Va. The brightness level threshold value Va is set to a brightness value that causes halation (in other words, the saturation value of the CCD in the imaging unit 3). The brightness level threshold Va may be fixedly set, but may be changed by the user. Further, the signal processing unit 4 performs a process of comparing the brightness value V of each area with the brightness level threshold Va, and performs a process of calculating the number S of areas where V ≧ Va. A threshold value N1 and a threshold value N2 (N1> N2) for the number S are also stored in the memory. For example, if there are about 20 areas where halation occurs, if it is sufficient to recognize the photographed subject, “20” may be set as the threshold value N1. For the threshold N2, for example, “5” may be set. Of course, the threshold value may be changed by the user. Here, when there is an emergency light within the imaging range, the video area corresponding to the emergency light can be saturated even in the absence of illumination by the illumination device 7, and V ≧ Va in several areas. It becomes. If this number is “3”, for example, “8” (5 + 3) may be set as the threshold value N2. When setting for night photography, for example, the illumination device 7 is not illuminated, the aperture is set to full open, and the number V ≧ Va is displayed on, for example, a monitor. The setter can also set the threshold value N2 and the threshold value N1 corresponding to the number displayed on the monitor.
[0018]
Next, illumination control and aperture control during night shooting will be described based on the flowchart of FIG.
[0019]
When executing the night photographing mode, the signal processing unit 4 first gives a command to the illumination control unit 6 and the aperture control unit 5 to maximize the amount of light emitted from the illumination device 7 and fully open the lens aperture of the camera (step S1). ). Then, the signal processing unit 4 performs a process of comparing the luminance value V of each region with the luminance level threshold Va, and calculates the number S of regions where V ≧ Va (step S2). Next, the signal processing unit 4 determines whether or not N1>S> N2 (step S3), and if YES, the process returns to step S2. On the other hand, when NO is determined in step S3, it is determined whether S ≧ N1 (step S4). When S ≧ N1, it is determined whether or not the amount of light emitted from the illumination device 7 is minimum (step S5). If it is not minimum, the light amount is decreased by one level (step S6). If the amount of light is minimum, the diaphragm is closed by one step (step S7). Thereby, when the intruder enters the imaging range of the camera and the amount of near-infrared rays reflected by the intruder and entering the camera is large, the intruder video portion causes halation and the S becomes N1 or more. First, the amount of emitted light is reduced, and further, the diaphragm is closed, so that the amount of near-infrared rays reflected by the intruder and entering the camera is reduced, and halation in the intruder image portion is avoided.
[0020]
When YES is determined in step S4 (when N2 ≧ S), it is determined whether or not the aperture is fully opened (step S8). If the aperture is not fully open, the aperture is opened by one level (step S9). If the aperture is fully open, the emitted light quantity of the illumination device 7 is improved by one step (step S10). That is, when the number S of regions where halation occurs is N2 or less, the diaphragm is first opened, and the amount of emitted light is increased after the diaphragm is fully opened.
[0021]
Differences between the control described above and the conventional control shown in FIGS. 3 and 4 will be summarized. In the above-described control, attention is paid to the area of the region that causes halation in the entire screen, not the average value photometry of the entire imaging screen. Therefore, the system itself can recognize the difference between the state of FIG. 3A and the state of FIG. Further, in the average value metering of the entire imaging screen, even if it is attempted to control the illumination light quantity based on the photometric value, the above-mentioned two states cannot be distinguished, and thus the illumination light quantity cannot be appropriately controlled. On the other hand, if it is control of this embodiment, both said states can be distinguished, and if the state of FIG.3 (b) is S> = N1, first, the emitted light quantity will be decreased, and also a diaphragm will be reduced. It will be closed. Further, in the control of this embodiment, when an emergency light is present in the imaging range, the high-intensity area such as an emergency light is merely some of the number S, and the high-intensity area of the emergency light is reduced. There is no inconvenience that the lens aperture is narrowed more than necessary as in the conventional control for appropriately photographing.
[0022]
In the process shown in the flowchart of FIG. 2, the brightness level of each region in the captured video is V, the brightness level threshold is Va, the number of regions in the captured video where V ≧ Va is S, the first threshold and the first threshold The threshold values of 2 are set to N1 and N2 (N1> N2), respectively, and control is performed to decrease the emitted light amount when S ≧ N1 and increase the emitted light amount when N2 ≧ S. However, the present invention is not limited to this. For example, the brightness level of each region in the captured image is V, the brightness level threshold value is Va, the number of regions in the captured image where V ≧ Va is S, the threshold value is N, and when S> N, the emitted light amount is reduced, and N When> S, control for increasing the amount of emitted light may be performed. Even in such a configuration, the amount of light emitted from the illumination device is increased as much as possible to avoid a dark screen, and when S> N, the amount of light emitted is too large to cause halation by reducing the amount of emitted light. It will be possible to avoid the situation.
[0023]
The luminance level threshold value Va is set to a value that causes halation, but a value lower than this may be set. However, the lower the value is, the more insufficient the amount of light emitted from the illumination device is as much as possible, and the greater the possibility that a dark image will be captured.
[0024]
In the above example, the number of regions satisfying V ≧ Va is detected in the captured video, but it may be a ratio to the entire captured video instead of the number. In addition, although the area division is illustrated, the number of pixels satisfying V ≧ Va may be detected, or the pixel ratio with respect to the entire captured image may be generated.
[0025]
【The invention's effect】
As described above, according to the present invention, by increasing the emitted light amount of the illumination device as much as possible and avoiding a dark screen, for example, by reducing the emitted light amount when the number of areas causing halation exceeds a threshold value, It is possible to avoid a situation in which the amount of emitted light is too large and the number of portions that cause halation increases, and there is an effect that monitoring and the like can be performed satisfactorily with a clear captured image.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an imaging system of the present invention.
FIG. 2 is a flowchart showing control contents.
FIGS. 3A and 3B are explanatory diagrams for explaining a problem caused by average value photometry. FIG.
FIGS. 4A and 4B are explanatory diagrams for explaining a problem caused by peak-oriented photometry. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Lens 2 Aperture 3 Imaging part 4 Signal processing part 5 Aperture control part 6 Illumination control part 7 Illumination device

Claims (6)

所定の波長帯域の光に対して感度を有する撮像手段と、撮像方向に向けて所定波長帯域の光を照射する照明装置と、前記撮像手段にて撮像された撮像映像における輝度値に応じて前記照明装置の全体出射光量を制御する照明制御手段と、を備え、前記撮像手段にて撮像された撮像映像内の各部分の輝度レベルをV、輝度レベル閾値をVa、撮像映像内でV≧Vaとなる部分の総量又は前記部分の撮像映像内に占める割合をS、閾値をNとするとき、前記照明制御手段は、S>Nのときには前記照明装置の全体出射光量を下げ、N>Sのときには前記照明装置の全体出射光量を上げる制御を行うことを特徴とする撮像システム。An imaging unit having sensitivity to light of a predetermined wavelength band, an illumination device that irradiates light of a predetermined wavelength band toward the imaging direction, and the luminance value in the captured image captured by the imaging unit Illumination control means for controlling the total amount of light emitted from the illumination device, wherein the brightness level of each part in the captured image captured by the imaging means is V, the brightness level threshold is Va, and V ≧ Va in the captured image When the total amount of the part or the ratio of the part in the captured image is S and the threshold value is N, the illumination control means lowers the total emitted light quantity of the illumination device when S> N, and N> S An imaging system characterized in that control is performed to increase the total amount of light emitted from the illumination device. 所定の波長帯域の光に対して感度を有する撮像手段と、撮像方向に向けて所定波長帯域の光を照射する照明装置と、前記撮像手段にて撮像された撮像映像における輝度値に応じて前記照明装置の全体出射光量を制御する照明制御手段と、を備え、前記撮像手段にて撮像された撮像映像内の各部分の輝度レベルをV、輝度レベル閾値をVa、撮像映像内でV≧Vaとなる部分の総量又は前記部分の撮像映像内に占める割合をS、第1の閾値及び第2の閾値を各々N1,N2(N1>N2)とするとき、前記照明制御手段は、S≧N1のときには前記照明装置の全体出射光量を下げ、N2≧Sのときには前記照明装置の全体出射光量を上げる制御を行うことを特徴とする撮像システム。An imaging unit having sensitivity to light of a predetermined wavelength band, an illumination device that irradiates light of a predetermined wavelength band toward the imaging direction, and the luminance value in the captured image captured by the imaging unit Illumination control means for controlling the total amount of light emitted from the illumination device, wherein the brightness level of each part in the captured image captured by the imaging means is V, the brightness level threshold is Va, and V ≧ Va in the captured image When the total amount of the part or the ratio of the part in the captured video is S, and the first threshold value and the second threshold value are N1 and N2 (N1> N2), the illumination control means is S ≧ N1 imaging system characterized by lowering the overall amount of emitted light of the lighting device, when the N2 ≧ S performs control for increasing the overall amount of emitted light of the lighting device when the. 請求項1又は請求項2に記載の撮像システムにおいて、前記照明装置の全体出射光量を最も下げた後もS>N又はS≧N1の状態が続くときには、前記撮像手段の絞りを所定量閉じるように制御することを特徴とする撮像システム。3. The imaging system according to claim 1, wherein the diaphragm of the imaging unit is closed by a predetermined amount when the state of S> N or S ≧ N <b> 1 continues even after the total amount of light emitted from the illuminating device is minimized. An imaging system characterized by being controlled. 請求項1乃至請求項3のいずれかに記載の撮像システムにおいて、前記撮像手段の絞りを最も開放した後もN>S又はN2≧Sの状態が続くときには、前記照明装置の全体出射光量を所定量上げるように制御することを特徴とする撮像システム。4. The imaging system according to claim 1, wherein when the state of N> S or N2 ≧ S continues even after the aperture of the imaging unit is fully opened, the total emitted light amount of the illumination device is determined. An imaging system that is controlled to increase the quantity. 請求項1乃至請求項4のいずれかに記載の撮像システムにおいて、前記撮像映像内の各部分は各画素であることを特徴とする撮像システム。  5. The imaging system according to claim 1, wherein each part in the captured image is a pixel. 6. 請求項1乃至請求項4のいずれかに記載の撮像システムにおいて、前記撮像映像内の各部分は当該撮像映像を複数に領域分割した各領域であることを特徴とする撮像システム。  5. The imaging system according to claim 1, wherein each part in the captured video is a region obtained by dividing the captured video into a plurality of regions.
JP2003089720A 2003-03-28 2003-03-28 Imaging system Expired - Fee Related JP4219201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003089720A JP4219201B2 (en) 2003-03-28 2003-03-28 Imaging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003089720A JP4219201B2 (en) 2003-03-28 2003-03-28 Imaging system

Publications (2)

Publication Number Publication Date
JP2004297645A JP2004297645A (en) 2004-10-21
JP4219201B2 true JP4219201B2 (en) 2009-02-04

Family

ID=33403505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003089720A Expired - Fee Related JP4219201B2 (en) 2003-03-28 2003-03-28 Imaging system

Country Status (1)

Country Link
JP (1) JP4219201B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4652105B2 (en) * 2005-04-12 2011-03-16 三菱電機株式会社 Surveillance system using a surveillance camera using an image sensor
KR100747576B1 (en) 2005-12-21 2007-08-08 엘지전자 주식회사 Method and apparatus for controlling exposure level for camera
JP4727526B2 (en) * 2006-07-28 2011-07-20 富士フイルム株式会社 Imaging device
JP2011205552A (en) * 2010-03-26 2011-10-13 Hitachi Kokusai Electric Inc Monitoring camera system
US9264596B2 (en) 2012-10-26 2016-02-16 Sensormatic Electronics, LLC Security camera system and method for eliminating video aberrations from excessive IR illumination
EP2942941B1 (en) * 2014-05-08 2016-04-27 Axis AB Method and apparatus for determining a need for a change in a pixel density requirement due to changing light conditions
JP6222306B2 (en) * 2016-07-26 2017-11-01 株式会社Jvcケンウッド Adjustment device and program
EP3709628B1 (en) 2019-03-14 2020-12-23 Axis AB Control of an illuminator

Also Published As

Publication number Publication date
JP2004297645A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
EP1900197B1 (en) Image capturing apparatus with flash device
JP4870887B2 (en) Imaging apparatus, strobe control method, and program for computer to execute the method
US7430369B2 (en) Image capture apparatus and control method therefor
KR100367594B1 (en) Controlling method for charge coupled device camera
JPH03179879A (en) Method and apparatus for exposure control of video camera
JP2006270218A (en) Electronic camera and electronic camera system
US7817190B2 (en) Method and apparatus for processing an image exposed to backlight
US7577354B2 (en) Digital camera with face detection function for red eye reduction
JP4219201B2 (en) Imaging system
JP3670952B2 (en) Color / black and white switching camera
JP2001358986A (en) Image processing unit, image processing method, and recording medium
JP5970871B2 (en) Electronic camera
JP5316923B2 (en) Imaging apparatus and program thereof
JP4652105B2 (en) Surveillance system using a surveillance camera using an image sensor
JP2010011153A (en) Imaging apparatus, imaging method and program
JP2009157004A (en) Imaging apparatus
JP6525723B2 (en) Imaging device, control method therefor, program, and storage medium
JP2009063674A (en) Imaging apparatus and flash control method
JP2008160701A (en) Camera and photographic control program for the camera
JP2006166342A (en) Imaging apparatus and imaging system
JP5055569B2 (en) Color imaging apparatus and image processing program
JP2013132065A (en) Imaging apparatus and flash control method
CN112135012B (en) Image acquisition device and image acquisition method
JP4701122B2 (en) camera
JP2008219712A (en) Camera

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees