JP4215556B2 - Judgment method and apparatus for capacity regulation electrode of lead battery - Google Patents

Judgment method and apparatus for capacity regulation electrode of lead battery Download PDF

Info

Publication number
JP4215556B2
JP4215556B2 JP2003122743A JP2003122743A JP4215556B2 JP 4215556 B2 JP4215556 B2 JP 4215556B2 JP 2003122743 A JP2003122743 A JP 2003122743A JP 2003122743 A JP2003122743 A JP 2003122743A JP 4215556 B2 JP4215556 B2 JP 4215556B2
Authority
JP
Japan
Prior art keywords
slope
peak point
lead battery
point
bottom point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003122743A
Other languages
Japanese (ja)
Other versions
JP2004327338A (en
Inventor
俊二 谷口
義彰 山口
耕介 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Electric Power Co Inc
GS Yuasa Corp
Original Assignee
Kyushu Electric Power Co Inc
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Electric Power Co Inc, GS Yuasa Corp filed Critical Kyushu Electric Power Co Inc
Priority to JP2003122743A priority Critical patent/JP4215556B2/en
Publication of JP2004327338A publication Critical patent/JP2004327338A/en
Application granted granted Critical
Publication of JP4215556B2 publication Critical patent/JP4215556B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電極表面が溶解・析出し、かつ電極表面に不活性な絶縁物が生じるタイプの鉛電池について、劣化した鉛電池の放電容量を規制している電極が正極か負極かを判定するための鉛電池の容量規制極の判定方法及び判定装置に関する。
【0002】
【従来の技術】
従来、運転中の鉛電池の満充電状態を判定する手法はなく、又、鉛電池の容量を規制する電極を測定する手法はなかった。
【0003】
そこで、本出願人は、特許文献1に示すように、鉛電池の充放電状態、残存容量等を直接測定を可能とする鉛電池の状態判定方法及びその装置を提案した。
【0004】
この鉛電池の状態判定方法は、鉛電池を充電する際、充電途中において電流矩形パルスを印加し、その時生じる電池電圧波形の立ち上がりの傾き及び立下りの傾きの比が充電が進むに従い徐々に増加し、ピーク点を迎えた後、充電を終了させて放電末からの前記比の推移を、前記比を縦軸にし電気量を横軸にしてグラフ化して充電状態判定グラフを作成し、この充電状態判定グラフから電池の状態を判定するものである。
【0005】
【特許文献1】
特開2002−44880号公報
【0006】
【発明が解決しようとする課題】
これまでの電池の劣化極の判定は、運転中の鉛電池ではできず、電池を分解しないとわからなかった。また、一般に鉛電池では、過充電状態におかれると、正極が劣化する傾向にあり、また不足充電状態におかれると負極が劣化する傾向にあるため、劣化極を判定することで充電方法を変えて電池の長寿命化を図ることができる。
【0007】
そこで、本発明は、鉛電池を分解することなく鉛電池の容量を規制する電極が正極か負極かを判定することができる鉛電池の容量規制電極の判定方法及び判定装置を提供するものである。
【0008】
【課題を解決するための手段】
本発明の鉛電池の容量規制極の判定方法は、鉛電池を充電する際、充電量を増加させていく途中において電流矩形パルスを印加し、その時生じる電池電圧波形の立ち上がりの傾きの変化及び立下りの傾きの変化の推移を、前記傾きを縦軸にし電気量を横軸にしてグラフ化して立ち上がりの傾きのピーク点と立下りの傾きのボトム点を求め、さらにグラフの横軸での前記ピーク点と前記ボトム点が生じる位置を求め、前記位置から前記ピーク点が前記ボトム点より遅れて生じているときは負極が劣化し、前記ピーク点が前記ボトム点より先に生じているときは正極が劣化していると判定することを特徴とする。
【0009】
また、本発明の鉛電池の容量規制極の判定装置は、正負の定電流矩形パルスを発生するパワー部と、鉛電池電圧波形の立ち上がり、立下りの状況のアナログ値をデジタル値に変換する信号処理部と、デジタル変換されたデータに基づき立ち上がりの傾きの変化及び立下りの傾きの変化の推移を、傾きを縦軸にし電気量を横軸にしてグラフ化して立ち上がりの傾きピーク点と立下りの傾きのボトム点を求め、さらにグラフの横軸での前記ピーク点と前記ボトム点が生じる位置を求め、前記位置から前記ピーク点が前記ボトム点より遅れて生じているときは負極が劣化し、前記ピーク点が前記ボトム点より先に生じているときは正極が劣化していると判定する容量規制極を判定する判定部と、前記パワー部から判断部までの全体システムを制御し、駆動信号を出力する制御部と、これらの判定結果を表示する表示部とを設けたことを特徴とする。
【0010】
【発明の実施の形態】
鉛電池が劣化してくると正極または負極の劣化のどちらかで放電容量が規制される場合が多い。満充電近傍の立ち上がりの傾き(dVa/dt)の値は、正極で発生した酸素ガスの影響を受け、またたち下がりの傾き(dVb/dt)の値は、負極の電気二重層容量の影響を支配的に受けることから、正負極の劣化状況を判定する目安とすることができる新しい知見を得た。
【0011】
規制極の判定グラフは、鉛電池を充電する際、各充電途中において、電流矩形パルスを印加し、その時生じる鉛電池電圧波形の立ち上がりの傾き(dVa/dt)及び立下りの傾き(dVb/dt)の推移をグラフ化することにより得られる。
【0012】
規制極を判定するのに使用する判定グラフの作成について説明する。
【0013】
図1はバイポーラ電源を用いた矩形パルス波印加の回路図である。図1において、21は任意波形発生装置、22は例えば−100Aから+100Aの直流電流を出力するバイポーラ電源、23はシャント、24はスイッチ、25は測定対象鉛電池、26は記録計である。本例では、例えば、任意波形発生装置21により、0.5秒の正(充電方向)、負(放電方向)の電流矩形パルスを作り、その後バイポーラ電源22にて測定する電池定格の1.5Cの電流を作る。
【0014】
この方法により作った電流矩形パルスを予め容量を測定した鉛電池に完全放電状態から、過充電状態まで0.1C程度で充電率を上げていき、任意の充電状態にて電流矩形パルスを印加し、そのとき生じる鉛電池電圧波形の立ち上がり及び立ち下がり状況を測定する。
【0015】
図2は定電流矩形パルス印加時の電池電圧波形図である。図2に示すように、供試鉛電池の各充電状態での充放電矩形電流パルス印加時の鉛電池電圧波形の立ち上がりの傾き(dVa/dt)、立ち下がりの傾き(dVb/dt)を測定し、その推移を傾きを縦軸、電流量(Ah)を横軸にしてグラフ化すると、図3に示すように、電流量(Ah)で充電するに従い、グラフにピーク点及びボトム点が表れる。
【0016】
図3(a)に示すように、負極が劣化した場合、すなわち負極に電極反応に寄与できない不活性なPbSOが蓄積する、いわゆるサルフェーション等により負極が劣化した場合は、満充電近傍の充電パルス印加により負極においてHガス発生量が増え、負極と電解液の接触面積が減少する。これにより放電時の電気二重層容量が減少し、dVb/dtは上昇に転じ、早い段階でのようにボトム点が生じやすくなる。一方、dVa/dtは正極で発生する穏やかなOガスを負極で吸収し、生成されるPbSOへの再充電反応により減少に転じ、ピーク点を生じることから、dVb/dtのボトム点より遅れてピーク点が生じるものと考えられる。
【0017】
これとは逆に、図3(b)に示すように、正極側の劣化の場合、すなわち活物質の脱落や集電体の腐食等で実質の活物質(PbO)量が減少する正極側の劣化の場合には、パルス印加時の充電電流密度が相対的に上昇するために、早い段階で急激にOガスが発生してくる。この状況は負極でのガス吸収反応、即ちdVa/dtカーブのピーク点としてで捉えることができるため、結果としてdVa/dtのカーブのピーク点がdVb/dtのボトム点より先に生じる。
【0018】
以上のとおり、dVa/dtのピーク点とdVb/dtのボトム点の横軸の位置の前後関係により、劣化時の容量規制極を判定することができる。
【0019】
【実施例】
図4は本発明による判定装置の一実施例を示すブロック図である。パワー部の1はAC−DCコンバータ、2は例えば−100A〜+100Aの直流電流を出力するバイポーラ電源(シリーズレギュレータ)、3は測定鉛電池の電圧波形を信号変換処理して立ち上がりの傾きと立下りの傾きを測定する信号処理部、4は規制極の判定部、5は判定結果を表示する表示部である。判定装置全体は制御部6により制御される。
【0020】
本実施例では、AC−DCコンバータ1により、直流に変換した後、バイポーラ電源2により、0.5秒の正(充電方向)、負(放電方向)の電流矩形波で電流の大きさが、測定する鉛電池定格の1.5C(A)の電流を作る。
【0021】
この装置により作った矩形波を密閉型の鉛電池に完全放電状態から、0.1C(A)で充電率を上げていき、充電途中の任意の充電状態にて電流矩形パルスを印加し、そのとき生じる電圧波形の立ち上がりの傾きdVa/dt、立下りの傾きdVb/dtを測定し、推移状況を記録しグラフ化する。このグラフがこの鉛電池の規制電極の判定グラフとなる。
【0022】
実際に電気バスに(56個)搭載した鉛電池(56個、電池機種:135Ah/3HR)を、約1年間過酷な使用環境下(走行距離:5739.6km)で使用し、劣化させた電池を本装置で試験した結果、図3で示したように、dVa/dt、dVb/dtは、それぞれ満充電近傍において再充電反応及びガス発生によるピーク点、ボトム点が生じる。劣化するほどdVa/dtのピークが先鋭化してくるのは、負極でのガス吸収反応により生じたPbSOが多く析出してくるためである。
【0023】
この電池の放電時の容量制限極は、ピーク点がボトム点より先に生じているので、正極であると診断され実際に、この電池を解体し測定した結果、容量制限極は正極であり、診断結果と一致した。
【0024】
【発明の効果】
上述したように、本発明によれば、電極が劣化した鉛電池に対して、電圧の立ち上がり、立下りの傾きを測定し、ピーク点、ボトム点の位置を求めるだけで、劣化した電極の判定が可能となる。
【図面の簡単な説明】
【図1】バイポーラ電源を用いた矩形パルス波印加の回路図である。
【図2】定電流矩形パルス印加時の電池電圧波形図である。
【図3】dVa/dtのピーク点、dVb/dtのボトム点の説明図である。
【図4】本発明の判定装置のブロック図である。
【符号の説明】
1:AC−dCコンバータ 2:バイポーラ電源 3:信号処理部 4:判定部5:表示部 21:任意波形発生装置 22:バイポーラ電源 23:シャント 24:スイッチ 25:想定対象鉛電池 26:記録計
[0001]
BACKGROUND OF THE INVENTION
The present invention determines whether an electrode that regulates the discharge capacity of a deteriorated lead battery is a positive electrode or a negative electrode for a lead battery in which the electrode surface dissolves and precipitates and an inert insulator is generated on the electrode surface. TECHNICAL FIELD The present invention relates to a determination method and a determination device for a capacity regulation pole of a lead battery.
[0002]
[Prior art]
Conventionally, there is no method for determining the fully charged state of a lead battery during operation, and there is no method for measuring an electrode that regulates the capacity of the lead battery.
[0003]
Therefore, as shown in Patent Document 1, the present applicant has proposed a lead battery state determination method and apparatus capable of directly measuring the charge / discharge state, remaining capacity, and the like of the lead battery.
[0004]
In this lead battery state determination method, when charging a lead battery, a current rectangular pulse is applied in the middle of charging, and the ratio of the rising slope and falling slope of the battery voltage waveform that occurs gradually increases as charging progresses. Then, after reaching the peak point, the charging is terminated, and the transition of the ratio from the end of discharge is graphed with the ratio as the vertical axis and the amount of electricity as the horizontal axis, and a charging state determination graph is created. The battery state is determined from the state determination graph.
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-44880 [0006]
[Problems to be solved by the invention]
Until now, the determination of the deterioration pole of a battery cannot be made with a lead battery in operation, and it has not been understood unless the battery is disassembled. In general, in a lead battery, the positive electrode tends to deteriorate when it is overcharged, and the negative electrode tends to deteriorate when it is undercharged. In other words, the battery life can be extended.
[0007]
Therefore, the present invention provides a determination method and a determination device for a capacity regulating electrode of a lead battery that can determine whether the electrode that regulates the capacity of the lead battery is a positive electrode or a negative electrode without disassembling the lead battery. .
[0008]
[Means for Solving the Problems]
According to the method for determining the capacity regulation electrode of a lead battery according to the present invention, when charging a lead battery, a current rectangular pulse is applied in the middle of increasing the amount of charge, and the change and rise of the rising slope of the battery voltage waveform generated at that time are applied. The transition of the change in the downward slope is graphed with the slope as the vertical axis and the quantity of electricity as the horizontal axis to obtain the peak point of the rising slope and the bottom point of the falling slope. Find the position where the peak point and the bottom point occur, when the peak point is delayed from the position, the negative electrode is deteriorated, when the peak point occurs before the bottom point It is determined that the positive electrode is deteriorated.
[0009]
In addition, the determination device for the capacity regulation pole of the lead battery according to the present invention includes a power unit that generates a positive and negative constant current rectangular pulse, and a signal that converts an analog value of a rising and falling state of the lead battery voltage waveform into a digital value. Based on the processing unit and digitally converted data, the rising slope change and the falling slope change are graphed with the slope as the vertical axis and the amount of electricity as the horizontal axis, and the rising slope peak point and the falling edge The bottom point of the slope is obtained, and further, the position where the peak point and the bottom point occur on the horizontal axis of the graph is obtained, and when the peak point is delayed from the position, the negative electrode deteriorates. A determination unit that determines a capacity regulation pole that determines that the positive electrode is deteriorated when the peak point occurs before the bottom point, and controls the entire system from the power unit to the determination unit. A control unit for outputting a driving signal, characterized in that a display unit for displaying these determination results.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
When lead batteries deteriorate, the discharge capacity is often regulated by either the positive electrode or the negative electrode. The rising slope (dVa / dt) value near the full charge is affected by the oxygen gas generated at the positive electrode, and the falling slope (dVb / dt) value is affected by the electric double layer capacity of the negative electrode. Since it received dominantly, the new knowledge which can be used as a standard which determines the deterioration condition of positive and negative electrodes was acquired.
[0011]
The regulation pole judgment graph shows that when a lead battery is charged, a current rectangular pulse is applied during each charge, and the rising slope (dVa / dt) and the falling slope (dVb / dt) of the lead battery voltage waveform generated at that time. ) In the form of a graph.
[0012]
The creation of a determination graph used to determine the regulation pole will be described.
[0013]
FIG. 1 is a circuit diagram of rectangular pulse wave application using a bipolar power supply. In FIG. 1, 21 is an arbitrary waveform generator, 22 is a bipolar power source that outputs a direct current of, for example, −100 A to +100 A, 23 is a shunt, 24 is a switch, 25 is a lead battery to be measured, and 26 is a recorder. In this example, for example, the arbitrary waveform generator 21 generates a positive (charge direction) and negative (discharge direction) current rectangular pulse of 0.5 seconds, and then measures the battery power of 1.5 C measured by the bipolar power supply 22. Make current.
[0014]
The current rectangular pulse produced by this method is applied to a lead battery whose capacity has been measured in advance from the fully discharged state to the overcharged state at about 0.1 C, and the current rectangular pulse is applied in any charged state. Measure the rise and fall situation of the lead battery voltage waveform that occurs at that time.
[0015]
FIG. 2 is a battery voltage waveform diagram when a constant current rectangular pulse is applied. As shown in FIG. 2, the rising slope (dVa / dt) and the falling slope (dVb / dt) of the lead battery voltage waveform when charging / discharging rectangular current pulses are applied in each charge state of the test lead battery are measured. Then, when the transition is graphed with the slope being the vertical axis and the current amount (Ah) being the horizontal axis, as shown in FIG. 3, the peak point and the bottom point appear in the graph as the current amount (Ah) is charged. .
[0016]
As shown in FIG. 3 (a), when the negative electrode is deteriorated, that is, when the negative electrode is deteriorated due to so-called sulfation or the like that accumulates inactive PbSO 4 that cannot contribute to the electrode reaction, a charge pulse in the vicinity of full charge is obtained. When applied, the amount of H 2 gas generated in the negative electrode increases, and the contact area between the negative electrode and the electrolyte decreases. As a result, the electric double layer capacity at the time of discharge decreases, dVb / dt starts to rise, and a bottom point is likely to occur as in the early stage. On the other hand, dVa / dt absorbs mild O 2 gas generated at the positive electrode at the negative electrode and starts to decrease due to the recharge reaction to the generated PbSO 4 , resulting in a peak point. From the bottom point of dVb / dt It is considered that a peak point occurs with a delay.
[0017]
On the contrary, as shown in FIG. 3B, in the case of deterioration on the positive electrode side, that is, on the positive electrode side where the amount of the active material (PbO 2 ) is reduced due to dropping of the active material or corrosion of the current collector. In the case of deterioration, since the charging current density at the time of pulse application is relatively increased, O 2 gas is rapidly generated at an early stage. This situation can be grasped as a gas absorption reaction at the negative electrode, that is, as the peak point of the dVa / dt curve. As a result, the peak point of the dVa / dt curve occurs before the bottom point of the dVb / dt.
[0018]
As described above, the capacity regulation pole at the time of deterioration can be determined based on the front and back relationship between the horizontal axis positions of the dVa / dt peak point and the dVb / dt bottom point.
[0019]
【Example】
FIG. 4 is a block diagram showing an embodiment of the determination apparatus according to the present invention. The power section 1 is an AC-DC converter, 2 is a bipolar power supply (series regulator) that outputs a direct current of, for example, −100 A to +100 A, and 3 is a signal conversion process for the voltage waveform of the measured lead battery to rise and fall A signal processing unit for measuring the inclination of the reference numeral 4, a determination unit 4 for the regulation pole, and a display unit 5 for displaying the determination result. The entire determination apparatus is controlled by the control unit 6.
[0020]
In the present embodiment, after being converted into direct current by the AC-DC converter 1, the magnitude of the current is positive (charge direction) and negative (discharge direction) current rectangular waves of 0.5 seconds by the bipolar power supply 2. A current of 1.5 C (A) of the lead battery rating to be measured is made.
[0021]
The rectangular wave made by this device is discharged from a completely discharged state to a sealed lead battery at 0.1 C (A), and a current rectangular pulse is applied in an arbitrary charging state during charging. The rising slope dVa / dt and falling slope dVb / dt of the voltage waveform that occurs are measured, and the transition state is recorded and graphed. This graph is a determination graph of the regulation electrode of this lead battery.
[0022]
Batteries deteriorated by using lead batteries (56 batteries, battery type: 135Ah / 3HR) actually mounted on an electric bus (56 batteries) under harsh usage conditions (travel distance: 5739.6 km) for about one year As a result of testing with this apparatus, as shown in FIG. 3, dVa / dt and dVb / dt have a peak point and a bottom point due to recharge reaction and gas generation near full charge, respectively. The reason why the peak of dVa / dt sharpens as it deteriorates is that a large amount of PbSO 4 produced by the gas absorption reaction at the negative electrode is precipitated.
[0023]
Since the capacity limit electrode at the time of discharge of this battery is generated before the bottom point, the peak point is diagnosed as being a positive electrode, and the result of actually disassembling and measuring this battery shows that the capacity limit electrode is a positive electrode. Consistent with diagnostic results.
[0024]
【The invention's effect】
As described above, according to the present invention, for a lead battery in which the electrode has deteriorated, the rising and falling slopes of the voltage are measured, and the position of the peak point and the bottom point is determined. Is possible.
[Brief description of the drawings]
FIG. 1 is a circuit diagram of rectangular pulse wave application using a bipolar power supply.
FIG. 2 is a battery voltage waveform diagram when a constant current rectangular pulse is applied.
FIG. 3 is an explanatory diagram of a peak point of dVa / dt and a bottom point of dVb / dt.
FIG. 4 is a block diagram of a determination apparatus according to the present invention.
[Explanation of symbols]
1: AC-dC converter 2: Bipolar power supply 3: Signal processing unit 4: Determination unit 5: Display unit 21: Arbitrary waveform generator 22: Bipolar power supply 23: Shunt 24: Switch 25: Assumed lead battery 26: Recorder

Claims (2)

鉛電池を充電する際、充電量を増加させていく途中において電流矩形パルスを印加し、その時生じる電池電圧波形の立ち上がりの傾きの変化及び立下りの傾きの変化の推移を、前記傾きを縦軸にし電気量を横軸にしてグラフ化して立ち上がりの傾きのピーク点と立下りの傾きのボトム点を求め、さらにグラフの横軸での前記ピーク点と前記ボトム点が生じる位置を求め、前記位置から前記ピーク点が前記ボトム点より遅れて生じているときは負極が劣化し、前記ピーク点が前記ボトム点より先に生じているときは正極が劣化していると判定することを特徴とする鉛電池の容量規制極の判定方法。When charging a lead battery, a current rectangular pulse is applied in the middle of increasing the amount of charge, and the change of the rising slope and the falling slope of the battery voltage waveform that occurs at that time is represented by the vertical axis representing the slope. The amount of electricity is plotted on the horizontal axis to determine the peak point of the rising slope and the bottom point of the falling slope, and the position where the peak point and the bottom point occur on the horizontal axis of the graph is determined. When the peak point occurs later than the bottom point, the negative electrode is deteriorated, and when the peak point occurs earlier than the bottom point, it is determined that the positive electrode is deteriorated. Judgment method of capacity regulation pole of lead battery. 正負の定電流矩形パルスを発生するパワー部と、鉛電池電圧波形の立ち上がり、立下りの状況のアナログ値をデジタル値に変換する信号処理部と、デジタル変換されたデータに基づき立ち上がりの傾きの変化及び立下りの傾きの変化の推移を、傾きを縦軸にし電気量を横軸にしてグラフ化して立ち上がりの傾きピーク点と立下りの傾きのボトム点を求め、さらにグラフの横軸での前記ピーク点と前記ボトム点が生じる位置を求め、前記位置から前記ピーク点が前記ボトム点より遅れて生じているときは負極が劣化し、前記ピーク点が前記ボトム点より先に生じているときは正極が劣化していると判定する容量規制極を判定する判定部と、前記パワー部から判断部までの全体システムを制御し、駆動信号を出力する制御部と、これらの判定結果を表示する表示部とを設けたことを特徴とする鉛電池の容量規制極の判定装置。A power unit that generates positive and negative constant current rectangular pulses, a signal processing unit that converts analog values of the rising and falling states of the lead battery voltage waveform into digital values, and changes in the rising slope based on the digitally converted data And the transition of the change in the slope of the fall is graphed with the slope as the vertical axis and the quantity of electricity as the horizontal axis to obtain the rising slope peak point and the falling slope bottom point. Find the position where the peak point and the bottom point occur, when the peak point is delayed from the position, the negative electrode is deteriorated, when the peak point occurs before the bottom point A determination unit that determines a capacity regulation electrode that determines that the positive electrode is deteriorated, a control unit that controls the entire system from the power unit to the determination unit and outputs a drive signal, and the determination results Determining device capacity regulating pole lead batteries, characterized in that a display unit for displaying.
JP2003122743A 2003-04-25 2003-04-25 Judgment method and apparatus for capacity regulation electrode of lead battery Expired - Fee Related JP4215556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003122743A JP4215556B2 (en) 2003-04-25 2003-04-25 Judgment method and apparatus for capacity regulation electrode of lead battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003122743A JP4215556B2 (en) 2003-04-25 2003-04-25 Judgment method and apparatus for capacity regulation electrode of lead battery

Publications (2)

Publication Number Publication Date
JP2004327338A JP2004327338A (en) 2004-11-18
JP4215556B2 true JP4215556B2 (en) 2009-01-28

Family

ID=33500868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003122743A Expired - Fee Related JP4215556B2 (en) 2003-04-25 2003-04-25 Judgment method and apparatus for capacity regulation electrode of lead battery

Country Status (1)

Country Link
JP (1) JP4215556B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101963930B1 (en) * 2015-02-09 2019-03-29 고려대학교 산학협력단 Energy storage system with lead acid battery and method for charging and discharging lead acid battery
CN107589374A (en) * 2016-07-06 2018-01-16 深圳市沃特玛电池有限公司 Batteries of electric automobile inclusion quantity evaluation method
KR20210074001A (en) * 2019-12-11 2021-06-21 주식회사 엘지에너지솔루션 Apparatus of Controlling Operation of Secondary Battery using Relative Deterioration Degree of Electrode and Method thereof

Also Published As

Publication number Publication date
JP2004327338A (en) 2004-11-18

Similar Documents

Publication Publication Date Title
KR101897859B1 (en) Detection method of Li plating, method and apparatus for charging secondary battery and secondary battery system using the same
US9864017B2 (en) Performance deterioration detecting apparatus and performance deterioration detecting method for energy storage device, and energy storage system
US6081097A (en) Method for charging lithium secondary battery
US6229285B1 (en) Detector for rapid charging and method
US7339351B2 (en) Method and apparatus for estimating remaining capacity of secondary battery
US6646421B2 (en) Method and apparatus for controlling residual battery capacity of secondary battery
Martinet et al. Application of electrochemical noise analysis to the study of batteries: state-of-charge determination and overcharge detection
JP5407893B2 (en) Secondary battery system and hybrid vehicle
US20120094152A1 (en) Method and device for controlling battery heating
JP2007166789A (en) Method of determining fully charged capacity of secondary battery and determining device thereof
JP2010086901A (en) Deterioration diagnosing device and degradation diagnosing method of lithium secondary battery
US20180191187A1 (en) Active Battery Management System
JP2000270491A (en) Lithium ion battery charging method and lithium ion battery charger
JP4121098B2 (en) Rechargeable battery residual capacity detection method using nickel hydroxide positive electrode
JP4215556B2 (en) Judgment method and apparatus for capacity regulation electrode of lead battery
JP3878397B2 (en) Secondary battery full charge, battery deterioration degree and dischargeable capacity determination method and apparatus
Christophersen et al. Electrochemical impedance spectroscopy testing on the advanced technology development program lithium-ion cells
JP3678045B2 (en) Battery charging method
EP1864148B1 (en) Method for determining capacity of lead-acid batteries of various specific gravities
JPH11233162A (en) Method for judging life of sealed lead-acid battery
JP4388249B2 (en) Lead battery status determination device
JP7508346B2 (en) Method for controlling lithium-ion secondary battery
JP3935087B2 (en) Battery charging apparatus and method
JP4517273B2 (en) Charge / discharge control device for secondary battery and charge / discharge control method for secondary battery
JPH11355968A (en) Charging for storage battery and charger therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051020

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081003

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081104

R150 Certificate of patent or registration of utility model

Ref document number: 4215556

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees