JP4214766B2 - Air-fuel ratio control device for internal combustion engine - Google Patents

Air-fuel ratio control device for internal combustion engine Download PDF

Info

Publication number
JP4214766B2
JP4214766B2 JP2002344830A JP2002344830A JP4214766B2 JP 4214766 B2 JP4214766 B2 JP 4214766B2 JP 2002344830 A JP2002344830 A JP 2002344830A JP 2002344830 A JP2002344830 A JP 2002344830A JP 4214766 B2 JP4214766 B2 JP 4214766B2
Authority
JP
Japan
Prior art keywords
cylinder
air
fuel ratio
amount
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002344830A
Other languages
Japanese (ja)
Other versions
JP2004176642A (en
Inventor
創 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002344830A priority Critical patent/JP4214766B2/en
Publication of JP2004176642A publication Critical patent/JP2004176642A/en
Application granted granted Critical
Publication of JP4214766B2 publication Critical patent/JP4214766B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Valve Device For Special Equipments (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、吸気弁のバルブリフト特性を変更することにより吸入空気量を連続的に可変制御可能な可変動弁機構を備えた内燃機関に関し、特にその空燃比制御装置に関する。
【0002】
【従来の技術】
特許文献1には、本出願人が先に提案した吸気弁のリフト量および作動角を連続的に可変制御し得る可変動弁機構が開示されている。この種の可変動弁機構によれば、スロットル弁の開度制御に依存せずにシリンダ内に流入する空気量を可変制御することが可能であり、特に負荷の小さな領域において、いわゆるスロットルレス運転ないしはスロットル弁の開度を十分に大きく保った運転を実現でき、ポンピングロスの大幅な低減が図れる。
【0003】
また特許文献2には、気筒間の空燃比のばらつきを解消するために、空燃比センサの検出信号の時間的な変化と各気筒の排気タイミングとを照合して、各気筒の空燃比をそれぞれ検出し、気筒別に噴射量のフィードバック補正を行う技術が開示されている。
【0004】
【特許文献1】
特開2002−89341号公報
【0005】
【特許文献2】
特開平9−203337号公報
【0006】
【発明が解決しようとする課題】
上記のような可変動弁機構を用いて吸入空気量の制御を行う場合、アイドル時のように非常に少量の吸入空気量を実現するためには、吸気弁のリフト量(最大リフト量)が例えば1mm程度の極小リフトとなる。このような極小リフトの状態では、各気筒のリフト量の僅かな誤差によってシリンダ内に流入する空気量が比較的大きくばらついてしまい、しかも吸入空気量そのものが少ないことから、気筒間の空燃比ばらつきが発生しやすい。
【0007】
特許文献2には、前述したように、気筒別に空燃比をフィードバック制御することが開示されているが、特に気筒数の多い内燃機関では、排気タイミングに基づく気筒別の空燃比検出を精度よく行うことは困難である。
【0008】
【課題を解決するための手段】
この発明は、多気筒内燃機関における全気筒の吸気弁のバルブリフト特性を一斉に変更することにより内燃機関の吸入空気量を連続的に可変制御可能な可変動弁機構と、各気筒毎に燃料を供給する燃料供給手段と、内燃機関の排気系に設けられた空燃比検出手段と、この空燃比検出手段の検出信号に基づいて、目標空燃比となるように上記燃料供給手段による燃料供給量を制御するフィードバック制御手段と、を備えてなる内燃機関の空燃比制御装置において、上記可変動弁機構により全気筒の吸気弁のバルブリフト特性が極小リフト状態に制御されている所定の運転状態の下で、目標空燃比を理論空燃比からリッチ側およびリーン側へそれぞれ変化させ、それぞれの空燃比変化に伴う各気筒の筒内圧変化を検出することにより各気筒の吸入空気量のばらつきの試験を行い、このばらつきを相殺するように各気筒毎に記憶した補正量を用いて、機関運転中に各気筒の燃料供給量を増減補正することを特徴とする。
【0009】
すなわち、本発明では、可変動弁機構の気筒間の誤差が最も顕著に現れる極小リフト状態で運転されているときに、各気筒の吸入空気量のばらつきの有無を試験する。そして、通常の運転中は、この試験の際に検出されたばらつきを相殺するように、各気筒の燃料供給量を増減補正する。これにより、各気筒の実際の空燃比が、目標空燃比例えば理論空燃比に、より正確に一致する。
【0010】
上記の試験は、より具体的には、各気筒の空燃比を、理論空燃比からリッチ側およびリーン側へ変化させ、それぞれの空燃比変化に伴う各気筒の筒内圧変化を検出することにより行うことができる。
【0011】
複数の気筒全体として理論空燃比に制御されている状態で、仮にある気筒がリッチ(便宜上、これをリッチ気筒と呼ぶこととする)であり、他のある気筒がリーン(同様に、これをリーン気筒と呼ぶこととする)であり、残りの気筒が正しく理論空燃比(同様に、これをストイキ気筒と呼ぶこととする)であったとする。なお、これらの空燃比のばらつきは、主に可変動弁機構によるリフト量のばらつきに起因する。また、複数の気筒全体で理論空燃比であるので、通常は、リッチ気筒があれば同時にリーン気筒が存在している。この状態から、例えば燃料供給量を増量して複数の気筒全体の空燃比をリッチ側へ変化させると、リーン気筒では、十分な空気が存在していることから、燃料供給量の増量に伴って、トルクが増加する。つまり、理論空燃比時よりも高い筒内圧が検出される。これに対し、ストイキ気筒およびリッチ気筒では、余分な空気が存在しないので、燃料供給量を増量しても、筒内圧の上昇は生じない。一方、理論空燃比の状態から、例えば吸入空気量を増量して複数の気筒全体の空燃比をリーン側へ変化させると、リッチ気筒では、十分な燃料が存在していることから、空気量の増量に伴って、トルクが増加する。つまり、理論空燃比時よりも高い筒内圧が検出される。これに対し、ストイキ気筒およびリーン気筒では、余分な燃料が存在しないので、空気量を増量しても、筒内圧の上昇は生じない。
【0012】
このように、強制的なリッチ運転およびリーン運転を短時間実行することで、リーン気筒およびリッチ気筒を容易に判別することができる。
【0013】
【発明の効果】
この発明に係る内燃機関の空燃比制御装置によれば、吸入空気量を連続的に可変制御し得る可変動弁機構を備えた内燃機関において、可変動弁機構によるリフト量のばらつきに起因する各気筒の空燃比ばらつきを小さくすることができ、各気筒の空燃比ばらつきに起因する運転性の悪化やエミッションの悪化を回避するとともに、燃費のより一層の向上が図れる。
【0014】
【発明の実施の形態】
以下、この発明の好ましい実施の形態を図面に基づいて詳細に説明する。
【0015】
図1は、この発明に係る内燃機関の空燃比制御装置を示すシステム構成図であって、火花点火式ガソリン機関からなる内燃機関1は、吸気弁3と排気弁4とを有し、その吸気弁3側の動弁機構として、後述する可変動弁機構2が設けられている。排気弁4側の動弁機構は、排気カムシャフト5により排気弁4を駆動する直動型のものであり、そのバルブリフト特性は、常に一定である。
【0016】
各気筒の排気を集合させる排気マニホルド6の出口側は、触媒コンバータ7に接続されており、かつこの触媒コンバータ7の上流位置に、空燃比を検出するための空燃比センサ8が設けられている。触媒コンバータ7の下流側には、さらに、第2の触媒コンバータ10および消音器11を備えている。上記空燃比センサ8は、空燃比のリッチ,リーンのみを検出する酸素センサであってもよく、あるいは、空燃比の値に応じた出力が得られる広域型空燃比センサであってもよい。
【0017】
各気筒の吸気ポートに向かって各気筒毎に燃料を噴射供給するように燃料噴射弁12が配設されている。この吸気ポートには、ブランチ通路15がそれぞれ接続され、かつこの複数のブランチ通路15の上流端が、コレクタ16に接続されている。上記コレクタ16の一端には、吸気入口通路17が接続されており、この吸気入口通路17に、電子制御スロットル弁18が設けられている。この電子制御スロットル弁18は、電気モータからなるアクチュエータ18aを備え、エンジンコントロールユニット19から与えられる制御信号によって、その開度が制御される。なお、スロットル弁18の実際の開度を検出するセンサ18bを一体に備えており、その検出信号に基づいて、スロットル弁開度が目標開度にクローズドループ制御される。また、スロットル弁18の上流に、吸入空気流量を検出するエアフロメータ20が配置され、さらに上流にエアクリーナ21が設けられている。
【0018】
また、機関回転速度およびクランク角位置を検出するために、クランクシャフトに対してクランク角センサ22が設けられている。本実施例では、このクランク角センサ22の検出信号からクランクシャフトの角速度変化を求め、爆発行程にある気筒の筒内圧変化を検出するようにしている。つまり、各気筒の筒内圧を直接に検出する筒内圧センサは具備していない。さらに、運転者により操作されるアクセルペダル開度(踏込量)を検出するアクセル開度センサ23を備えている。これらの検出信号は、上記のエアフロメータ20や空燃比センサ8等の検出信号とともに、エンジンコントロールユニット19に入力されている。エンジンコントロールユニット19では、これらの検出信号に基づいて、燃料噴射弁12の噴射量や噴射時期、点火プラグ24による点火時期、可変動弁機構2によるバルブリフト特性、スロットル弁18の開度、などを制御する。
【0019】
上記の吸気弁3側の可変動弁機構2は、例えば前述した特開2002−89341号公報によって公知のものであり、図2に示すように、吸気弁3のリフト・作動角を連続的に可変制御するリフト・作動角可変機構51と、そのリフトの中心角の位相(クランクシャフトに対する位相)を連続的に進角もしくは遅角させる位相可変機構52と、が組み合わされて構成されている。このようにリフト・作動角可変機構51と位相可変機構52とを組み合わせた可変動弁機構によれば、吸気弁開時期および吸気弁閉時期の双方をそれぞれ独立して任意に制御することが可能であり、また同時に、低負荷域ではリフト量(最大リフト量)を小さくすることで、負荷に応じた吸入空気量に制限することができる。なお、リフト量がある程度大きな領域では、シリンダ内に流入する空気量が主に吸気弁3の開閉時期によって定まるのに対し、リフト量が十分に小さい状態では、主にリフト量によって空気量が定まる。
【0020】
図3の動作説明図を併せて、リフト・作動角可変機構51の概要を説明すると、このリフト・作動角可変機構51は、シリンダヘッドに回転自在に支持され、かつクランクシャフトに連動して回転する中空状の駆動軸53と、この駆動軸53に固定された偏心カム55と、上記駆動軸53の上方位置において平行に配置された回転自在な制御軸56と、この制御軸56の偏心カム部57に揺動自在に支持されたロッカアーム58と、各吸気弁3上端のタペット59に当接する揺動カム60と、を備えている。上記偏心カム55とロッカアーム58とはリンクアーム61によって連係されており、ロッカアーム58と揺動カム60とは、リンク部材62によって連係されている。上記リンクアーム61は、その環状部61aが上記偏心カム55の外周面に回転可能に嵌合している。またリンクアーム61の延長部61bが上記ロッカアーム58の一端部に連係しており、該ロッカアーム58の他端部に、上記リンク部材62の上端部が連係している。上記偏心カム部57は、制御軸56の軸心から偏心しており、従って、制御軸56の角度位置に応じてロッカアーム58の揺動中心は変化する。
【0021】
上記揺動カム60は、駆動軸53の外周に嵌合して回転自在に支持されており、側方へ延びた端部60aに、上記リンク部材62の下端部が連係している。この揺動カム60の下面には、駆動軸53と同心状の円弧をなす基円面64aと、該基円面64aから上記端部60aへと所定の曲線を描いて延びるカム面64bと、が連続して形成されている。上記基円面64aは、リフト量が0となる区間であり、図3に示すように、揺動カム60が揺動してカム面64bがタペット59に接触すると、徐々にリフトしていくことになる。
【0022】
上記制御軸56は、一端部に設けられた例えば電動モータからなるリフト・作動角制御用アクチュエータ65によって、その回転位置が制御されている。
【0023】
このアクチュエータ65により例えば偏心カム部57が図3(A)のように上方位置にあると、ロッカアーム58は全体として上方へ位置し、揺動カム60の端部60aが相対的に上方へ引き上げられた状態となる。つまり、揺動カム60の初期位置は、そのカム面64bがタペット59から離れる方向に傾く。従って、駆動軸53の回転に伴って揺動カム60が揺動した際に、基円面64aが長くタペット59に接触し続け、カム面64bがタペット59に接触する期間は短い。従って、リフト量が全体として小さくなり、かつその開時期から閉時期までの角度範囲つまり作動角も縮小する。
【0024】
逆に、偏心カム部57が図3(B)のように下方へ位置しているとすると、ロッカアーム58は全体として下方へ位置し、揺動カム60の端部60aが相対的に下方へ押し下げられた状態となる。つまり、揺動カム60の初期位置は、そのカム面64bがタペット59に近付く方向に傾く。従って、駆動軸53の回転に伴って揺動カム60が揺動した際に、リフト量が大きく得られ、かつその作動角も拡大する。
【0025】
上記の偏心カム部57の初期位置は連続的に変化させ得るので、これに伴って、バルブリフト特性は、図4に示すように、連続的に変化する。つまり、リフトならびに作動角を、両者同時に、連続的に拡大,縮小させることができる。
【0026】
次に、位相可変機構52は、図2に示すように、上記駆動軸53の前端部に設けられたスプロケット71と、このスプロケット71と上記駆動軸53とを、所定の角度範囲内において相対的に回転させる位相制御用油圧アクチュエータ72と、から構成されている。上記スプロケット71は、図示せぬタイミングチェーンもしくはタイミングベルトを介して、クランクシャフトに連動している。従って、上記位相制御用油圧アクチュエータ72への油圧制御によって、スプロケット71と駆動軸53とが相対的に回転し、図5に示すように、リフト中心角が遅進する。つまり、リフト特性の曲線自体は変わらずに、全体が進角もしくは遅角する。
【0027】
なお、リフト・作動角可変機構51ならびに位相可変機構52の制御としては、実際のリフト・作動角あるいは位相を検出するセンサを設けて、クローズドループ制御するようにしても良く、あるいは運転条件に応じて単にオープンループ制御するようにしても良い。
【0028】
上記のような構成においては、アクセルペダル開度により定まる要求トルクが得られるように吸入空気量が制御されるのであるが、電子制御スロットル弁18の開度は、基本的には、排気還流などの上で必要な最小限の負圧がコレクタ16内に生成されるように制御される。そして、この大気圧に近い吸入負圧の下で、シリンダ内に流入する空気量が最適なものとなるように、上記可変動弁機構2が制御される。
【0029】
ここで、前述したように、アイドル時のような低負荷領域では、リフト・作動角可変機構51によって吸気弁3のリフト量が1mm程度の極小リフトとなり、そのリフト量に応じた空気量に制限されることになるので、可変動弁機構2における各気筒の部品の寸法誤差あるいは組付誤差等に起因した各気筒のリフト量の僅かなばらつきによって、各気筒の空気量が比較的大きくばらついてしまう。そして、各気筒の燃料噴射量は、排気系における空燃比センサ8の検出信号に基づいて、全気筒で目標空燃比(例えば理論空燃比)となるように制御される。従って、気筒間の空気量のばらつきが存在すると、各気筒の実際の空燃比は、目標空燃比からリッチ側もしくはリーン側へずれていることになる。
【0030】
本発明では、このような可変動弁機構2による空気量のばらつきの影響を低減するために、可変動弁機構2が極小リフトに制御されている所定の運転状態の下で、各気筒の吸入空気量のばらつきの試験を行い、このばらつきを相殺するように、各気筒の燃料噴射量の補正を行うようにしている。
【0031】
図6のフローチャートは、吸入空気量のばらつき試験の処理の流れを示すもので、まずステップ1で、試験を行う条件であるか否かを判定する。本実施例では、自動変速機を備えた内燃機関1に適用する例として、自動変速機が通常の走行レンジ(いわゆるDレンジ)にあり、かつ運転者のブレーキ操作により車両が停車している状態、つまり走行レンジアイドル条件である場合に、ばらつき試験を実行する。このように停車中に試験を行うことにより、試験中に筒内圧の変化が生じても、乗員に違和感を与えることが少ない。また、自動変速機をニュートラルレンジとしたアイドル運転時には、内燃機関1の燃焼が比較的不安定であるので、リフト量のばらつき以外の要因による筒内圧の変動が生じやすく、これに比較して、僅かな負荷が加わっている上記の走行レンジアイドル条件の方が、後述する試験に伴う各気筒の筒内圧変化をより正確に検出できる。同様の理由により、例えば手動変速機付き内燃機関においてニュートラル状態で試験を行う場合には、空調装置用コンプレッサの負荷が加わっているアイドル条件下で行うことが望ましい。
【0032】
ステップ1で試験条件であれば、ステップ2,3へ進み、目標空燃比を理論空燃比(すなわちλ=1)とした運転を行いつつ、各気筒の筒内圧Pi(筒内有効平均圧)をそれぞれ測定する。つまり、空燃比センサ8の検出信号に基づいて燃料噴射量をフィードバック制御し、λ=1の状態に保持する。そして、各気筒の爆発行程に対応するクランクシャフトの角速度変化をクランク角センサ22の検出信号に基づいて求め、対応する気筒の筒内圧Piを求める。これは、例えば10秒間程度継続して行い、その間の複数サイクル(例えば50サイクル程度となる)の平均値として筒内圧Piを求める。
【0033】
次に、ステップ4,5へ進み、燃料噴射量を一定量(例えばλ=1のときの噴射量の5〜10%程度の量)増量して、空燃比をリッチ側へ変化させ、そのときの各気筒の筒内圧Pi(筒内有効平均圧)をそれぞれ測定する。これは、同様に10秒間程度継続して行い、その間の複数サイクル(例えば50サイクル程度となる)の平均値として筒内圧Piを求める。なお、このようにリッチ化する際には、空燃比フィードバック制御を停止してオープンループ制御とすれば足りるが、空燃比フィードバック制御を継続しつつ、その目標空燃比をリッチ側へ変化させるようにしてもよい。
【0034】
次に、ステップ6,7へ進み、理論空燃比の状態から吸入空気量を一定量(例えばλ=1のときの空気量の5〜10%程度の量)増量して、空燃比をリーン側へ変化させ、そのときの各気筒の筒内圧Pi(筒内有効平均圧)をそれぞれ測定する。これは、同様に10秒間程度継続して行い、その間の複数サイクル(例えば50サイクル程度となる)の平均値として筒内圧Piを求める。なお、この吸入空気量の増量は、可変動弁機構2の制御によっても実現できるが、電子制御スロットル弁18の開度を一時的に増加させてコレクタ16内の圧力を高めることにより行うようにすれば、可変動弁機構2の極小リフトをそのまま保持できるので、より好ましい。
【0035】
次に、ステップ8において、それぞれの空燃比の下での各気筒の筒内圧Piの変化から、リッチ気筒およびリーン気筒の判定を行う。これは、まず、λ=1のときの筒内圧Piと燃料増量時の筒内圧Piとを比較して、筒内圧Piが増加した気筒をリーン気筒であると判定する。具体的に説明すると、λ=1のときに燃料と空気とが「1対1」の量で存在するストイキ気筒であれば、燃料増量により例えば「1.1対1」の量となっても、「1」に相当する仕事量しか生じないので、λ=1のときに比べて仕事量は増加せず、つまり筒内圧Piは上昇しない。λ=1のときに燃料と空気とが例えば「1対0.9」の量で存在するリッチ気筒においても、同様に燃料増量により仕事量は増加しない。これに対し、λ=1のときに燃料と空気とが例えば「1対1.1」の量で存在するリーン気筒では、燃料増量により燃料と空気とが例えば「1.1対1.1」の量となり、「1.1」に相当する仕事量となるので、λ=1のときに比べて仕事量つまり筒内圧Piが増加する。
【0036】
また、λ=1のときの筒内圧Piと空気量増量時の筒内圧Piとを比較して、筒内圧Piが増加した気筒をリッチ気筒であると判定する。具体的に説明すると、λ=1のときに燃料と空気とが「1対1」の量で存在するストイキ気筒であれば、空気量増量により例えば「1対1.1」の量となっても、仕事量は増加せず、つまり筒内圧Piは上昇しない。λ=1のときに燃料と空気とが例えば「1対1.1」の量で存在するリーン気筒においても、同様に空気量増量により仕事量は増加しない。いずれも「1」に相当する仕事量のままである。これに対し、λ=1のときに燃料と空気とが例えば「1対0.9」の量で存在するリッチ気筒では、λ=1のときに「0.9」に相当する仕事量しか生じないので、空気量増量により燃料と空気とが例えば「1対1」の量となると、「1」に相当する仕事量が得られるため、λ=1のときに比べて仕事量つまり筒内圧Piが増加する。
【0037】
従って、一連の試験により、ストイキ気筒とリーン気筒とリッチ気筒との判別を行うことができる。なお、試験の際に、先にリーン化を行い、次にリッチ化を行うように、順序を入れ替えても、何ら問題はない。
【0038】
ステップ8で、もしリーン気筒およびリッチ気筒が存在しなければ、全気筒がストイキ気筒となっているので、このばらつき試験を終了する。一方、リーン気筒およびリッチ気筒が存在していれば、ステップ9へ進み、そのリーン気筒およびリッチ気筒に対する燃料噴射量の補正量を設定するとともに、ステップ10で実際に燃料噴射量を補正した上で、再度ステップ1へ戻って試験を繰り返す。上記の補正量は、上記の試験におけるリッチ化およびリーン化の際の増量に実質的に等しいものとする。つまり、シリンダ内に流入する空気量が相対的に多いと考えられるリーン気筒については、上述したリッチ化の際の燃料増量と等しい燃料量を補正量として付加する。また、シリンダ内に流入する空気量が相対的に少ないと考えられるリッチ気筒については、同じ燃料量を補正量として減算する。換言すれば、空燃比として5〜10%程度となる補正を与える。
【0039】
本実施例の試験では、リーン気筒およびリッチ気筒におけるリーン,リッチの程度は測定されないので、上述したように、リーン気筒およびリッチ気筒に対し燃料噴射量の補正を行った上で、再度試験を行う。そして、万一、この状態で、なおもリーン気筒およびリッチ気筒が存在すれば、ステップ9,10でもう1段階同じ補正量を与える。最終的に、リーン気筒およびリッチ気筒が見つからなければ、ステップ8で一連の試験が終了する。このようにして各気筒毎に求められた補正量の値は、次回のばらつき試験により更新されるまで保存され、以後の運転中に使用される。
【0040】
ここで、以後の運転の際には、上記の補正量は、各気筒の基本の燃料噴射量に加減算の形で与えられる。つまり、負荷に拘わらず、一定量の燃料量が加算もしくは減算される。これは、可変動弁機構2による吸入空気量のばらつきの影響が、リフト・作動角の大きな状態では非常に小さなものとなることに対応している。仮に、この気筒間のばらつきの補正を、補正係数を乗じる形で行ったとすると、リフト・作動角の大きな高負荷側で過補正となってしまう。また、同様の理由から、リフト・作動角がある値以上に大きく制御されているときに、上記の気筒間のばらつき補正のための噴射量補正を行わないようにしてもよい。これは、特に高速域での制御回路の演算負荷の軽減の上で有利となる。
【0041】
一方、本発明では、可変動弁機構2による各気筒の吸入空気量のばらつきそのものは補正せず、これに対応した燃料噴射量が与えられるので、通常の運転中、特に補正の影響が相対的に大きい低速低負荷側の領域で、気筒間の筒内圧Piのばらつきが顕著となる可能性がある。従って、筒内圧Piのばらつきが振動騒音等の上で問題となるアイドル等の運転条件においては、燃料噴射量の補正と同時に、燃料噴射量が相対的に大となる気筒について点火時期のリタードを行い、筒内圧Piが他の気筒と均等となるようにすることが望ましい。
【0042】
なお、リフト量のばらつきが極端なものでなければ、一般に上述した1段階の補正でもって各気筒がほぼ理論空燃比に揃うと考えられるので、ステップ2〜ステップ8のルーチンを繰り返さずに、リーン気筒およびリッチ気筒の検出を1回だけ行い、処理を簡略化することもできる。
【0043】
上記実施例では、強制的なリッチ化を燃料増量で行い、強制的なリーン化を空気量増量で行っている。従って、いずれの場合も、リーン気筒もしくはリッチ気筒が、筒内圧Piの上昇という形で現れ、筒内圧Piの低下によるストールや燃焼不安定化を招来することはない。しかしながら、これらと逆に、強制的なリッチ化を空気量の制限で、強制的なリーン化を燃料の減量で、それぞれ行った場合にも、リーン気筒およびリッチ気筒の特定は可能である。
【0044】
また、上記実施例では、特別なセンサを追加することなくクランク角センサ22を用いて各気筒の筒内圧Piを検出するようにしているが、点火栓とともに装着される公知の座金型筒内圧センサや他の形式の筒内圧センサを用いて筒内圧Piの検出を行うことも可能である。
【0045】
なお、本発明は、可変動弁機構として上記のようなリフト・作動角可変機構と位相可変機構とを組み合わせたものに限定されるものではなく、少なくとも低負荷域などでリフト量を極小リフトとする機構を備えた構成において、そのばらつきの補正のために同様に適用することができる。
【図面の簡単な説明】
【図1】この発明の一実施例を示す構成説明図。
【図2】可変動弁機構の要部を示す斜視図。
【図3】リフト・作動角可変機構の動作説明図。
【図4】リフト・作動角可変機構によるリフト・作動角の特性変化を示す特性図。
【図5】位相可変機構によるバルブリフト特性の位相変化を示す特性図。
【図6】吸入空気量のばらつき試験の処理の流れを示すフローチャート。
【符号の説明】
1…内燃機関
2…可変動弁機構
3…吸気弁
8…空燃比センサ
18…電子制御スロットル弁
51…リフト・作動角可変機構
52…位相可変機構
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an internal combustion engine having a variable valve mechanism capable of continuously and variably controlling an intake air amount by changing a valve lift characteristic of an intake valve, and more particularly to an air-fuel ratio control device thereof.
[0002]
[Prior art]
Patent Document 1 discloses a variable valve mechanism that can be continuously variably controlled by a lift amount and an operating angle of an intake valve previously proposed by the present applicant. According to this type of variable valve mechanism, it is possible to variably control the amount of air flowing into the cylinder without depending on the opening degree control of the throttle valve, and so-called throttleless operation, particularly in a small load region. Or, the operation with the throttle valve opening kept sufficiently large can be realized, and the pumping loss can be greatly reduced.
[0003]
Further, in Patent Document 2, in order to eliminate the variation in the air-fuel ratio between the cylinders, the temporal change of the detection signal of the air-fuel ratio sensor and the exhaust timing of each cylinder are collated to determine the air-fuel ratio of each cylinder. A technique for detecting and performing feedback correction of the injection amount for each cylinder is disclosed.
[0004]
[Patent Document 1]
JP 2002-89341 A
[0005]
[Patent Document 2]
JP-A-9-203337
[0006]
[Problems to be solved by the invention]
When controlling the intake air amount using the variable valve mechanism as described above, the intake valve lift amount (maximum lift amount) must be set to achieve a very small intake air amount as in idling. For example, the minimum lift is about 1 mm. In such a minimal lift state, the amount of air flowing into the cylinder varies relatively greatly due to a slight error in the lift amount of each cylinder, and the intake air amount itself is small, so that the air-fuel ratio variation among the cylinders varies. Is likely to occur.
[0007]
As described above, Patent Document 2 discloses feedback control of the air-fuel ratio for each cylinder. However, particularly in an internal combustion engine having a large number of cylinders, air-fuel ratio detection for each cylinder based on the exhaust timing is accurately performed. It is difficult.
[0008]
[Means for Solving the Problems]
This invention All cylinders in a multi-cylinder internal combustion engine The valve lift characteristics of the intake valve All at once A variable valve mechanism capable of continuously and variably controlling the intake air amount of the internal combustion engine by changing, a fuel supply means for supplying fuel to each cylinder, and an air-fuel ratio detection means provided in the exhaust system of the internal combustion engine And an air-fuel ratio control apparatus for an internal combustion engine comprising: a feedback control means for controlling the amount of fuel supplied by the fuel supply means based on the detection signal of the air-fuel ratio detection means. Above variable valve mechanism The valve lift characteristics of the intake valves for all cylinders The target air-fuel ratio is changed from the stoichiometric air-fuel ratio to the rich side and the lean side under a predetermined operation state controlled to the minimum lift state, and the in-cylinder pressure change of each cylinder accompanying each air-fuel ratio change is detected. Therefore, the variation in intake air amount of each cylinder is tested, and the correction amount stored for each cylinder is used to cancel the variation, and the fuel supply amount of each cylinder is corrected to increase or decrease during engine operation. Features.
[0009]
That is, according to the present invention, when the variable valve mechanism is operated in the minimal lift state in which the error between the cylinders is most noticeable, the presence or absence of variation in the intake air amount of each cylinder is tested. During normal operation, the fuel supply amount of each cylinder is corrected to increase or decrease so as to cancel out the variation detected during this test. Thereby, the actual air-fuel ratio of each cylinder more accurately matches the target air-fuel ratio, for example, the stoichiometric air-fuel ratio.
[0010]
More specifically, the above test is performed by changing the air-fuel ratio of each cylinder from the stoichiometric air-fuel ratio to the rich side and the lean side, and detecting the in-cylinder pressure change of each cylinder accompanying each air-fuel ratio change. be able to.
[0011]
In a state where the plurality of cylinders are controlled to the stoichiometric air-fuel ratio, a certain cylinder is rich (for convenience, this is referred to as a rich cylinder), and another cylinder is lean (similarly, this is lean). It is assumed that the remaining cylinders are correctly the stoichiometric air-fuel ratio (also referred to as stoichiometric cylinders). Note that these variations in the air-fuel ratio are mainly caused by variations in the lift amount due to the variable valve mechanism. In addition, since the stoichiometric air-fuel ratio is the whole of the plurality of cylinders, normally, if there are rich cylinders, there are lean cylinders at the same time. From this state, for example, when the fuel supply amount is increased and the air-fuel ratio of the plurality of cylinders is changed to the rich side, sufficient air is present in the lean cylinder. , Torque increases. That is, an in-cylinder pressure higher than that at the stoichiometric air-fuel ratio is detected. On the other hand, in the stoichiometric cylinder and the rich cylinder, there is no excess air, so that the cylinder pressure does not increase even if the fuel supply amount is increased. On the other hand, if the intake air amount is increased from the stoichiometric air-fuel ratio, for example, and the air-fuel ratio of the plurality of cylinders is changed to the lean side, there is sufficient fuel in the rich cylinder. As the amount increases, the torque increases. That is, an in-cylinder pressure higher than that at the stoichiometric air-fuel ratio is detected. On the other hand, in the stoichiometric cylinder and the lean cylinder, there is no excess fuel, so even if the air amount is increased, the in-cylinder pressure does not increase.
[0012]
In this way, by executing the forced rich operation and the lean operation for a short time, it is possible to easily determine the lean cylinder and the rich cylinder.
[0013]
【The invention's effect】
According to the air-fuel ratio control apparatus for an internal combustion engine according to the present invention, in the internal combustion engine provided with the variable valve mechanism that can continuously and variably control the intake air amount, each variable attributed to the variation in the lift amount by the variable valve mechanism. The variation in the air-fuel ratio of the cylinders can be reduced, and the deterioration of the drivability and the emission due to the variation in the air-fuel ratio of each cylinder can be avoided, and the fuel efficiency can be further improved.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
[0015]
FIG. 1 is a system configuration diagram showing an air-fuel ratio control apparatus for an internal combustion engine according to the present invention. An internal combustion engine 1 comprising a spark ignition gasoline engine has an intake valve 3 and an exhaust valve 4, and the intake air A variable valve mechanism 2 described later is provided as a valve mechanism on the valve 3 side. The valve operating mechanism on the exhaust valve 4 side is a direct acting type that drives the exhaust valve 4 by the exhaust camshaft 5, and its valve lift characteristic is always constant.
[0016]
The outlet side of the exhaust manifold 6 that collects the exhaust of each cylinder is connected to the catalytic converter 7, and an air-fuel ratio sensor 8 for detecting the air-fuel ratio is provided at an upstream position of the catalytic converter 7. . A second catalytic converter 10 and a silencer 11 are further provided on the downstream side of the catalytic converter 7. The air-fuel ratio sensor 8 may be an oxygen sensor that detects only the rich or lean air-fuel ratio, or may be a wide-area air-fuel ratio sensor that can provide an output corresponding to the value of the air-fuel ratio.
[0017]
A fuel injection valve 12 is disposed so as to inject and supply fuel to each cylinder toward the intake port of each cylinder. A branch passage 15 is connected to each intake port, and upstream ends of the plurality of branch passages 15 are connected to a collector 16. An intake inlet passage 17 is connected to one end of the collector 16, and an electronically controlled throttle valve 18 is provided in the intake inlet passage 17. The electronically controlled throttle valve 18 includes an actuator 18a made of an electric motor, and its opening degree is controlled by a control signal supplied from an engine control unit 19. A sensor 18b for detecting the actual opening of the throttle valve 18 is integrally provided, and the throttle valve opening is closed-loop controlled to the target opening based on the detection signal. An air flow meter 20 that detects the intake air flow rate is disposed upstream of the throttle valve 18, and an air cleaner 21 is further disposed upstream.
[0018]
A crank angle sensor 22 is provided for the crankshaft in order to detect the engine rotation speed and the crank angle position. In the present embodiment, the change in the crankshaft angular velocity is obtained from the detection signal of the crank angle sensor 22, and the change in the cylinder pressure in the cylinder in the explosion stroke is detected. That is, an in-cylinder pressure sensor that directly detects the in-cylinder pressure of each cylinder is not provided. Further, an accelerator opening sensor 23 for detecting an accelerator pedal opening (depression amount) operated by the driver is provided. These detection signals are input to the engine control unit 19 together with detection signals from the air flow meter 20, the air-fuel ratio sensor 8, and the like. In the engine control unit 19, based on these detection signals, the injection amount and injection timing of the fuel injection valve 12, the ignition timing by the ignition plug 24, the valve lift characteristics by the variable valve mechanism 2, the opening of the throttle valve 18, etc. To control.
[0019]
The variable valve mechanism 2 on the intake valve 3 side is known, for example, from the aforementioned Japanese Patent Application Laid-Open No. 2002-89341, and as shown in FIG. 2, the lift / operating angle of the intake valve 3 is continuously increased. The lift / operating angle variable mechanism 51 that is variably controlled and the phase variable mechanism 52 that continuously advances or retards the phase of the center angle of the lift (phase with respect to the crankshaft) are combined. Thus, according to the variable valve mechanism that combines the lift / operating angle variable mechanism 51 and the phase variable mechanism 52, both the intake valve opening timing and the intake valve closing timing can be arbitrarily controlled independently. At the same time, by reducing the lift amount (maximum lift amount) in the low load range, it is possible to limit the intake air amount according to the load. In the region where the lift amount is large to some extent, the air amount flowing into the cylinder is mainly determined by the opening / closing timing of the intake valve 3, whereas in the state where the lift amount is sufficiently small, the air amount is mainly determined by the lift amount. .
[0020]
The outline of the lift / operating angle variable mechanism 51 will be described together with the operation explanatory diagram of FIG. 3. The lift / operating angle variable mechanism 51 is rotatably supported by the cylinder head and rotates in conjunction with the crankshaft. A hollow drive shaft 53, an eccentric cam 55 fixed to the drive shaft 53, a rotatable control shaft 56 disposed in parallel above the drive shaft 53, and an eccentric cam of the control shaft 56 A rocker arm 58 that is swingably supported by the portion 57 and a swing cam 60 that contacts the tappet 59 at the upper end of each intake valve 3 are provided. The eccentric cam 55 and the rocker arm 58 are linked by a link arm 61, and the rocker arm 58 and the swing cam 60 are linked by a link member 62. The link arm 61 has an annular portion 61 a rotatably fitted on the outer peripheral surface of the eccentric cam 55. Further, the extension portion 61 b of the link arm 61 is linked to one end portion of the rocker arm 58, and the upper end portion of the link member 62 is linked to the other end portion of the rocker arm 58. The eccentric cam portion 57 is eccentric from the axis of the control shaft 56, and accordingly, the rocking center of the rocker arm 58 changes according to the angular position of the control shaft 56.
[0021]
The swing cam 60 is fitted to the outer periphery of the drive shaft 53 and is rotatably supported, and the lower end portion of the link member 62 is linked to the end portion 60a extending to the side. On the lower surface of the swing cam 60, a base circle surface 64a that forms a concentric arc with the drive shaft 53, and a cam surface 64b extending in a predetermined curve from the base circle surface 64a to the end portion 60a, Are formed continuously. The base circle surface 64a is a section where the lift amount becomes zero, and as the swing cam 60 swings and the cam surface 64b contacts the tappet 59 as shown in FIG. become.
[0022]
The rotational position of the control shaft 56 is controlled by a lift / operating angle control actuator 65 formed of, for example, an electric motor provided at one end.
[0023]
For example, when the eccentric cam portion 57 is in the upper position as shown in FIG. 3A by the actuator 65, the rocker arm 58 is positioned upward as a whole, and the end portion 60a of the swing cam 60 is relatively lifted upward. It becomes a state. That is, the initial position of the swing cam 60 is inclined in the direction in which the cam surface 64 b is separated from the tappet 59. Therefore, when the swing cam 60 swings with the rotation of the drive shaft 53, the base circle surface 64a continues to contact the tappet 59 for a long time, and the period during which the cam surface 64b contacts the tappet 59 is short. Therefore, the lift amount is reduced as a whole, and the angle range from the opening timing to the closing timing, that is, the operating angle is also reduced.
[0024]
Conversely, if the eccentric cam portion 57 is positioned downward as shown in FIG. 3B, the rocker arm 58 is positioned downward as a whole, and the end portion 60a of the swing cam 60 is pushed downward relatively. It will be in the state. That is, the initial position of the swing cam 60 is inclined in the direction in which the cam surface 64 b approaches the tappet 59. Therefore, when the swing cam 60 swings with the rotation of the drive shaft 53, a large lift amount is obtained and the operating angle is also expanded.
[0025]
Since the initial position of the eccentric cam portion 57 can be continuously changed, the valve lift characteristic changes continuously as shown in FIG. That is, the lift and the operating angle can be continuously expanded and contracted simultaneously.
[0026]
Next, as shown in FIG. 2, the phase variable mechanism 52 relatively connects the sprocket 71 provided at the front end portion of the drive shaft 53 and the sprocket 71 and the drive shaft 53 within a predetermined angle range. And a hydraulic actuator 72 for phase control that is rotated to the right. The sprocket 71 is linked to the crankshaft via a timing chain or timing belt (not shown). Therefore, by the hydraulic control to the phase control hydraulic actuator 72, the sprocket 71 and the drive shaft 53 rotate relatively, and the lift center angle is retarded as shown in FIG. That is, the lift characteristic curve itself does not change, and the whole advances or retards.
[0027]
The lift / working angle variable mechanism 51 and the phase variable mechanism 52 may be controlled by providing a sensor for detecting the actual lift / working angle or phase and performing closed loop control, or depending on the operating conditions. It is also possible to simply perform open loop control.
[0028]
In the above configuration, the intake air amount is controlled so that the required torque determined by the accelerator pedal opening is obtained. The opening of the electronically controlled throttle valve 18 is basically the exhaust gas recirculation, etc. Is controlled so that the minimum negative pressure required is generated in the collector 16. The variable valve mechanism 2 is controlled so that the amount of air flowing into the cylinder is optimized under the negative suction pressure close to the atmospheric pressure.
[0029]
Here, as described above, in a low load region such as during idling, the lift amount of the intake valve 3 becomes a minimal lift of about 1 mm by the lift / operating angle variable mechanism 51 and is limited to an air amount corresponding to the lift amount. Therefore, the air amount of each cylinder varies relatively large due to slight variations in the lift amount of each cylinder due to the dimensional error or assembly error of the components of each cylinder in the variable valve mechanism 2. End up. The fuel injection amount of each cylinder is controlled so as to be the target air-fuel ratio (for example, the theoretical air-fuel ratio) in all the cylinders based on the detection signal of the air-fuel ratio sensor 8 in the exhaust system. Therefore, if there is a variation in the air amount between the cylinders, the actual air-fuel ratio of each cylinder is shifted from the target air-fuel ratio to the rich side or the lean side.
[0030]
In the present invention, in order to reduce the influence of the variation in the air amount due to the variable valve mechanism 2, the intake of each cylinder is performed under a predetermined operation state in which the variable valve mechanism 2 is controlled to a minimum lift. The variation in the air amount is tested, and the fuel injection amount of each cylinder is corrected so as to cancel out the variation.
[0031]
The flowchart of FIG. 6 shows the flow of processing for the variation test of the intake air amount. First, in step 1, it is determined whether or not the conditions for performing the test are satisfied. In this embodiment, as an example applied to the internal combustion engine 1 equipped with an automatic transmission, the automatic transmission is in a normal travel range (so-called D range) and the vehicle is stopped by a driver's brake operation. That is, when the traveling range idle condition is satisfied, the variation test is executed. By performing the test while the vehicle is stopped in this way, even if a change in the in-cylinder pressure occurs during the test, the passenger is less likely to feel uncomfortable. In addition, during idling with the automatic transmission in the neutral range, the combustion of the internal combustion engine 1 is relatively unstable, so that the in-cylinder pressure is likely to fluctuate due to factors other than variations in the lift amount. The traveling range idle condition in which a slight load is applied can more accurately detect the in-cylinder pressure change of each cylinder associated with the test described later. For the same reason, for example, when a test is performed in a neutral state in an internal combustion engine with a manual transmission, it is desirable that the test be performed under idle conditions in which a load of an air conditioner compressor is applied.
[0032]
If the test conditions in step 1 are satisfied, the process proceeds to steps 2 and 3, and the cylinder pressure Pi (cylinder effective average pressure) of each cylinder is set while performing the operation with the target air-fuel ratio being the theoretical air-fuel ratio (ie, λ = 1). Measure each. That is, the fuel injection amount is feedback-controlled based on the detection signal of the air-fuel ratio sensor 8 and held in the state of λ = 1. Then, the change in the angular velocity of the crankshaft corresponding to the explosion stroke of each cylinder is obtained based on the detection signal of the crank angle sensor 22, and the in-cylinder pressure Pi of the corresponding cylinder is obtained. This is performed continuously for about 10 seconds, for example, and the in-cylinder pressure Pi is obtained as an average value of a plurality of cycles (for example, about 50 cycles) during that period.
[0033]
Next, proceeding to steps 4 and 5, the fuel injection amount is increased by a certain amount (for example, about 5 to 10% of the injection amount when λ = 1), and the air-fuel ratio is changed to the rich side. In-cylinder pressure Pi (cylinder effective average pressure) of each cylinder is measured. This is similarly performed continuously for about 10 seconds, and the in-cylinder pressure Pi is obtained as an average value of a plurality of cycles (for example, about 50 cycles) during that period. When enriching in this way, it is sufficient to stop the air-fuel ratio feedback control and perform the open loop control. However, the target air-fuel ratio is changed to the rich side while continuing the air-fuel ratio feedback control. May be.
[0034]
Next, proceeding to Steps 6 and 7, the intake air amount is increased from the stoichiometric air-fuel ratio by a certain amount (for example, about 5 to 10% of the air amount when λ = 1), and the air-fuel ratio is set to the lean side. The in-cylinder pressure Pi (cylinder effective average pressure) of each cylinder at that time is measured. This is similarly performed continuously for about 10 seconds, and the in-cylinder pressure Pi is obtained as an average value of a plurality of cycles (for example, about 50 cycles) during that period. The increase in the intake air amount can be realized by the control of the variable valve mechanism 2. However, the intake air amount is increased by temporarily increasing the opening of the electronic control throttle valve 18 to increase the pressure in the collector 16. This is more preferable because the minimum lift of the variable valve mechanism 2 can be maintained as it is.
[0035]
Next, in step 8, the rich cylinder and the lean cylinder are determined from the change in the in-cylinder pressure Pi of each cylinder under each air-fuel ratio. First, the in-cylinder pressure Pi when λ = 1 is compared with the in-cylinder pressure Pi at the time of fuel increase, and it is determined that the cylinder in which the in-cylinder pressure Pi has increased is a lean cylinder. More specifically, if the stoichiometric cylinder in which fuel and air are present in an amount of “one to one” when λ = 1, the amount of fuel increases, for example, an amount of “1.1 to 1”. Since only the work amount corresponding to “1” is generated, the work amount does not increase as compared to when λ = 1, that is, the in-cylinder pressure Pi does not increase. Even in a rich cylinder in which fuel and air exist in an amount of, for example, “1 to 0.9” when λ = 1, the amount of work does not increase due to the increase in fuel. On the other hand, in the lean cylinder in which the fuel and air are present in an amount of, for example, “1 to 1.1” when λ = 1, the fuel and air are, for example, “1.1 to 1.1” due to the increase in fuel. Therefore, the work amount, that is, the in-cylinder pressure Pi, increases as compared with the case of λ = 1.
[0036]
Further, the in-cylinder pressure Pi when λ = 1 is compared with the in-cylinder pressure Pi when the air amount is increased, and the cylinder having the increased in-cylinder pressure Pi is determined to be a rich cylinder. More specifically, if the stoichiometric cylinder in which fuel and air are present in an amount of “one to one” when λ = 1, the amount of air becomes, for example, “1 to 1.1”. However, the work amount does not increase, that is, the in-cylinder pressure Pi does not increase. Even in a lean cylinder in which fuel and air exist in an amount of, for example, “1 to 1.1” when λ = 1, the amount of work does not increase due to the increase in the air amount. In either case, the work amount corresponding to “1” remains unchanged. On the other hand, in the case of a rich cylinder in which fuel and air exist in an amount of, for example, “1 to 0.9” when λ = 1, only a work amount corresponding to “0.9” occurs when λ = 1. Therefore, when the fuel and air become an amount of “one to one” due to the increase in the amount of air, for example, a work amount corresponding to “1” is obtained, so that the work amount, that is, the in-cylinder pressure Pi is compared to when λ = 1. Will increase.
[0037]
Accordingly, it is possible to distinguish between the stoichiometric cylinder, the lean cylinder, and the rich cylinder by a series of tests. In the test, there is no problem even if the order is changed so that leaning is performed first and then enriching is performed.
[0038]
In step 8, if there are no lean cylinder and rich cylinder, all the cylinders are stoichiometric cylinders, so this variation test is terminated. On the other hand, if there are lean cylinders and rich cylinders, the routine proceeds to step 9 where the correction amount of the fuel injection amount for the lean cylinder and the rich cylinder is set and the fuel injection amount is actually corrected in step 10. Return to Step 1 again and repeat the test. The correction amount is substantially equal to the increase amount during enrichment and leaning in the above test. That is, for a lean cylinder that is considered to have a relatively large amount of air flowing into the cylinder, a fuel amount equal to the fuel increase during the above-described enrichment is added as a correction amount. Further, for a rich cylinder that is considered to have a relatively small amount of air flowing into the cylinder, the same fuel amount is subtracted as a correction amount. In other words, the correction is made so that the air-fuel ratio becomes about 5 to 10%.
[0039]
In the test of the present embodiment, the degree of lean and rich in the lean cylinder and the rich cylinder is not measured, so that the test is performed again after correcting the fuel injection amount for the lean cylinder and the rich cylinder as described above. . In this state, if there are still lean cylinders and rich cylinders, the same correction amount is given in steps 9 and 10 in another step. Finally, if a lean cylinder and a rich cylinder are not found, a series of tests are completed in step 8. The value of the correction amount obtained for each cylinder in this way is stored until it is updated by the next variation test and used during the subsequent operation.
[0040]
Here, in the subsequent operation, the correction amount is given in the form of addition / subtraction to the basic fuel injection amount of each cylinder. That is, a fixed amount of fuel is added or subtracted regardless of the load. This corresponds to the fact that the influence of the variation in the intake air amount by the variable valve mechanism 2 becomes very small when the lift / operating angle is large. If correction of the variation between the cylinders is performed by multiplying by a correction coefficient, overcorrection will occur on the high load side where the lift / operation angle is large. For the same reason, when the lift / operating angle is controlled to be larger than a certain value, the injection amount correction for correcting the variation among the cylinders may not be performed. This is advantageous particularly in reducing the calculation load of the control circuit in the high speed range.
[0041]
On the other hand, in the present invention, the variation in the intake air amount of each cylinder by the variable valve mechanism 2 is not corrected, and the fuel injection amount corresponding to this is given. There is a possibility that the variation in the in-cylinder pressure Pi between the cylinders becomes significant in the region of the low-speed and low-load side. Therefore, in an operating condition such as an idle in which variation in the in-cylinder pressure Pi is a problem in terms of vibration noise, etc., the ignition timing is retarded for the cylinder having a relatively large fuel injection amount simultaneously with the correction of the fuel injection amount. It is desirable that the in-cylinder pressure Pi be equal to that of the other cylinders.
[0042]
If the variation in the lift amount is not extreme, it is generally considered that the cylinders are substantially aligned with the stoichiometric air-fuel ratio with the above-mentioned one-step correction. It is also possible to simplify the processing by detecting the cylinder and the rich cylinder only once.
[0043]
In the above embodiment, forced enrichment is performed by increasing the fuel amount, and forced leaning is performed by increasing the air amount. Accordingly, in either case, the lean cylinder or the rich cylinder appears in the form of an increase in the in-cylinder pressure Pi, and does not cause a stall or instability of combustion due to a decrease in the in-cylinder pressure Pi. However, on the contrary, the lean cylinder and the rich cylinder can be specified even when the forced enrichment is performed by limiting the air amount and the forced leaning is performed by reducing the fuel.
[0044]
In the above embodiment, the cylinder pressure Pi of each cylinder is detected by using the crank angle sensor 22 without adding a special sensor. However, a known washer-type cylinder pressure sensor that is mounted together with a spark plug is known. It is also possible to detect the in-cylinder pressure Pi using other types of in-cylinder pressure sensors.
[0045]
The present invention is not limited to a combination of the lift / operating angle variable mechanism and the phase variable mechanism as described above as the variable valve mechanism, and the lift amount is a minimum lift at least in a low load region. In the configuration including the mechanism to be applied, it can be similarly applied to correct the variation.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a configuration of an embodiment of the present invention.
FIG. 2 is a perspective view showing a main part of a variable valve mechanism.
FIG. 3 is an operation explanatory diagram of a lift / operating angle variable mechanism.
FIG. 4 is a characteristic diagram showing changes in lift / operating angle characteristics by a variable lift / operating angle mechanism;
FIG. 5 is a characteristic diagram showing a phase change of a valve lift characteristic by a phase variable mechanism.
FIG. 6 is a flowchart showing a flow of processing of an intake air amount variation test;
[Explanation of symbols]
1. Internal combustion engine
2… Variable valve mechanism
3 ... Intake valve
8 ... Air-fuel ratio sensor
18 ... Electronically controlled throttle valve
51. Lift / operating angle variable mechanism
52. Phase variable mechanism

Claims (9)

多気筒内燃機関における全気筒の吸気弁のバルブリフト特性を一斉に変更することにより内燃機関の吸入空気量を連続的に可変制御可能な可変動弁機構と、各気筒毎に燃料を供給する燃料供給手段と、内燃機関の排気系に設けられた空燃比検出手段と、この空燃比検出手段の検出信号に基づいて、目標空燃比となるように上記燃料供給手段による燃料供給量を制御するフィードバック制御手段と、を備えてなる内燃機関の空燃比制御装置において、
上記可変動弁機構により全気筒の吸気弁のバルブリフト特性が極小リフト状態に制御されている所定の運転状態の下で、目標空燃比を理論空燃比からリッチ側およびリーン側へそれぞれ変化させ、それぞれの空燃比変化に伴う各気筒の筒内圧変化を検出することにより各気筒の吸入空気量のばらつきの試験を行い、このばらつきを相殺するように各気筒毎に記憶した補正量を用いて、機関運転中に各気筒の燃料供給量を増減補正することを特徴とする内燃機関の空燃比制御装置。
A variable valve mechanism capable of continuously and variably controlling the intake air amount of the internal combustion engine by simultaneously changing the valve lift characteristics of the intake valves of all the cylinders in the multi-cylinder internal combustion engine, and fuel for supplying fuel to each cylinder Supply means, air-fuel ratio detection means provided in the exhaust system of the internal combustion engine, and feedback for controlling the fuel supply amount by the fuel supply means based on the detection signal of the air-fuel ratio detection means so as to reach the target air-fuel ratio An air-fuel ratio control apparatus for an internal combustion engine comprising:
Under a predetermined operating state in which the valve lift characteristics of the intake valves of all the cylinders are controlled to a minimal lift state by the variable valve mechanism, the target air-fuel ratio is changed from the stoichiometric air-fuel ratio to the rich side and the lean side, respectively. By detecting the in-cylinder pressure change of each cylinder accompanying each air-fuel ratio change, the variation in intake air amount of each cylinder is tested, and using the correction amount stored for each cylinder so as to offset this variation, An air-fuel ratio control apparatus for an internal combustion engine, wherein the fuel supply amount of each cylinder is corrected to increase or decrease during engine operation.
燃料供給量の増量によって空燃比をリッチ側へ変化させ、そのときに筒内圧が増加した気筒を、気筒群の中で相対的にリーンな気筒であると判定することを特徴とする請求項1に記載の内燃機関の空燃比制御装置。  The air-fuel ratio is changed to a rich side by increasing the fuel supply amount, and the cylinder whose cylinder pressure has increased at that time is determined to be a relatively lean cylinder in the cylinder group. An air-fuel ratio control device for an internal combustion engine according to claim 1. 吸入空気量の増量によって空燃比をリーン側へ変化させ、そのときに筒内圧が増加した気筒を、気筒群の中で相対的にリッチな気筒であると判定することを特徴とする請求項1または2に記載の内燃機関の空燃比制御装置。  The air-fuel ratio is changed to a lean side by increasing the intake air amount, and the cylinder whose cylinder pressure has increased at that time is determined to be a relatively rich cylinder in the cylinder group. Or the air-fuel ratio control apparatus for an internal combustion engine according to 2; 上記の試験を行う所定の運転状態は、車両の自動変速機が走行レンジにあり、かつブレーキ操作により車両が停車している走行レンジアイドル状態であることを特徴とする請求項1〜3のいずれかに記載の内燃機関の空燃比制御装置。  The predetermined driving state in which the test is performed is a driving range idle state in which the automatic transmission of the vehicle is in a driving range and the vehicle is stopped by a brake operation. An air-fuel ratio control device for an internal combustion engine according to claim 1. 負荷に拘わらず一定量の燃料供給量の加算もしくは減算により各気筒の燃料供給量の増減補正を行うことを特徴とする請求項1〜4のいずれかに記載の内燃機関の空燃比制御装置。  The air-fuel ratio control apparatus for an internal combustion engine according to any one of claims 1 to 4, wherein the fuel supply amount of each cylinder is corrected to increase or decrease by adding or subtracting a constant amount of fuel supply regardless of the load. 上記可変動弁機構により吸気弁の作動角が所定値以上に大きく制御されているときには、各気筒の燃料供給量の増減補正を行わないことを特徴とする請求項1〜4のいずれかに記載の内燃機関の空燃比制御装置。  5. The fuel supply amount increase / decrease correction of each cylinder is not performed when the operating angle of the intake valve is controlled to be larger than a predetermined value by the variable valve mechanism. An air-fuel ratio control apparatus for an internal combustion engine. 各気筒の燃料供給量の増減補正により相対的に燃料供給量が大となる気筒の点火時期をリタードすることを特徴とする請求項1〜6のいずれかに記載の内燃機関の空燃比制御装置。  The air-fuel ratio control apparatus for an internal combustion engine according to any one of claims 1 to 6, wherein the ignition timing of a cylinder having a relatively large fuel supply amount is retarded by correcting the increase or decrease of the fuel supply amount of each cylinder. . クランクシャフトの回転角を検出するクランク角センサの検出信号を用いて、空燃比変化に伴う各気筒の筒内圧変化を検出することを特徴とする請求項1に記載の内燃機関の空燃比制御装置。  2. The air-fuel ratio control apparatus for an internal combustion engine according to claim 1, wherein a change in the cylinder pressure of each cylinder accompanying a change in the air-fuel ratio is detected using a detection signal of a crank angle sensor that detects the rotation angle of the crankshaft. . 各気筒に設けられた筒内圧センサを用いて、空燃比変化に伴う各気筒の筒内圧変化を検出することを特徴とする請求項1記載の内燃機関の空燃比制御装置。  2. An air-fuel ratio control apparatus for an internal combustion engine according to claim 1, wherein a change in the cylinder pressure in each cylinder accompanying the change in the air-fuel ratio is detected using an in-cylinder pressure sensor provided in each cylinder.
JP2002344830A 2002-11-28 2002-11-28 Air-fuel ratio control device for internal combustion engine Expired - Fee Related JP4214766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002344830A JP4214766B2 (en) 2002-11-28 2002-11-28 Air-fuel ratio control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002344830A JP4214766B2 (en) 2002-11-28 2002-11-28 Air-fuel ratio control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2004176642A JP2004176642A (en) 2004-06-24
JP4214766B2 true JP4214766B2 (en) 2009-01-28

Family

ID=32706164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002344830A Expired - Fee Related JP4214766B2 (en) 2002-11-28 2002-11-28 Air-fuel ratio control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4214766B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008003834B4 (en) 2008-01-10 2010-04-08 Continental Automotive Gmbh Method and control unit for adapting a minimum valve lift
DE102008003832B4 (en) 2008-01-10 2010-04-08 Continental Automotive Gmbh Method and device for controlling an internal combustion engine with variable valve lift and thus equipped motor vehicle
JP2013083210A (en) * 2011-10-11 2013-05-09 Toyota Motor Corp Vehicle and method for controlling vehicle
JP5803791B2 (en) * 2012-04-12 2015-11-04 トヨタ自動車株式会社 Ignition timing control device for internal combustion engine
US9399956B2 (en) * 2013-03-15 2016-07-26 GM Global Technology Operations LLC Phaser control systems and methods for balancing mean effective pressure
JP6288017B2 (en) * 2015-09-11 2018-03-07 マツダ株式会社 Multi-cylinder engine control device for hybrid vehicle
JP7329488B2 (en) * 2019-11-15 2023-08-18 エムエーエヌ・エナジー・ソリューションズ・フィリアル・アフ・エムエーエヌ・エナジー・ソリューションズ・エスイー・ティスクランド Crosshead large low speed turbocharged two stroke uniflow scavenging internal combustion engine and method of operating same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0650077B2 (en) * 1984-08-10 1994-06-29 日本電装株式会社 Fuel injection amount control method for internal combustion engine
JPH063168B2 (en) * 1985-07-25 1994-01-12 トヨタ自動車株式会社 Cylinder injection amount learning correction method for diesel engine
JPH0544515A (en) * 1991-08-19 1993-02-23 Nissan Motor Co Ltd Idle rotation control device of internal combustion engine
JPH05296094A (en) * 1992-04-15 1993-11-09 Toyota Motor Corp Fuel injection amount control device for multicylinder diesel engine
JP2000205025A (en) * 1999-01-14 2000-07-25 Fuji Heavy Ind Ltd Control apparatus for engine
JP2001032739A (en) * 1999-07-21 2001-02-06 Denso Corp Air-fuel ratio control device for internal combustion engine
JP2001164949A (en) * 1999-12-06 2001-06-19 Nissan Motor Co Ltd Control device for variable valve system engine
DE10046221A1 (en) * 2000-09-19 2002-10-02 Bayerische Motoren Werke Ag Method and device for controlling the cylinder-selective filling in internal combustion engines with variable valve train

Also Published As

Publication number Publication date
JP2004176642A (en) 2004-06-24

Similar Documents

Publication Publication Date Title
JP4168872B2 (en) Control device for internal combustion engine
US6779508B2 (en) Control system of internal combustion engine
JP4075846B2 (en) Variable valve operating system for multi-cylinder internal combustion engine
JP4103819B2 (en) Variable valve operating device for internal combustion engine
JP4186613B2 (en) Intake control device for internal combustion engine
US7328673B2 (en) Valve timing correction control apparatus and method for an internal combustion engine
JP3890476B2 (en) Intake valve drive control device for internal combustion engine
JP4214766B2 (en) Air-fuel ratio control device for internal combustion engine
JP4036057B2 (en) Intake valve drive control device for internal combustion engine
JP3797011B2 (en) In-cylinder internal combustion engine
JP4003567B2 (en) Intake control device for internal combustion engine
JP4103821B2 (en) Intake control device for internal combustion engine
JP4735379B2 (en) Control device for internal combustion engine
JP4165259B2 (en) Air-fuel ratio control device for internal combustion engine
JP2004100575A (en) Control unit of internal combustion engine
JP4063194B2 (en) Idle speed control device for internal combustion engine
JP4165432B2 (en) Control device for internal combustion engine
JP4165433B2 (en) Control device for internal combustion engine
JP3933007B2 (en) Intake control device for internal combustion engine
JP2004100547A (en) Control device for internal combustion engine
JP4133288B2 (en) Variable valve timing control method for internal combustion engine
JP4082244B2 (en) Control device for internal combustion engine
JP2005344531A (en) Control device for internal combustion engine
JP2005291186A (en) Control device for internal combustion engine
JP2000320355A (en) Internal combustion engine controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080731

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081027

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees