JP4213291B2 - Composite material, synthetic sleeper using the composite material, and method for producing composite material - Google Patents

Composite material, synthetic sleeper using the composite material, and method for producing composite material Download PDF

Info

Publication number
JP4213291B2
JP4213291B2 JP11988899A JP11988899A JP4213291B2 JP 4213291 B2 JP4213291 B2 JP 4213291B2 JP 11988899 A JP11988899 A JP 11988899A JP 11988899 A JP11988899 A JP 11988899A JP 4213291 B2 JP4213291 B2 JP 4213291B2
Authority
JP
Japan
Prior art keywords
layer
filler
composite material
raw material
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11988899A
Other languages
Japanese (ja)
Other versions
JP2000309062A (en
Inventor
孝治 本居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP11988899A priority Critical patent/JP4213291B2/en
Publication of JP2000309062A publication Critical patent/JP2000309062A/en
Application granted granted Critical
Publication of JP4213291B2 publication Critical patent/JP4213291B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複合材料およびこの複合材料を用いた合成枕木に関する。
【0002】
【従来の技術】
外観的に天然木材と酷似しており、また物性的に天然木材と同等以上の性能を示す繊維強化された複合材料(熱硬化性発泡樹脂成形品)が建材、構造部材、枕木、水回り板材等の構造体として使用されている。
【0003】
この種の複合材料として、圧縮強度の優れた芯層を表面層で挟んだサンドイッチ構造にすることよって圧縮強度や釘打ち性能を改善しようとした複合材料が既に提案されている(特開平5−138797号公報参照)。
【0004】
すなわち、この複合材料は、50重量%以下の充填材が分散された熱硬化性樹脂発泡体からなる軽量で圧縮強さの大きい芯層の表面に、補強繊維が長手方向に略平行に引き揃えられて並んで分散されている熱硬化性樹脂発泡体からなる軽量で剛性および引張強さの大きい表面層が積層されているので、木材と同等以上の軽量なものでありながら、曲げ強さや圧縮強さに優れ、木材と同様に釘を打ち込むことができると言うものである。
【0005】
しかしながら、この複合材料の場合、芯層と表面層との間に明確な界面が存在し、芯層と表面層との弾性率の差異により繰り返しの曲げ応力負荷等により長手方向(表面層長繊維の配向方向)において表面層と芯層との界面に歪みが生じ、界面での剥離という長期的な層間接着性の信頼性に乏しいと言う問題がある。
【0006】
【発明が解決しようとする課題】
本発明は、このような事情に鑑みて、より曲げ強度の向上が望めるとともに、長期的にみても層間の接着性に優れた複合材料、この複合材料を用いた合成枕木、および複合材料の製造方法を提供することを目的としている。
【0007】
【課題を解決するための手段】
このような目的を達成するために、本発明の請求項1の発明にかかる複合材料(以下、「請求項1の複合材料」と記す)は、長手方向に配向した長繊維(A)と発泡樹脂(B)と充填材(C)とを含む材料からなる複合材料において、使用時に表面層となる第1層と、第1層の直下の第2層と、第2層の直下の第3層の少なくとも3つの層を備え、各層は、第1層の長繊維(A)の含有量(VA1)>第2層の長繊維(A)の含有量(VA2)>第3層の長繊維(A)の含有量(VA2)、第1層の充填材(C)の含有量(VC1)<第2層の充填材(C)の含有量(VC2)<第3層の充填材(C)の含有量(VC3)、長手方向の垂直断面でみて第1層の厚みt1が、全厚みTに対して T/40<t1≦T/5、長手方向の垂直断面でみて第2層の厚みt2が、全厚みTに対して T/40<t2≦T/5の条件を満足している構成とした。
【0008】
本発明の請求項2の発明にかかる複合材料(以下、「請求項2の複合材料」と記す)は、長手方向に配向した長繊維(A)と発泡樹脂(B)と充填材(C)とを含む材料からなる複合材料において、表面層となる第1層、この第1層によって外側から囲繞される第2層、および、この第2層によって囲繞される第3層の少なくとも3層からなり、各層は、第1層の長繊維(A)の含有量(VA1)>第2層の長繊維(A)の含有量(VA2)>第3層の長繊維(A)の含有量(VA2)、第1層の充填材(C)の含有量(VC1)<第2層の充填材(C)の含有量(VC2)<第3層の充填材(C)の含有量(VC3)、長手方向の垂直断面でみて厚み方向の第1層の厚みの合計tfが、全厚みTに対して T/20<tf≦2T/5、長手方向の垂直断面でみて厚み方向の第2層の厚みの合計tcが、全厚みTに対して T/20<tc≦2T/5の条件を満足している構成とした。
【0009】
本発明の請求項3の発明にかかる複合材料(以下、「請求項3の複合材料」と記す)は、請求項1または請求項2の複合材料において、第1層は、長繊維(A)が10体積%以上40体積%以下、充填材(C)が0体積%以上20体積%以下含まれていて、第3層は、充填材(C)が20体積%以上70体積%以下含まれている構成とした。
【0010】
本発明の請求項4の発明にかかる合成枕木は、請求項1〜請求項3のいずれか1項に記載の複合材料を用いるようにした。
【0011】
本発明の請求項5の発明にかかる複合材料の製造方法(以下、「請求項5の製造方法」と記す)は、請求項1または請求項2の複合材料を得るにあたり、得ようとする複合材料の各層を構成する長繊維(A)となる長尺の長繊維原料を複数の小長繊維原料群に分けて引き揃えつつ、筒状をした成形用型の入口方向に進行させるとともに、これら小長繊維原料群の進行途中で、各小長繊維原料群の上方から、少なくとも充填材(C)を小長繊維群に各層の充填材量に応じて振りかける充填材供給工程と、これら小長繊維原料群の進行途中で、各小長繊維原料群の上方から、少なくとも発泡性樹脂液を各層の発泡樹脂に対応する液量振りかける発泡性樹脂液供給工程と、振りかけられた発泡性樹脂液を各小長繊維原料群を構成する繊維と繊維との間に含浸させる含浸工程とを経たのち、発泡性樹脂液が含浸した各小長繊維原料群を、得ようとする複合材料の層構成順になるように収束させて成形型内に導き、あるいは、発泡性樹脂液が含浸した小長繊維原料群のうち、最内層または最裏面層より1つ表面側の層を形成する小長繊維原料群の上にさらに最内層または最裏面層となる充填材(C)と発泡性樹脂液とからなる最内層形成用混合物または最裏面層形成用混合物を供給し発泡性樹脂液が含浸した各小長繊維原料群と最内層形成用混合物または最裏面層形成用混合物とを得ようとする成形体の層構成順になるように収束させて成形型内に導き、成形型内で加熱硬化または加熱溶融させて成形型内の断面形状に成形するようにした。
【0012】
本発明において、長繊維(A)とは、補強繊維としての機能を有していれば、その形状が限定されず、たとえば、モノフィラメント,フィブリル(髭状の繊維が突き出た物)化繊維素,織り糸等が挙げられ、その材質は、ガラス,炭素,合成樹脂などの有機物等が挙げられ、ガラスあるいは炭素が補強硬化が大きく好適である。
【0013】
発泡樹脂(B)としては、発泡し、独立気泡を有する硬質ポリウレタン樹脂、ウレタン樹脂、フェノール樹脂、ポリエステル樹脂、エポキシ樹脂等に微小中空体を混入するインタクチックフォーム、低発泡倍率で独立気泡となる発泡フェノール樹脂、発泡エポキシ樹脂、発泡ユリア樹脂、発泡メタクリル樹脂等が挙げられ、これらの中でも、特にポリウレタンフォームが比較的高い機械強度を有し、発泡時に独立気泡を形成するために非吸水性に優れると言う特徴があり好適に使用される。
【0014】
充填材(C)としては、無機粉粒体である岩石粉粒体、ガラス粒粉、珪酸カルシウム、セメントコンクリート粉砕物、珪砂等の無定型粒体、セリサイト、ウォラストナイト等の無機短繊維粉体、バーミキュライト、パーライト、膨張頁岩、フライアッシュの中空粉等の気泡を有する無機粉体、炭酸カルシウム、フライアッシュ等の粒径の比較的小なる無機粉体などが挙げられる。また、樹脂チップや木粉等の有機系粉粒体でも構わない。
【0015】
請求項1の複合材料は、第1層〜第3層の3つの層を少なくとも備えていていれば、4層以上でも構わない。
また、請求項1の複合材料においては、長手方向の垂直断面でみて第1層の厚みt1が、全厚みTに対して T/40<t1≦T/5、長手方向の垂直断面でみて第2層の厚みt2が、全厚みTに対して T/40<t2≦T/5の条件を満足していることが必須であるが、その理由は、第1層の厚みt1および第2層の厚みt2がT/40以下であると、曲げ特性が低下し、t1およびt2がT/5を越えると長繊維(A)の全体に占める割合が多く、経済性の点で不適であるためである。
【0016】
一方、請求項2の複合材料においては、長手方向の垂直断面でみて厚み方向の第1層の厚みの合計tfが、全厚みTに対して T/20<tf≦2T/5、長手方向の垂直断面でみて厚み方向の第2層の厚みの合計tcが、全厚みTに対して T/20<tc≦2T/5の条件を満足していることが必須であるが、その理由は、第1層の合計の厚みtfおよび第2層の合計の厚みtcがT/20以下であると、曲げ特性が低下し、tfおよびtcが2T/5を越えると長繊維(A)の全体に占める割合が多く、経済性の点で不適であるためである。
【0017】
請求項1および請求項2の複合材料においては、各層が、第1層の長繊維(A)の含有量(VA1)>第2層の長繊維(A)の含有量(VA2)>第3層の長繊維(A)の含有量(VA2)、第1層の充填材(C)の含有量(VC1)<第2層の充填材(C)の含有量(VC2)<第3層の充填材(C)の含有量(VC3)ことも必須であるが、その理由は、このようにすることによって、各層間の弾性率が大きく変化せずに長繊維(A)の配向方向に沿った曲げ荷重において、層間の歪みを低減できるからである。
なお、各層の弾性率については、第1層>第2層>第3層が好ましく、請求項4のように枕木として用いる場合には、第1層の弾性率が6000MPa以上、第2層の弾性率が1000MPa以上、第3層の弾性率が300MPa以上とすることがより好ましい。
【0018】
さらに、請求項1の複合材料および請求項2の複合材料においては、請求項3の複合材料において、第1層が10体積%以上40体積%以下の長繊維(A)と0体積%以上20体積%以下の充填材(C)を含むこと、および、第3層が20体積%以上70体積%以下の充填材(C)を含むことが好ましいが、その理由は、第1層中の長繊維(A)の含有量が10体積%未満であると、発泡樹脂の密度等に関わらず長繊維補強による弾性率増強効果が得難く、40体積%を越えると重との分散不良が生じ、補強効果を悪化させる恐れがあり、第3層中の充填材の含有量が20体積%未満であると、第3層の経済性、圧縮性の向上が見込め難く、70体積%を越えると、樹脂との分散不良が生じ、補強効果を悪化させる恐れがあるためである。
【0019】
請求項1〜請求項3の複合材料は、生産性を考慮すると、請求項5および請求項6の製造方法のように、連続的に製造することが好ましいが、バッチ式で製造しても構わない。
請求項5の製造方法において、充填材供給工程と、発泡樹脂液供給工程とは、いずれを先に行っても構わないし、同時に行うようにしても構わない。すなわち、予め充填材を発泡性樹脂液に混合しておくことによって同時に供給を行うことができる。また、充填材供給工程で少量の発泡性樹脂液に充填材を予め混合した状態で振りかけたのち、さらに発泡性樹脂液を別途振りかけるようにしても構わない。
請求項5の製造方法において、収束するとは、厚み方向のみに層状に重なるように収束させる場合、あるいは、内層を外側の層で順次囲繞するように収束させる場合を含む。
【0020】
なお、請求項1の複合材料をバッチ式で製造する方法としては、たとえば、長手方向を取り巻く4面の内1面を開放した成形型に対し、長繊維原料に発泡性樹脂液を分散混合した、または、長繊維原料に充填材と発泡性樹脂液を分散混合した混合物、あるいは、充填材と発泡性樹脂液を分散混合した混合物を用いで、少なくとも第1層となる予備成形体a、第2層となる予備成形体b、第3層となる予備成形体cを順次積層した積層体で成形型内にセットし、発泡性樹脂液が発泡硬化する前に、成形型の開放した面を閉塞したのち、発泡性樹脂を加熱発泡硬化させる方法が挙げられる。
【0021】
請求項2の複合材料をバッチ式で製造する方法としては、たとえば、上記と同様に予備成形体a,b,cをそれぞれ予備成形して得た2つの積層体を成形型内で、予備成形体c同士が接するように重ね合わせた状態で成形型内にセットし、発泡性樹脂液が発泡硬化する前に、成形型の開放した面を閉塞したのち、発泡性樹脂を加熱発泡硬化させる方法が挙げられる。
【0022】
【発明の実施の形態】
以下に、本発明の実施の形態を、図面を参照しつつ詳しく説明する。
図1は本発明にかかる複合材料の1つの実施の形態をあらわしている。
【0023】
図1に示すように、この複合材料1は、長手方向に配向した長繊維(A)と発泡樹脂(B)と充填材(C)とを含む材料からなり、表面層としての第1層11と、中間層としての第2層12と、芯層としての第3層13の3つの層から形成されている。
各層は、長繊維(A)の含有量が、第1層11の長繊維(A)の含有量(VA1)>第2層12の長繊維(A)の含有量(VA2)>第3層13の長繊維(A)の含有量(VA2)の条件を満足し、充填材(C)の含有量が、第1層11の充填材の含有量(VC1)がOで、かつ、0<第2層の充填材(C)の含有量(VC2)<第3層の充填材の含有量(VC3)の条件を満足するようになっている。
【0024】
しかも、第1層11に、長繊維(A)が10体積%以上40体積%以下の割合で、充填材が0体積%以上20体積%以下含まれているとともに、、第3層に充填材が20体積%以上70体積%以下の割合で含まれている。
また、各層の厚みは、長手方向の垂直断面でみて厚み方向(図1の矢印方向)の第1層11の厚みの合計tfが、全厚みTに対して T/20<tf≦2T/5の条件を満足し、第2層12の厚みの合計tcが、全厚みTに対して T/20<tc≦2T/5の条件を満足している。
【0025】
この複合材料1は、以上のように、厚み方向の最上面および最下面ともに長繊維(A)が多く配合されているので、曲げの方向が厚み方向に垂直な2方向に対して、耐久性の高いものとなる。しかも、各層間の弾性率が大きく変化せずに、長繊維(A)に沿った曲げ荷重において層間の歪みを低減する効果を有する。
したがって、長期的な層間接着性の信頼性が高く、合成枕木として有効に使用することができる。
【0026】
つぎに、この複合材料1の製造方法を図2を参照しつつ詳しく説明する。
図2は、複合材料1を製造する製造装置を模式的にあらわしている。
【0027】
図2に示すように、この製造装置2は、2つの第1層用原料ライン2a,2aと、2つの第2層用原料供給ライン2b,2bと、1つの第3層用原料供給ライン2cと、成形用型(成形用通路)3と、引取り機4とを備えている。
第3層用原料供給ライン2cは、5つのラインの中央に設けられ、成形用型3後方に設けられた引取り機の引取り力によって長繊維原料81が第3層13用の小長繊維原料群82として引き揃えられながら、成形用型3を通って引取り機4方向へ進行するようになっているとともに、充填材供給装置5と、樹脂液供給装置6と、含浸装置7とを備えている。
【0028】
第2層用原料供給ライン2bは、第3層原料供給ライン2cを上下方向から挟むように設けられ、長繊維原料81が、それそれ第2層12の厚み方向の上側部分あるいは下側部分用の小長繊維原料群83,83として引き揃えられながら、第3層用の小長繊維原料群82と同様に成形用型3を通って引取り機4方向へ進行するようになっているとともに、充填材供給装置5と、樹脂液供給装置6と、含浸装置7とを備えている。
【0029】
第1層用原料供給ライン2aは、一方が各ラインの最上部、他方が各ラインの最下部に位置するように配置され、長繊維原料81が、それぞれ第1層11の厚み方向の上側部分あるいは下側部分用の小長繊維原料群84,84として引き揃えられながら、第3層用の小長繊維原料群82と同様に成形用型3を通って引取り機4方向へ進行するようになっているとともに、樹脂液供給装置6と、含浸装置7とを備えている。
【0030】
充填材供給装置5は、充填材を予め発泡性樹脂液と混合した状態でそれぞれ設定された量で引き揃えられた小長繊維原料群83(84)の上方から振りかけるようになっている。
樹脂液供給装置6は、原料タンク(図示せず)の原料を吐出機61内で混合して発泡性樹脂液62としてそれぞれ設定された量で引き揃えられた小長繊維原料群82(83,84)の上方から振りかけるようになっている。
【0031】
含浸装置7は、含浸板71とこれを受ける含浸台(図示せず)とを備え、発泡性樹脂液62が供給された小長繊維原料群82(83,84)を含浸板71と含浸台との間で挟み込むとともに含浸板71をスライドさせて、含浸板71と含浸台との間で小長繊維原料群82(83,84)を揉み、小長繊維原料群82(83,84)を構成する各繊維と繊維との間に発泡性樹脂液および充填材を均等に含浸および分散させるようになっている。
【0032】
成形用型3は、駆動手段によって同一方向に回転駆動する4つの無端ベルト31(図では2つしかあらわれていない)を組み合わせて断面矩形の筒状に形成されているとともに、図示していなが、加熱装置を備え、成形用型3内へ連続して送り込まれる長繊維原料群に含浸された発泡性樹脂液を発泡硬化させるとともに、成形用型3の内面形状に成形するようになっている。
【0033】
すなわち、この製造装置2は、複合材料1の長繊維原料を、第1層11の厚み方向の上側部分の補強繊維となる小長繊維原料群84、第2層12の厚み方向の上側部分の補強繊維となる小長繊維原料群83、第3層13の補強繊維となる小長繊維原料群82、第2層12の厚み方向の下側部分の補強繊維となる小長繊維原料群83、第1層11の厚み方向の上側部分の補強繊維となる小長繊維原料群84とにそれぞれ分けて引き揃えながら、成形用型3方向に進行させる。
【0034】
そして、各小長繊維原料群82(83,84)に分かれた状態で成形用型3の手前で、それぞれの層に応じた発泡性樹脂液および/または充填材を小長繊維原料群82,83,84に上方から振りかけたのち、含浸装置7で発泡性樹脂液および充填材を均等に含浸および分散させる。
つぎに、樹脂が含浸した各小長繊維原料群82(83,84)を得ようとする複合材料の層構成となるように収束させて成形用型3に入れ、成形用型3内で発泡性樹脂液を発泡硬化させて、連続的に3層からなる複合材料1を製造するようになっている。
【0035】
この製造方法は、以上のように、複合材料1を連続的に生産性よく製造することできる。
また、最も下側に長繊維(A)の割合が多く充填材を含まない第1層用の小長繊維原料群82を配置したので、樹脂含浸後の他の層の含浸束が一部落下などを起こすことなく確実に成形用型に送りこまれる。すなわち、成形精度に優れている。
【0036】
本発明にかかる複合材料およびその製造方法は、上記の実施の形態に限定されない。たとえば、上記の実施の形態の複合材料2では、第1層11には充填材を供給しないようになっていたが、第1層には少量の充填材を供給するようにしても構わない。
また、上記の複合材料では、最内層である第3層13にも長繊維(A)が含まれていたが、最内層は充填材(C)と発泡樹脂(B)のみからなる層としても構わない。
このような、充填材(C)と発泡樹脂(B)のみからなる層を最内層に設けるようにするには、成形用型の手前で、第2層12となる含浸工程が済んだ、発泡性樹脂液含浸済み小長繊維原料群の上に、最内層の組成配合になった充填材(C)と発泡性樹脂液との混合物を載せるように供給したのち、各小長繊維原料群と最内層形成用混合物とを得ようとする成形体の層構成順になるように収束させるようにすればよい。
【0037】
【実施例】
以下に、本発明の実施例をより詳しく説明する。
【0038】
(実施例1)
図2の製造装置2と、長繊維原料としてのガラスモノフィラメントストランド(17μm)、発泡性 樹脂液としての熱硬化性ウレタン液(ポリフェニルメタンジイソシアネート120重量部、プロピレンオキサイド付加ポリエーテルポリオール100重量部、シリコーンオイル整泡剤1重量部、水1重量部、ジブチル錫ラウリレート0.5重量部)、充填材としての珪砂3号を用い、図1に示すような表面層である第1層と、中間層である第2層と、芯層である第3層の3層からなる複合材料を得た。
【0039】
なお、第1層は、その厚み方向の複合材料上面側部分の厚みおよび下面側部分の厚みがそれぞれ20mm、合計厚みtfが40mm、幅が150mmで、体積比を長繊維(A):発泡樹脂(B):充填材(C)=14:86(気泡率0.6):0とした。
【0040】
第2層は、その厚み方向の複合材料上面側部分の厚みおよび下面側部分の厚みがそれぞれ10mm、合計厚みtcが20mmで、体積比を長繊維(A):発泡樹脂(B):充填材(C)=5:70(気泡率0.6):25とした。
第3層は厚みが40mmで、体積比を長繊維(A):発泡樹脂(B):充填材(C)=2:50(気泡率0.6):48とした。
【0041】
(実施例2)
長繊維原料としてのガラスモノフィラメントストランド(13μm)、実施例1と同様の熱硬化性ウレタン液、充填材としてのガラス発泡体(粒径3mm)を用い、バッチ式で表面層となる第1層、中間層となる第2層、裏面層となる第3層の3層からなる板状の複合材料を得た。
なお、第1層は、その厚み方向の複合材料上面側部分の厚みが20mm、幅が150mmで、体積比を長繊維(A):発泡樹脂(B):充填材(C)=12:88(気泡率0.5):0とした。
【0042】
第2層は、その厚み方向の複合材料上面側部分の厚みおよび下面側部分の厚みがそれぞれ10mm、合計厚みtcが20mmで、体積比を長繊維(A):発泡樹脂(B):充填材(C)=10:60(気泡率0.5):30とした。
第3層は厚みが80mmで、体積比を長繊維(A):発泡樹脂(B):充填材(C)=8:40(気泡率0.6):52とした。
【0043】
(比較例1)
中間層である第2層を設けなかった以外は、実施例1と同様にして表面層である実施例1の第1層と芯層である実施例1の第3層とを備えた2層構造の複合材料を得た。
【0044】
(比較例2)
中間層である第2層を設けなかった以外は、実施例2と同様にして表面層である実施例1の第1層と裏面層である実施例2の第3層とを備えた2層構造の複合材料を得た。
【0045】
上記実施例1,2および比較例1,2で得た複合材料について、それぞれ曲げ試験と疲労試験を実施し、その結果を表1に示した。
なお、曲げ強度は、JIS Z 2101の方法を用いて測定し、疲労試験は、曲げ強度の60%となる荷重を3Hzの頻度で1000,000回加える試験を行い、回数を達成するまでに、破壊、界面剥離したものを×、起こさなかったものを○で示した。
【0046】
【表1】

Figure 0004213291
【0047】
上記表1から、本発明の複合材料が、曲げ強度に優れ、層間剥離の問題もない優れた物性を示すことがよくわかる。
【0048】
【発明の効果】
本発明にかかる複合材料は、以上のように構成されているので、より曲げ強度の向上が望めるとともに、長期的にみても層間の接着性に優れたものとなる。
したがって、合成枕木等に使用した場合、耐久性が向上するとともに、安全性も高まる。
【0049】
また、本発明にかかる複合材料の製造方法は、上記複合材料を連続的生産性よく製造することができる。
【図面の簡単な説明】
【図1】本発明にかかる複合材料の1つの実施の形態をその長手方向の垂直面で切断した断面図である。
【図2】本発明にかかる複合材料の製造方法に使用する製造装置の1例を模式的にあらわす模式図である。
【符号の説明】
1 複合材料
11 第1層(表面層)
12 第2層(中間層)
13 第3層(芯層)
3 成形用型(成形用通路)
62 発泡性樹脂液
82〜84 小長繊維原料群[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a composite material and a synthetic sleeper using the composite material.
[0002]
[Prior art]
Fiber-reinforced composite materials (thermosetting foamed resin molded products) that are very similar in appearance to natural wood and that have physical properties equivalent to or better than natural wood are building materials, structural members, sleepers, and waterboards It is used as a structure.
[0003]
As this type of composite material, a composite material that has been proposed to improve compressive strength and nailing performance by making a sandwich structure in which a core layer having excellent compressive strength is sandwiched between surface layers has already been proposed (Japanese Patent Laid-Open No. Hei 5-). 138797).
[0004]
That is, in this composite material, the reinforcing fibers are aligned substantially parallel to the longitudinal direction on the surface of a lightweight and high compressive strength core layer made of a thermosetting resin foam in which 50% by weight or less filler is dispersed. The surface layer is made of a thermosetting resin foam that is lined up and dispersed in a lightweight, rigid, and high-strength and tensile-strength layer. It is excellent in strength and can say nails like wood.
[0005]
However, in the case of this composite material, there is a clear interface between the core layer and the surface layer, and due to the difference in elastic modulus between the core layer and the surface layer, the longitudinal direction (surface layer long fiber) There is a problem that the interface between the surface layer and the core layer is distorted in the orientation direction) and the reliability of the long-term interlayer adhesion of peeling at the interface is poor.
[0006]
[Problems to be solved by the invention]
In view of such circumstances, the present invention can be expected to further improve the bending strength, and in the long term, a composite material excellent in interlayer adhesion, a synthetic sleeper using this composite material, and the manufacture of the composite material It aims to provide a method.
[0007]
[Means for Solving the Problems]
In order to achieve such an object, a composite material according to the invention of claim 1 of the present invention (hereinafter referred to as “composite material of claim 1”) is made of long fibers (A) oriented in the longitudinal direction and foamed. In the composite material made of the material including the resin (B) and the filler (C), a first layer that becomes a surface layer when in use, a second layer immediately below the first layer, and a third layer immediately below the second layer Each layer includes at least three layers, each layer containing the first layer of long fibers (A) (VA1)> second layer of long fibers (A) (VA2)> third layer of long fibers (A) content (VA2), first layer filler (C) content (VC1) <second layer filler (C) content (VC2) <third layer filler (C ) Content (VC3), the thickness t1 of the first layer as viewed in the vertical cross section in the longitudinal direction is T / 40 <t1 ≦ T / 5 with respect to the total thickness T, as viewed in the vertical cross section in the longitudinal direction. Thus, the thickness t2 of the second layer satisfies the condition of T / 40 <t2 ≦ T / 5 with respect to the total thickness T.
[0008]
The composite material according to the invention of claim 2 of the present invention (hereinafter referred to as “composite material of claim 2”) is a long fiber (A), a foamed resin (B) and a filler (C) oriented in the longitudinal direction. A first layer to be a surface layer, a second layer surrounded by the first layer from the outside, and a third layer surrounded by the second layer. Each layer, the content (VA1) of the long fibers (A) of the first layer> the content (VA2) of the long fibers (A) of the second layer> the content of the long fibers (A) of the third layer ( VA2), first layer filler (C) content (VC1) <second layer filler (C) content (VC2) <third layer filler (C) content (VC3) The total thickness tf of the first layer in the thickness direction as viewed in the vertical cross section in the longitudinal direction is T / 20 <tf ≦ 2T / 5 with respect to the total thickness T. The total thickness tc of the second layers in the thickness direction as viewed in the vertical cross section in the direction satisfies the condition of T / 20 <tc ≦ 2T / 5 with respect to the total thickness T.
[0009]
The composite material according to the invention of claim 3 of the present invention (hereinafter referred to as "composite material of claim 3") is the composite material of claim 1 or claim 2, wherein the first layer is a long fiber (A). 10 volume% or more and 40 volume% or less, and the filler (C) is contained 0 volume% or more and 20 volume% or less, and the third layer contains the filler (C) 20 volume% or more and 70 volume% or less. It was set as the structure.
[0010]
The composite sleeper according to claim 4 of the present invention uses the composite material according to any one of claims 1 to 3.
[0011]
The manufacturing method of the composite material according to the invention of claim 5 of the present invention (hereinafter referred to as “manufacturing method of claim 5”) is the composite to be obtained in obtaining the composite material of claim 1 or claim 2. While moving the long long fiber raw material constituting the long fibers (A) constituting each layer of the material into a plurality of small long fiber raw material groups and aligning them, they are advanced toward the inlet of the cylindrical mold, and these During the progress of the small-length fiber raw material group, from the upper side of each small-length fiber raw material group, at least the filler (C) is sprinkled on the small-length fiber group according to the amount of filler in each layer, and these small lengths While the fiber raw material group is in the process of progressing, the foamable resin liquid supplying step of sprinkling at least the foamable resin liquid corresponding to the foamed resin of each layer and the sprinkled foamable resin liquid from above each small-long fiber raw material group The fibers that make up each small length fiber raw material group After the impregnation step of impregnating, each small-length fiber raw material group impregnated with the foamable resin liquid is converged so as to be in the order of the layer structure of the composite material to be obtained, and guided into the mold, or foamed Among the small-length fiber raw material group impregnated with the conductive resin liquid, a filler (which becomes the innermost layer or the backmost layer further on the small-length fiber raw material group forming one surface side layer from the innermost layer or the backmost layer) C) and an innermost layer forming mixture or an innermost layer forming mixture comprising the foamable resin liquid, and each small fiber raw material group impregnated with the foaming resin liquid and the innermost layer forming mixture or the outermost layer forming The mixture was converged so as to be in the layer structure order of the molded body to be obtained and guided into the mold, and was heated and cured or melted in the mold to form a cross-sectional shape in the mold.
[0012]
In the present invention, the shape of the long fiber (A) is not limited as long as it has a function as a reinforcing fiber. For example, monofilaments, fibrils (things in which cocoon-like fibers protrude), Examples of the material include organic materials such as glass, carbon, and synthetic resin, and glass or carbon is preferable because it is reinforced and hardened.
[0013]
As the foamed resin (B), foamed rigid polyurethane resin having closed cells, urethane resin, phenol resin, polyester resin, epoxy resin, etc. Foamed phenolic resin, foamed epoxy resin, foamed urea resin, foamed methacrylic resin, etc., among which polyurethane foam has a relatively high mechanical strength and is non-water-absorbing to form closed cells when foamed And is preferably used.
[0014]
As filler (C), inorganic powder such as rock powder, glass powder, calcium silicate, cement concrete pulverized material, amorphous powder such as silica sand, inorganic short fiber such as sericite, wollastonite, etc. Examples thereof include inorganic powders having bubbles such as powder, vermiculite, pearlite, expanded shale, and fly ash hollow powder, and inorganic powders having a relatively small particle diameter such as calcium carbonate and fly ash. Also, organic powder particles such as resin chips and wood powder may be used.
[0015]
The composite material according to claim 1 may have four or more layers as long as it includes at least three layers of the first layer to the third layer.
Further, in the composite material according to claim 1, the thickness t1 of the first layer as viewed in the longitudinal section in the longitudinal direction is T / 40 <t1 ≦ T / 5 with respect to the total thickness T, and the thickness as viewed in the longitudinal section in the longitudinal direction. It is essential that the thickness t2 of the two layers satisfies the condition of T / 40 <t2 ≦ T / 5 with respect to the total thickness T. The reason is that the thickness t1 of the first layer and the second layer When the thickness t2 of the fiber is T / 40 or less, the bending characteristics are deteriorated, and when t1 and t2 exceed T / 5, the ratio of the total length of the long fibers (A) is large, which is not economical. It is.
[0016]
On the other hand, in the composite material according to claim 2, the total thickness tf of the first layer in the thickness direction as viewed in the vertical cross section in the longitudinal direction is T / 20 <tf ≦ 2T / 5 with respect to the total thickness T, It is essential that the total thickness tc of the second layers in the thickness direction in the vertical cross section satisfies the condition of T / 20 <tc ≦ 2T / 5 with respect to the total thickness T. When the total thickness tf of the first layer and the total thickness tc of the second layer are T / 20 or less, the bending characteristics are deteriorated. When tf and tc exceed 2T / 5, the entire long fiber (A) is formed. This is because it accounts for a large proportion and is not suitable in terms of economy.
[0017]
In the composite material according to claim 1 and claim 2, each layer has a long fiber (A) content (VA1) of the first layer> a long fiber (A) content (VA2) of the second layer> third. Layer long fiber (A) content (VA2), first layer filler (C) content (VC1) <second layer filler (C) content (VC2) <third layer The content (VC3) of the filler (C) is also indispensable because the elastic modulus between the layers does not change greatly and the long fibers (A) are aligned in this way. This is because the strain between the layers can be reduced under the bending load.
In addition, about the elasticity modulus of each layer, 1st layer> 2nd layer> 3rd layer is preferable, and when using as a sleeper like Claim 4, the elasticity modulus of 1st layer is 6000 Mpa or more, More preferably, the elastic modulus is 1000 MPa or more, and the elastic modulus of the third layer is 300 MPa or more.
[0018]
Furthermore, in the composite material according to claim 1 and the composite material according to claim 2, in the composite material according to claim 3, the first layer comprises 10% to 40% by volume of the long fibers (A) and 0% to 20% by volume. It is preferable that the filler (C) is contained in a volume% or less and that the third layer contains a filler (C) in a volume of 20 volume% or more and 70 volume% or less, because the length in the first layer If the content of the fiber (A) is less than 10% by volume, it is difficult to obtain an elastic modulus enhancement effect by reinforcing the long fiber regardless of the density of the foamed resin, and if it exceeds 40% by volume, poor dispersion with the weight occurs. If the content of the filler in the third layer is less than 20% by volume, it is difficult to expect economic improvement and compressibility of the third layer. If it exceeds 70% by volume, This is because poor dispersion with the resin may occur and the reinforcing effect may be deteriorated.
[0019]
The composite materials of claims 1 to 3 are preferably manufactured continuously as in the manufacturing methods of claims 5 and 6 in consideration of productivity, but may be manufactured in a batch manner. Absent.
In the manufacturing method according to claim 5, any one of the filler supply step and the foamed resin liquid supply step may be performed first or simultaneously. In other words, the filler can be supplied simultaneously by previously mixing the filler with the foamable resin liquid. Further, after the filler is sprinkled in a state where the filler is mixed in advance with a small amount of the foamable resin liquid in the filler supply step, the foamable resin liquid may be sprinkled separately.
In the manufacturing method of claim 5, the term “converging” includes the case of converging so as to be layered only in the thickness direction, or the case of converging so that the inner layer is sequentially surrounded by the outer layer.
[0020]
In addition, as a method for producing the composite material according to claim 1 in a batch method, for example, a foamable resin liquid is dispersed and mixed in a long fiber raw material with respect to a molding die in which one of four surfaces surrounding the longitudinal direction is opened. Or a mixture obtained by dispersing and mixing a filler and a foamable resin liquid in a long fiber material, or a mixture obtained by dispersing and mixing a filler and a foamable resin liquid. Set in a mold with a laminated body in which a preformed body b that becomes two layers and a preformed body c that becomes the third layer are sequentially laminated, and before the foamable resin liquid is foam-cured, the open surface of the mold is A method of foaming and curing a foamable resin after closing is mentioned.
[0021]
As a method for manufacturing the composite material according to claim 2, for example, two laminated bodies obtained by preforming the preforms a, b, and c in the same manner as described above are preformed in a mold. A method in which the foamed resin is heated and foam-cured after being set in the mold so that the bodies c are in contact with each other and closing the open surface of the mold before the foamable resin liquid is foam-cured. Is mentioned.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below in detail with reference to the drawings.
FIG. 1 shows one embodiment of a composite material according to the present invention.
[0023]
As shown in FIG. 1, the composite material 1 is made of a material including long fibers (A) oriented in the longitudinal direction, a foamed resin (B), and a filler (C), and a first layer 11 as a surface layer. And the second layer 12 as an intermediate layer and the third layer 13 as a core layer.
Each layer has a long fiber (A) content of the long fiber (A) of the first layer 11 (VA1)> the long fiber (A) content of the second layer 12 (VA2)> third layer. 13 of the long fiber (A) content (VA2) is satisfied, the filler (C) content is O, the filler content (VC1) of the first layer 11 is O, and 0 < The content of the second layer filler (C) (VC2) <the content of the third layer filler (VC3) is satisfied.
[0024]
In addition, the first layer 11 contains 10% by volume to 40% by volume of the long fibers (A) and 0% by volume to 20% by volume of the filler, and the third layer has a filler. Is contained in a ratio of 20% by volume to 70% by volume.
In addition, the thickness of each layer is such that the total thickness tf of the first layer 11 in the thickness direction (the arrow direction in FIG. 1) in the vertical cross section in the longitudinal direction is T / 20 <tf ≦ 2T / 5 with respect to the total thickness T. The total thickness tc of the second layer 12 satisfies the condition of T / 20 <tc ≦ 2T / 5 with respect to the total thickness T.
[0025]
As described above, since the composite material 1 contains a large amount of the long fibers (A) on both the uppermost surface and the lowermost surface in the thickness direction, the durability of the composite material 1 with respect to two directions perpendicular to the thickness direction is long. Will be expensive. In addition, the elastic modulus between the layers does not change greatly, and the effect of reducing the strain between the layers in the bending load along the long fiber (A) is obtained.
Therefore, the reliability of long-term interlayer adhesion is high, and it can be used effectively as a synthetic sleeper.
[0026]
Next, a method for manufacturing the composite material 1 will be described in detail with reference to FIG.
FIG. 2 schematically shows a manufacturing apparatus for manufacturing the composite material 1.
[0027]
As shown in FIG. 2, the manufacturing apparatus 2 includes two first layer raw material lines 2a and 2a, two second layer raw material supply lines 2b and 2b, and one third layer raw material supply line 2c. And a molding die (molding passage) 3 and a take-up machine 4.
The third layer raw material supply line 2c is provided at the center of the five lines, and the long fiber raw material 81 is a small long fiber for the third layer 13 by the take-up force of the take-up machine provided behind the molding die 3. While being arranged as a raw material group 82, it proceeds in the direction of the take-up machine 4 through the molding die 3, and includes a filler supply device 5, a resin liquid supply device 6, and an impregnation device 7. I have.
[0028]
The second layer raw material supply line 2b is provided so as to sandwich the third layer raw material supply line 2c from above and below, and the long fiber raw material 81 is for the upper part or the lower part in the thickness direction of the second layer 12, respectively. The small length fiber raw material groups 83 and 83 are arranged in the same manner as the third long length fiber raw material group 82, and proceed to the take-up machine 4 through the molding die 3 in the same manner as the third layer small length fiber raw material group 82. , A filler supply device 5, a resin liquid supply device 6, and an impregnation device 7 are provided.
[0029]
The first layer raw material supply line 2a is arranged such that one is located at the top of each line and the other is located at the bottom of each line, and the long fiber raw material 81 is an upper portion in the thickness direction of the first layer 11, respectively. Alternatively, while being arranged as a small-length fiber raw material group 84, 84 for the lower part, it proceeds in the direction of the take-up machine 4 through the molding die 3 in the same manner as the small-length fiber raw material group 82 for the third layer. And a resin liquid supply device 6 and an impregnation device 7 are provided.
[0030]
The filler supply device 5 is adapted to sprinkle from above the small-length fiber raw material group 83 (84) arranged in a predetermined amount in a state where the filler is previously mixed with the foamable resin liquid.
The resin liquid supply device 6 mixes the raw materials in the raw material tank (not shown) in the discharge device 61 and arranges the raw material groups 82 (83, 83) as foamable resin liquids 62. 84) is sprinkled from above.
[0031]
The impregnation apparatus 7 includes an impregnation plate 71 and an impregnation base (not shown) for receiving the impregnation plate 71, and the impregnating plate 71 and the impregnation base for the small-length fiber raw material group 82 (83, 84) supplied with the foamable resin liquid 62. And the impregnated plate 71 are slid to sandwich the small-length fiber raw material group 82 (83, 84) between the impregnated plate 71 and the impregnation table, and the small-long fiber raw material group 82 (83, 84) is The foamable resin liquid and the filler are uniformly impregnated and dispersed between the constituent fibers.
[0032]
The molding die 3 is formed in a cylindrical shape with a rectangular cross section by combining four endless belts 31 (only two are shown in the figure) that are rotationally driven in the same direction by a driving means, although not shown in the figure. The foamable resin liquid impregnated in the long fiber raw material group continuously fed into the molding die 3 is foamed and cured, and is molded into the inner shape of the molding die 3. .
[0033]
That is, the manufacturing apparatus 2 uses the long fiber raw material of the composite material 1 as a small fiber raw material group 84 serving as a reinforcing fiber for the upper portion in the thickness direction of the first layer 11 and the upper portion of the second layer 12 in the thickness direction. A small fiber raw material group 83 serving as a reinforcing fiber, a small fiber raw material group 82 serving as a reinforcing fiber of the third layer 13, a small fiber raw material group 83 serving as a reinforcing fiber in a lower portion of the second layer 12 in the thickness direction, The first layer 11 is advanced in the direction of the molding die 3 while being divided and aligned with the small fiber raw material group 84 which is the reinforcing fiber of the upper portion in the thickness direction of the first layer 11.
[0034]
Then, in the state of being divided into the respective small-length fiber raw material groups 82 (83, 84), the foamable resin liquid and / or the filler corresponding to each layer is placed in front of the molding die 3, and the small-long fiber raw material group 82, After sprinkling 83 and 84 from above, the impregnating apparatus 7 uniformly impregnates and disperses the foamable resin liquid and the filler.
Next, the respective small long fiber raw material groups 82 (83, 84) impregnated with the resin are converged so as to have a layer structure of the composite material to be obtained and placed in the molding die 3, and foamed in the molding die 3. The composite material 1 consisting of three layers is continuously manufactured by foaming and curing the conductive resin liquid.
[0035]
This manufacturing method can manufacture the composite material 1 continuously with good productivity as described above.
Also, since the first layer small long fiber raw material group 82 having a large proportion of long fibers (A) and no filler is arranged on the lowermost side, a part of the impregnated bundle of other layers after the resin impregnation falls. It will surely be fed into the mold without causing any problems. That is, it has excellent molding accuracy.
[0036]
The composite material and the manufacturing method thereof according to the present invention are not limited to the above embodiment. For example, in the composite material 2 of the above embodiment, the filler is not supplied to the first layer 11, but a small amount of filler may be supplied to the first layer.
In the above composite material, the third layer 13 which is the innermost layer also contains the long fibers (A). However, the innermost layer may be a layer made of only the filler (C) and the foamed resin (B). I do not care.
In order to provide such a layer consisting only of the filler (C) and the foamed resin (B) in the innermost layer, the foaming process has been carried out for the second layer 12 before the molding die. After supplying the mixture of the filler (C) having the composition of the innermost layer and the foamable resin liquid on the small-long fiber raw material group impregnated with the conductive resin liquid, What is necessary is just to make it converge so that it may become the layer structure order of the molded object which is going to obtain the innermost layer formation mixture.
[0037]
【Example】
In the following, embodiments of the present invention will be described in more detail.
[0038]
Example 1
The production apparatus 2 of FIG. 2, a glass monofilament strand (17 μm) as a long fiber raw material, a thermosetting urethane liquid as a foaming resin liquid (120 parts by weight of polyphenylmethane diisocyanate, 100 parts by weight of a propylene oxide-added polyether polyol, 1 part by weight of a silicone oil foam stabilizer, 1 part by weight of water, 0.5 part by weight of dibutyltin laurate), a silica sand No. 3 as a filler, and a first layer which is a surface layer as shown in FIG. A composite material composed of three layers of a second layer as a layer and a third layer as a core layer was obtained.
[0039]
The first layer has a thickness of 20 mm, a total thickness tf of 40 mm, a width of 150 mm, and a volume ratio of long fibers (A): foamed resin. (B): Filler (C) = 14: 86 (bubble ratio 0.6): 0.
[0040]
The thickness of the second layer of the composite material in the thickness direction is 10 mm for the upper surface portion and 10 mm for the lower surface portion, the total thickness tc is 20 mm, and the volume ratio is long fiber (A): foamed resin (B): filler. (C) = 5: 70 (bubble ratio 0.6): 25.
The third layer had a thickness of 40 mm, and the volume ratio was long fiber (A): foamed resin (B): filler (C) = 2: 50 (cell ratio 0.6): 48.
[0041]
(Example 2)
A glass monofilament strand (13 μm) as a long fiber material, a thermosetting urethane liquid similar to that of Example 1, a glass foam (particle size 3 mm) as a filler, and a first layer that becomes a surface layer in a batch system, A plate-like composite material consisting of three layers, a second layer serving as an intermediate layer and a third layer serving as a back layer, was obtained.
The first layer has a thickness of 20 mm, a width of 150 mm, and a volume ratio of long fiber (A): foamed resin (B): filler (C) = 12: 88. (Bubble ratio 0.5): 0.
[0042]
The thickness of the second layer of the composite material in the thickness direction is 10 mm for the upper surface portion and 10 mm for the lower surface portion, the total thickness tc is 20 mm, and the volume ratio is long fiber (A): foamed resin (B): filler. (C) = 10: 60 (bubble ratio 0.5): 30.
The third layer had a thickness of 80 mm and a volume ratio of long fiber (A): foamed resin (B): filler (C) = 8: 40 (cell ratio 0.6): 52.
[0043]
(Comparative Example 1)
Two layers including the first layer of Example 1 which is a surface layer and the third layer of Example 1 which is a core layer in the same manner as Example 1 except that the second layer which is an intermediate layer is not provided. A composite material of structure was obtained.
[0044]
(Comparative Example 2)
Two layers including the first layer of Example 1 which is a surface layer and the third layer of Example 2 which is a back surface layer in the same manner as Example 2 except that the second layer which is an intermediate layer is not provided. A composite material of structure was obtained.
[0045]
The composite materials obtained in Examples 1 and 2 and Comparative Examples 1 and 2 were subjected to a bending test and a fatigue test, respectively, and the results are shown in Table 1.
The bending strength is measured using the method of JIS Z 2101, and the fatigue test is performed by applying a load that is 60% of the bending strength at a frequency of 3 Hz 1,000,000 times, The broken and interfacial peeled materials were indicated with ×, and the ones that did not occur were indicated with ○.
[0046]
[Table 1]
Figure 0004213291
[0047]
From Table 1 above, it can be seen that the composite material of the present invention exhibits excellent physical properties with excellent bending strength and no problem of delamination.
[0048]
【The invention's effect】
Since the composite material according to the present invention is configured as described above, it can be expected to further improve the bending strength, and has excellent adhesiveness between layers even in the long run.
Therefore, when used for synthetic sleepers, the durability is improved and the safety is also increased.
[0049]
Moreover, the manufacturing method of the composite material concerning this invention can manufacture the said composite material with sufficient continuous productivity.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of one embodiment of a composite material according to the present invention, cut along a vertical plane in its longitudinal direction.
FIG. 2 is a schematic view schematically showing an example of a manufacturing apparatus used in the method for manufacturing a composite material according to the present invention.
[Explanation of symbols]
1 Composite material 11 First layer (surface layer)
12 Second layer (intermediate layer)
13 Third layer (core layer)
3 Mold (molding passage)
62 Foamable resin liquids 82-84 Small fiber raw material group

Claims (5)

長手方向に配向した長繊維(A)と発泡樹脂(B)と充填材(C)とを含む材料からなる複合材料において、使用時に表面層となる第1層と、第1層の直下の第2層と、第2層の直下の第3層の少なくとも3つの層を備え、各層は、第1層の長繊維(A)の含有量(VA1)>第2層の長繊維(A)の含有量(VA2)>第3層の長繊維(A)の含有量(VA2)、第1層の充填材(C)の含有量(VC1)<第2層の充填材(C)の含有量(VC2)<第3層の充填材(C)の含有量(VC3)、長手方向の垂直断面でみて第1層の厚みt1が、全厚みTに対して T/40<t1≦T/5、長手方向の垂直断面でみて第2層の厚みt2が、全厚みTに対して T/40<t2≦T/5の条件を満足していることを特徴とする複合材料。In a composite material made of a material including long fibers (A) oriented in the longitudinal direction, foamed resin (B), and filler (C), a first layer that becomes a surface layer in use, and a first layer immediately below the first layer 2 layers and at least three layers of a third layer immediately below the second layer, and each layer has a content of the long fibers (A) of the first layer (VA1)> long fibers of the second layer (A) Content (VA2)> Content (VA2) of long fiber (A) in the third layer, Content (VC1) of filler (C) in the first layer <Content of filler (C) in the second layer (VC2) <content of the filler (C) in the third layer (VC3), the thickness t1 of the first layer as viewed in the longitudinal section in the longitudinal direction is T / 40 <t1 ≦ T / 5 with respect to the total thickness T A composite material characterized in that the thickness t2 of the second layer satisfies the condition of T / 40 <t2 ≦ T / 5 with respect to the total thickness T when viewed in a vertical cross section in the longitudinal direction. 長手方向に配向した長繊維(A)と発泡樹脂(B)と充填材(C)とを含む材料からなる複合材料において、表面層となる第1層、この第1層によって外側から囲繞される第2層、および、この第2層によって囲繞される第3層の少なくとも3層からなり、各層は、第1層の長繊維(A)の含有量(VA1)>第2層の長繊維(A)の含有量(VA2)>第3層の長繊維(A)の含有量(VA2)、第1層の充填材(C)の含有量(VC1)<第2層の充填材(C)の含有量(VC2)<第3層の充填材(C)の含有量(VC3)、長手方向の垂直断面でみて厚み方向の第1層の厚みの合計tfが、全厚みTに対して T/20<tf≦2T/5、長手方向の垂直断面でみて厚み方向の第2層の厚みの合計tcが、全厚みTに対して T/20<tc≦2T/5の条件を満足していることを特徴とする複合材料。In a composite material made of a material including a long fiber (A) oriented in the longitudinal direction, a foamed resin (B), and a filler (C), a first layer serving as a surface layer is surrounded from the outside by the first layer. It is composed of at least three layers of a second layer and a third layer surrounded by the second layer, and each layer has a content (VA1) of long fibers (A) of the first layer> long fibers of the second layer ( A) content (VA2)> third layer long fiber (A) content (VA2), first layer filler (C) content (VC1) <second layer filler (C) Content (VC2) <content of the filler (C) of the third layer (VC3), and the total thickness tf of the first layer in the thickness direction as viewed in the vertical cross section in the longitudinal direction is T / 20 <tf ≦ 2T / 5, the total thickness tc of the second layer in the thickness direction as seen in the vertical cross section in the longitudinal direction is T / 20 with respect to the total thickness T. <Tc ≦ 2T / 5 satisfies the condition. 第1層は、長繊維(A)が10体積%以上40体積%以下、充填材(C)が0体積%以上20体積%以下含まれていて、第3層は、充填材(C)が20体積%以上70体積%以下含まれている請求項1または請求項2に記載の複合材料。The first layer contains 10% to 40% by volume of the long fibers (A) and 0% to 20% by volume of the filler (C), and the third layer contains the filler (C). The composite material according to claim 1 or 2, which is contained in an amount of 20% by volume to 70% by volume. 請求項1〜請求項3のいずれか1項に記載の複合材料を用いてなる合成枕木。A synthetic sleeper using the composite material according to any one of claims 1 to 3. 請求項1または請求項2の複合材料を得るにあたり、得ようとする複合材料の各層を構成する長繊維(A)となる長尺の長繊維原料を複数の小長繊維原料群に分けて引き揃えつつ、筒状をした成形用型の入口方向に進行させるとともに、
これら小長繊維原料群の進行途中で、各小長繊維原料群の上方から、少なくとも充填材(C)を小長繊維群に各層の充填材量に応じて振りかける充填材供給工程と、
これら小長繊維原料群の進行途中で、各小長繊維原料群の上方から、少なくとも発泡性樹脂液を各層の発泡樹脂に対応する液量振りかける発泡性樹脂液供給工程と、
振りかけられた発泡性樹脂液を各小長繊維原料群を構成する繊維と繊維との間に含浸させる含浸工程とを経たのち、
発泡性樹脂液が含浸した各小長繊維原料群を、得ようとする複合材料の層構成順になるように収束させて成形型内に導き、あるいは、
発泡性樹脂液が含浸した小長繊維原料群のうち、最内層または最裏面層より1つ表面側の層を形成する小長繊維原料群の上にさらに最内層または最裏面層となる充填材(C)と発泡性樹脂液とからなる最内層形成用混合物または最裏面層形成用混合物を供給し発泡性樹脂液が含浸した各小長繊維原料群と最内層形成用混合物または最裏面層形成用混合物とを得ようとする成形体の層構成順になるように収束させて成形型内に導き、
成形型内で加熱硬化または加熱溶融させて成形型内の断面形状に成形することを特徴とする複合材料の製造方法。
In obtaining the composite material according to claim 1 or 2, the long long fiber raw material to be the long fibers (A) constituting each layer of the composite material to be obtained is divided into a plurality of small long fiber raw material groups. While aligning, advance in the inlet direction of the cylindrical mold,
During the progress of these small-length fiber raw material groups, from above each small-length fiber raw material group, at least a filler (C) is sprinkled on the small-long fiber group according to the amount of filler in each layer;
During the progression of these small-length fiber raw material groups, from above each small-length fiber raw material group, at least a foamable resin liquid supply step of sprinkling a liquid amount corresponding to the foamed resin of each layer,
After undergoing an impregnation step of impregnating the sprinkled foamable resin liquid between the fibers constituting each small-length fiber raw material group,
Each small fiber raw material group impregnated with the foamable resin liquid is converged so as to be in the layer configuration order of the composite material to be obtained and guided into the mold, or
Among the small-length fiber raw material group impregnated with the foamable resin liquid, a filler that becomes the innermost layer or the backmost layer further on the small-length fiber raw material group that forms one surface side layer from the innermost layer or the backmost layer. The innermost layer forming mixture or innermost layer forming mixture or innermost layer forming mixture formed by supplying the innermost layer forming mixture or the outermost back layer forming mixture comprising (C) and the foaming resin solution and impregnated with the expanding resin solution The mixture is made to converge in the order of the layer structure of the molded body to be obtained, and led into the mold,
A method for producing a composite material, wherein the composite material is molded into a cross-sectional shape in a mold by heat curing or heat melting in the mold.
JP11988899A 1999-04-27 1999-04-27 Composite material, synthetic sleeper using the composite material, and method for producing composite material Expired - Fee Related JP4213291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11988899A JP4213291B2 (en) 1999-04-27 1999-04-27 Composite material, synthetic sleeper using the composite material, and method for producing composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11988899A JP4213291B2 (en) 1999-04-27 1999-04-27 Composite material, synthetic sleeper using the composite material, and method for producing composite material

Publications (2)

Publication Number Publication Date
JP2000309062A JP2000309062A (en) 2000-11-07
JP4213291B2 true JP4213291B2 (en) 2009-01-21

Family

ID=14772728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11988899A Expired - Fee Related JP4213291B2 (en) 1999-04-27 1999-04-27 Composite material, synthetic sleeper using the composite material, and method for producing composite material

Country Status (1)

Country Link
JP (1) JP4213291B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104652182A (en) * 2015-03-11 2015-05-27 中格复合材料(南通)有限公司 Rail sleeper and method for mounting nut sleeve

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4568450B2 (en) * 2001-04-18 2010-10-27 積水化学工業株式会社 Long fiber reinforced resin composite and method for producing the long fiber reinforced resin composite
JP2005090130A (en) * 2003-09-18 2005-04-07 Zenitaka Corp Cuttable member for shaft wall, columnar body for shaft wall, shaft wall and method of manufacturing cuttable member for shaft wall
JP2006063149A (en) * 2004-08-25 2006-03-09 Sekisui Chem Co Ltd Continuous fiber-reinforced, expanded polyurethane resin and sleeper
CN1304695C (en) * 2005-07-21 2007-03-14 袁强 Wholly coated rail sleeper and manufacture thereof
US20220056232A1 (en) * 2018-09-14 2022-02-24 Sekisui Chemical Co., Ltd. Curable resin composition, resin molded body and method for producing resin molded body

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5852494B2 (en) * 1976-06-18 1983-11-22 積水化学工業株式会社 Composite structural material
JPS5854999Y2 (en) * 1978-10-18 1983-12-15 積水化学工業株式会社 Lightweight plate-like synthetic material
JPS5712751A (en) * 1980-06-27 1982-01-22 Kubota Ltd Building material and production thereof
JPS627471Y2 (en) * 1981-03-24 1987-02-20
JPH05138797A (en) * 1991-11-19 1993-06-08 Nhk Spring Co Ltd Composite material
JP2000167966A (en) * 1998-12-04 2000-06-20 Sekisui Chem Co Ltd Composite material and crosstie

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104652182A (en) * 2015-03-11 2015-05-27 中格复合材料(南通)有限公司 Rail sleeper and method for mounting nut sleeve
CN104652182B (en) * 2015-03-11 2016-08-24 中格复合材料(南通)有限公司 A kind of sleeper and the method installing nut sleeve thereof

Also Published As

Publication number Publication date
JP2000309062A (en) 2000-11-07

Similar Documents

Publication Publication Date Title
US5846357A (en) Method of making syntactic foam core material
US5773121A (en) Syntactic foam core incorporating honeycomb structure for composites
WO2000050233A1 (en) Composite material and synthetic sleeper using the composite material
JP4213291B2 (en) Composite material, synthetic sleeper using the composite material, and method for producing composite material
CN103866653A (en) Novel sandwich structure composite sleeper and continuous pultrusion molding process thereof
CN101475738B (en) Glass fibre reinforced plastic and leisure seat made thereof
JP4708534B2 (en) Repair / reinforcing material made of fiber-reinforced resin molded body, manufacturing method thereof, and cement-based structure using the repair / reinforcing material
KR100416834B1 (en) A making method and apparatus for the glass fiber reinforced polyurethane foam included continuous strand mat
CN113845639B (en) Integral polyurethane foaming composite sleeper and preparation method thereof
JP4495407B2 (en) Recycled molded material manufacturing method, recycled molded material, recycled structure material, synthetic sleeper and lightweight synthetic wood
JP2000167966A (en) Composite material and crosstie
CN110004775B (en) Mutually-embedded phenolic resin composite sleeper and preparation method thereof
JP2000204267A (en) Composite material, production thereof, and synthetic railroad tie
WO2020199364A1 (en) Impregnation apparatus used for preparing composite railway sleepers
CN208812584U (en) Integrally formed fiber reinforcement polyurethane foaming hard board structure
CN111559153A (en) Polyurethane fiber reinforced structural plate and manufacturing process thereof
JP2000085043A (en) Synthetic resin laminate and sleeper
JP2000296574A (en) Composite material and synthetic tie using the same
CN205202346U (en) Resin matrix composite building templates
US20120326349A1 (en) Method for producing a particle-based element
JP4733396B2 (en) Recycled molding material manufacturing method
JP2001246685A (en) Plural-layer body, manufacturing method thereof and synthetic sleeper
CN113172884B (en) Ultrasonic-assisted fiber reinforced composite material additive manufacturing method and device
JPH1158534A (en) Manufacture of fiber reinforced urethane resin multi-layer foam
JPH11348161A (en) Composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081008

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081030

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees