JP4210964B2 - Water purifier - Google Patents

Water purifier Download PDF

Info

Publication number
JP4210964B2
JP4210964B2 JP37769798A JP37769798A JP4210964B2 JP 4210964 B2 JP4210964 B2 JP 4210964B2 JP 37769798 A JP37769798 A JP 37769798A JP 37769798 A JP37769798 A JP 37769798A JP 4210964 B2 JP4210964 B2 JP 4210964B2
Authority
JP
Japan
Prior art keywords
filter
activated carbon
water purifier
water
purifier according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP37769798A
Other languages
Japanese (ja)
Other versions
JP2000189949A (en
Inventor
常緑 大谷
孝行 赤星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP37769798A priority Critical patent/JP4210964B2/en
Publication of JP2000189949A publication Critical patent/JP2000189949A/en
Application granted granted Critical
Publication of JP4210964B2 publication Critical patent/JP4210964B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Filtration Of Liquid (AREA)
  • Water Treatment By Sorption (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水に含まれる粒子成分や化学物質成分を除去、低減する浄水器に関する。
【0002】
【従来の技術】
浄水器が持つ基本的な機能は大きく2つに分けて考えることができる。
その一つは、処理対象水中に含まれる、懸濁物質の除去機能である。
水中の懸濁物質は、例えば鉄錆や微細な砂塵などが考えられるが、最近では、水道水中に含まれかつ水道で一般的に使用される塩素を用いても殺すことができない、いわゆる塩素耐性をもつクリプトスポリジウムやジアルジアといった人体に有害な原虫もこの範疇に含まれる。これらの懸濁物質を除去する方法として、一般的に普及している方式は、中空糸膜による機械的除去である。中空糸膜は、ストロー状の膜の側壁に、0.1μm前後の多数の孔があいており、ここを処理対象水が通過するときに大きな懸濁物質や極微細な懸濁物質、例えば細菌にいたるまでまとめて捕捉分離することになる。中空糸膜は、上記のように微細な分離性能を持っているが、その反面、濾過の寿命が極めて短いという短所を持っている。この短所を改良する工夫の考案の一つが、実開平3−047089である。この考案によれば、中空糸膜の上流側に平均空隙20μmから50μmのプレフィルタを設けることによって粗い懸濁物質をこのフィルタで捕捉し、中空糸膜への負荷を低減せしめることによって中空糸膜の目詰まりをおさえ、寿命を延ばそうとしている。
浄水器が持つ他の機能の一つは、化学物質の除去である。水中に含まれる化学物質は、例えば塩素、発ガン物質であるトリハロメタン、かび臭のもととなるジェオスミンやジメチルイソボルネオールなどである。これらの化学物質を除去する方法として、一般に普及している方法は、活性炭を用いた化学反応及び吸着作用による除去である。活性炭をその形状や性質から大きく分離すると、繊維状、粒状、固形状に分類される。繊維状活性炭は、有機高分子をファイバー状に加工して炭化したものを積層して成形したもので、一般的性質として処理水の流速が大きい場合、すなわち滞留時間が短い場合にその除去性能を発揮することができる。また、粒状活性炭は、石炭や椰子殻を賦活して多数の細孔を作るもので、一般的性質として処理水の流速が比較的小さい場合、すなわち滞留時間が比較的長い場合にその性能を発揮することができる。固形状活性炭は、粒状活性炭n にバインダーを入れて焼結する方法などで製造され、活性炭の化学物質除去性能よりもむしろその取り扱い容易性や懸濁物質の除去性能を兼用させる目的で使用されており、特に化学物質の除去性能において特徴や優位性は見られない。繊維状活性炭と粒状活性炭を比較すると、前述のように処理水の流速に関しては繊維状活性炭に利点があるが、単位重量当たりでの化学物質除去能力については、あるグレード以上になると粒状活性炭が優位であり、またその経済性も粒状活性炭が繊維状活性炭のほぼ1/5程度の価格であり優位性を持っている。
以上述べた浄水器の懸濁物質除去機能と化学物質除去を併せ持った発明の例が、先に引用した実開平3−047089や特開平10−113507である。
実開平3−047089はこの実用新案公開公報によれば、従来からある繊維状活性炭により化学物質を除去し、中空糸膜により懸濁物質を除去する構成に加えて、繊維状活性炭への懸濁物質の付着による活性表面のマスキングによる性能低下及び通水量低下防止と、中空糸膜の寿命による通水量低下を防止する目的で、フィルタユニットの最上流側に平均空隙20μmから50μmのプレフィルタを設けている。
また、特開平10−113507の公開特許公報によれば、上流側から筒状に成形した繊維状活性炭、その下流側にプリーツフィルタを配設して2層構造とし、繊維状活性炭層で化学物質を除去し、プリーツフィルタ層で懸濁物質を除去するシステムとなっている。
【0003】
【発明が解決しようとする課題】
ところが、前述のように、中空糸膜を用いた場合には濾過寿命がかなり短くなり、これを改善する方策として実開平3−047089ではプリーツ膜状のプレフィルタをその上流側に配設しているが、中空糸膜の細孔径0.1μmに比べて、実開平3−047089が述べている平均空隙20μmから50μmのプレフィルタではさほど寿命を延命する効果は期待できない。また、新たにプリーツ状の膜を加えることによって、浄水器自体も大きくなるという短所がある。
また、特開平10−113507が述べているように、円筒状の繊維状活性炭とプリーツフィルタをこの順序で処理水の上流側から配置した場合には、プリーツフィルタの膜面積を確保するためにその中心をなす集水管用コアの直径が大きくなり、浄水器自体が大きくなるという短所があるばかりでなく、上流側に配置された繊維状活性炭の表面に懸濁物質が付着して本来活性炭が持っている性能を著しく低下させたり、また繊維状活性炭自身が目詰まりを生じ、通水抵抗が短期間のうちに上昇することになる。
また、一般にプリーツフィルタは、膜自体に内側から外側に向かっての力がかかると外側に広がろうとする力が働き、特にプリーツフィルタの長手方向両端面の封止部には強い機械的ストレスが働いて、この部分の膜が損傷して性能を発揮できないことが問題である。
また、活性炭本来の性能から考えれば、先に述べたように粒状活性炭に優位性があるが、先に取り上げた実開平3−047089、特開平10−113507の例では、活性炭にいずれも繊維状活性炭を使用している。これはいずれも成型されており取り扱いが容易でほとんど微細な粉末が出ないことを主な理由としていることがその理由と推察される。粒状活性炭を用いる場合には、その取り扱い性、特に活性炭層への充填と微粉の漏出の点が問題となることを意味している。
また、プリーツフィルタは、濾膜が露出していると、例えばフィルタの組立工程などで傷をつけ、フィルタの性能を低下させる危険性がある。
また、濾膜は一般的に機械的強度が弱く、特に濾膜の圧力損失が高くなった状態で処理水を透過した場合には濾膜に機械的ストレスがかかり、性能を低下させる危険性がある。
また、先に述べたように、最近は水道水の殺菌に用いられている塩素が効かない塩素耐性のクリプトスポリジウムやジアルジアといった人間に危害を与える原虫も水道水中から発見されるようになり、この処理を行うことが浄水器の義務になってきている。プリーツフィルタの濾膜の性能を考えた場合、その使用目的により必要な濾過性能を確保するためにはそれに応じた膜性能を発揮する濾膜を開発するのが通例であるが、濾膜の開発には相当の時間と費用をかける必要があった。
また、プリーツフィルタ使用上の大きな問題点の一つとして、フィルタを通過する懸濁物質が粘土状の場合、プリーツフィルタのひだとひだが癒着してフィルタ面積が実質的に急激に減少し、濾過寿命が短くなるという問題があった。また、活性炭層を処理水が通過しない場合、化学物質の除去性能が極端に低下するという問題があった。
また、プリーツフィルタの長手方向の端面は、一般にキャップとの溶着かもしくは樹脂にて封止する方法がとられているが、溶着には相応の設備投資が必要であり、また溶着境界面の濾膜の性能確保という問題があり、樹脂封止の場合に比べて技術的、費用的にハードルが高くなる。これに比べて樹脂による封止は比較的容易であるが、場合により樹脂を注入すると、樹脂がプリーツフィルタに吸い上げられて端面に十分に残留せず、この部分の封止ができない問題や、例えばウォーターハンマーなどでフィルタ部分とフィルタの端面接着封止部分に強い力が働くと、この接着封止がはがれて接着封止が容易に劣化するという問題があった。
そこで、本発明は、目詰まりを生じず寿命が長く、組立工程などでフィルタに傷がつかず、また、塩素耐性のクリプトスポリジウムやジアルジアなどの原虫が除去でき、化学物質の除去性能ができる高性能の濾過能力を持ち、小型で接着封止部の強度が高く安価な浄水器を提供することを目的とする。
【0004】
【課題を解決するための手段】
上記課題を解決するため、本願の代表的な発明は以下の構成よりなる。
原水入口及び浄水出口を有するケースと、前記ケースの内側にケース内周面から間隔を設けて装填されるプレフィルタおよび主フィルタからなる濾材と、前記濾材を密閉しかつ適正位置に固定する保持部材と、一端が前記浄水出口に連通する集水部材とからなる浄水器において、
前記主フィルタはプリーツフィルタと粒状の活性炭とからなり、かつ、前記濾材は処理水の上流側よりプレフィルタ、プリーツフィルタ、活性炭の順に配設され、
前記保持部材は、前記主フィルタの両端に設けたキャップと前記活性炭を保持するケージとからなり、前記プリーツフィルタが収納されるプリーツフィルタ室と、前記活性炭が収納される活性炭室とを形成する。
【0005】
【発明の実施の形態】
以下、図面を参照しながら本発明の実施例について説明する。
(実施例1)
図1は、本発明の浄水器の一例を示す側断面図である。これは、ボディー5と原水入口に該当する入り口側ジョイント1と浄水出口に該当する出口側ジョイント2を持つヘッド18からなる筐体の中に、その内側にケース内周面から間隔をあけて装填される、プレフィルタ9、集水部材なる集水管17、主フィルタとしてプリーツフィルタ10と活性炭フィルタ19を用いた浄水器である。15はOリングであり、出口側ジョイント2と集水管17との接続部をシールしている。図2はプリーツフィルタ10の詳細を示す拡大断面図で、濾膜21をサポート膜20で挟んだ構造になっている。
処理水は、まず、水流入方向矢印13に示すように入口側ジョイント1から外側通水路8を通り筐体の内部に流入する。つぎにプレフィルタ9で大きな懸濁物質を除去した後にプリーツフィルタ10を通過し、ケージ16を通過して活性炭19で化学物質を除去して集水管17に流れ込み、出口側ジョイント2から水流出方向矢印14に示すように浄水器外部に流れ出る仕組みとなっている。
動作について説明する。本浄水器は中空糸膜を使用しておらず、その主たる濾過はプリーツフィルタで行っている。プリーツフィルタのコア径、すなわちケージ16の外径はおよそ70mmであり、プリーツフィルタの折り高さは約15mmとなっており、また長さは約270mmで、このプリーツフィルタの表面積は1.5m2 以上を得ることができる。従って、日本の水道で例をとれば、最大濁度の2度の処理水に対しても、低圧地域である0.1MPaの元水圧の場所でも、十分な性能を得ることができるように設計されている。例えば、中空糸膜を用いた場合、先に述べた実開平3−047089を例にとれば、中空糸膜とプリーツ型プレフィルタを用いると同一の条件で比較した場合、その濾過能力は10m3 程度となり、本発明が高性能の浄水器であることが容易にわかる。
(実施例2)
本実施例では、その構成を処理水の上流側からプレフィルタ9、プリーツフィルタ10、活性炭19の順に配置しているので、プリーツフィルタ10のコア径は約70mmと大きくでき、したがって先に述べたような1.5m2 という広大なプリーツフィルタ10の膜面積を確保することができる。例えば、プリーツフィルタ10が最下流にあり、集水管17をコア径にした場合には、直径に比例して確保できる膜面積が減少するので、本例の場合、約1/10の膜面積しか確保できないことになり、実用的でないことがわかる。逆に、膜面積をある程度確保するように集水管17の直径を大きくした場合には、性能に比べて浄水器が大きくなり、使用に際して設置場所やハンドリングなどの問題が生じることが考えられる。また、本例の場合、活性炭19へは懸濁物質を除去したあとの処理水が流入することになるので、活性炭表面への懸濁物質の付着は生じず、活性炭19の性能を十分に発揮できることは明らかである。
(実施例3)
実施例3について説明する。浄水器には、通常処理水の流れに従って圧力がかかり、本実施例でも通常の通水中はプレフィルタ9、プリーツフィルタ10にコンプレッションの力が加わっている。このコンプレッションの力は、プリーツフィルタ10がケージ16に押しつけられる形となり、ケージ16、さらにはその内側にある活性炭19がその力を押し返してプリーツフィルタ10は特に大きな変形を生じることなく処理水の処理を続けることができる。ところが、例えば出口側ジョイント2の先で通水中に急激に通水を停止されると、その通水エネルギー回避のための、いわゆるウォーターハンマーが生じ、通常の通水時とは逆にプリーツフィルタ10の内側から外側に向かう圧力が生じる。この力は瞬間的な発生であるが、特にプリーツフィルタ10に懸濁物質が詰まっており、その圧力損失が高い場合にはプリーツフィルタ10がこのウォーターハンマーを受け止める形となり、プリーツフィルタ10が内側から外側に開く力を受け、動くことになる。このため、プリーツフィルタ10の封止部との界面の固定されている部分と固定されていない部分に力がかかり、この部分を損傷して濾膜21の性能を劣化させることとなる。特に開閉頻度が大きい使用環境では、この部分に対する繰り返しのストレスは多大なものとなり、場合によっては膜の破れが生じることもある。プレフィルタ9をプリーツフィルタ10の全体にわたって巻き付けた場合には、たとえウォーターハンマーがプリーツフィルタ10にかかったとしても、プリーツフィルタ10全体が外側に対して動くことがないので、プリーツフィルタ10の損傷が生じず、かつプレフィルタ9も安定して作用することができる。本実施例では、プレフィルタ9として帯状の不織布を螺旋状にオーバーラップしながら巻いているが、必ずしも不織布である必要はなく、また必ずしも螺旋状でなくともよい。
(実施例4)
次に、実施例4について説明する。先にも述べたように、粒状活性炭は繊維状活性炭はに比べて化学物質の処理能力が優位であり、価格も安価である。従って、浄水器の能力を発揮するためには粒状活性炭を用いることが好ましく、本実施例でも粒状活性炭を用いている。
(実施例5)
次に、実施例5について説明する。図2にサポート膜と濾膜の位置関係概要を示す。濾膜21は、繊維を積層し穴径が10〜100μmとしたものからなりこれを少なくとも2枚設けている。微細な懸濁物質を除去する必要から、きめが細かい膜で、通常は圧力損失を上昇させないために数μm〜数十μmの厚みしかないデリケートな膜である。これをハンドリングする場合、膜へ傷をつけないことが最大の課題となる。従って、膜に直接手をふれないようにサポート膜をその両側に配することによって取り扱い性が向上し、信頼のおけるプリーツフィルタ10を提供できる。更に、先に述べたような厚みの膜であるから、膜自身の強度、すなわち「こし」が弱く、処理水を通水する圧力で濾膜21が損傷する可能性があるので、これを防止するためにサポート膜20が必要となる。
(実施例6)
次に、実施例6について説明する。サポート膜20の穴径が密の場合、サポート膜20自身で懸濁物質を捕捉し、時間経過とともにその圧力損失が上昇する。圧力損失が低い場合は、サポート膜20が外的力を受けることなくそのままの形状を保って通水できるが、サポート膜20の圧力損失が上昇すると、サポート膜20は通水方向に対しての力を受けて徐々に通水方向に変形していき、濾膜21の有効な膜面積を減少させる方向に働く。したがって、サポート膜20には圧力損失が生じない程度の穴径が必要であり、その値は100μm以上、望ましくは200μm以上の値がよい。
(実施例7)
次に実施例7について説明する。先に述べたように、例えば水道水に用いられている塩素でも死なず、また人間に害を与える塩素耐性原虫を除去することも浄水器の使用形態により、浄水器に課せられた使命である。現在、これらの原虫でもっとも小さいものはクリプトスポリジウム小型種のシストで、概ね4μmの大きさである。米国NSFインターナショナルではこの原虫の除去基準として、3〜4μmの粒子を99.95%以上除去すれば除去可能な浄水システムとして認定しており、この基準を満たすことも重要な性能の一つである。本実施例では、この基準に準拠して試験を実施したところこの仕様を満足していることを確認している。
(実施例8)
次に、実施例8について説明する。従来、濾膜は濾過精度に応じて多大な開発時間と費用をつぎ込んで開発が行われてきた。しかしながら、基本的な濾膜を積層する事により、その目的が達せられるならば、この多大な開発時間と費用は不要であり、適時に比較的安価に市場へその濾膜を使用した浄水器を提供することができる。例えば、1枚の濾膜の濾過精度が99%であった場合、もう1枚同じ膜を積層する事で、99.9%の濾過精度を実現することができる。
(実施例9)
次に、実施例9について説明する。プリーツフィルタ10に懸濁物質が捕集され、圧力がかかると、膜はひだの内側に押しつぶされる力を受ける。また、懸濁物質が例えばカオリンなどの粘土質の物質の場合、押しつぶされる力が除かれても、プリーツフィルタ10のひだは癒着して離れず、実質的に通水部分が隠蔽されて通水面積が減少する。この問題を防止する方法として、サポート膜の厚みを50μmから1000μmにすれば、たとえひだ間が癒着してもこの厚みの通水路は確保されることとなり、癒着による障害が生じないこととなる。尚、1000μmは、実用上これ以上大きくすることはほとんど困難な値と考えられる。
(実施例10)
次に、実施例10について説明する。図1に示す実施例で、活性炭19はプリーツフィルタ10より長くなっている。これは、プリーツフィルタ10を通過した処理水が必ず活性炭19を通過する構造であり、例えば活性炭19の長さがプリーツフィルタ10の端面と同一面とした場合、処理水は上キャップ7と活性炭19の界面を通って集水管17に流入するので、化学物質の除去性能が低下する。
(実施例11)
次に、実施例11について説明する。先に述べたように、活性炭を用いる場合には粒状活性炭が望ましいが、粒状活性炭は繊維状活性炭と異なり、微細な活性炭粉が浄水器から流出する可能性がある。これを防止する目的で、活性炭粒径より小さい空隙の不織布を集水管17及びケージ16の外周全面に巻き付けることにより、活性炭微粒子の浄水器外及び上流側への流出を防止する。
(実施例12)
次に、実施例12について説明する。図1の浄水器は、集水管17、活性炭19、ケージ16、プリーツフィルタ10、プレフィルタ9が上キャップ7及び下キャップ12と一体となってフィルタユニットを形成している。フィルタユニットに活性炭を充填する場合、その注入口が必要であり、ゴムキャップ4の位置にその注入口がある。この注入口を用いて活性炭19をフィルタユニットの組立最終工程で注入することにより、活性炭19は例えば集水管17の中に混入して浄水器から外部へ排出されるということが生じない。
(実施例13)
次に、実施例13について説明する。実施例12により活性炭を充填する注入口を設けたが、ここにゴム栓4を取り付けて活性炭室を封止した場合でも、例えばウォーターハンマーなどにより活性炭19が高い圧力になった場合には、このゴム栓4がはずれるかもしくは隙間を生じて活性炭19が浄水器の上流側に混入する可能性がある。この場合、活性炭19の量が減少することによる処理水のバイパス経路が活性炭室内に形成される可能性や、プリーツフィルタ10に活性炭19が詰まってプリーツフィルタ10の寿命を低下させる可能性があり、これを防止する必要がある。図1に示すように、ヘッド18からゴム栓4を押さえるゴム押さえ3を設けているので、ゴム栓4はウォーターハンマーなどで力を受けても容易にはずれることがない。
(実施例14)
次に、実施例14について説明する。プリーツフィルタ10の端面は、この部分から処理水がバイパスしないように完全に封止する必要がある。樹脂を充填して接着封止する場合、樹脂がプリーツフィルタ10の端面に残留している必要があるが、プリーツフィルタ10と樹脂のなじみがいいなどの条件が整うと、樹脂はプリーツフィルタ10に吸い上げられてプリーツフィルタ10の端面に樹脂が残らない状態となってしまう。そこでプリーツフィルタ10と上キャップ7もしくは下キャップ12との境界面からすべての樹脂が吸い上げられない方法として、図3に示すように樹脂溜まり22を設けている。この方法によれば、樹脂溜まり22の中の樹脂は吸い上げられにくいので、プリーツフィルタ10と上キャップ7もしくは下キャップ12との境界面の接着封止を行える。また、図4に示すように、樹脂を保持する樹脂保持部材23を用いる。樹脂保持部材23は、例えば不織布などとして、キャップのフィルタ溝に敷くことにより、樹脂をこの位置に保持することができるので、プリーツフィルタ10と上キャップ7もしくは下キャップ12との境界面の接着封止を行える。
(実施例15)
実施例15について説明する。先に述べたように、ウォーターハンマーなどが生じた場合には、フィルタユニットのキャップを引き離す方向にも力が働く。図5に示すようにフィルタ溝内壁側面に凸凹部24を設けることにより、フィルタユニットのキャップを引き離す方向の力に強い接着封止が可能となる。
【0006】
【発明の効果】
以上述べたように、本発明によれば主フィルタにプリーツフィルタと粒状の活性炭とを用い、濾材は処理水の上流側よりプレフィルタ、プリーツフィルタ、活性炭の順に配設した構成にしているので、小型で高性能、しかも長寿命で信頼性の高い、比較的安価な浄水器を得ることができる。
【図面の簡単な説明】
【図1】本発明の浄水器を示す側断面図である。
【図2】本発明のプリーツフィルタを示す拡大断面図である。
【図3】本発明のキャップの樹脂溜まりを示す拡大断面図である。
【図4】本発明のキャップの樹脂保持部材を示す拡大断面図である。
【図5】本発明のキャップの凸凹部を示す拡大断面図である。
【符号の説明】
1 入口側ジョイント
2 出口側ジョイント
3 ゴム押さえ
4 ゴム栓
5 ボデイー
6 融着による封止部
7 上キャップ
8 外側通水路
9 プレフィルタ
10 プリーツフィルタ
11 接着による封止部
12 下キャップ
13 水流入方向矢印
14 水流出方向矢印
15 Oリング
16 ケージ
17 集水管
18 ヘッド
19 活性炭
20 サポート膜
21 濾膜
22 樹脂溜まり
23 樹脂封入部材
24 凹凸部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water purifier that removes and reduces particulate components and chemical components contained in water.
[0002]
[Prior art]
The basic functions of a water purifier can be broadly divided into two.
One of them is a function of removing suspended substances contained in the water to be treated.
Suspended substances in water, for example, iron rust and fine dust can be considered, but recently, so-called chlorine resistance that can not be killed using chlorine that is contained in tap water and commonly used in tap water This category also includes protozoa that are harmful to the human body, such as Cryptosporidium and Giardia. As a method for removing these suspended substances, a generally popular method is mechanical removal using a hollow fiber membrane. The hollow fiber membrane has a large number of pores of about 0.1 μm on the side wall of the straw-like membrane, and when the water to be treated passes through it, a large suspended substance or a very fine suspended substance such as bacteria Until then, it will be collected and separated together. The hollow fiber membrane has a fine separation performance as described above, but has the disadvantage that the life of filtration is extremely short. One of the ideas for improving this disadvantage is Japanese Utility Model Publication No. 3-047089. According to this device, by providing a prefilter having an average gap of 20 μm to 50 μm on the upstream side of the hollow fiber membrane, coarse suspended substances are captured by this filter, and the load on the hollow fiber membrane is reduced, thereby reducing the hollow fiber membrane. It is trying to extend the service life by suppressing clogging.
One of the other functions of the water purifier is the removal of chemical substances. Examples of chemical substances contained in water include chlorine, trihalomethane, which is a carcinogen, and geosmin and dimethylisoborneol, which cause musty odor. As a method for removing these chemical substances, a method that has been widely used is removal by a chemical reaction using activated carbon and an adsorption action. When activated carbon is largely separated from its shape and properties, it is classified into fibrous, granular and solid forms. Fibrous activated carbon is formed by laminating and carbonizing organic polymers processed into fibers. As a general property, the removal performance is high when the flow rate of treated water is large, that is, when the residence time is short. It can be demonstrated. In addition, granular activated carbon activates coal and coconut shells to create a large number of pores. As a general property, it exhibits its performance when the flow rate of treated water is relatively small, that is, when the residence time is relatively long. can do. Solid activated carbon is manufactured by a method such as putting a binder in granular activated carbon and sintering it, and is used for the purpose of combining the ease of handling and the removal of suspended solids rather than the chemical removal performance of activated carbon. In particular, no features or superiority are found in the removal performance of chemical substances. Compared with fibrous activated carbon and granular activated carbon, as described above, fibrous activated carbon has advantages in terms of the flow rate of treated water, but granular activated carbon is superior when it exceeds a certain grade in terms of chemical substance removal capacity per unit weight. In addition, in terms of economic efficiency, granular activated carbon has an advantage because it is approximately 1/5 the price of fibrous activated carbon.
Examples of the invention having both the suspended substance removing function and the chemical substance removing function of the water purifier described above are Japanese Utility Model Laid-Open No. 3-047089 and Japanese Patent Laid-Open No. 10-113507 cited above.
According to Japanese Utility Model Publication No. 3-047089, in addition to the configuration in which chemical substances are removed by conventional fibrous activated carbon and suspended substances are removed by hollow fiber membranes, suspension in fibrous activated carbon is performed. A prefilter with an average air gap of 20 to 50 μm is installed on the uppermost stream side of the filter unit in order to prevent degradation of performance and water flow due to masking of the active surface due to adhesion of substances, and prevention of water flow reduction due to the life of the hollow fiber membrane. ing.
Further, according to the published patent publication of JP-A-10-113507, a fibrous activated carbon formed into a cylindrical shape from the upstream side, and a pleat filter disposed on the downstream side to form a two-layer structure. And the suspended matter is removed by a pleated filter layer.
[0003]
[Problems to be solved by the invention]
However, as described above, when a hollow fiber membrane is used, the filtration life is considerably shortened. As a measure for improving this, in JP-A-3-047089, a pleated membrane-like prefilter is disposed on the upstream side. However, compared to the hollow fiber membrane having a pore diameter of 0.1 μm, the effect of prolonging the service life cannot be expected with a prefilter having an average gap of 20 μm to 50 μm described in Japanese Utility Model Publication No. 3-047089. Moreover, there is a disadvantage that the water purifier itself becomes larger by newly adding a pleated membrane.
Further, as described in JP-A-10-113507, when the cylindrical fibrous activated carbon and the pleated filter are arranged in this order from the upstream side of the treated water, in order to secure the membrane area of the pleated filter, Not only has the diameter of the core of the water collecting pipe at the center increased and the water purifier itself becomes larger, but the suspended carbon adheres to the surface of the fibrous activated carbon placed upstream, and the activated carbon originally has it. The performance of the activated carbon is remarkably deteriorated, or the fibrous activated carbon itself is clogged, and the water resistance is increased within a short period of time.
In general, a pleated filter exerts a force to spread outward when a force is applied to the membrane itself from the inside to the outside. In particular, a strong mechanical stress is applied to the sealing portions at both longitudinal ends of the pleated filter. The problem is that this part of the film is damaged and cannot perform.
Further, considering the original performance of the activated carbon, the granular activated carbon has an advantage as described above. However, in the examples of Japanese Utility Model Laid-Open No. 3-047089 and Japanese Patent Laid-Open No. 10-113507, which are mentioned above, the activated carbon is both fibrous. Activated carbon is used. The reason for this is presumed to be mainly because they are molded, easy to handle and almost no fine powder is produced. In the case of using granular activated carbon, it means that the handling property, particularly the filling of the activated carbon layer and the leakage of fine powder become a problem.
Further, if the filter membrane is exposed, there is a risk that the pleated filter may be damaged in, for example, a filter assembly process, and the performance of the filter may be deteriorated.
In addition, the filter membrane is generally weak in mechanical strength. In particular, when the treated water permeates in a state where the pressure loss of the filter membrane is high, the filter membrane is subjected to mechanical stress, and there is a risk of reducing the performance. is there.
In addition, as mentioned earlier, protozoa that are harmful to humans, such as chlorine-resistant Cryptosporidium and Giardia, which are not effective in chlorination of tap water, have recently been found in tap water. It is becoming an obligation of water purifiers to perform treatment. When considering the performance of a pleated filter membrane, in order to ensure the required filtration performance depending on the purpose of use, it is customary to develop a filter membrane that exhibits the corresponding membrane performance. Had to spend considerable time and money.
Also, as one of the major problems when using pleated filters, if the suspended material passing through the filter is in the form of clay, the pleat filter folds and folds will coalesce and the filter area will decrease substantially, resulting in filtration. There was a problem that the lifetime was shortened. Further, when the treated water does not pass through the activated carbon layer, there has been a problem that the chemical substance removal performance is extremely lowered.
In addition, the end face in the longitudinal direction of the pleated filter is generally welded to the cap or sealed with a resin. However, the welding requires a considerable equipment investment, and the welding boundary surface is filtered. There is a problem of securing the performance of the film, and technical and cost hurdles are higher than in the case of resin sealing. Compared to this, sealing with resin is relatively easy, but if resin is injected in some cases, the resin is sucked up by the pleated filter and does not remain sufficiently on the end face, and this part cannot be sealed, for example, When a strong force acts on the filter part and the end face adhesive seal part of the filter with a water hammer or the like, there is a problem that the adhesive seal is peeled off and the adhesive seal is easily deteriorated.
Therefore, the present invention does not cause clogging, has a long service life, does not damage the filter during the assembly process, and can remove protozoa such as chlorine-resistant Cryptosporidium and Giardia, and has a high chemical removal performance. An object of the present invention is to provide a water purifier that has high performance filtration ability, is small, has a high strength of an adhesive seal, and is inexpensive.
[0004]
[Means for Solving the Problems]
In order to solve the above problems, a representative invention of the present application has the following configuration.
A case having a raw water inlet and a purified water outlet, a filter medium comprising a prefilter and a main filter loaded inside the case with a gap from an inner peripheral surface of the case, and a holding member for sealing the filter medium and fixing the filter medium in an appropriate position And in the water purifier consisting of a water collecting member with one end communicating with the water purification outlet,
The main filter is composed of a pleated filter and granular activated carbon, and the filter medium is arranged in the order of prefilter, pleated filter, activated carbon from the upstream side of the treated water,
The holding member includes a cap provided at both ends of the main filter and a cage for holding the activated carbon, and forms a pleated filter chamber in which the pleated filter is accommodated and an activated carbon chamber in which the activated carbon is accommodated.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
Example 1
FIG. 1 is a side sectional view showing an example of the water purifier of the present invention. This is loaded into a housing consisting of a body 18 and a head 18 having an inlet side joint 1 corresponding to a raw water inlet and an outlet side joint 2 corresponding to a purified water outlet, spaced from the inner peripheral surface of the case inside. The water purifier uses the pre-filter 9, the water collecting pipe 17 as a water collecting member, and the pleated filter 10 and the activated carbon filter 19 as the main filter. Reference numeral 15 denotes an O-ring that seals the connection between the outlet side joint 2 and the water collecting pipe 17. FIG. 2 is an enlarged cross-sectional view showing details of the pleated filter 10 and has a structure in which a filter membrane 21 is sandwiched between support membranes 20.
First, the treated water flows from the inlet side joint 1 through the outer water passage 8 into the housing as indicated by the water inflow direction arrow 13. Next, after removing a large suspended substance with the pre-filter 9, it passes through the pleated filter 10, passes through the cage 16, removes the chemical substance with the activated carbon 19, flows into the water collecting pipe 17, and flows out from the outlet side joint 2. As shown by the arrow 14, it is a mechanism that flows out of the water purifier.
The operation will be described. This water purifier does not use a hollow fiber membrane, and the main filtration is performed by a pleated filter. The core diameter of the pleat filter, that is, the outer diameter of the cage 16 is about 70 mm, the fold height of the pleat filter is about 15 mm, and the length is about 270 mm. The surface area of the pleat filter is 1.5 m 2. The above can be obtained. Therefore, taking an example in a Japanese water supply, it is designed so that sufficient performance can be obtained even at a place where the original water pressure is 0.1 MPa, which is a low pressure area, even for treated water with a maximum turbidity of 2 degrees. Has been. For example, in the case of using a hollow fiber membrane, taking the above-mentioned Japanese Utility Model Publication No. 3-047089 as an example, when using a hollow fiber membrane and a pleated type prefilter, the filtration capacity is 10 m 3. It becomes easy to see that the present invention is a high-performance water purifier.
(Example 2)
In the present embodiment, the configuration is arranged in the order of the pre-filter 9, the pleat filter 10, and the activated carbon 19 from the upstream side of the treated water. Therefore, the core diameter of the pleat filter 10 can be increased to about 70 mm. A film area of such a large pleated filter 10 of 1.5 m 2 can be secured. For example, when the pleated filter 10 is located on the most downstream side and the water collecting pipe 17 has a core diameter, the membrane area that can be secured in proportion to the diameter decreases. In this example, the membrane area is only about 1/10. It can not be secured, and it can be seen that it is not practical. Conversely, when the diameter of the water collecting pipe 17 is increased so as to ensure a certain membrane area, the water purifier becomes larger than the performance, and problems such as installation location and handling may occur during use. In the case of this example, the treated water after removing suspended substances flows into the activated carbon 19, so that the suspended substances do not adhere to the activated carbon surface, and the performance of the activated carbon 19 is fully exhibited. Obviously we can do it.
(Example 3)
Example 3 will be described. Pressure is applied to the water purifier in accordance with the flow of the normal treated water, and in this embodiment as well, compression force is applied to the pre-filter 9 and the pleat filter 10 during normal water passage. The compression force is such that the pleat filter 10 is pressed against the cage 16, and the cage 16 and further the activated carbon 19 inside the cage 16 pushes back the force so that the pleat filter 10 does not cause any significant deformation. Can continue. However, for example, when the water flow is suddenly stopped at the tip of the outlet side joint 2, a so-called water hammer for avoiding the water flow energy is generated, and the pleat filter 10 is contrary to the normal water flow. A pressure is generated from the inside to the outside. Although this force is instantaneous, particularly when the pleated filter 10 is clogged with suspended substances and the pressure loss is high, the pleated filter 10 receives the water hammer, and the pleated filter 10 is moved from the inside. It receives the force that opens outward and moves. For this reason, a force is applied to the portion where the interface with the sealing portion of the pleated filter 10 is fixed and the portion which is not fixed, and this portion is damaged and the performance of the filter membrane 21 is deteriorated. In particular, in a use environment where the frequency of opening and closing is high, the repeated stress on this part becomes significant, and in some cases, the film may be broken. When the prefilter 9 is wound over the entire pleated filter 10, even if the water hammer is applied to the pleated filter 10, the entire pleated filter 10 does not move toward the outside, so that the pleated filter 10 is damaged. It does not occur and the prefilter 9 can also act stably. In the present embodiment, a belt-shaped nonwoven fabric is wound as the prefilter 9 while being spirally overlapped, but it is not necessarily a nonwoven fabric and may not necessarily be a spiral.
(Example 4)
Next, Example 4 will be described. As described above, granular activated carbon has superior chemical treatment capacity and low cost compared to fibrous activated carbon. Therefore, it is preferable to use granular activated carbon in order to demonstrate the capability of the water purifier, and granular activated carbon is also used in this embodiment.
(Example 5)
Next, Example 5 will be described. FIG. 2 shows an outline of the positional relationship between the support membrane and the filter membrane. The filter membrane 21 is composed of fibers laminated to have a hole diameter of 10 to 100 μm, and at least two of them are provided. Since it is necessary to remove fine suspended solids, it is a fine film and is usually a delicate film having a thickness of several μm to several tens of μm so as not to increase pressure loss. When handling this, the biggest problem is not to damage the membrane. Therefore, by disposing the support film on both sides so as not to touch the film directly, the handleability is improved and the reliable pleated filter 10 can be provided. Further, since the membrane has a thickness as described above, the strength of the membrane itself, that is, the “strain” is weak, and the filtration membrane 21 may be damaged by the pressure of passing the treated water. Therefore, the support film 20 is necessary.
(Example 6)
Next, Example 6 will be described. When the hole diameter of the support membrane 20 is dense, the suspended matter is captured by the support membrane 20 itself, and the pressure loss increases with time. When the pressure loss is low, the support membrane 20 can pass the water while maintaining its shape without receiving an external force. However, when the pressure loss of the support membrane 20 increases, the support membrane 20 moves in the direction of water flow. Under the force, it gradually deforms in the direction of water flow and acts in a direction to reduce the effective membrane area of the filter membrane 21. Accordingly, the support film 20 needs to have a hole diameter that does not cause pressure loss, and the value is 100 μm or more, preferably 200 μm or more.
(Example 7)
Next, Example 7 will be described. As mentioned earlier, for example, the chlorine used in tap water does not die, and removing chlorine-resistant protozoa that harm humans is also a mission imposed on the water purifier by the form of use of the water purifier. . At present, the smallest of these protozoa is a small cyst of Cryptosporidium, which is approximately 4 μm in size. US NSF International has approved this protozoa as a water purification system that can be removed by removing 99.95% or more of 3-4μm particles, and meeting this standard is one of the important performances. . In this example, it was confirmed that this specification was satisfied when a test was conducted in accordance with this standard.
(Example 8)
Next, Example 8 will be described. Conventionally, filter membranes have been developed with a great deal of development time and cost depending on the filtration accuracy. However, if the purpose can be achieved by laminating basic filter membranes, this enormous development time and cost is unnecessary, and a water purifier that uses the filter membranes to the market in a timely and relatively inexpensive manner. Can be provided. For example, when the filtration accuracy of one filter membrane is 99%, a filtration accuracy of 99.9% can be realized by laminating the same membrane with another sheet.
Example 9
Next, Example 9 will be described. When suspended matter is collected in the pleated filter 10 and pressure is applied, the membrane receives a force that is crushed inside the pleats. Further, when the suspended substance is a clay-like substance such as kaolin, for example, even if the crushing force is removed, the pleats of the pleated filter 10 do not adhere to each other, and the water passage portion is substantially concealed and the water passage portion is hidden. The area is reduced. As a method for preventing this problem, if the thickness of the support film is changed from 50 μm to 1000 μm, even if the folds are fused, a water passage having this thickness is secured, and no trouble due to adhesion occurs. Note that 1000 μm is considered to be a value that is practically difficult to increase beyond this.
(Example 10)
Next, Example 10 will be described. In the embodiment shown in FIG. 1, the activated carbon 19 is longer than the pleated filter 10. This is a structure in which the treated water that has passed through the pleated filter 10 always passes through the activated carbon 19. For example, when the length of the activated carbon 19 is the same as the end face of the pleated filter 10, the treated water is the upper cap 7 and the activated carbon 19. Since it flows into the water collection pipe | tube 17 through the interface of this, the removal performance of a chemical substance falls.
(Example 11)
Next, Example 11 will be described. As described above, when using activated carbon, granular activated carbon is desirable, but granular activated carbon is different from fibrous activated carbon, and fine activated carbon powder may flow out of the water purifier. In order to prevent this, a non-woven fabric having a gap smaller than the activated carbon particle diameter is wound around the entire outer circumference of the water collection pipe 17 and the cage 16, thereby preventing the activated carbon fine particles from flowing out of the water purifier and upstream.
Example 12
Next, Example 12 will be described. In the water purifier of FIG. 1, the water collecting pipe 17, the activated carbon 19, the cage 16, the pleated filter 10, and the prefilter 9 are integrated with the upper cap 7 and the lower cap 12 to form a filter unit. When the activated carbon is filled in the filter unit, the inlet is necessary, and the inlet is located at the position of the rubber cap 4. By injecting the activated carbon 19 in the final assembly process of the filter unit using this inlet, the activated carbon 19 is not mixed into the water collecting pipe 17 and discharged from the water purifier to the outside.
(Example 13)
Next, Example 13 will be described. Although the injection port filled with activated carbon was provided according to Example 12, even when the rubber plug 4 was attached here and the activated carbon chamber was sealed, for example, when the activated carbon 19 was at a high pressure by a water hammer or the like, There is a possibility that the rubber plug 4 is detached or a gap is formed and the activated carbon 19 is mixed into the upstream side of the water purifier. In this case, there is a possibility that a bypass path of treated water due to a decrease in the amount of the activated carbon 19 is formed in the activated carbon chamber, or the activated carbon 19 is clogged in the pleated filter 10 and the life of the pleated filter 10 may be reduced. It is necessary to prevent this. As shown in FIG. 1, since the rubber presser 3 that presses the rubber plug 4 from the head 18 is provided, the rubber plug 4 does not easily come off even if it receives a force with a water hammer or the like.
(Example 14)
Next, Example 14 will be described. The end face of the pleated filter 10 needs to be completely sealed so that the treated water does not bypass from this portion. When the resin is filled and adhesively sealed, the resin needs to remain on the end face of the pleated filter 10, but if conditions such as familiarity between the pleated filter 10 and the resin are satisfied, the resin is added to the pleated filter 10. The resin is sucked up and no resin remains on the end face of the pleated filter 10. Therefore, as a method for preventing all the resin from being sucked up from the boundary surface between the pleated filter 10 and the upper cap 7 or the lower cap 12, a resin reservoir 22 is provided as shown in FIG. According to this method, since the resin in the resin reservoir 22 is difficult to be sucked up, it is possible to bond and seal the boundary surface between the pleated filter 10 and the upper cap 7 or the lower cap 12. Moreover, as shown in FIG. 4, the resin holding member 23 holding resin is used. The resin holding member 23 can hold the resin in this position by placing it in the filter groove of the cap, for example, as a nonwoven fabric. Can be stopped.
(Example 15)
Example 15 will be described. As described above, when a water hammer or the like is generated, a force is also exerted in a direction in which the cap of the filter unit is pulled away. As shown in FIG. 5, by providing the convex and concave portions 24 on the side surface of the inner wall of the filter groove, it is possible to perform adhesive sealing that is strong against the force in the direction of pulling off the cap of the filter unit.
[0006]
【The invention's effect】
As described above, according to the present invention, a pleated filter and granular activated carbon are used as the main filter, and the filter medium is arranged in the order of the prefilter, the pleated filter, and the activated carbon from the upstream side of the treated water. It is possible to obtain a relatively inexpensive water purifier that is small, has high performance, has a long lifetime, and is highly reliable.
[Brief description of the drawings]
FIG. 1 is a side sectional view showing a water purifier of the present invention.
FIG. 2 is an enlarged sectional view showing a pleated filter of the present invention.
FIG. 3 is an enlarged cross-sectional view showing a resin reservoir of the cap of the present invention.
FIG. 4 is an enlarged sectional view showing a resin holding member of the cap of the present invention.
FIG. 5 is an enlarged cross-sectional view showing convex and concave portions of the cap of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Inlet side joint 2 Outlet side joint 3 Rubber presser 4 Rubber stopper 5 Body 6 Sealing part 7 by fusion | bonding Upper cap 8 Outer water passage 9 Prefilter 10 Pleated filter 11 Sealing part 12 by adhesion | attachment Lower cap 13 Water inflow direction arrow 14 Water outflow direction arrow 15 O-ring 16 Cage 17 Water collecting pipe 18 Head 19 Activated carbon 20 Support membrane 21 Filter membrane 22 Resin reservoir 23 Resin enclosing member 24 Concavity and convexity

Claims (15)

原水入口及び浄水出口を有するケースと、前記ケースの内側にケース内周面から間隔を設けて装填されるプレフィルタおよび主フィルタからなる濾材と、前記濾材を密閉しかつ適正位置に固定する保持部材と、一端が前記浄水出口に連通する集水部材とからなる浄水器において、
前記主フィルタはプリーツフィルタと粒状の活性炭とからなり、かつ、前記濾材は処理水の上流側よりプレフィルタ、プリーツフィルタ、活性炭の順に配設され、
前記保持部材は、前記主フィルタの両端に設けたキャップと前記活性炭を保持するケージとからなり、前記プリーツフィルタが収納されるプリーツフィルタ室と、前記活性炭が収納される活性炭室とを形成することを特徴とする浄水器。
A case having a raw water inlet and a purified water outlet, a filter medium comprising a prefilter and a main filter loaded inside the case with a gap from an inner peripheral surface of the case, and a holding member for sealing the filter medium and fixing the filter medium in an appropriate position And in the water purifier consisting of a water collecting member with one end communicating with the water purification outlet,
The main filter is composed of a pleated filter and granular activated carbon, and the filter medium is arranged in the order of prefilter, pleated filter, activated carbon from the upstream side of the treated water,
The holding member includes a cap provided at both ends of the main filter and a cage for holding the activated carbon, and forms a pleated filter chamber in which the pleated filter is accommodated and an activated carbon chamber in which the activated carbon is accommodated. A water purifier characterized by
前記プレフィルタは不織布からなり前記プリーツフィルタの外周全面に巻かれていることを特徴とする請求項1記載の浄水器。The water purifier according to claim 1, wherein the prefilter is made of a nonwoven fabric and is wound around the entire outer surface of the pleated filter. 前記ケースは、原水入口及び浄水出口を有するヘッドと円筒状のボディとからなる請求項1または2記載の浄水器。The water purifier according to claim 1 or 2, wherein the case includes a head having a raw water inlet and a purified water outlet and a cylindrical body. 前記キャップは、前記プリーツフィルタを装着するフィルタ溝と前記活性炭を保持する活性炭溝とを有する請求項1記載の浄水器。The water purifier according to claim 1, wherein the cap has a filter groove on which the pleated filter is mounted and an activated carbon groove that holds the activated carbon. 前記プリーツフィルタは、濾膜をサポート膜で両面から挟んだ構造とした請求項1から4のいずれか1項に記載の浄水器。The water purifier according to any one of claims 1 to 4, wherein the pleated filter has a structure in which a filter membrane is sandwiched between support membranes from both sides. 前記濾膜は、繊維を積層し穴径が10〜100μmとしたものからなりこれを少なくとも2枚設けた請求項5記載の浄水器。6. The water purifier according to claim 5, wherein the filter membrane is made of a laminate of fibers and having a hole diameter of 10 to 100 [mu] m, and at least two of them are provided. 前記サポート膜は、平均穴径が少なくとも100μmであり、かつ、膜厚が10〜1000μmである請求項5または6記載の浄水器。The water purifier according to claim 5 or 6, wherein the support membrane has an average hole diameter of at least 100 µm and a thickness of 10 to 1000 µm. 前記活性炭室の長さがプリーツフィルタ室よりも長い請求項1または請求項5から7のいずれかに記載の浄水器。The water purifier according to any one of claims 1 and 5 to 7, wherein the activated carbon chamber has a length longer than that of the pleated filter chamber. 前記集水部材の外周全面に不織布が巻かれており、その不織布の穴径が前記活性炭の粒径より小さい請求項1から8のいずれか1項に記載の浄水器。The water purifier according to any one of claims 1 to 8, wherein a nonwoven fabric is wound around the entire outer periphery of the water collecting member, and a hole diameter of the nonwoven fabric is smaller than a particle size of the activated carbon. 前記ケージの外周全面に不織布が巻かれており、その不織布の穴径が前記活性炭の粒径より小さい請求項1または請求項5からのいずれかに記載の浄水器。The water purifier according to any one of claims 1 or 5 to 9 , wherein a nonwoven fabric is wound on the entire outer periphery of the cage, and a hole diameter of the nonwoven fabric is smaller than a particle size of the activated carbon. 前記活性炭室の上方に設けた前記キャップに前記活性炭を注入する注入口を設け、前記活性炭を注入した後は前記注入口をゴム栓で封止した請求項1または請求項5から10のいずれかに記載の浄水器。The injection port for injecting the activated carbon is provided in the cap provided above the activated carbon chamber, and after the activated carbon is injected, the injection port is sealed with a rubber stopper. The water purifier according to. 前記ゴム栓を押さえるゴム押さえを前記ヘッドの内側に設けた請求項11記載の浄水器。The water purifier according to claim 11, wherein a rubber presser for pressing the rubber stopper is provided inside the head. 前記キャップのフィルタ溝の底部に樹脂溜まりを設けた請求項1または請求項5から12のいずれかに記載の浄水器。The water purifier in any one of Claim 1 or 5 to 12 which provided the resin reservoir in the bottom part of the filter groove | channel of the said cap. 前記キャップのフィルタ溝に硬化前の樹脂を封入する樹脂封入部材を設けた請求項1または請求項5から13のいずれかに記載の浄水器。The water purifier in any one of Claim 1 or 5 to 13 which provided the resin enclosure member which encloses resin before hardening in the filter groove | channel of the said cap. 前記キャップのフィルタ溝の内壁に凹凸部を設けた請求項1または請求項5から14のいずれかに記載の浄水器。The water purifier in any one of Claim 1 or 5 to 14 which provided the uneven | corrugated | grooved part in the inner wall of the filter groove | channel of the said cap.
JP37769798A 1998-12-29 1998-12-29 Water purifier Expired - Fee Related JP4210964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37769798A JP4210964B2 (en) 1998-12-29 1998-12-29 Water purifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37769798A JP4210964B2 (en) 1998-12-29 1998-12-29 Water purifier

Publications (2)

Publication Number Publication Date
JP2000189949A JP2000189949A (en) 2000-07-11
JP4210964B2 true JP4210964B2 (en) 2009-01-21

Family

ID=18509089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37769798A Expired - Fee Related JP4210964B2 (en) 1998-12-29 1998-12-29 Water purifier

Country Status (1)

Country Link
JP (1) JP4210964B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101830528A (en) * 2010-05-05 2010-09-15 李松涛 Table-top large-flow water purifier

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3777498B2 (en) * 2000-06-23 2006-05-24 株式会社荏原製作所 Turbo molecular pump
JP2005523144A (en) * 2002-04-19 2005-08-04 キュノ、インコーポレーテッド Enclosed filter cartridge

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5982516U (en) * 1982-11-24 1984-06-04 株式会社土屋製作所 Filtration element for chemical filters
JPS6421715U (en) * 1987-07-30 1989-02-03
US5252207A (en) * 1988-06-15 1993-10-12 Pall Corporation Wrap member having openings
JPH0810417Y2 (en) * 1989-09-13 1996-03-29 株式会社メイスイ Water purifier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101830528A (en) * 2010-05-05 2010-09-15 李松涛 Table-top large-flow water purifier

Also Published As

Publication number Publication date
JP2000189949A (en) 2000-07-11

Similar Documents

Publication Publication Date Title
JP2588909B2 (en) Filter cartridge for purifying oil of oil seal type vacuum pump
US20120211411A1 (en) Extended Area Filter
JP4093568B2 (en) Especially filter elements that separate liquids from gas streams
JP2007296484A (en) Water treatment filter
JP2003509202A (en) Filter element
KR102138010B1 (en) Composit filter of water purifier
JPS62277113A (en) Filter apparatus
JPS6111062A (en) Filter canister
CN107847773A (en) Filter cylinder and breathing mask for breathing mask
JP2010536542A (en) Low pressure loss cyst filter
JP2005524525A (en) Water filter assembly
JP4210964B2 (en) Water purifier
JP5090593B2 (en) Water purification cartridge
GB2359763A (en) Oil filter with main and bypass filters
JP5555297B2 (en) Portable water purification kit
JP3123456U (en) Reverse cleaning filtration device
KR100901069B1 (en) An Activated Carbon Block including a Micro Filter
CN215387935U (en) Deep filter device
JP2002102845A (en) Water purifier
CN113230711A (en) Water filter for treating radioactive water
JP3186169B2 (en) Filter of water purifier
JP2006000798A (en) Ion exchange filter
US20220193585A1 (en) Filter element, filter media, and methods of making same
KR200296368Y1 (en) Filter cartridge having doule hollow filled up filter-materials
JPH0685083U (en) Filtration filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081003

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081016

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees