JP4217489B2 - Deep drawn molded body for expansion joint and method for producing the same - Google Patents

Deep drawn molded body for expansion joint and method for producing the same Download PDF

Info

Publication number
JP4217489B2
JP4217489B2 JP2003005955A JP2003005955A JP4217489B2 JP 4217489 B2 JP4217489 B2 JP 4217489B2 JP 2003005955 A JP2003005955 A JP 2003005955A JP 2003005955 A JP2003005955 A JP 2003005955A JP 4217489 B2 JP4217489 B2 JP 4217489B2
Authority
JP
Japan
Prior art keywords
sheet
composite sheet
reinforcing material
mold
fluororesin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003005955A
Other languages
Japanese (ja)
Other versions
JP2004216697A (en
Inventor
紘一 木村
茂 大川
重六 過足
嘉宏 清水
浩 村田
礼司 原
浩介 山田
章博 水本
浩則 畑津
亀美 江上
幸司 鴨川
崇 三又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chukoh Chemical Industries Ltd
A&A Material Corp
Original Assignee
Chukoh Chemical Industries Ltd
A&A Material Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chukoh Chemical Industries Ltd, A&A Material Corp filed Critical Chukoh Chemical Industries Ltd
Priority to JP2003005955A priority Critical patent/JP4217489B2/en
Publication of JP2004216697A publication Critical patent/JP2004216697A/en
Application granted granted Critical
Publication of JP4217489B2 publication Critical patent/JP4217489B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Joints Allowing Movement (AREA)
  • Diaphragms And Bellows (AREA)
  • Laminated Bodies (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、フッ素樹脂シートとガラスクロスなどの補強材を一体化した複合シートからなる伸縮継手用の深絞り成形体およびその製造方法に関する。
【0002】
【従来の技術】
最近、耐熱性、耐薬品性、電気的性質、低摩擦性などで優れた特性を有するフッ素樹脂の需要が各種の工業分野で急増しているが、反面その加工性、成形性については困難性があることがよく知られている。例えば、火力発電所、原子力発電所、製鉄所、セメント工場、化学プラントなどの排煙・排ガス系統、喚気装置系統などの各種ダクトにガス不透過性が確保される厚さ0.2〜1.0mmのフッ素樹脂シートとガラスクロスなどの織物の補強材を一体化した伸縮継手が使用されている。図9は、こうした従来の伸縮継手の一部であって、図の右上にその一部を抽出してその詳細を斜視図で示している。この伸縮継手は軸方向、ねじれ、芯ずれなどの変位が吸収でき柔軟性、耐屈曲性に極めて優れている。
【0003】
しかし、その伸縮継手を得るには、当該伸縮継手が角型形状などの場合やストレート部とコーナー部を持つ構造の場合、そのコーナー部でもストレート部と同等の耐久性強度や耐屈曲性をもった成形品とすることが必要であるが、これを実現することは非常に困難であった。それはコーナー部においても、ストレート部と同様な平面の複合シートを用いると、コーナー部における変位を吸収しきれないために複雑な折れしわが発生してしまうためである。これを解決するためには、複合シートはコーナー部などにおいて断面形状が円弧であることが好ましい。つまり、コーナー部の形状としては深絞り成形などによって、断面形状が円弧であることが好ましいが、このような成形体を複合シートによって製造することは従来から非常に困難であった。
【0004】
即ち、フッ素樹脂シートに強度や耐屈曲性を付与して上記のような製品とするには、フッ素樹脂シートとガラスクロスなどの補強材を、熱溶融性フッ素樹脂を介して一体化して成形する方法が従来から採用されて来た。しかしながら、ガラスクロスなどの補強材はフッ素樹脂に比較して伸びが非常に小さいために、フッ素樹脂シートとガラスクロスなどの補強材の重ね合わせシートを、上記のようなコーナー部の形状として深絞り成形などによって断面形状が円弧状の成形品として製造することは非常に困難であった。
【0005】
そこでフッ素樹脂の薄物で立体製品を製作する場合には、樹脂塊からの削り出しや、フッ素樹脂を分散媒に分散しこれをコーナーと一致した型の表面に塗布し乾燥してから焼成する方法なども採られていたが、削り出し法は工数がかかる上に余分な材料が必要になって非常にコストがかかっていた。また、後者の型の表面にフッ素樹脂分散液を塗布、乾燥して、これを焼成する方法は厚さ精度やシートのガス不透過性に問題が残るのみならず、これにガラスクロスなどの補強材を一体化させることも非常に困難であった。そのために従来は、フッ素樹脂シートとガラスクロスを加熱圧着した複合シートを特に型成形しないで、これに軸方向、ねじれ、芯ずれなどの変位が吸収できる余分な長さを持たせるようにして伸縮継手を形成して使用してきたが、これによると繰り返される振動やねじれによって補強材に局部的な損傷を生じ長期の寿命を保つことは困難であった。
【0006】
【発明が解決しようとする課題】
この発明は、フッ素樹脂シートと織物の補強材を重ね合わせて一体化した複合シートを成形型でプレス成形するに際し、複合シートにおける織物の補強材のたて糸又はよこ糸が四角形の成形型の少なくとも一辺となす角度を30°〜60°にして、補強材シートが成形時に破損することなく、更に補強材シートの編み目がフッ素樹脂シートの伸びに追随して均一に伸びて、フッ素樹脂シート全域が補強材で一様に補強されるようするものである。
【0007】
【課題を解決するための手段】
この発明は、フッ素樹脂シートと織物の補強材を重ね合わせて一体化した複合シートからなる伸縮継手用の成形体であって、複合シートにおける織物の補強材のたて糸又はよこ糸が、平面形状が四角形の成形型の少なくとも一辺となす角度を30°〜60°にして加熱下で加圧成形し一体化した深絞り成形体で、加圧加熱成形によって補強材の織物の編み目がフッ素樹脂シートの伸びに追随して伸びていることを特徴とする伸縮継手用の深絞り成形体(請求項1)、フッ素樹脂シートと織物の補強材を重ね合わせ一体化した複合シートにおける補強材の織物のたて糸又はよこ糸を、平面形状が四角形の成形型の一辺となす角度を30°〜60°にして配置するとともに、複合シートの周縁部を成形型の雄型または雌型の何れか一方の縁部に固定し、その後これを加圧加熱下で深絞り成形することを特徴とする伸縮継手用の深絞り成形体の製造方法(請求項2)及び前記複合シートの周縁部と雄型または雌型の縁部との固定を、複合シートの伸びが他の部分を超える部分について、部分的に緩めることを特徴とする請求項2に記載の伸縮継手用の深絞り成形体の製造方法(請求項3)である。
【0008】
この発明の要旨は、フッ素樹脂シートとガラス繊維などの織物の補強材を重ね合わせ一体化した複合シートを深絞り成形した伸縮継手用の成形体であって、複合シートにおける補強材の織物のたて糸又はよこ糸を、平面形状が四角形の成形型の少なくとも一辺となす角度が30°〜60°にして加熱下で加圧成形したもので、加圧成形によって補強材の織物の編み目がフッ素樹脂シートの伸びに追随して伸びているようにした伸縮継手用の深絞り成形体及びその製造方法である。
【0009】
【発明の実施の態様】
この発明は、フッ素樹脂シートとガラスクロスなどの補強材の積層体を、成形型を用いて成形した伸縮継手用の深絞り成形体である。その用途は火力発電所、原子力発電所、製鉄所、セメント工場、化学プラントなどの排煙・排ガス系統、換気装置系統等の各種ダクトなどの軸方向、ねじれ、芯ずれなどの複雑な振動や変位を吸収する目的で使用するものである。この発明で用いるフッ素樹脂シートは四ふっ化エチレン樹脂(PTFE)である。厚さは、一般的に伸縮継手に使用する場合は、ガス不透過性を確保することが必要であるから0.2〜1.0mmのものが用いられている。しかし、このフッ素樹脂シート単独では強度や耐屈曲性が不足するので、これに補強材を一体化して使用する。この補強材はたて糸とよこ糸が直交する耐熱性クロス材で、例えばガラス繊維、炭素繊維、芳香族ポリアミド繊維などを用いる。この織布は、補強材としての強度を高めるため或いはフッ素樹脂シートとの接着性を高めるために、これにあらかじめフッ素樹脂ディスパージュンを含浸したものでもよい。このフッ素樹脂ディスパージョンとしては、四ふっ化エチレン樹脂(PTFE)、四ふっ化エチレンパーフルオロアルキルビニルエーテル系重合樹脂(PFA)などが用いられる。
【0010】
上記のフッ素樹脂シート1とガラス繊維クロスなどの補強材2を、図2に示すように重ね合わせて複合シート3とするが、フッ素樹脂のPTFEシートは溶融粘度が高く熱接着が十分にできないので、フッ素樹脂シート1と補強材2を強固に接合して一体化するには、例えばフッ素樹脂シート1と補強材2の間に熱溶融性フッ素樹脂シート4を挟んで加圧加熱する方法が一般に広く行なわれている。この熱融着性フッ素樹脂としては、四ふっ化エチレンパーフルオロアルキルビニルエーテル共重合樹脂(PFA)、四ふっ化エチレン−六ふっ化プロピレン共重合樹脂(PFEP)などがある。また、フッ素樹脂シート1の表面に図示しない熱溶融性フッ素樹脂のディスパージョンを塗布して、この層の上に補強材2を重ね合わせて加圧加熱する方法などもある。なお、この段階ではこれらを加熱融着したシートを作らないで、フッ素樹脂シートと補強材の間に熱溶融フッ素樹脂シートを挟んだ3枚重ねシートのままとし、これを成形型にセットしその後これを深絞り成形する際に、フッ素樹脂シートと補強材を一体化するようにしてもよい。
【0011】
上記のようにして一体化した複合シート3は、深絞りの成形型の雌型12に配置して固定する。複合シート3を雌型12に配置するには、図3に示すように複合シート3における補強材2のたて糸又はよこ糸が、四角形をした雌型12の平面である開口面の少なくとも一辺となす角度が30°〜60°の範囲となるようにして配置する。図3にあっては、補強材のガラスクロスのたて糸が雌型12の矢印50で示す長手方向と45°の角度で配置されている。なお、複合シート3を成形型にセットする際は、ガラスクロスなどの補強材を雌型の内面に配置するのが通常で、雄型で押圧する面にフッ素樹脂シートを配置するが、図3ではガラスクロスのたて糸又はよこ糸が雌型の矢印50で示す長手方向となす角度が分かるようにするため、便宜的にガラスクロスの編み目を表側にして表してある。複合シート3における補強材2のたて糸又はよこ糸を雌型12の一辺とこうした位置関係で配置すると、これを用いて加圧成形した場合には、補強材2はその編み目の対角線方向もしくはそれに近似した方向に伸ばされてフッ素樹脂シートの伸びに追随するようになる。その結果、補強材の破れ、フッ素樹脂シートのしわの発生、フッ素樹脂シートと補強材の剥離といったことなどが生じない製品とすることができる。補強材のたて糸又はよこ糸が成形型の少なくとも一辺となす角度が30°未満或いは60°超では編み目の対角線方向が成形型の長さ方向と大きく異なって、加圧成形に際して補強繊維を成形型の長手方向に沿って十分に伸ばすことができない。補強材のたて糸又はよこ糸が成形型の少なくとも一辺となす角度のさらに好ましい範囲は40°〜50°である。
【0012】
複合シート3を雌型12にセットする手順の詳細は図4に示されている。まず、雌型12に複合シート3を載せる。次に、この複合シート3を雌型12の周囲に固定するために複合シートの4辺に固定プレート13,14を載置する。さらに、固定プレート13,14を雌型12に固定するには、固定プレート13,14の所定間隔の支持点15,15,…を、例えば図示しないしゃこ万力で固定する。これによって複合シート3は雌型12の周囲に固定されて加圧成形した際にテンションがかかるようになって、得られた成形品にひだが発生するのを防ぐことができる。この状態に複合シートをセットした後、雄型16を常法により図3の矢印60で示す方向に下降させ、複合シート3を加圧成形して深絞り成形する。加圧成形に際して、複合シート3に伸びが部分的に限界以上に生じた場合はガラスクロスなどの補強材が破損する恐れがあるので、その場合は複合シート3周囲を固定している図示しないしゃこ万力を調整して、その部分の固定を緩めてながら加圧を行っていく。
【0013】
図5は、雄型16を雌型12に下降させて加圧成形した状態を示したものである。なお、図5においても、固定プレート13,14の支持点15,15,…を固定しているしゃこ万力は省略されている。加圧成形は加熱して行なわれる。成形型の加熱は、例えば成形型を加圧した状態にしてこれを電気炉内に放置することによって行なわれる。また、成形型の加熱は、複合シートを成形型にセットする前にあらかじめ加熱することによってもよい。加圧加熱成形は、例えば温度250〜450℃、圧力0.5〜5kgf/cm2 、保持時間10min で行なわれる。図6(A)は図5のY−Y断面図、図6(B)は図5のZ−Z断面図である。成形後は冷却して脱型するが、ここにおける冷却も通常の方法、例えば成形型を電気炉内から取出し送風機で空冷し、その後にこれを水槽に投入することによって行なう。なお、上記実施例では複合シートは雌型にセットしたが、これを雄型側にセットするようにしても成形を行うことができる。その後は脱型してバリを除去して製品とする。図1で、10はこの発明の一実施例になる深絞り成形体である。
【0014】
【実施例】
(実施例1および比較例1)
巾500mm、長さ900mm、厚さ0.3mmのフッ素樹脂シート(PTFE)を用い、補強材としてガラスクロスを使用した。ガラスクロスは、ヤーン太さを1.5mmとし、織り込み本数はたて糸32本/100mm,よこ糸32本/100mmとした。フッ素樹脂シートとガラス繊維の複合シートは、複合シートにおけるガラスクロスのよこ糸がフッ素樹脂シートの長さ方向と45°の角度となるように重ね合わせ、この間に0.01mmの熱溶融性フッ素樹脂シート(PFA)を挟み、これを温度360℃、圧力17kgf/cm2 、保持時間10min で加圧加熱して、フッ素樹脂シートとガラスクロスの補強材を一体化して得た。
【0015】
この複合シートを図3及び図4に示すものと同様の成形型の雌型開口部にセットした。即ち、成形型は開口面の平面形状は巾180mm、長さ600mmで、深さ76mm(図7(B)参照)で、これに複合シートの縁部を固定プレートによって押さえ付け、その上から約200mm間隔でしゃこ万力によって固定した。この状態で図3に示すように雄型16を矢印60の方向に下降して雌型12に嵌合し加圧して加熱成形を行った。加圧成形に際しては、複合シートの緊張状態を勘案して、複合シートの伸びが他の部分よりも著しい部分のしゃこ万力を緩めて、複合シートが型内にのめり込むようにした。成形時の加熱温度は360℃、圧力4kgf/cm2 、保持時間10min で行った。成形後は冷却して脱型した。成形型の加圧は加熱した成形型を電気炉に放置することによって行い、また冷却は送風機による空冷の後に成形型を水槽に投入することによって行った。その後、成形体を脱型してバリを除去した。これによって図1に示すような形状の深絞り成形体10で、フッ素樹脂シートとガラス繊維の補強材が一体化して、破損、ひだの無い奇麗な深絞り成形体を得ることができた。
【0016】
実施例で得られた成形体と同じ成形体を試験品として耐屈曲試験を行った。図3に示す成形型で得られた深絞り成形体は、そのサイズが図7の(A)及び(B)に示すもので行った。図7の(A)は深絞り成形体の側面を示すもので、同図(B)は図(A)のX−X断面を示すものである。屈曲試験は、図8に示すような屈伸装置30によって行なった。屈伸試験装置30は、架台22の上で深絞り成形体10の試験品の一側の止め部23を図示しないビスで取り付けた固定部材24と、深絞り成形体10の試験品の他側の止め部25を同じようにビスで取り付けた摺動部材26と、この摺動部材26に連結されているクランク軸27と、摺動部材26を往復同させる駆動原28とで構成されている。上記の固定部材24は架台22に不動に固定されているが、摺動部材26はレール29の上で矢印40方向に往復動されるように取り付けられている。屈伸装置30の摺動部材26は、回転運動する駆動原28と連結されているクランク軸27で矢印40方向に往復運動し、深絞り成形体20の試験品は固定部材24側に繰返し屈伸を行った。摺動部材26の伸縮巾は100mm、伸縮速度は100回/分で、伸縮1,000回、3,000回、5,000回、10,000回、50,000回毎に外観を観察して異常の有無を確認した。また、前記各回の伸縮後に、試験品を切り出してこれについて引張り試験を行った。
【0017】
引張り試験の試験片は、表1に示す5種の屈曲試験を行った試験品から補強材のガラスクロスのたて糸に沿った形で各5個、合計25個を切り出してこれを引張り試験片とした。サイズは長さ150mm×巾25mmとした。引張り試験はJIS R 3240に準拠して各伸縮回ごとに切り出した5個の平均値をもってその引張り強度とした。以上の屈曲試験結果を表1に、引張り試験の結果を表2にを示す。
【0018】
【表1】

Figure 0004217489
【0019】
【表2】
Figure 0004217489
【0020】
表1から明らかなように、この発明の成形品では屈曲回数1,000回から50,000回のいずれの場合でも異常は認められなかった。
【0021】
また、引張り試験では、屈曲1,000回から屈曲50,000回までの各段階での試験片はいずれも1.00KN/25mm以上で、実機に使用して全く問題の生じないものであることが分かった。
【0022】
(比較例1)
実施例1と同様のフッ素樹脂シート(PTFE)と補強材のガラスクロスを用いて、ガラスクロスのよこ糸がフッ素樹脂シートの長さ方向と45°の角度となるように重ね合わせ、この間に0.01mmの熱溶融性フッ素樹脂シート(PFA)を挟み、これを温度360℃、圧力17kgf/cm2 、保持時間10min で加圧加熱して、フッ素樹脂シートとガラスクロスの補強材を一体化した複合シートを得た。
【0023】
この複合シートを実施例と同様に図3及び図4に示す成形型にセットした。複合シートの周囲は、成形型の縁部で固定プレートを用いて固定しなかった。この状態で図3に示すように雄型16を矢印の方向に下降して雌型12に嵌合し加熱して加圧成形をおこなった。成形は、加熱温度360℃、圧力4kgf/cm2 、保持時間10minで行った。成形後は冷却して脱型した。成形型の加熱、冷却は実施例と同様にしておこなった。これによって得られたフッ素樹脂シートとガラス繊維の一体成形品は、ひだが入って商品価値は認められないものであった。
【0024】
【発明の効果】
この発明によると、補強材を一体化したフッ素樹脂の深絞りプレスの立体成形品であって、プレス成形時に補強材が破損されるようなことがないので、フッ素樹脂シートと補強材を一体化した高強度の深絞り成形体を得ることが出来るようになった。また、その製品は表面にひだがなく滑らかで商品価値でも優れたものであった。しかも、この発明の一体成形はプレス成形であるからコストの面でも優れたものである。従って、これを用いると例えば、火力発電所、原子力発電所、製鉄所、セメント工場、化学プラントなどの排煙・排ガス系統、換気装置系統等の各種ダクトにガス不透過性が確保される厚さのフッ素樹脂シートとガラスクロスなどの織物の補強材を一体化した柔軟性と耐屈曲性を付与された伸縮継手のコーナー部が、低コストでしかも簡便に作成することができるようになった。
【図面の簡単な説明】
【図1】この発明によって得られた一実施例の深絞り成形体の斜視図。
【図2】この発明の成形体の製造に用いる複合シートとその構成部材の構成を示す説明図。
【図3】この発明の成形体の製造に用いる一実施例の成形型に複合シートを配置したものの斜視図。
【図4】この発明の成形体の製造に用いる一実施例の成形型に複合シートを配置したものの分解図。
【図5】この発明の成形体の製造に用いる一実施例の成形型に雄型を嵌合したものの斜視図。
【図6】(A)は図5のY−Yに沿う断面図、(B)は図5のZ−Zに沿う断面図。
【図7】屈曲試験品のサイズを示す寸法図。
【図8】屈伸試験装置の斜視図。
【図9】従来の伸縮継手の斜視図
【符号の説明】
1…フッ素樹脂シート、2…補強材、3…複合シート、4…熱溶融性フッ素樹脂シート、10…深絞り成形体、12雌型、13,14…固定プレート、15…支持点、16…雄型、30…屈伸試験装置、22…架台、23…一側の止め部、24…固定部材、25…他側の止め部、26…摺動部材、27…クランク軸、28…駆動原、29…レール。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a deep-drawn molded article for an expansion joint made of a composite sheet in which a reinforcing material such as a fluororesin sheet and glass cloth is integrated, and a method for producing the same.
[0002]
[Prior art]
Recently, the demand for fluororesins with excellent properties such as heat resistance, chemical resistance, electrical properties, and low friction properties has increased rapidly in various industrial fields, but on the other hand, the processability and moldability are difficult. It is well known that there are. For example, a thickness of 0.2-1. An expansion joint that integrates a 0 mm fluororesin sheet and a fabric reinforcement such as glass cloth is used. FIG. 9 shows a part of such a conventional expansion joint, a part of which is extracted on the upper right side of the figure, and its details are shown in a perspective view. This expansion joint can absorb displacement such as axial direction, twist, misalignment and the like, and is extremely excellent in flexibility and bending resistance.
[0003]
However, in order to obtain such an expansion joint, when the expansion joint has a square shape or a structure having a straight portion and a corner portion, the corner portion has the same durability and bending resistance as the straight portion. However, it was very difficult to achieve this. This is because, in the corner portion, if a composite sheet having the same plane as that of the straight portion is used, the displacement in the corner portion cannot be absorbed and complicated creases are generated. In order to solve this, it is preferable that the composite sheet has a circular arc in the corner portion or the like. That is, as the shape of the corner portion, it is preferable that the cross-sectional shape is a circular arc by deep drawing or the like, but it has been very difficult to produce such a molded body with a composite sheet.
[0004]
That is, in order to give strength and bending resistance to the fluororesin sheet to obtain a product as described above, a reinforcing material such as a fluororesin sheet and glass cloth is integrally formed through a heat-meltable fluororesin. The method has been adopted conventionally. However, since reinforcing materials such as glass cloth have a very small elongation compared to fluororesin, a sheet of reinforcing material such as a fluororesin sheet and glass cloth is deep drawn as the shape of the corner as described above. It has been very difficult to manufacture a molded product having an arc shape in cross section by molding or the like.
[0005]
Therefore, when manufacturing a three-dimensional product with a thin fluororesin, it is a method of scraping from a resin lump or dispersing the fluororesin in a dispersion medium, applying it to the mold surface that coincides with the corner, drying it, and firing it. However, the cutting method is very expensive because it takes man-hours and requires extra materials. In addition, the method of applying and drying a fluororesin dispersion on the surface of the latter mold and firing it will not only leave problems with thickness accuracy and gas impermeability of the sheet, but also with reinforcement such as glass cloth. It was also very difficult to integrate the materials. For this reason, conventionally, a composite sheet obtained by thermocompression bonding of a fluororesin sheet and a glass cloth is not particularly molded, but it has an extra length that can absorb displacement such as axial direction, twist, misalignment, etc. Although joints have been formed and used, it has been difficult to maintain a long life by causing local damage to the reinforcing material due to repeated vibration and torsion.
[0006]
[Problems to be solved by the invention]
In the present invention, when a composite sheet in which a fluororesin sheet and a fabric reinforcing material are stacked and integrated is press-molded with a molding die, the warp or weft of the fabric reinforcing material in the composite sheet is at least one side of a square-shaped molding die. The angle formed is 30 ° to 60 °, and the reinforcing material sheet is not damaged at the time of molding. Further, the stitches of the reinforcing material sheet follow the elongation of the fluororesin sheet and extend uniformly, and the entire fluororesin sheet is the reinforcing material. It is intended to be reinforced uniformly.
[0007]
[Means for Solving the Problems]
The present invention relates to a molded body for an expansion joint made of a composite sheet in which a fluororesin sheet and a fabric reinforcing material are integrated and integrated, wherein the warp or weft of the fabric reinforcing material in the composite sheet has a square shape in plan view. This is a deep-drawn molded product that is formed by press molding under heating at an angle of at least one side of the molding die of 30 ° to 60 °, and the reinforcing fabric weaves the stretch of the fluororesin sheet. A deep-drawn molded article for an expansion joint characterized in that it extends in accordance with the above (claim 1), a warp yarn of a reinforcing material in a composite sheet in which a fluororesin sheet and a reinforcing material of a woven material are integrated and integrated, or The weft yarn is arranged at an angle of 30 ° to 60 ° with respect to one side of the mold having a quadrangular shape, and the peripheral edge of the composite sheet is fixed to either the male mold or the female mold. Then, this is deep-drawn under pressure and heating, and a method for producing a deep-drawn molded body for an expansion joint (Claim 2) and the peripheral edge of the composite sheet and the edge of the male or female mold The method of manufacturing a deep-drawn molded article for an expansion joint according to claim 2, wherein the part of the composite sheet is partially loosened with respect to a part where the elongation of the composite sheet exceeds the other part. is there.
[0008]
The gist of the present invention is a molded body for an expansion joint formed by deep drawing a composite sheet in which a fluororesin sheet and a fabric reinforcing material such as glass fiber are overlapped and integrated, and the warp of the reinforcing material in the composite sheet Alternatively, the weft yarn is pressure-formed under heating at an angle of 30 ° to 60 ° with respect to at least one side of the forming die having a square planar shape, and the woven fabric of the reinforcing material is formed of the fluororesin sheet by pressure forming. A deep-drawn molded article for an expansion joint that is designed to extend following the elongation and a method for manufacturing the same.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention is a deep-drawn molded article for an expansion joint obtained by molding a laminate of a reinforcing material such as a fluororesin sheet and glass cloth using a molding die. Its uses are complex vibrations and displacements such as axial direction, twist, misalignment, etc. of various ducts such as smoke / exhaust gas systems and ventilator systems such as thermal power plants, nuclear power plants, steelworks, cement factories, chemical plants, etc. It is used for the purpose of absorbing water. The fluororesin sheet used in this invention is tetrafluoroethylene resin (PTFE). When the thickness is generally used for an expansion joint, a thickness of 0.2 to 1.0 mm is used because it is necessary to ensure gas impermeability. However, since this fluororesin sheet alone is insufficient in strength and bending resistance, a reinforcing material is integrated with it. This reinforcing material is a heat-resistant cloth material in which the warp and the weft are orthogonal to each other. For example, glass fiber, carbon fiber, aromatic polyamide fiber or the like is used. This woven fabric may be impregnated with a fluororesin dispersion in advance in order to increase the strength as a reinforcing material or to improve the adhesion to the fluororesin sheet. As the fluororesin dispersion, tetrafluoroethylene resin (PTFE), tetrafluoroethylene perfluoroalkyl vinyl ether polymer resin (PFA), or the like is used.
[0010]
The above-mentioned fluororesin sheet 1 and reinforcing material 2 such as glass fiber cloth are overlapped to form a composite sheet 3 as shown in FIG. 2, but the fluororesin PTFE sheet has a high melt viscosity and cannot be sufficiently thermally bonded. In order to firmly bond and integrate the fluororesin sheet 1 and the reinforcing material 2, for example, generally a method in which a heat-meltable fluororesin sheet 4 is sandwiched between the fluororesin sheet 1 and the reinforcing material 2 and heated under pressure is generally used. Widely practiced. Examples of the heat-fusible fluororesin include tetrafluoroethylene perfluoroalkyl vinyl ether copolymer resin (PFA) and tetrafluoroethylene-hexafluoropropylene copolymer resin (PFEP). There is also a method in which a dispersion of a heat-meltable fluororesin (not shown) is applied to the surface of the fluororesin sheet 1 and the reinforcing material 2 is superimposed on this layer and heated under pressure. At this stage, do not make a sheet that is heat-sealed, but leave it as a three-ply sheet with a hot-melt fluororesin sheet sandwiched between the fluororesin sheet and the reinforcing material. When this is deep-drawn, the fluororesin sheet and the reinforcing material may be integrated.
[0011]
The composite sheet 3 integrated as described above is disposed and fixed on the female die 12 of a deep drawing mold. In order to arrange the composite sheet 3 in the female mold 12, as shown in FIG. 3, the angle formed by the warp or weft of the reinforcing member 2 in the composite sheet 3 is at least one side of the opening surface which is the flat surface of the female mold 12 having a square shape. Is arranged in a range of 30 ° to 60 °. In FIG. 3, the warp yarn of the glass cloth of the reinforcing material is arranged at an angle of 45 ° with the longitudinal direction indicated by the arrow 50 of the female die 12. When the composite sheet 3 is set in a mold, a reinforcing material such as a glass cloth is usually disposed on the inner surface of the female mold, and a fluororesin sheet is disposed on the surface pressed by the male mold. Then, in order to make the angle between the warp yarn or the weft yarn of the glass cloth and the longitudinal direction indicated by the female arrow 50 visible, the knitting of the glass cloth is shown on the front side for convenience. When the warp yarn or the weft yarn of the reinforcing material 2 in the composite sheet 3 is arranged in such a positional relationship with one side of the female mold 12, when the compression molding is performed using this, the reinforcing material 2 is in the diagonal direction of the stitch or approximates it. It is stretched in the direction to follow the elongation of the fluororesin sheet. As a result, it is possible to obtain a product that does not cause breakage of the reinforcing material, generation of wrinkles of the fluororesin sheet, peeling of the fluororesin sheet and the reinforcing material, and the like. When the angle formed by the warp or weft of the reinforcing material with at least one side of the mold is less than 30 ° or more than 60 °, the diagonal direction of the stitch is greatly different from the length direction of the mold, and the reinforcing fiber is used for the molding in the press molding. It cannot be fully stretched along the longitudinal direction. A more preferable range of the angle formed by the warp or weft of the reinforcing material with at least one side of the mold is 40 ° to 50 °.
[0012]
Details of the procedure for setting the composite sheet 3 to the female mold 12 are shown in FIG. First, the composite sheet 3 is placed on the female mold 12. Next, fixing plates 13 and 14 are placed on the four sides of the composite sheet in order to fix the composite sheet 3 around the female mold 12. Further, in order to fix the fixing plates 13 and 14 to the female mold 12, the support points 15, 15,... At predetermined intervals of the fixing plates 13 and 14 are fixed by, for example, a scissor vise not shown. As a result, the composite sheet 3 is fixed around the female mold 12 and is subjected to pressure molding, so that it is possible to prevent creases from occurring in the obtained molded product. After setting the composite sheet in this state, the male mold 16 is lowered in the direction indicated by the arrow 60 in FIG. 3 by a conventional method, and the composite sheet 3 is pressed and deep-drawn. During compression molding, if the composite sheet 3 is partially stretched beyond the limit, a reinforcing material such as a glass cloth may be damaged. Adjust the vise and pressurize while loosening the fixed part.
[0013]
FIG. 5 shows a state where the male mold 16 is lowered to the female mold 12 and is pressure-molded. Also in FIG. 5, the scissors vise for fixing the support points 15, 15,... Of the fixing plates 13, 14 are omitted. The pressure molding is performed by heating. The mold is heated, for example, by putting the mold in a pressurized state and leaving it in an electric furnace. Further, the mold may be heated in advance before setting the composite sheet in the mold. The pressure heating molding is performed, for example, at a temperature of 250 to 450 ° C., a pressure of 0.5 to 5 kgf / cm 2 , and a holding time of 10 min. 6A is a YY sectional view of FIG. 5, and FIG. 6B is a ZZ sectional view of FIG. After molding, the mold is cooled and removed, but the cooling here is also performed by a normal method, for example, by removing the mold from the electric furnace and air-cooling it with a blower, and then putting it into a water tank. In the above embodiment, the composite sheet is set in the female mold, but the composite sheet can be molded by setting it on the male mold side. After that, it is demolded to remove burrs and make a product. In FIG. 1, reference numeral 10 denotes a deep-drawn molded article according to an embodiment of the present invention.
[0014]
【Example】
(Example 1 and Comparative Example 1)
A fluororesin sheet (PTFE) having a width of 500 mm, a length of 900 mm, and a thickness of 0.3 mm was used, and a glass cloth was used as a reinforcing material. The glass cloth had a yarn thickness of 1.5 mm, and the weaving number was 32 warp yarns / 100 mm and 32 weft yarns / 100 mm. The composite sheet of fluororesin sheet and glass fiber is superposed so that the weft of the glass cloth in the composite sheet is at an angle of 45 ° with the length direction of the fluororesin sheet. (PFA) was sandwiched, and this was pressurized and heated at a temperature of 360 ° C., a pressure of 17 kgf / cm 2 , and a holding time of 10 min to obtain a fluororesin sheet and a glass cloth reinforcing material integrated.
[0015]
This composite sheet was set in a female mold opening of a mold similar to that shown in FIGS. That is, the mold has a planar shape of an opening surface of 180 mm wide, 600 mm long, and 76 mm deep (see FIG. 7B). It fixed by the scissors vise at intervals of 200 mm. In this state, as shown in FIG. 3, the male mold 16 was lowered in the direction of the arrow 60, fitted into the female mold 12, and pressurized to perform heat molding. At the time of pressure molding, taking into account the tension state of the composite sheet, the composite sheet was pulled into the mold by loosening the scissors vise at a portion where the elongation of the composite sheet was more remarkable than the other portions. The heating temperature at the time of molding was 360 ° C., the pressure was 4 kgf / cm 2 , and the holding time was 10 min. After molding, the mold was cooled and removed. Pressurization of the mold was performed by leaving the heated mold in an electric furnace, and cooling was performed by putting the mold into a water tank after air cooling with a blower. Thereafter, the molded body was demolded to remove burrs. As a result, a deep drawn molded body 10 having a shape as shown in FIG. 1 was obtained by integrating the fluororesin sheet and the glass fiber reinforcing material so as to obtain a beautiful deep drawn molded body free from breakage and pleats.
[0016]
A bending resistance test was performed using the same molded body as that obtained in the example as a test product. The deep-drawn molded body obtained with the mold shown in FIG. 3 was the same as that shown in FIGS. 7A and 7B. FIG. 7A shows the side surface of the deep-drawn molded body, and FIG. 7B shows the XX cross section of FIG. The bending test was performed using a bending / stretching apparatus 30 as shown in FIG. The bending / stretching test apparatus 30 includes a fixing member 24 on which a stopper 23 on one side of a test product of the deep-drawn molded body 10 is attached with a screw (not shown) on the gantry 22 and the other side of the test product of the deep-drawn molded body 10. Similarly, the sliding member 26 includes a stopper 26 attached with screws, a crankshaft 27 connected to the sliding member 26, and a driving source 28 that reciprocates the sliding member 26. The fixing member 24 is fixed to the gantry 22 in a stationary manner, but the sliding member 26 is mounted on the rail 29 so as to be reciprocated in the direction of the arrow 40. The sliding member 26 of the bending / stretching device 30 reciprocates in the direction of the arrow 40 with a crankshaft 27 connected to a driving source 28 that rotates. went. The expansion / contraction width of the sliding member 26 is 100 mm, the expansion / contraction speed is 100 times / minute, and the appearance is observed every 1,000, 3,000, 5,000, 10,000, and 50,000 times. The presence or absence of abnormality was confirmed. Further, after each expansion and contraction, a test product was cut out and subjected to a tensile test.
[0017]
Ten test pieces for the tensile test were cut out from the test pieces subjected to the five types of bending tests shown in Table 1 in a form along the warp of the glass cloth of the reinforcing material, and a total of 25 pieces were cut out as tensile test pieces. did. The size was 150 mm long × 25 mm wide. In the tensile test, an average value of 5 cut out at each expansion and contraction in accordance with JIS R 3240 was used as the tensile strength. The above bending test results are shown in Table 1, and the tensile test results are shown in Table 2.
[0018]
[Table 1]
Figure 0004217489
[0019]
[Table 2]
Figure 0004217489
[0020]
As is clear from Table 1, no abnormality was observed in the molded product of the present invention in any case where the number of bendings was 1,000 to 50,000.
[0021]
Also, in the tensile test, the test pieces at each stage from 1,000 times to 50,000 times of bending are 1.00 KN / 25 mm or more, and they should not cause any problems when used in an actual machine. I understood.
[0022]
(Comparative Example 1)
Using the same fluororesin sheet (PTFE) as in Example 1 and a glass cloth of a reinforcing material, the glass cloth wefts are overlapped with each other at an angle of 45 ° with the length direction of the fluororesin sheet. sandwiching the melt processible fluoropolymer sheet (PFA) of 01Mm, this temperature 360 ° C., a pressure 17 kgf / cm 2, pressurized and heated with a retention time of 10min, integrating a reinforcing material of a fluorine resin sheet and glass cloth composite A sheet was obtained.
[0023]
This composite sheet was set in the mold shown in FIGS. 3 and 4 in the same manner as in the example. The periphery of the composite sheet was not fixed with a fixing plate at the edge of the mold. In this state, as shown in FIG. 3, the male mold 16 was lowered in the direction of the arrow, fitted into the female mold 12, and heated to perform pressure molding. Molding was performed at a heating temperature of 360 ° C., a pressure of 4 kgf / cm 2 , and a holding time of 10 min. After molding, the mold was cooled and removed. The mold was heated and cooled in the same manner as in the examples. The integrally molded product of the fluororesin sheet and glass fiber thus obtained was pleated and no commercial value was recognized.
[0024]
【The invention's effect】
According to the present invention, it is a three-dimensional molded product of a fluororesin deep-drawing press integrated with a reinforcing material, and the reinforcing material is not damaged during press molding, so the fluororesin sheet and the reinforcing material are integrated. It is now possible to obtain a deep-stretched molded body with high strength. In addition, the product was smooth with no creases on the surface and excellent in commercial value. Moreover, since the integral molding of the present invention is press molding, it is excellent in terms of cost. Therefore, when this is used, for example, a thickness that ensures gas impermeability in various ducts such as smoke / exhaust gas systems and ventilator systems of thermal power plants, nuclear power plants, steelworks, cement factories, chemical plants, etc. The corner portion of the expansion joint provided with flexibility and bending resistance obtained by integrating a woven fabric reinforcing material such as a glass cloth with a fluororesin sheet can be easily produced at low cost.
[Brief description of the drawings]
FIG. 1 is a perspective view of a deep-drawn molded article of one embodiment obtained by the present invention.
FIG. 2 is an explanatory view showing the configuration of a composite sheet and its constituent members used for manufacturing the molded body of the present invention.
FIG. 3 is a perspective view of a composite sheet placed in a mold according to an embodiment used for manufacturing a molded article of the present invention.
FIG. 4 is an exploded view of a composite sheet placed in a mold according to an embodiment used for manufacturing a molded article of the present invention.
FIG. 5 is a perspective view of a male die fitted to a molding die of one embodiment used for manufacturing a molded article of the present invention.
6A is a cross-sectional view taken along a line YY in FIG. 5, and FIG. 6B is a cross-sectional view taken along a line ZZ in FIG.
FIG. 7 is a dimensional diagram showing the size of a bending test product.
FIG. 8 is a perspective view of a bending and stretching test apparatus.
FIG. 9 is a perspective view of a conventional expansion joint.
DESCRIPTION OF SYMBOLS 1 ... Fluorine resin sheet, 2 ... Reinforcement material, 3 ... Composite sheet, 4 ... Hot-melting fluororesin sheet, 10 ... Deep drawing molded object, 12 female type | molds, 13, 14 ... Fixed plate, 15 ... Supporting point, 16 ... Male type, 30 ... Bending / extracting test apparatus, 22 ... Mounting stand, 23 ... Stopping part on one side, 24 ... Fixing member, 25 ... Stopping part on the other side, 26 ... Sliding member, 27 ... Crankshaft, 28 ... Driving source, 29 ... Rail.

Claims (3)

フッ素樹脂シートと織物の補強材を重ね合わせて一体化した複合シートからなる伸縮継手用の成形体であって、複合シートにおける織物の補強材のたて糸又はよこ糸が、平面形状が四角形の成形型の少なくとも一辺となす角度を30°〜60°にして加熱下で加圧成形し一体化した深絞り成形体で、加圧加熱成形によって補強材の織物の編み目がフッ素樹脂シートの伸びに追随して伸びていることを特徴とする伸縮継手用の深絞り成形体。A molded body for an expansion joint composed of a composite sheet in which a fluororesin sheet and a fabric reinforcement are overlapped and integrated, wherein the warp or weft of the fabric reinforcement in the composite sheet is a mold having a square shape in plan view. A deep-drawn molded body integrated with pressure forming under heating with an angle between at least one side of 30 ° to 60 °, and the stitches of the woven fabric of the reinforcing material follow the elongation of the fluororesin sheet by pressure heating molding. A deep-drawn molded article for an expansion joint characterized by being stretched. フッ素樹脂シートと織物の補強材を重ね合わせ一体化した複合シートにおける補強材の織物のたて糸又はよこ糸を、平面形状が四角形の成形型の一辺となす角度を30°〜60°にして配置するとともに、複合シートの周縁部を成形型の雄型または雌型の何れか一方の縁部に固定し、その後これを加圧加熱下で深絞り成形することを特徴とする伸縮継手用の深絞り成形体の製造方法。While arranging the warp or weft of the woven fabric of the reinforcing material in the composite sheet in which the fluororesin sheet and the reinforcing material of the woven fabric are overlapped and integrated with each other, the angle between one side of the mold having a square shape is 30 ° to 60 °. The deep drawing of an expansion joint is characterized in that the peripheral edge of the composite sheet is fixed to one of the edges of the male or female mold, and then deep drawing is performed under pressure and heating. Body manufacturing method. 前記複合シートの周縁部と雄型または雌型の縁部との固定を、複合シートの伸びが他の部分の伸びを超える部分について、部分的に緩めることを特徴とする請求項2に記載の伸縮継手用の深絞り成形体の製造方法。3. The fixing of the peripheral edge of the composite sheet and the edge of the male or female mold is partially loosened for a portion where the elongation of the composite sheet exceeds the elongation of the other portion. A method for producing a deep-drawn molded body for an expansion joint.
JP2003005955A 2003-01-14 2003-01-14 Deep drawn molded body for expansion joint and method for producing the same Expired - Fee Related JP4217489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003005955A JP4217489B2 (en) 2003-01-14 2003-01-14 Deep drawn molded body for expansion joint and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003005955A JP4217489B2 (en) 2003-01-14 2003-01-14 Deep drawn molded body for expansion joint and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004216697A JP2004216697A (en) 2004-08-05
JP4217489B2 true JP4217489B2 (en) 2009-02-04

Family

ID=32896485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003005955A Expired - Fee Related JP4217489B2 (en) 2003-01-14 2003-01-14 Deep drawn molded body for expansion joint and method for producing the same

Country Status (1)

Country Link
JP (1) JP4217489B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6660768B2 (en) * 2016-02-29 2020-03-11 株式会社フォトクラフト社 Image sheet and advertising panel
JP7358504B2 (en) * 2019-11-26 2023-10-10 三菱重工業株式会社 Molding method and mold

Also Published As

Publication number Publication date
JP2004216697A (en) 2004-08-05

Similar Documents

Publication Publication Date Title
JP6222370B2 (en) Manufacturing method of fiber reinforced composite material
US8454876B2 (en) Method for manufacturing an FC parison out of a laminate with at least two prepreg layers as well as a manufacturing device for such a method
JP7149151B2 (en) Composite aircraft part and manufacturing method thereof
US5464493A (en) Thermoplastic composite fabrics and formed article produced therefrom
WO2014010106A1 (en) Carbon fiber-reinforced composite material and method for producing same
JP2010540294A (en) Molding method of molding material
JP2007118598A (en) Method and apparatus for manufacturing preform
BRPI0714295A2 (en) Method for the manufacture of composite part
KR100220543B1 (en) Method for production of a composite structure with an intermediate three-dimentional textile, and a structure made by the method
US11845234B2 (en) Articulated forming caul for composite blank vacuum forming
JP2009161886A (en) Reinforced fiber substrate, preform, composite material and method for producing the same
JP4217489B2 (en) Deep drawn molded body for expansion joint and method for producing the same
JP5017040B2 (en) Preform manufacturing method and manufacturing apparatus
JP5568388B2 (en) Fiber-reinforced resin molded product with good appearance
KR20170123411A (en) manufacturing method for wide fiber reinforced resin panel using double side Z-pinning patch
US20200114590A1 (en) Method of producing composite laminate, method of producing fiber-reinforced composite material molded product, and fiber-reinforced composite material molded product
JP5809484B2 (en) Forming method
JP2012224016A (en) Shaping and molding method, and fiber-reinforced resin molded article
JP6328973B2 (en) Electromagnetic wave shielding plate and method for producing electromagnetic wave shielding plate
JP5545974B2 (en) Forming method
JP2011245634A (en) Shaping and molding method and fiber-reinforced resin molded product
JP5162227B2 (en) Preform manufacturing method
JP7240559B2 (en) Manufacturing method for intermediate products of aircraft parts and aircraft parts
JP6026860B2 (en) Forming method
JP3657500B2 (en) Cutting method of rubber molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081110

R150 Certificate of patent or registration of utility model

Ref document number: 4217489

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees