JP4209632B2 - Ball-shaped seal body - Google Patents

Ball-shaped seal body Download PDF

Info

Publication number
JP4209632B2
JP4209632B2 JP2002151694A JP2002151694A JP4209632B2 JP 4209632 B2 JP4209632 B2 JP 4209632B2 JP 2002151694 A JP2002151694 A JP 2002151694A JP 2002151694 A JP2002151694 A JP 2002151694A JP 4209632 B2 JP4209632 B2 JP 4209632B2
Authority
JP
Japan
Prior art keywords
weight
spherical
sheet material
heat
lubricating composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002151694A
Other languages
Japanese (ja)
Other versions
JP2003343729A (en
Inventor
亘 安部
磨 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Corp
Original Assignee
Oiles Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Corp filed Critical Oiles Corp
Priority to JP2002151694A priority Critical patent/JP4209632B2/en
Publication of JP2003343729A publication Critical patent/JP2003343729A/en
Application granted granted Critical
Publication of JP4209632B2 publication Critical patent/JP4209632B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Silencers (AREA)
  • Gasket Seals (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、自動車排気管の球面管継手に使用される球帯状シール体に関する。
【0002】
【従来の技術】
従来、自動車排気管の球面管継手に使用される球帯状シール体としては、例えば特開昭54−76759号公報(以下、「従来技術1」という)に開示されているものがある。この従来技術1に開示されたシール体は耐熱性を有し、相手材とのなじみ性に優れ、また衝撃強度も著しく改善されているという反面、乾燥摩擦条件下においては往々にして異常音を発生するという欠点がある。すなわち、このシール体の欠点はシール体を形成する耐熱材(膨張黒鉛など)の静止摩擦係数と動摩擦係数との差が大きいこと及びこの耐熱材からなるシール体の滑り速度に対する摩擦抵抗が負性抵抗(すべり速度が増加すると摩擦抵抗が減少する現象)を示すこと、などが原因であると考えられる。
【0003】
そこで、本出願人は特願昭56−120701号(特開昭58−24620号公報:以下、「従来技術2」という)において、上述した欠点を解決したシール体を提案した。この従来技術2に開示されたシール体は、膨張黒鉛、雲母、石綿の1種又は2種以上を混合した耐熱材を、金属細線を織ったり、編んだりして得られる金網からなる補強材と一緒に造形して得られるシール体であって、該シール体の表面には四ふっ化エチレン樹脂又は四ふっ化エチレンと六ふっ化プロピレンとの共重合体からなる潤滑組成物が被着形成されたものである。このシール体は表面に被着形成された潤滑組成物が、摩擦係数の低減、母材を形成する耐熱材の相手材表面への移着防止、静止摩擦係数と動摩擦係数との差の縮小、などの作用効果を発揮するほか、四ふっ化エチレン樹脂はすべり速度に対する摩擦抵抗が負性抵抗を示さないので、上述した効果と相俟って「付着−すべり」に基づく自励振動の発生を抑え、異常音の発生防止に貢献するという効果を有するものである。
【0004】
【発明が解決しようとする課題】
上述した従来技術2に開示されたシール体は、性能面で前記従来技術1に開示されたシール体の欠点を解決するものであったが、従来技術2に開示されたシール体の適用可能な雰囲気温度は表面に被着形成された潤滑組成物の耐熱性に委ねられ、自ずから300℃以下の雰囲気温度での使用に制限されるという問題と、次のような問題が提起されている。すなわち、自動車排気管の球面管継手に組込まれて使用された場合、排気管を流動する排気ガスの熱の作用により、シール体の表面に被着形成された潤滑組成物が溶融し、この溶融した潤滑組成物がエンジン停止後の排気管冷却時に相手材表面に固着し、当該球面管継手の相対角変位を阻害するという現象を引き起こす虞があるという問題である。
【0005】
このような現象は、とくにシール体の表面に形成された潤滑組成物を溶融させるような排気管の温度条件であって、かつ球面管継手に加わる相対角変位が小さい部位への適用において顕著に生じることを実験により確認した。したがって、このような固着現象を生じると、球面管継手の初期の目的を達成し難いばかりか、エンジンの再始動後の大きな相対角変位が球面管継手に加わると、固着現象の解消に基づく大きな異常音を発生させるという問題を惹起することになる。
【0006】
本発明は前記諸点に鑑みてなされたもので、その目的とするところは、常温から500℃を超える広範囲の雰囲気温度において適用可能なシール体であって、保持性に優れかつ耐久性に優れた外面とし得、その結果、初期はいうに及ばず長期の使用においても摺動特性の低下がなく、異常音の発生のない球帯状シール体を提供することにある。
【0007】
【課題を解決するための手段】
本発明の第一の態様の球帯状シール体は、円筒内面と部分凸球面状面と部分凸球面状面の大径側及び小径側の環状の端面により規定された球帯状基体と、この球帯状基体の部分凸球面状面に一体的に形成された外層とを備えた、とくに排気管継手に用いられるものであり、ここで、球帯状基体は、圧縮された金網からなる補強材と、この補強材の金網の網目を充填し、かつこの補強材と混在一体化されて圧縮された膨張黒鉛からなる耐熱材とを有しており、外層は、窒化ホウ素(BN)を10〜25重量%とアルミナ(Al)及びシリカ(SiO)のうちの少なくとも一方を3〜10重量%と四ふっ化エチレン樹脂(PTFE)を30〜50重量%と弗化雲母を20〜40重量%とを有してなる潤滑組成物と、この潤滑組成物に混在一体化された金網からなる補強材とを有しており、外層の露出した部分凸球面状外面は、前記潤滑組成物と補強材とが混在一体化された平滑な潤滑すべり面となっていることを特徴とする。
【0008】
第一の態様の球帯状シール体によれば、相手材との摩擦面をなす部分凸球面状外面は、窒化ホウ素を10〜25重量%とアルミナ及びシリカのうちの少なくとも一方を3〜10重量%と四ふっ化エチレン樹脂を30〜50重量%と弗化雲母を20〜40重量%とを有してなる潤滑組成物と、この潤滑組成物に混在一体化された金網からなる補強材とを有した外面の露出した平滑な潤滑すべり面で形成されているので、相手材との摩擦において低い摩擦トルクにより、上、下流側排気管の相対角変位を許容することができる。
【0009】
潤滑すべり面を形成する外層は、潤滑組成物の成分中の窒化ホウ素、弗化雲母及びアルミナ及びシリカのうちの少なくとも一方とが、低摩擦性を発揮する四ふっ化エチレン樹脂の溶融軟化点を見掛け上高めること、アルミナ及びシリカのうちの少なくとも一方が球帯状基体の部分凸球面状面への保持力を高めていることと、更には潤滑組成物と混在一体化された補強材が部分凸球面状外面と相手材との連続した直接的な接触を防いでいることとにより、雰囲気温度の上昇に起因する部分凸球面状外面の溶融軟化、これに起因する部分凸球面状外面の相手材表面への固着を生じさせないようになっている。
【0010】
外層は、潤滑組成物の成分中の特定量の四ふっ化エチレン樹脂が主として常温から300℃附近の低摩擦性に寄与し、成分中の特定量の窒化ホウ素及び弗化雲母が主として300℃を超える高温域での低摩擦性に寄与するものであるが故に、常温から500℃を超える広範囲にわたり相手材との摩擦において低い摩擦トルクを発揮して上、下流側排気管の相対角変位を低摩擦抵抗をもって許容する。
【0011】
更に、部分凸球面状外面は潤滑組成物と金網からなる補強材とが混在一体となった平滑な潤滑すべり面であるが故に、換言すれば、金網からなる補強材が部分凸球面状外面の一部を形成しているために、相手材の表面に潤滑組成物が過度に付着しても、これを部分凸球面状外面の揺動とともに適度な薄い潤滑被膜を残して適度に掻き取る作用を発揮する結果、相手材表面に付着した潤滑組成物が相手材表面と部分凸球面状外面との間の摺動面に堆積することを防ぐことができ、堆積した潤滑組成物の炭化等に起因する摺動性の劣化を防ぐことができる。
【0012】
本発明の第二の態様の球帯状シール体は、第一の態様の球帯状シール体において、潤滑組成物は、さらに黒鉛を3〜10重量%の割合で含有している。
【0013】
第二の態様の球帯状シール体によれば、相手材との摩擦面をなす部分凸球面状外面は、窒化ホウ素を10〜25重量%とアルミナ及びシリカのうちの少なくとも一方を3〜10重量%と四ふっ化エチレン樹脂を30〜50重量%と弗化雲母を20〜40重量%とを有してなる潤滑組成物に、さらに黒鉛が3〜10重量%の割合で含有された潤滑組成物と、この潤滑組成物に混在一体化された金網からなる補強材とを有した外面の露出した平滑な潤滑すべり面で形成されているので、相手材との摩擦において低い摩擦トルクにより、上、下流側排気管の相対角変位を許容することができる。また、潤滑組成物に黒鉛が含有されていることにより、潤滑組成物の耐熱性を向上させるとともに潤滑組成物からなる外層の耐久性を向上させることができる。
【0014】
本発明の第三の態様の球帯状シール体は、第一又は第二の態様の球帯状シール体において、円筒内面には、球帯状基体の膨張黒鉛からなる耐熱材が露出している。
【0015】
第三の態様の球帯状シール体によれば、球帯状シール体が排気管の外面に嵌合固定された際、球帯状シール体の円筒内面と排気管の外面との間の密封性が高められるので、当該接触面からの排気ガスの漏洩を最大限防ぐことができる。
【0016】
本発明の第四の態様の球帯状シール体は、第一又は第二の態様の球帯状シール体において、円筒内面には、球帯状基体の金網からなる補強材が露出している。
【0017】
第四の態様の球帯状シール体によれば、球帯状シール体を排気管の外面に嵌合固定する際、円筒内面と排気管の外面との間の摩擦が高められ、結果として球帯状シール体が排気管の外面に強固に固定されることになる。
【0018】
【発明の実施の形態】
本発明の実施の形態について詳細に説明する。
【0019】
本発明の球帯状シール体における構成材料及び球帯状シール体の製造方法について説明する。
【0020】
<耐熱シート材について>
濃度98%の濃硫酸300重量部を撹拌しながら、酸化剤として過酸化水素の60%水溶液5重量部を加え、これを反応液とする。この反応液を冷却して10℃の温度に保持し、粒度30〜80メッシュの鱗片状天然黒鉛粉末100重量部を反応液に添加し、30分間反応を行う。反応後、吸引濾過して酸処理黒鉛を分離し、酸処理黒鉛を300重量部の水で10分間撹拌して吸引濾過するという洗浄作業を2回繰り返し、酸処理黒鉛から硫酸分を十分除去する。ついで、硫酸分を十分除去した酸処理黒鉛を110℃の温度に保持した乾燥炉で3時間乾燥し、これを酸処理黒鉛原料とする。
【0021】
酸処理黒鉛原料を、1000℃の温度で5秒間膨張処理を施して、分解ガスを発生せしめ、そのガス圧により黒鉛層間を拡張して膨張させた膨張黒鉛粒子(膨張倍率240倍)を形成する。この膨張黒鉛粒子をロール隙間0.35mmの双ロール装置にてロール成形し、厚さ0.38mmの膨張黒鉛シートを作製し、これを耐熱シート材とする。
【0022】
<補強材について>
補強材は、鉄系としてオーステナイト系のSUS304、SUS316、フェライト系のSUS430などのステンレス鋼線又は鉄線(JIS−G−3532)もしくは亜鉛メッキ鉄線(JIS−G−3547)、また銅系として銅−ニッケル合金(白銅)、銅−ニッケル−亜鉛合金(洋白)、黄銅、ベリリウム銅からなると共に、線径が0.10〜0.32mm程度の細線材を1本又は2本以上使用して織ったり、編んだりして形成された網目が3〜6mm程度の金網を好適なものとして使用できる。
【0023】
補強材としては、上述した金網の他に、ステンレス鋼薄板又は燐青銅薄板に切込みを入れると同時に切込みを拡開して規則正しい網目列が形成された、所謂エキスパンドメタルを使用することもできる。ステンレス鋼薄板又は燐青銅薄板の厚さが0.3〜0.5mm程度のもの、エキスパンドメタルは、その網目が3〜6mm程度のものが好適である。
【0024】
<潤滑組成物について>
窒化ホウ素を10〜25重量%とアルミナ及びシリカのうちの少なくとも一方を3〜10重量%と四ふっ化エチレン樹脂を30〜50重量%と弗化雲母を20〜40重量%とを含有する潤滑組成物を固形分として20〜50重量%分散含有した水性ディスパージョンが使用される。
【0025】
上記潤滑組成物の水性ディスパージョンは、後述する製造方法において、耐熱シート材の表面に、刷毛塗り、ローラ塗り、スプレー等の手段によって適用され、耐熱シート材の表面を被覆して、耐熱シート材の表面に潤滑すべり層を形成するように用いられる。形成された潤滑すべり層は、最終の圧縮工程において均一かつ微小厚さ(10〜300μm)に展延されて球帯状シール体の外層を形成する。
【0026】
上記潤滑組成物中の窒化ホウ素は、とくに高温において優れた潤滑性を発揮するものであるが、窒化ホウ素単独では耐熱シートの表面への被着性、ひいては最終の圧縮工程における球帯状基体の部分凸球面状面への外層の被着性が劣り、部分凸球面状面から容易に剥離してしまうという欠点がある。この窒化ホウ素に対し一定量の割合でアルミナ及びシリカのうちの少なくとも一方を配合することにより、窒化ホウ素の欠点を解消し、耐熱シートの表面への被着性、ひいては最終の圧縮工程における球帯状基体の部分凸球面状面への外層の被着性を大幅に改善し、球帯状基体の部分凸球面状面での潤滑組成物からなる外層の保持性を高めることができる。そして、窒化ホウ素に対するアルミナ及びシリカのうちの少なくとも一方の配合割合は、窒化ホウ素の具有する潤滑性を損うことなく、かつ被着性を改善するという観点から決定され、3〜10重量%の範囲が好ましい。
【0027】
窒化ホウ素10〜25重量%とアルミナ及びシリカのうちの少なくとも一方の3〜10重量%とに対して一定割合の四ふっ化エチレン樹脂及び弗化雲母が配合される。四ふっ化エチレン樹脂は、それ自身低摩擦性を有するもので、窒化ホウ素とアルミナ及びシリカのうちの少なくとも一方とからなる組成物に配合されることにより、とくに比較的低い温度領域、例えば室温から300℃での低摩擦性を向上させる作用と、圧縮成形時の潤滑組成物の展延性を高める作用をなす。そして、四ふっ化エチレン樹脂の配合割合は、30〜50重量%の範囲が好適である。四ふっ化エチレン樹脂の配合割合の多寡は、潤滑組成物の低摩擦性、耐熱性及び溶融流動性に影響を及ぼすものであり、配合量が30重量%未満では潤滑組成物の低摩擦性及び潤滑組成物の展延性の向上に寄与せず、また50重量%を超えて配合すると潤滑組成物中に占める割合が多くなり、潤滑組成物の耐熱性を低下させ、ひいては潤滑組成物の溶融流動性を惹起させる虞がある。
【0028】
弗化雲母は、窒化ホウ素とアルミナ及びシリカのうちの少なくとも一方と四ふっ化エチレン樹脂とを含有する組成物に配合されて、潤滑組成物の耐熱性を向上させるとともに潤滑組成物からなる外層を強化し、当該外層の耐久性を向上させる。そして、弗化雲母の配合割合は、20〜40重量%の範囲が好適である。配合割合が20重量%未満では潤滑組成物の耐熱性、耐久性の向上に寄与せず、また40重量%を超えて配合すると四ふっ化エチレン樹脂の低摩擦性を損う虞がある。
【0029】
上記窒化ホウ素10〜25重量%とアルミナ及びシリカのうちの少なくとも一方の3〜10重量%と四ふっ化エチレン樹脂30〜50重量%と弗化雲母20〜40重量%からなる潤滑組成物に対して含有される黒鉛は、潤滑組成物の耐熱性を向上させるとともに潤滑組成物からなる外層の耐久性を向上させる。そして、黒鉛の配合割合は、3〜10重量%の範囲が好適である。配合割合が3重量%未満では潤滑組成物の耐熱性の向上に寄与せず、また10重量%を超えて配合すると潤滑組成物中の四ふっ化エチレン樹脂の低摩擦性を損なう虞がある。
【0030】
次に、上述した構成材料からなる球帯状シール体の製造方法について図面に基づき説明する。
【0031】
(第一工程) 図3に示すように、金属細線を円筒状に編んで形成された筒状金網1をローラ2及び3間に通して所定の幅Dの帯状金網4を作製し、帯状金網4を所定の長さLに切断した補強シート材5又は金属細線を織ったり、編んだりすることによって直接形成される帯状金網を所定の幅Dと長さLとに切断した補強シート材5を準備する。
【0032】
(第二工程) 図4に示すように、補強シート材5の幅Dに対して1.1×Dから2.1×Dの幅dを有すると共に、補強シート材5の長さLに対して1.30×Lから2.70×Lの長さlを有するように切断された耐熱シート材7を準備する。
【0033】
(第三工程) 後述する球帯状シール体において部分凸球面状面の軸方向の少なくとも一方の端縁側の環状端面である大径側端面に全体的に耐熱材が露出するようにするべく、図5に示すように、部分凸球面状面の大径側端面となる補強シート材5の幅方向の少なくとも一方の端縁8から最大で0.1×Dから0.8×Dだけ耐熱シート材7が幅方向にはみ出すと共に、端縁8からの耐熱シート材7の幅方向のはみ出し量δ1が部分凸球面状面の小径端面側となる補強シート材5の幅方向の他方の端縁9からのはみ出し量δ2よりも多くなるようにすると共に、補強シート材5の長さ方向の一方の端縁10から最大で0.30×Lから1.70×Lだけ耐熱シート材7が長さ方向にはみ出すと共に、補強シート材5の長さ方向の他方の端縁11と当該端縁11に対応する耐熱シート材7の長さ方向の端縁12とを実質的に一致させて、補強シート材5と耐熱シート材7との幅方向及び長さ方向を合致させて当該補強シート材5と耐熱シート材7とを互いに重ね合わせた重合体13を得る。
【0034】
(第四工程) 重合体13を図6に示すように耐熱シート材7を内側にしてうず巻き状であって耐熱シート材7が1回多くなるように捲回して、内周側及び外周側の両方に耐熱シート材7が露出した筒状母材14を形成する。耐熱シート材7としては、筒状母材14における耐熱シート材7の巻き回数が補強シート材5の巻き回数よりも多くなるように、補強シート材5の長さLに対して1.30×Lから2.70×Lの長さlを有したものが予め準備される。筒状母材14においては、図7に示すように、耐熱シート材7は、幅方向の一方の端縁側において補強シート材5の一方の端縁8から幅方向にδ1だけはみ出しおり、また耐熱シート材7の幅方向の他方の端縁側において補強シート材5の他方の端縁9から幅方向にδ2だけはみ出している。
【0035】
(第五工程) 前記耐熱シート材7と同様であるが、幅Dよりも小さい幅dを有すると共に筒状母材14を1回巻きできる程度の長さlを有した図8に示すような耐熱シート材7を別途用意し、耐熱シート材7の一方の表面に、窒化ホウ素を10〜25重量%とアルミナ及びシリカのうちの少なくとも一方を3〜10重量%と四ふっ化エチレン樹脂を30〜50重量%と弗化雲母を20〜40重量%とを含有する潤滑組成物を固形分として20〜50重量%分散含有した水性ディスパージョン又は窒化ホウ素を10〜25重量%とアルミナ及びシリカのうちの少なくとも一方を3〜10重量%と四ふっ化エチレン樹脂を30〜50重量%と弗化雲母を20〜40重量%と黒鉛を3〜10重量%とを含有する潤滑組成物を固形分として20〜50重量%分散含有した水性ディスパージョン刷毛塗り、ローラ塗り、スプレー等の手段で被覆し、これを乾燥させて図9に示すような潤滑組成物からなる潤滑すべり層15を形成する。
【0036】
(第六工程) 第一工程で説明した帯状金網4からなり、かつ潤滑すべり層15を備えた耐熱シート材7の幅dに対して1.05×dから1.09×dの幅を有するとともに該耐熱シート材7の長さlとほぼ同じ長さの補強シート材5を別に準備し、図10に示すように、帯状金網4内に、潤滑すべり層15を備えた耐熱シート材7を挿入すると共に、これらを図11に示すように、ローラ16及び17間に通して一体化させ、耐熱シート材7と耐熱シート材7の一方の表面に被着形成された潤滑組成物からなる潤滑すべり層15と潤滑すべり層15及び耐熱シート材7に配された金網からなる補強シート材5とからなる外層形成部材18を形成する。
【0037】
(第七工程) このようにして得た外層形成部材18を、潤滑すべり層15を外側にして筒状母材14の外周面に捲回し、図12に示すような予備円筒成形体19を作製する。
【0038】
(第八工程) 内面に円筒壁面20と円筒壁面20に連なる部分凹球面壁面21と部分凹球面壁面21に連なる貫通孔22とを備え、貫通孔22に段付きコア23を嵌挿することによって内部に中空円筒部24と中空円筒部24に連なる球帯状中空部25とが形成された図13に示すような金型26を準備し、金型26の段付きコア23に予備円筒成形体19を挿入する。
【0039】
金型26の中空円筒部24及び球帯状中空部25に位置せしめられた予備円筒成形体19をコア軸方向に1〜3トン/cmの圧力で圧縮成形し、図1及び図2に示すような、中央部に貫通孔27を有すると共に、円筒内面28と部分凸球面状面29と部分凸球面状面29の大径側及び小径側の環状の端面31及び32とにより規定された球帯状基体33と、球帯状基体33の部分凸球面状面29に一体的に形成された外層34とを備えた球帯状シール体30を作製する。この圧縮成形により、球帯状基体33は、耐熱シート材7と金網からなる補強シート材5とが圧縮され、互いに絡み合って構造的一体性を有するように構成されて、圧縮された金網からなる補強材と、この補強材の金網の網目を充填し、かつこの補強材と混在一体化されて圧縮された膨張黒鉛からなる耐熱材とを有しており、外層34は、潤滑すべり層15と潤滑すべり層15に一体化された金網からなる補強シート5とが圧縮され、互いに絡み合って構造的一体性を有するように構成されて、窒化ホウ素を10〜25重量%とアルミナ及びシリカのうちの少なくとも一方を3〜10重量%と四ふっ化エチレン樹脂を30〜50重量%と弗化雲母を20〜40重量%とを有してなる潤滑組成物又は窒化ホウ素を10〜25重量%とアルミナ及びシリカのうちの少なくとも一方を3〜10重量%と四ふっ化エチレン樹脂を30〜50重量%と弗化雲母を20〜40重量%と黒鉛を3〜10重量%とを有してなる潤滑組成物と、この潤滑組成物に混在一体化された金網からなる補強材とを有しており、外層34において外部に露出した部分凸球面状外面36は、前記の潤滑組成物と補強材とが混在一体化された平滑な潤滑すべり層となり、貫通孔27を規定する円筒内面28には、圧縮された耐熱シート材7が露出した面となる結果、球帯状基体33の膨張黒鉛からなる耐熱材が露出しており、環状端面31は、耐熱シート材7において補強シート材5から幅方向にはみ出した部分が曲折されかつ展延される結果、耐熱シート材7の素材であって圧縮された膨張黒鉛で覆われている。
【0040】
なお、第二工程において、補強シート材5の幅Dに対して1.1×Dから2.1×Dの幅dを有すると共に、補強シート材5の長さLに対して1.30×Lから2.70×Lの長さlを有するように切断された耐熱シート材7を準備する代わりに、補強シート材5の幅Dに対して1.1×Dから2.1×Dの幅dを有するが、補強シート材5の長さLと実質的に同じ長さlを有するように切断された耐熱シート材7を準備し、この耐熱シート材7を、第三工程で部分凸球面状面の大径端面側となる補強シート材5の幅方向の少なくとも一方の端縁8から最大で0.1×Dから0.8×Dだけ幅方向にはみ出させると共に、端縁8からの耐熱シート材7の幅方向のこのはみ出し量δ1を部分凸球面状面の小径端面側となる補強シート材5の幅方向の他方の端縁9からのはみ出し量δ2よりも多くする一方、長さ方向のその両端縁を補強シート材5の長さ方向の両端縁と実質的に一致させて、補強シート材5に重ね合わせて重合体13を得、この重合体13を第四工程で補強シート材5を内側にしてうず巻き状に捲回して、内周側に補強シート材5が露出し、外周側に耐熱シート材7が露出した筒状母材14を形成し、この筒状母材14を第五工程以後前記と同様の方法で球帯状シール体30を作製してもよく、斯かる球帯状シール体30では、貫通孔27を規定する円筒内面28には、圧縮された耐熱シート材5と補強シート材5の金網の網目に圧縮、充填された耐熱シート材7とが露出した面となる結果、球帯状基体33の膨張黒鉛と金網からなる耐熱材とが露出することになる。
【0041】
球帯状シール体30は、例えば図14に示す排気管球面継手に組込まれて使用される。すなわち、エンジン側に連結された上流側排気管100の外周面には、管端部101を残してフランジ200が立設、固着されており、管端部101には、球帯状シール体30が貫通孔27を規定する円筒内面28において嵌合されており、大径側端面31において球帯状シール体30がフランジ200に当接されて着座せしめられている。上流側排気管100と相対峙してマフラー側に連結され、端部に凹球面部302と凹球面部302の開口部周縁にフランジ部303とを備えた径拡大部301が一体に形成された下流側排気管300が凹球面部302を球帯状シール体30の部分凸球面状外面36に摺接させて配置されている。
【0042】
図14に示す排気管球面継手において、一端がフランジ200に固定され、他端が径拡大部301のフランジ部303を挿通して配された一対のボルト400とボルト400の膨大頭部及びフランジ部303の間に配された一対のコイルバネ500とにより、下流側排気管300には、常時、上流側排気管100方向にバネ力が付勢されている。そして、排気管球面継手は、上、下流側排気管100、300に生じる相対角変位に対しては、球帯状シール体30の部分凸球面状外面36と下流側排気管300の端部に形成された径拡大部301の凹球面部302との摺接でこれを許容するように構成されている。
【0043】
【実施例】
次に、本発明を実施例に基づき詳細に説明する。なお、本発明はこれらの実施例に何等限定されないのである。
【0044】
<耐熱シート材の作製>
濃度98%の濃硫酸300重量部を撹拌しながら、酸化剤として過酸化水素の60%水溶液5重量部を加え、これを反応液とした。この反応液を冷却して10℃の温度に保持するとともにこの反応液に粒度30〜80メッシュの鱗片状天然黒鉛粉末100重量部を添加し、30分間反応を行った。反応後、吸引濾過して酸処理黒鉛を分離し、酸処理黒鉛を300重量部の水で10分間撹拌して吸引濾過するという洗浄作業を2回繰り返し、酸処理黒鉛から硫酸分を十分除去した。ついで、硫酸分を十分除去した酸処理黒鉛を110℃の温度に保持した乾燥炉で3時間乾燥し、これを酸処理黒鉛原料とした。
【0045】
この酸処理黒鉛原料を、1000℃の温度で5秒間膨張処理を施して分解ガスを発生せしめ、そのガス圧により黒鉛層間を拡張して膨張させた膨張黒鉛粒子(膨張倍率240倍)を得た。この膨張黒鉛粒子を双ロールの圧延装置にてロール成形し、厚さ0.38mmの膨張黒鉛シートを作製し、これを耐熱シート材7とした。
【0046】
<補強シート材の作製>
金属細線として、線径0.28mmのオーステナイト系ステンレス鋼線(SUS304)を2本使用して網目4.0mmの筒状金網1を作製し、これをローラ2及び3間に通して帯状金網4とし、これを補強シート材5とした。
【0047】
実施例1
幅55mm、長さ550mmに切断した耐熱シート材7と、幅36mm、長さ360mmに作製した帯状金網4からなる補強シート材5とを準備し、耐熱シート材7をうず巻き状に一周分捲回したのち、耐熱シート材7の内側に補強シート材5を重ね合わせ、うず巻き状に捲回して最外周に耐熱シート材7を位置させた筒状母材14を作製した。この筒状母材14においては、耐熱シート材7の両端部はそれぞれ補強シート材5の幅方向にはみ出している(図7参照)。
【0048】
上記の耐熱シート材7と同様であって幅48mm、長さ212mmに切断した耐熱シート材7を別途準備し、この耐熱シート材7の一方の表面に、平均粒径7μmの窒化ホウ素20重量%と平均粒径0.6μmのアルミナ粉末8重量%と四ふっ化エチレン樹脂34重量%と弗化雲母38重量%とからなる潤滑組成物を固形分として30重量%分散含有した水性ディスパージョン(窒化ホウ素6重量%、アルミナ2.4重量%、四ふっ化エチレン樹脂10.2重量%、弗化雲母11.4重量%及び水分70重量%)をローラ塗りし、乾燥するという被覆操作を3回繰り返して潤滑組成物の潤滑すべり層15を形成した。
【0049】
金属細線として線径0.28mmのオーステナイト系ステンレス鋼線を1本使用して網目4.0mmの筒状金網1を作製したのち、これをローラ2及び3間に通して作製した幅52mm、長さ212mmの帯状金網4を別途準備し、帯状金網4内に前記潤滑すべり層15を備えた耐熱シート材7を挿入すると共にこれらをローラ16及び17間に通して一体化させ、一方の面に潤滑すべり層15と金網とが混在した外層形成部材18を作製した。
【0050】
筒状母材14の外周面に、外層形成部材18を潤滑すべり層15と金網とが混在した面を外側にして巻き付けて予備円筒成形体19を作製した。内面に円筒壁面20と円筒壁面20に連なる部分凹球面壁面21と部分凹球面壁面21に連なる貫通孔22とを備え、貫通孔22に段付きコア23を嵌挿することによって内部に中空円筒部24と中空円筒部24に連なる球帯状中空部25とが形成された金型26を準備し、金型26の段付きコア23の外周面に予備円筒成形体19を挿入し、該予備円筒成形体19を金型26の中空部に位置させた。
【0051】
金型26の中空部に位置させた予備円筒成形体19をコア軸方向に3トン/cmの圧力で圧縮成形し、中央部に貫通孔27を有すると共に、円筒内面28と部分凸球面状面29と部分凸球面状面29の大径側及び小径側の環状の端面31及び32とにより規定された球帯状基体33と、球帯状基体33の部分凸球面状面29に一体的に形成された外層34とを備えた球帯状シール体30を作製した。この圧縮成形により、球帯状基体33は、耐熱シート材7と金網からなる補強シート材5とが圧縮され、互いに絡み合って構造的一体性を有するように構成されて、圧縮された金網からなる補強材と、この補強材の金網の網目を充填し、かつこの補強材と混在一体化されて圧縮された膨張黒鉛からなる耐熱材とを有しており、外層34は、潤滑すべり層15と潤滑すべり層15に一体化された金網からなる補強シート材5とが圧縮され、互いに絡み合って構造的一体性を有するように構成されて、窒化ホウ素20重量%とアルミナ8重量%と四ふっ化エチレン樹脂34重量%と弗化雲母38重量%を有してなる潤滑組成物と、この潤滑組成物に混在一体化された金網からなる補強材とを有しており、外層34において外部に露出した部分凸球面状外面36は、前記の潤滑組成物と補強材とが混在一体化された平滑な潤滑すべり面となり、貫通孔27を規定する円筒内面28には、圧縮された耐熱シート材7が露出した面となる結果、球帯状基体33を形成する膨張黒鉛からなる耐熱材が露出しており、環状端面31は、耐熱シート材7において補強シート材5から幅方向にはみ出した部分が曲折されかつ展延される結果、耐熱シート材7の素材であって圧縮された膨張黒鉛で覆われている。
【0052】
実施例2
実施例1と同様の筒状母材14を作製した。上記の耐熱シート材7と同様の耐熱シート材7を別途準備し、幅48mm、長さ212mmに切断した耐熱シート材7の一方の表面に平均粒径7μmの窒化ホウ素14重量%と平均粒径0.6μmのアルミナ粉末8重量%と四ふっ化エチレン樹脂40重量%と弗化雲母38重量%とからなる潤滑組成物を固形分として30重量%分散含有した水性ディスパージョン(窒化ホウ素4.2重量%、アルミナ2.4重量%、四ふっ化エチレン樹脂12重量%、弗化雲母11.4重量%及び水分70重量%)をローラ塗りし、乾燥するという被覆操作を3回繰り返して潤滑組成物の潤滑すべり層15を形成した。以下、実施例1と同様の方法で、球帯状シール体を作製した。
【0053】
実施例3
実施例1と同様の筒状母材14を作製した。上記の耐熱シート材7と同様の耐熱シート材7を別途準備し、幅48mm、長さ212mmに切断した耐熱シート材7の一方の表面に平均粒径7μmの窒化ホウ素19重量%と平均粒径0.6μmのアルミナ粉末8重量%と四ふっ化エチレン樹脂40重量%と弗化雲母33重量%とからなる潤滑組成物を固形分として30重量%分散含有した水性ディスパージョン(窒化ホウ素5.7重量%、アルミナ2.4重量%、四ふっ化エチレン樹脂12重量%、弗化雲母9.9重量%及び水分70重量%)をローラ塗りし、乾燥するという被覆操作を3回繰り返して潤滑組成物の潤滑すべり層15を形成した。以下、実施例1と同様の方法で、球帯状シール体を作製した。
【0054】
実施例4
実施例1と同様の筒状母材14を作製した。上記の耐熱シート材7と同様の耐熱シート材7を別途準備し、幅48mm、長さ212mmに切断した耐熱シート材7の一方の表面に平均粒径7μmの窒化ホウ素21重量%と平均粒径0.6μmのアルミナ粉末9重量%と四ふっ化エチレン樹脂40重量%と弗化雲母30重量%とからなる潤滑組成物を固形分として30重量%分散含有した水性ディスパージョン(窒化ホウ素6.3重量%、アルミナ2.7重量%、四ふっ化エチレン樹脂12重量%、弗化雲母9重量%及び水分70重量%)をローラ塗りし、乾燥するという被覆操作を3回繰り返して潤滑組成物の潤滑すべり層15を形成した。以下、実施例1と同様の方法で、球帯状シール体を作製した。
【0055】
実施例5
実施例1と同様の筒状母材14を作製した。上記の耐熱シート材7と同様の耐熱シート材7を別途準備し、幅48mm、長さ212mmに切断した耐熱シート材7の一方の表面に、平均粒径7μmの窒化ホウ素21重量%と平均粒径0.6μmのアルミナ粉末9重量%と四ふっ化エチレン樹脂42重量%と弗化雲母23重量%と黒鉛5重量%とからなる潤滑組成物を固形分として30重量%分散含有した水性ディスパージョン(窒化ホウ素6.3重量%、アルミナ2.7重量%、四ふっ化エチレン樹脂12.6重量%、弗化雲母6.9重量%、黒鉛1.5重量%及び水分70重量%)をローラ塗りし、乾燥するという被覆操作を3回繰り返して潤滑組成物の潤滑すべり層を形成した。以下、実施例1と同様の方法で、球帯状シール体を作製した。
【0056】
比較例1
実施例1と同様の筒状母材14を作製した。上記の耐熱シート材7と同様であって幅48mm、長さ212mmに切断した耐熱シート材7を別途準備し、この耐熱シート材7の一方の表面に、平均粒径0.3μmの四ふっ化エチレン樹脂を固形分として30重量%分散含有した水性ディスパージョン(四ふっ化エチレン樹脂30重量%、水分70重量%)をローラ塗りし、乾燥するという被覆操作を3回繰り返して四ふっ化エチレン樹脂の潤滑すべり層を形成し、これを外層形成部材とした。
【0057】
筒状母材14の外周面に、この外層形成部材を潤滑すべり層が被着形成された面を外側にして巻き付けて予備円筒成形体を作製した。以下、実施例1と同様の方法で球帯状シール体を作製した。この圧縮成形により、球帯状シール体の球帯状基体は、耐熱シート材7と金網からなる補強シート材5とが圧縮され、互いに絡み合って構造的一体性を有するように構成されて、圧縮された金網からなる補強材と、この補強材の金網の網目を充填し、かつこの補強材と混在一体化されて圧縮された膨張黒鉛からなる耐熱材とを有しており、球帯状シール体の外層は、圧縮された四ふっ化エチレン樹脂の潤滑すべり層でもって構成されて、四ふっ化エチレン樹脂からなる潤滑組成物を有しており、斯かる外層において外部に露出した部分凸球面状外面は、四ふっ化エチレン樹脂からなる潤滑組成物の平滑な潤滑すべり面となり、球帯状シール体の貫通孔を規定する円筒内面には、圧縮された耐熱シート材7が露出した面となる結果、球帯状基体の膨張黒鉛からなる耐熱材が露出しており、球帯状シール体の環状端面は、耐熱シート材7において補強シート材5から幅方向にはみ出した部分が曲折されかつ展延される結果、耐熱シート材7の素材であって圧縮された膨張黒鉛で覆われている。
【0058】
比較例2
実施例1と同様の筒状母材14を作製した。上記の耐熱シート材7と同様であって幅48mm、長さ212mmに切断した耐熱シート材7を別途準備し、この耐熱シート材7の一方の表面に、平均粒径0.3μmの四ふっ化エチレン樹脂を固形分として30重量%分散含有した水性ディスパージョン(四ふっ化エチレン樹脂30重量%、水分70重量%)をローラ塗りし、乾燥するという被覆操作を3回繰り返して四ふっ化エチレン樹脂の潤滑すべり層を形成した。実施例1と同様、筒状金網1を作製したのち、これをローラ2及び3間に通して作製した帯状金網4を別途準備し、該帯状金網4内に、四ふっ化エチレン樹脂からなる潤滑すべり層を備えた耐熱シート材7を挿入すると共にこれらをローラ16及び17間に通して一体化し、一方の面に四ふっ化エチレン樹脂からなる潤滑すべり層と金網とが混在した外層形成部材を作製した。
【0059】
実施例1と同様の筒状母材14の外周面に、この外層形成部材を潤滑組すべり層と金網とが混在した面を外側にして巻き付けて予備円筒成形体を作製した。以下、実施例1と同様の方法で球帯状シール体を作製した。この圧縮成形により、球帯状シール体の球帯状基体は、耐熱シート材7と金網からなる補強シート材5とが圧縮され、互いに絡み合って構造的一体性を有するように構成されて、圧縮された金網からなる補強材と、この補強材の金網の網目を充填し、かつこの補強材と混在一体化されて圧縮された膨張黒鉛からなる耐熱材とを有しており、球帯状シール体の外層は、四ふっ化エチレン樹脂からなる潤滑すべり層と潤滑すべり層に一体化された金網からなる補強材5とが圧縮され、互いに絡み合って構造的一体性を有するように構成されて、四ふっ化エチレン樹脂からなる潤滑組成物と、この潤滑組成物に混在一体化された金網からなる補強材とを有しており、斯かる外層において外部に露出した部分凸球面状外面は、四ふっ化エチレン樹脂からなる潤滑組成物と補強材とが混在一体化された平滑な潤滑すべり面となり、球帯状シール体の貫通孔を規定する円筒内面には、圧縮された耐熱シート材7が露出した面となる結果、球帯状基体を形成する膨張黒鉛からなる耐熱材が露出しており、球帯状シール体の環状端面は、耐熱シート材7において補強シート材5から幅方向にはみ出した部分が曲折されかつ展延される結果、耐熱シート材7の素材であって圧縮された膨張黒鉛で覆われている。
【0060】
次に、上述した実施例なる球帯状シール体及び比較例からなる球帯状シール体について、図14に示す排気管球面継手を使用して、以下の試験を実施した。
【0061】
<試験1:300℃耐久試験>
<試験条件>
コイルばねによる押圧力(スプリングセットフォース):706N
揺動角:±0.5°
揺動周波数:12ヘルツ(Hz)
雰囲気温度(図14に示す凹球面部302の外表面温度):300℃
耐久時間:24時間
<試験2:500℃耐久試験>
<試験条件>
コイルばねによる押圧力(スプリングセットフォース):706N
揺動角:±0.5°
揺動周波数:12ヘルツ(Hz)
雰囲気温度(上記に同じ):500℃
耐久時間:24時間
【0062】
<試験方法(試験1、試験2とも)>
雰囲気温度を300℃(試験1)、500℃(試験2)に昇温したのち、12Hzの揺動周波数で±0.5°の揺動運動を連続して24時間行い、試験開始後4時間毎の摩擦トルク(N・m)の測定と異常摩擦音の発生の有無を確認した。
【0063】
<試験3:熱間耐久試験>
<試験条件>
コイルばねによる押圧力(スプリングセットフォース):706N
揺動角:±3°
揺動周波数:12ヘルツ(Hz)
雰囲気温度(図14に示す凹球面部302の外表面温度):500℃
【0064】
<試験方法(試験3)>
室温において12Hzの振動数で±3°の揺動運動を1回として45,000回行ったのち、該揺動運動を継続しながら雰囲気温度を500℃の温度まで昇温し(昇温中の揺動回数45,000回)、該雰囲気温度が500℃の温度に到達した時点で115,000回の揺動運動を行い、ついで該揺動運動を継続しながら雰囲気温度を室温まで降温する(降温中の揺動回数45,000回)という全揺動回数250,000回を1サイクルとして4サイクル行う。
【0065】
異常摩擦音の発生の有無の評価は、試験1、試験2及び試験3とも次のようにして行った。
評価記号I:異常摩擦音の発生のないもの。
評価記号II:試験片に耳を近づけた状態で、かすかに異常摩擦音が聴こえるもの。
評価記号III:定位置(試験片から1.5m離れた位置)では生活環境音に掻き消され、一般には判別し難いが試験担当者には異常摩擦音として判別できるもの。
評価記号IV:定位置で誰でも異常摩擦音(不快音)として識別できるもの。
【0066】
上記試験方法によって得られた実施例1から実施例5の球帯状シール体の試験1及び試験2の試験結果を表1に、比較例1及び比較例2の球帯状シール体の試験1及び試験2の試験結果を表2に、実施例1から実施例5の球帯状シール体及び比較例1及び比較例2の球帯状シール体の試験3の試験結果を表3に示す。なお、表1から表3において、潤滑すべり層の成分組成中のBNは窒化ホウ素を、Alはアルミナを、PTFEは四ふっ化エチレン樹脂をそれぞれ示す。
(以下余白)
【0067】
【表1】

Figure 0004209632
(以下余白)
【0068】
【表2】
Figure 0004209632
(以下余白)
【0069】
【表3】
Figure 0004209632
【0070】
上表に示す試験結果から、試験1の条件では、実施例1から実施例5と比較例1及び比較例2との間に性能の差は認められず、異常摩擦音の発生も認められなかった。一方、試験2及び試験3の条件では、比較例からなる球帯状シール体は異常摩擦音の発生が認められた。とくに比較例1の球帯状シール体は、試験3の条件では雰囲気温度が300℃を超えるとその外層の四ふっ化エチレン樹脂が溶融軟化し、その状態で継続する揺動運動により該四ふっ化エチレン樹脂が部分凸球面状外面36から流動排出され、球帯状シール体と相手材との摩擦が耐熱材(膨張黒鉛)との摩擦に移行し、異常摩擦音の発生を引き起こしたものである。また、比較例2の球帯状シール体は、その部分凸球面状外面が四ふっ化エチレン樹脂と金網からなる補強材とが混在したものであるため、比較例1のように球帯状シール体における外層の四ふっ化エチレン樹脂が部分凸球面状外面から流動排出されるという現象は生じないが、雰囲気温度が500℃においては四ふっ化エチレン樹脂の具有する低摩擦性は消失し、球帯状シール体と相手材との摩擦が補強材(金網)との金属同士の摩擦に移行し、異常摩擦音の発生を引き起こした。
【0071】
これに対し、実施例からなる球帯状シール体30は外層34の部分凸球面状外面36を形成する潤滑組成物中に配合された窒化ホウ素及び弗化雲母、あるいは窒化ホウ素、弗化雲母及び黒鉛により、潤滑組成物、延いては外層34の部分凸球面状外面36の耐熱性及び耐久性が向上されていることから、500℃の雰囲気温度においても部分凸球面状外面36の潤滑性は損われない。そして、球帯状シール体と相手材との摩擦においては、相手材表面に部分凸球面状外面36の潤滑組成物が移着されてそこに潤滑被膜が形成される結果、球帯状シール体30は、潤滑組成物と金網からなる補強材とが混在一体となった部分凸球面状外面36においてこの移着形成された潤滑被膜と摺動するので、摩擦トルクが安定しており、異常摩擦音の発生は起こらない。
【0072】
以上の試験結果から、実施例の球帯状シール体30は、雰囲気温度が室温から500℃の広い範囲において、上、下流側排気管の相対角変位に対し安定した摩擦トルクで、かつ異常摩擦音の発生もなく許容することができるのに対し、比較例からなる球帯状シール体は、雰囲気温度が室温から300℃の範囲に限られ、自ずから使用条件、使用部位に制約を受けることになる。
【0073】
【発明の効果】
本発明の球帯状シール体は、窒化ホウ素を10〜25重量%とアルミナ及びシリカのうちの少なくとも一方を3〜10重量%と四ふっ化エチレン樹脂を30〜50重量%と弗化雲母を20〜40重量%とを有してなる潤滑組成物、あるいは窒化ホウ素を10〜25重量%とアルミナ及びシリカのうちの少なくとも一方を3〜10重量%と四ふっ化エチレン樹脂を30〜50重量%と弗化雲母を20〜40重量%と黒鉛を3〜10重量%とを有してなる潤滑組成物と、金網からなる補強材とが混在一体化された平滑な潤滑すべり面となっている部分凸球面状外面を有し、斯かる部分凸球面状外面が相手材との摺動面となっているので、雰囲気温度が室温から500℃の広い範囲にわたり相手材との摺動において、安定した摩擦トルクにより上、下流側排気管の相対角変位を許容することができ、その際、異常摩擦音を発生させることもない。
【図面の簡単な説明】
【図1】本発明の球帯状シール体の縦断面図である。
【図2】図1に示す球帯状シール体の部分凸球面状の外面の部分拡大断面図である。
【図3】本発明の球帯状シール体の製造工程における金網からなる補強シート材の形成方法の説明図である。
【図4】本発明の球帯状シール体の製造工程における耐熱シート材の斜視図である。
【図5】本発明の球帯状シール体の製造工程における重合体の斜視図である。
【図6】本発明の球帯状シール体の製造工程における筒状母材の平面図である。
【図7】図6に示す筒状母材の縦断面図である。
【図8】本発明の球帯状シール体の製造工程における耐熱シート材の斜視図である。
【図9】本発明の球帯状シール体の製造工程における潤滑すべり層を形成した耐熱シート材の縦断面図である。
【図10】本発明の球帯状シール体の製造工程における外層形成部材の形成方法の説明図である。
【図11】本発明の球帯状シール体の製造工程における外層形成部材の形成方法の説明図である。
【図12】本発明の球帯状シール体の製造工程における予備円筒成形体の平面図である。
【図13】本発明の球帯状シール体の製造工程における金型中に予備円筒成形体を挿入した状態を示す縦断面図である。
【図14】本発明の球帯状シール体を組込んだ排気管球面継手の縦断面図である。
【符号の説明】
1 筒状金網
4 帯状金網
5 補強シート材
7 耐熱シート材
14 筒状母材
15 潤滑すべり層
18 外層形成部材
19 予備円筒成形体
26 金型
30 球帯状シール体[0001]
[Technical field to which the invention belongs]
The present invention relates to a ball-shaped seal body used for a spherical pipe joint of an automobile exhaust pipe.
[0002]
[Prior art]
Conventionally, as a ball-shaped seal body used for a spherical pipe joint of an automobile exhaust pipe, there is one disclosed in, for example, Japanese Patent Application Laid-Open No. 54-76759 (hereinafter referred to as “prior art 1”). The sealing body disclosed in the prior art 1 has heat resistance, excellent compatibility with the counterpart material, and significantly improved impact strength. On the other hand, it often produces abnormal noise under dry friction conditions. There is a disadvantage that it occurs. That is, the disadvantage of this seal body is that the difference between the coefficient of static friction and the coefficient of dynamic friction of the heat-resistant material (expanded graphite, etc.) forming the seal body is large, and that the friction resistance against the sliding speed of the seal body made of this heat-resistant material is negative. This is considered to be caused by a resistance (a phenomenon in which the frictional resistance decreases as the sliding speed increases).
[0003]
In view of this, the present applicant has proposed a sealing body that solves the above-mentioned drawbacks in Japanese Patent Application No. 56-120701 (Japanese Patent Laid-Open No. 58-24620: hereinafter referred to as “Prior Art 2”). The sealing body disclosed in the prior art 2 includes a reinforcing material made of a wire mesh obtained by weaving or knitting a metal thin wire, a heat-resistant material mixed with one or more of expanded graphite, mica, and asbestos. A sealing body obtained by shaping together, wherein a lubricating composition comprising a tetrafluoroethylene resin or a copolymer of ethylene tetrafluoride and propylene hexafluoride is deposited on the surface of the sealing body. It is a thing. This sealing body has a lubricating composition deposited on the surface, reducing the friction coefficient, preventing the heat-resistant material forming the base material from being transferred to the mating material surface, reducing the difference between the static friction coefficient and the dynamic friction coefficient, In addition, the tetrafluoroethylene resin does not exhibit negative resistance against the sliding speed, so combined with the above-described effects, the self-excited vibration based on “adhesion-slip” is generated. It has the effect of suppressing and contributing to the prevention of abnormal noise.
[0004]
[Problems to be solved by the invention]
The sealing body disclosed in the above-described prior art 2 solves the drawbacks of the sealing body disclosed in the above-described prior art 1 in terms of performance, but the sealing body disclosed in the prior art 2 can be applied. The ambient temperature is left to the heat resistance of the lubricating composition deposited on the surface, and the following problems have been raised, which are naturally limited to use at an ambient temperature of 300 ° C. or lower. In other words, when used in a spherical pipe joint of an automobile exhaust pipe, the lubricating composition deposited on the surface of the seal body is melted by the action of the heat of the exhaust gas flowing through the exhaust pipe. This is a problem that the lubricating composition may adhere to the surface of the mating member when the exhaust pipe is cooled after the engine is stopped, thereby causing a phenomenon of inhibiting the relative angular displacement of the spherical pipe joint.
[0005]
Such a phenomenon is particularly noticeable when the exhaust pipe temperature conditions are such that the lubricating composition formed on the surface of the sealing body is melted and the relative angular displacement applied to the spherical pipe joint is small. This was confirmed by experiment. Therefore, if such a sticking phenomenon occurs, it is difficult not only to achieve the initial purpose of the spherical pipe joint, but if a large relative angular displacement after the engine restart is applied to the spherical pipe joint, a large amount based on the elimination of the sticking phenomenon will occur. This will cause a problem of generating an abnormal sound.
[0006]
The present invention has been made in view of the above points, and its object is a sealing body that can be applied in a wide range of ambient temperatures from room temperature to over 500 ° C., and has excellent retention and durability. As a result, it is an object of the present invention to provide a ball-shaped seal body that does not deteriorate the sliding characteristics even in the long-term use as well as the initial stage, and does not generate abnormal noise.
[0007]
[Means for Solving the Problems]
The spherical belt-shaped sealing body according to the first aspect of the present invention includes a spherical belt-shaped substrate defined by a cylindrical inner surface, a partially convex spherical surface, and annular end surfaces on the large-diameter side and small-diameter side of the partially convex spherical surface, An outer layer integrally formed on the partially convex spherical surface of the belt-shaped substrate, and particularly used for an exhaust pipe joint, wherein the spherical belt-shaped substrate includes a reinforcing material made of a compressed wire mesh, This reinforcing material has a heat-resistant material made of expanded graphite that is packed together and integrated with the reinforcing material, and has an outer layer made of 10 to 25 weight of boron nitride (BN). % And alumina (Al2O3) And silica (SiO2And a lubricating composition comprising 3 to 10% by weight of at least one of (3), 30 to 50% by weight of tetrafluoroethylene resin (PTFE), and 20 to 40% by weight of fluorinated mica. And a partially convex spherical outer surface where the outer layer is exposed is a smooth lubricating slip surface in which the lubricating composition and the reinforcing material are mixed and integrated. It is characterized by becoming.
[0008]
According to the spherical belt-shaped sealing body of the first aspect, the partially convex spherical outer surface that forms the friction surface with the counterpart material has 10 to 25% by weight of boron nitride and 3 to 10% by weight of at least one of alumina and silica. %, 30 to 50% by weight of tetrafluoroethylene resin and 20 to 40% by weight of mica fluoride, and a reinforcing material made of a wire mesh mixed and integrated in the lubricating composition, Therefore, the relative angular displacement of the upper and downstream exhaust pipes can be allowed due to the low friction torque in the friction with the mating member.
[0009]
The outer layer that forms the lubricated sliding surface has a melting softening point of the tetrafluoroethylene resin that exhibits low frictional properties with at least one of boron nitride, mica fluoride, alumina, and silica in the components of the lubricating composition. Apparently, at least one of alumina and silica increases the holding power to the partially convex spherical surface of the spherical base, and the reinforcing material mixed and integrated with the lubricating composition is partially convex. By preventing continuous direct contact between the spherical outer surface and the mating material, melting and softening of the partially convex spherical outer surface caused by an increase in ambient temperature, and the mating material of the partially convex spherical outer surface resulting from this It does not cause sticking to the surface.
[0010]
In the outer layer, a specific amount of tetrafluoroethylene resin in the components of the lubricating composition mainly contributes to low friction properties from room temperature to about 300 ° C., and a specific amount of boron nitride and mica fluoride in the components mainly increases to 300 ° C. Because it contributes to low friction in the high temperature range, it exhibits low friction torque in the friction with the partner material over a wide range from normal temperature to over 500 ° C, and lowers the relative angular displacement of the downstream exhaust pipe. Allow with frictional resistance.
[0011]
Furthermore, the partially convex spherical outer surface is a smooth lubricated sliding surface in which the lubricating composition and the reinforcing material made of the wire mesh are mixed and integrated.In other words, the reinforcing material made of the wire mesh is the surface of the partially convex spherical outer surface. Even if the lubricating composition adheres excessively to the surface of the counterpart material due to the formation of a part, it acts to scrape it moderately leaving a moderately thin lubricating film along with the swinging of the partially convex spherical outer surface As a result, the lubricating composition adhering to the surface of the mating material can be prevented from accumulating on the sliding surface between the mating material surface and the partially convex spherical outer surface, and the deposited lubricating composition can be carbonized. The resulting deterioration in slidability can be prevented.
[0012]
The spherical band-shaped sealing body according to the second aspect of the present invention is the spherical band-shaped sealing body according to the first aspect, wherein the lubricating composition further contains 3 to 10% by weight of graphite.
[0013]
According to the spherical belt-shaped sealing body of the second aspect, the partially convex spherical outer surface that forms the friction surface with the counterpart material is 10 to 25% by weight of boron nitride and 3 to 10% by weight of at least one of alumina and silica. Composition containing 30 to 50% by weight, 30% to 50% by weight of tetrafluoroethylene resin and 20 to 40% by weight of fluorinated mica, and further containing 3 to 10% by weight of graphite. And a smooth lubricated sliding surface with an exposed outer surface having a reinforcing member made of a wire mesh mixed and integrated with this lubricating composition. The relative angular displacement of the downstream exhaust pipe can be allowed. In addition, when the lubricating composition contains graphite, the heat resistance of the lubricating composition can be improved and the durability of the outer layer made of the lubricating composition can be improved.
[0014]
In the spherical band-shaped sealing body according to the third aspect of the present invention, in the spherical band-shaped sealing body according to the first or second aspect, the heat resistant material made of expanded graphite of the spherical band-shaped substrate is exposed on the inner surface of the cylinder.
[0015]
According to the ball-shaped seal body of the third aspect, when the ball-shaped seal body is fitted and fixed to the outer surface of the exhaust pipe, the sealing performance between the cylindrical inner surface of the ball-shaped seal body and the outer surface of the exhaust pipe is improved. Therefore, leakage of exhaust gas from the contact surface can be prevented to the maximum.
[0016]
The spherical belt-shaped sealing body according to the fourth aspect of the present invention is the spherical belt-shaped sealing body according to the first or second aspect, wherein a reinforcing material made of a metal mesh of the spherical belt-shaped substrate is exposed on the inner surface of the cylinder.
[0017]
According to the ball-shaped seal body of the fourth aspect, when the ball-shaped seal body is fitted and fixed to the outer surface of the exhaust pipe, the friction between the cylindrical inner surface and the outer surface of the exhaust pipe is increased, and as a result, the ball-shaped seal The body is firmly fixed to the outer surface of the exhaust pipe.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described in detail.
[0019]
The constituent material in the spherical belt-shaped sealing body of the present invention and the manufacturing method of the spherical belt-shaped sealing body will be described.
[0020]
<About heat-resistant sheet material>
While stirring 300 parts by weight of concentrated sulfuric acid having a concentration of 98%, 5 parts by weight of a 60% aqueous solution of hydrogen peroxide is added as an oxidizing agent, and this is used as a reaction solution. The reaction solution is cooled and maintained at a temperature of 10 ° C., 100 parts by weight of scaly natural graphite powder having a particle size of 30 to 80 mesh is added to the reaction solution, and the reaction is performed for 30 minutes. After the reaction, the acid-treated graphite is separated by suction filtration, and the washing operation of stirring the acid-treated graphite with 300 parts by weight of water for 10 minutes and suction filtration is repeated twice to sufficiently remove the sulfuric acid content from the acid-treated graphite. . Next, the acid-treated graphite from which sulfuric acid has been sufficiently removed is dried in a drying furnace maintained at a temperature of 110 ° C. for 3 hours, and this is used as the acid-treated graphite raw material.
[0021]
The acid-treated graphite raw material is subjected to expansion treatment at a temperature of 1000 ° C. for 5 seconds to generate a decomposition gas, and expands the graphite layer by the gas pressure to form expanded graphite particles (expansion magnification 240 times). . The expanded graphite particles are roll-formed with a twin roll apparatus having a roll gap of 0.35 mm to produce an expanded graphite sheet having a thickness of 0.38 mm, which is used as a heat-resistant sheet material.
[0022]
<About reinforcing material>
The reinforcing material is austenitic SUS304, SUS316, ferritic SUS430 or the like, iron-based (JIS-G-3532) or galvanized iron wire (JIS-G-3547), and copper-based copper. Made of nickel alloy (white copper), copper-nickel-zinc alloy (white), brass, beryllium copper, and woven using one or more fine wires with a wire diameter of about 0.10 to 0.32 mm Or a wire mesh having a mesh of about 3 to 6 mm formed by knitting or knitting can be suitably used.
[0023]
As the reinforcing material, in addition to the above-described wire mesh, a so-called expanded metal in which a notch is made in a stainless steel thin plate or a phosphor bronze thin plate and at the same time the notch is expanded to form a regular mesh line can be used. A stainless steel sheet or phosphor bronze sheet having a thickness of about 0.3 to 0.5 mm and an expanded metal having a mesh of about 3 to 6 mm are suitable.
[0024]
<About lubricating composition>
Lubricant containing 10 to 25% by weight of boron nitride, 3 to 10% by weight of at least one of alumina and silica, 30 to 50% by weight of tetrafluoroethylene resin, and 20 to 40% by weight of fluorinated mica An aqueous dispersion containing 20 to 50% by weight of the composition as a solid content is used.
[0025]
The aqueous dispersion of the lubricating composition is applied to the surface of the heat-resistant sheet material by means of brushing, roller coating, spraying, or the like in the manufacturing method described later, and the surface of the heat-resistant sheet material is coated to form the heat-resistant sheet material. It is used to form a lubricating sliding layer on the surface of the substrate. The formed lubricating slip layer is spread to a uniform and minute thickness (10 to 300 μm) in the final compression step to form the outer layer of the spherical belt-shaped sealing body.
[0026]
Boron nitride in the lubricating composition exhibits excellent lubricity particularly at high temperatures. However, boron nitride alone adheres to the surface of the heat-resistant sheet, and as a result, a part of the spherical band-shaped substrate in the final compression step. There is a drawback that the adherence of the outer layer to the convex spherical surface is inferior and the surface is easily peeled off from the partially convex spherical surface. By blending at least one of alumina and silica in a certain ratio with respect to this boron nitride, the disadvantages of boron nitride are eliminated, the adherence to the surface of the heat-resistant sheet, and thus the spherical band shape in the final compression step The adherence of the outer layer to the partially convex spherical surface of the substrate can be greatly improved, and the retention of the outer layer made of the lubricating composition on the partially convex spherical surface of the ball-shaped substrate can be enhanced. The blending ratio of at least one of alumina and silica with respect to boron nitride is determined from the viewpoint of improving the adhesion without impairing the lubricity of boron nitride, and 3 to 10% by weight. A range is preferred.
[0027]
A certain proportion of ethylene tetrafluoride resin and mica fluoride are blended with respect to 10 to 25% by weight of boron nitride and 3 to 10% by weight of at least one of alumina and silica. The tetrafluoroethylene resin itself has a low friction property, and is blended in a composition comprising boron nitride and at least one of alumina and silica, so that a particularly low temperature range, for example, from room temperature. The effect of improving the low friction property at 300 ° C. and the effect of increasing the spreadability of the lubricating composition during compression molding are achieved. And the range of 30-50 weight% is suitable for the mixture ratio of a tetrafluoroethylene resin. The blending ratio of the ethylene tetrafluoride resin affects the low friction property, heat resistance and melt fluidity of the lubricating composition. When the blending amount is less than 30% by weight, the low friction property of the lubricating composition and If it exceeds 50% by weight, the proportion of the lubricating composition will increase and the heat resistance of the lubricating composition will be reduced. As a result, the melt flow of the lubricating composition will increase. There is a risk of causing sex.
[0028]
Mica fluoride is blended with a composition containing boron nitride, at least one of alumina and silica, and ethylene tetrafluoride resin to improve the heat resistance of the lubricating composition and to form an outer layer made of the lubricating composition. Strengthen and improve the durability of the outer layer. The blending ratio of the fluorinated mica is preferably in the range of 20 to 40% by weight. If the blending ratio is less than 20% by weight, it does not contribute to improving the heat resistance and durability of the lubricating composition, and if it exceeds 40% by weight, the low friction property of the ethylene tetrafluoride resin may be impaired.
[0029]
A lubricating composition comprising 10 to 25% by weight of boron nitride, 3 to 10% by weight of at least one of alumina and silica, 30 to 50% by weight of tetrafluoroethylene resin, and 20 to 40% by weight of mica fluoride. The graphite contained therein improves the heat resistance of the lubricating composition and improves the durability of the outer layer made of the lubricating composition. And the range of 3-10 weight% is suitable for the mixture ratio of graphite. When the blending ratio is less than 3% by weight, it does not contribute to the improvement of the heat resistance of the lubricating composition. When the blending ratio exceeds 10% by weight, the low friction property of the ethylene tetrafluoride resin in the lubricating composition may be impaired.
[0030]
Next, the manufacturing method of the spherical belt shaped sealing body which consists of the constituent material mentioned above is demonstrated based on drawing.
[0031]
(First Step) As shown in FIG. 3, a strip wire mesh 4 having a predetermined width D is produced by passing a tubular wire mesh 1 formed by knitting a thin metal wire into a cylindrical shape between rollers 2 and 3, thereby forming the strip wire mesh. Reinforcing sheet material 5 obtained by cutting 4 into a predetermined length L or a belt-like wire mesh formed directly by weaving or knitting a thin metal wire into a predetermined width D and length L prepare.
[0032]
(Second Step) As shown in FIG. 4, the width d of the reinforcing sheet material 5 has a width d of 1.1 × D to 2.1 × D, and the length L of the reinforcing sheet material 5. A heat-resistant sheet material 7 cut to have a length 1 of 1.30 × L to 2.70 × L is prepared.
[0033]
(Third step) In order to allow the heat-resistant material to be exposed as a whole on the large-diameter side end surface, which is an annular end surface on at least one end side in the axial direction of the partially convex spherical surface in a spherical belt-shaped seal body described later, As shown in FIG. 5, the heat-resistant sheet material is at most 0.1 × D to 0.8 × D from at least one edge 8 in the width direction of the reinforcing sheet material 5 which becomes the large-diameter side end surface of the partially convex spherical surface. 7 protrudes in the width direction, and the amount of protrusion δ1 in the width direction of the heat-resistant sheet material 7 from the end edge 8 is from the other end edge 9 in the width direction of the reinforcing sheet material 5 on the small diameter end surface side of the partially convex spherical surface. And the heat-resistant sheet material 7 in the length direction is 0.30 × L to 1.70 × L at the maximum from one edge 10 in the length direction of the reinforcing sheet material 5. And the other edge 11 in the length direction of the reinforcing sheet material 5 The end edge 12 in the length direction of the heat-resistant sheet material 7 corresponding to the edge 11 is substantially matched, and the width direction and the length direction of the reinforcing sheet material 5 and the heat-resistant sheet material 7 are matched to each other. A polymer 13 is obtained in which the reinforcing sheet material 5 and the heat-resistant sheet material 7 are superposed on each other.
[0034]
(Fourth Step) The polymer 13 is spirally wound with the heat-resistant sheet material 7 on the inside as shown in FIG. 6 and wound so that the heat-resistant sheet material 7 is increased once. A cylindrical base material 14 with the heat-resistant sheet material 7 exposed on both sides is formed. As the heat resistant sheet material 7, 1.30 × the length L of the reinforcing sheet material 5 so that the number of windings of the heat resistant sheet material 7 in the cylindrical base material 14 is larger than the number of windings of the reinforcing sheet material 5. Those having a length l of 2.70 × L from L are prepared in advance. In the cylindrical base material 14, as shown in FIG. 7, the heat-resistant sheet material 7 protrudes from the one edge 8 of the reinforcing sheet material 5 in the width direction by δ1 on the one edge side in the width direction, and is also heat-resistant. On the other edge side of the sheet material 7 in the width direction, δ2 protrudes from the other edge 9 of the reinforcing sheet material 5 in the width direction.
[0035]
(Fifth Step) As shown in FIG. 8, which is the same as the heat-resistant sheet material 7, but has a width d smaller than the width D and a length l enough to wind the cylindrical base material 14 once. A heat-resistant sheet material 7 is prepared separately. On one surface of the heat-resistant sheet material 7, 10 to 25% by weight of boron nitride, 3 to 10% by weight of at least one of alumina and silica, and 30 of tetrafluoroethylene resin are provided. 10 to 25% by weight of an aqueous dispersion or boron nitride containing a dispersion containing 20 to 50% by weight as a solid content of a lubricating composition containing -50% by weight and 20 to 40% by weight of mica fluoride. A lubricating composition containing 3 to 10% by weight of at least one of them, 30 to 50% by weight of ethylene tetrafluoride resin, 20 to 40% by weight of fluorinated mica, and 3 to 10% by weight of graphite is solid content. As 20-5 Wt% dispersion containing aqueous dispersion brushing, roller coating, and coated by a means of a spray or the like, which is dried to form a lubricating sliding layer 15 of the lubricating composition, as shown in FIG.
[0036]
(Sixth Step) The width d of the heat-resistant sheet material 7 comprising the strip-shaped wire mesh 4 described in the first step and provided with the lubricating slip layer 15 is 1.05 × d to 1.09 × d. In addition, a reinforcing sheet material 5 having a length substantially the same as the length l of the heat-resistant sheet material 7 is prepared separately, and as shown in FIG. 10, a heat-resistant sheet material 7 having a lubricated slip layer 15 is provided in the belt-shaped wire mesh 4. As shown in FIG. 11, they are inserted and integrated between rollers 16 and 17, and a lubrication composed of a heat-resistant sheet material 7 and a lubricating composition deposited on one surface of the heat-resistant sheet material 7. An outer layer forming member 18 comprising the sliding layer 15, the lubricating sliding layer 15, and the reinforcing sheet material 5 made of a wire mesh disposed on the heat resistant sheet material 7 is formed.
[0037]
(Seventh step) The outer layer forming member 18 obtained in this way is wound around the outer peripheral surface of the cylindrical base material 14 with the lubricating sliding layer 15 on the outside, and a preliminary cylindrical molded body 19 as shown in FIG. 12 is produced. To do.
[0038]
(Eighth step) By including, on the inner surface, a cylindrical wall surface 20, a partially concave spherical wall surface 21 continuous with the cylindrical wall surface 20, and a through hole 22 continuous with the partially concave spherical wall surface 21, and inserting a stepped core 23 into the through hole 22 A mold 26 as shown in FIG. 13 in which a hollow cylindrical portion 24 and a spherical belt-shaped hollow portion 25 connected to the hollow cylindrical portion 24 are formed is prepared, and a preliminary cylindrical molded body 19 is provided on the stepped core 23 of the mold 26. Insert.
[0039]
The preliminary cylindrical molded body 19 positioned in the hollow cylindrical portion 24 and the spherical belt-shaped hollow portion 25 of the mold 26 is 1 to 3 ton / cm in the core axial direction.21 and 2 and has a through-hole 27 at the center as shown in FIGS. 1 and 2, and a large diameter side and a small diameter of a cylindrical inner surface 28, a partially convex spherical surface 29, and a partially convex spherical surface 29. A spherical belt-shaped sealing body 30 including a spherical belt-shaped substrate 33 defined by the annular end surfaces 31 and 32 on the side and an outer layer 34 formed integrally with the partially convex spherical surface 29 of the spherical belt-shaped substrate 33 is produced. To do. By this compression molding, the ball-shaped base member 33 is formed by compressing the heat-resistant sheet material 7 and the reinforcing sheet material 5 made of a wire mesh so that they are intertwined with each other and have structural integrity, and the reinforcement made of a compressed wire mesh. And a heat-resistant material made of expanded graphite, which is mixed and integrated with the reinforcing material and compressed, and the outer layer 34 includes the lubricating sliding layer 15 and the lubricating material. The reinforcing sheet 5 made of a wire mesh integrated with the slip layer 15 is compressed and entangled with each other to have structural integrity. The boron nitride is 10 to 25% by weight and at least of alumina and silica. A lubricating composition comprising 3 to 10% by weight of one, 30 to 50% by weight of ethylene tetrafluoride resin and 20 to 40% by weight of mica fluoride or 10 to 25% by weight of boron nitride, alumina and Lubricating composition comprising 3 to 10% by weight of at least one of silica, 30 to 50% by weight of tetrafluoroethylene resin, 20 to 40% by weight of fluorinated mica, and 3 to 10% by weight of graphite. A partially convex spherical outer surface 36 exposed to the outside in the outer layer 34 is composed of the lubricating composition and the reinforcing material. A heat-resistant material made of expanded graphite of the spherical base 33 is obtained as a result of a smooth lubrication-sliding layer that is mixed and integrated, and the cylindrical inner surface 28 that defines the through-hole 27 is a surface on which the compressed heat-resistant sheet material 7 is exposed. The annular end surface 31 is a material of the heat-resistant sheet material 7 and is compressed and expanded as a result of the portion of the heat-resistant sheet material 7 protruding from the reinforcing sheet material 5 in the width direction being bent and extended. Covered with graphite.
[0040]
In the second step, the width d of the reinforcing sheet material 5 is 1.1 × D to 2.1 × D, and the length L of the reinforcing sheet material 5 is 1.30 ×. Instead of preparing the heat-resistant sheet material 7 cut to have a length l of 2.70 × L from L, 1.1 × D to 2.1 × D with respect to the width D of the reinforcing sheet material 5 A heat-resistant sheet material 7 having a width d but cut to have a length l substantially the same as the length L of the reinforcing sheet material 5 is prepared. At least one edge 8 in the width direction of the reinforcing sheet material 5 on the large-diameter end face side of the spherical surface protrudes in the width direction by a maximum of 0.1 × D to 0.8 × D and from the edge 8. This protrusion amount δ1 in the width direction of the heat-resistant sheet material 7 is the other in the width direction of the reinforcing sheet material 5 on the small diameter end surface side of the partially convex spherical surface. The both end edges in the length direction are substantially coincided with the both end edges in the length direction of the reinforcing sheet material 5 and overlapped with the reinforcing sheet material 5 The polymer 13 is obtained, and the polymer 13 is wound in a spiral shape with the reinforcing sheet material 5 inside in the fourth step, the reinforcing sheet material 5 is exposed on the inner peripheral side, and the heat-resistant sheet material 7 is provided on the outer peripheral side. The exposed cylindrical base material 14 may be formed, and the cylindrical base material 14 may be manufactured by the same method as described above after the fifth step. The cylindrical inner surface 28 defining the hole 27 becomes a surface where the compressed heat-resistant sheet material 5 and the heat-resistant sheet material 7 compressed and filled in the mesh of the reinforcing sheet material 5 are exposed. Thus, the expanded graphite and the heat-resistant material made of wire mesh are exposed.
[0041]
The spherical belt-shaped sealing body 30 is used by being incorporated in, for example, an exhaust pipe spherical joint shown in FIG. That is, the flange 200 is erected and fixed on the outer peripheral surface of the upstream side exhaust pipe 100 connected to the engine side, leaving the pipe end 101, and the ball-shaped seal body 30 is attached to the pipe end 101. The cylindrical inner surface 28 that defines the through-hole 27 is fitted, and the ball-shaped seal body 30 is abutted against the flange 200 and seated on the large-diameter side end surface 31. A diameter-enlarging portion 301 having a concave spherical portion 302 at the end and a flange portion 303 at the periphery of the opening of the concave spherical portion 302 is formed integrally with the upstream exhaust pipe 100 and connected to the muffler side. The downstream exhaust pipe 300 is disposed with the concave spherical surface portion 302 in sliding contact with the partially convex spherical outer surface 36 of the spherical belt-shaped seal body 30.
[0042]
In the exhaust pipe spherical joint shown in FIG. 14, a pair of bolts 400 having one end fixed to the flange 200 and the other end inserted through the flange portion 303 of the enlarged diameter portion 301 and the enormous head and flange portion of the bolt 400. A spring force is always applied to the downstream side exhaust pipe 300 in the direction of the upstream side exhaust pipe 100 by the pair of coil springs 500 arranged between 303. The exhaust pipe spherical joint is formed on the partially convex spherical outer surface 36 of the ball-shaped seal body 30 and the end of the downstream exhaust pipe 300 with respect to the relative angular displacement generated in the upper and downstream exhaust pipes 100 and 300. The enlarged diameter portion 301 is allowed to slide in contact with the concave spherical surface portion 302.
[0043]
【Example】
Next, the present invention will be described in detail based on examples. In addition, this invention is not limited to these Examples at all.
[0044]
<Production of heat-resistant sheet material>
While stirring 300 parts by weight of concentrated sulfuric acid having a concentration of 98%, 5 parts by weight of a 60% aqueous solution of hydrogen peroxide was added as an oxidizing agent, and this was used as a reaction solution. The reaction solution was cooled and maintained at a temperature of 10 ° C., and 100 parts by weight of scaly natural graphite powder having a particle size of 30 to 80 mesh was added to the reaction solution, followed by reaction for 30 minutes. After the reaction, the acid-treated graphite was separated by suction filtration, and the washing operation of stirring the acid-treated graphite with 300 parts by weight of water for 10 minutes and suction filtration was repeated twice to sufficiently remove the sulfuric acid content from the acid-treated graphite. . Subsequently, the acid-treated graphite from which the sulfuric acid content was sufficiently removed was dried in a drying furnace maintained at a temperature of 110 ° C. for 3 hours to obtain an acid-treated graphite raw material.
[0045]
This acid-treated graphite raw material was subjected to expansion treatment at a temperature of 1000 ° C. for 5 seconds to generate decomposition gas, and expanded graphite particles (expansion magnification: 240 times) were obtained by expanding the graphite layer by the gas pressure. . The expanded graphite particles were roll-formed with a twin-roll rolling device to produce an expanded graphite sheet having a thickness of 0.38 mm.
[0046]
<Production of reinforcing sheet material>
As the metal thin wire, two austenitic stainless steel wires (SUS304) having a wire diameter of 0.28 mm are used to produce a cylindrical wire mesh 1 having a mesh size of 4.0 mm, and this is passed between rollers 2 and 3 to form a belt-like wire mesh 4. This was used as the reinforcing sheet material 5.
[0047]
Example 1
A heat-resistant sheet material 7 cut to a width of 55 mm and a length of 550 mm and a reinforcing sheet material 5 made of a belt-like wire mesh 4 prepared to a width of 36 mm and a length of 360 mm are prepared, and the heat-resistant sheet material 7 is wound in a spiral manner. After that, the reinforcing sheet material 5 was superposed on the inner side of the heat-resistant sheet material 7 and wound in a spiral shape to produce a cylindrical base material 14 in which the heat-resistant sheet material 7 was positioned on the outermost periphery. In the cylindrical base material 14, both end portions of the heat-resistant sheet material 7 protrude in the width direction of the reinforcing sheet material 5 (see FIG. 7).
[0048]
A heat-resistant sheet material 7 that is the same as the heat-resistant sheet material 7 and cut to a width of 48 mm and a length of 212 mm is separately prepared, and one surface of the heat-resistant sheet material 7 has 20% by weight of boron nitride having an average particle diameter of 7 μm. And an aqueous dispersion (nitriding) containing 30% by weight of a lubricating composition comprising 8% by weight of alumina powder having an average particle size of 0.6 μm, 34% by weight of tetrafluoroethylene resin and 38% by weight of mica fluoride. 3 times coating operation of roller coating with 6% by weight of boron, 2.4% by weight of alumina, 10.2% by weight of tetrafluoroethylene resin, 11.4% by weight of mica fluoride and 70% by weight of water and drying. The lubricating sliding layer 15 of the lubricating composition was formed repeatedly.
[0049]
A cylindrical wire mesh 1 having a mesh size of 4.0 mm was produced using one austenitic stainless steel wire having a wire diameter of 0.28 mm as a thin metal wire, and this was passed through rollers 2 and 3 to produce a 52 mm wide, long A belt-like metal mesh 4 having a thickness of 212 mm is separately prepared, and the heat-resistant sheet material 7 provided with the lubricating sliding layer 15 is inserted into the belt-like metal mesh 4, and these are integrated by passing between the rollers 16 and 17. An outer layer forming member 18 in which the lubricated sliding layer 15 and the metal mesh were mixed was produced.
[0050]
A pre-cylindrical molded body 19 was produced by winding the outer layer forming member 18 around the outer peripheral surface of the cylindrical base material 14 with the surface where the lubricated slip layer 15 and the metal mesh were mixed outward. The inner surface includes a cylindrical wall surface 20, a partially concave spherical wall surface 21 continuous to the cylindrical wall surface 20, and a through hole 22 continuous to the partially concave spherical wall surface 21, and a hollow cylindrical portion is internally inserted by inserting a stepped core 23 into the through hole 22. 24 and a hollow cylindrical portion 25 connected to the hollow cylindrical portion 24 are prepared, a preliminary cylindrical molded body 19 is inserted into the outer peripheral surface of the stepped core 23 of the mold 26, and the preliminary cylindrical molding is performed. The body 19 was positioned in the hollow part of the mold 26.
[0051]
The preliminary cylindrical molded body 19 positioned in the hollow portion of the mold 26 is 3 ton / cm in the core axial direction.2The cylindrical inner surface 28, the partially convex spherical surface 29, and the annular end surfaces 31 and 32 on the large diameter side and the small diameter side of the partial convex spherical surface 29 are formed. A spherical belt-shaped sealing body 30 including a prescribed spherical belt-shaped substrate 33 and an outer layer 34 integrally formed on the partially convex spherical surface 29 of the spherical belt-shaped substrate 33 was produced. By this compression molding, the ball-shaped base member 33 is formed by compressing the heat-resistant sheet material 7 and the reinforcing sheet material 5 made of a wire mesh so that they are intertwined with each other and have structural integrity, and the reinforcement made of a compressed wire mesh. And a heat-resistant material made of expanded graphite, which is mixed and integrated with the reinforcing material and compressed, and the outer layer 34 includes the lubricating sliding layer 15 and the lubricating material. The reinforcing sheet material 5 made of a wire mesh integrated with the slip layer 15 is compressed and entangled with each other so as to have structural integrity, 20% by weight of boron nitride, 8% by weight of alumina, and ethylene tetrafluoride. It has a lubricating composition comprising 34% by weight of resin and 38% by weight of fluorinated mica, and a reinforcing material comprising a wire mesh mixed and integrated with this lubricating composition, and is exposed to the outside in the outer layer 34. Partially convex sphere The outer surface 36 is a smooth lubricating sliding surface in which the lubricating composition and the reinforcing material are mixed and integrated, and the compressed inner surface of the heat-resistant sheet material 7 is exposed on the cylindrical inner surface 28 that defines the through hole 27. As a result, the heat-resistant material made of expanded graphite forming the spherical base 33 is exposed, and the annular end surface 31 is bent and spread at the portion of the heat-resistant sheet material 7 that protrudes from the reinforcing sheet material 5 in the width direction. As a result, the heat-resistant sheet material 7 is covered with compressed expanded graphite.
[0052]
Example 2
A cylindrical base material 14 similar to that in Example 1 was produced. A heat-resistant sheet material 7 similar to the heat-resistant sheet material 7 is prepared separately, and 14% by weight of boron nitride having an average particle diameter of 7 μm and an average particle diameter are formed on one surface of the heat-resistant sheet material 7 cut to a width of 48 mm and a length of 212 mm. An aqueous dispersion (boron nitride 4.2) containing 30% by weight as a solid content of a lubricating composition comprising 8% by weight of 0.6 μm alumina powder, 40% by weight of tetrafluoroethylene resin and 38% by weight of mica fluoride. Lubricating composition by repeating the coating operation three times with a roller coating and drying for 3% by weight, 2.4% by weight of alumina, 12% by weight of tetrafluoroethylene resin, 11.4% by weight of fluorinated mica and 70% by weight of water. A lubricating slip layer 15 of the object was formed. Thereafter, a ball-shaped seal body was produced in the same manner as in Example 1.
[0053]
Example 3
A cylindrical base material 14 similar to that in Example 1 was produced. A heat-resistant sheet material 7 similar to the heat-resistant sheet material 7 is prepared separately, and 19% by weight of boron nitride having an average particle diameter of 7 μm and an average particle diameter are formed on one surface of the heat-resistant sheet material 7 cut to a width of 48 mm and a length of 212 mm. Aqueous dispersion (boron nitride 5.7) containing 30% by weight as a solid composition of a lubricating composition comprising 8% by weight of 0.6 μm alumina powder, 40% by weight of tetrafluoroethylene resin and 33% by weight of mica fluoride. Lubricating composition by repeating the coating operation 3 times by roller coating and drying for 3% by weight, 2.4% by weight of alumina, 12% by weight of tetrafluoroethylene resin, 9.9% by weight of fluorinated mica and 70% by weight of water. A lubricating slip layer 15 of the object was formed. Thereafter, a ball-shaped seal body was produced in the same manner as in Example 1.
[0054]
Example 4
A cylindrical base material 14 similar to that in Example 1 was produced. A heat-resistant sheet material 7 similar to the above-mentioned heat-resistant sheet material 7 is separately prepared, and 21% by weight of boron nitride having an average particle diameter of 7 μm and an average particle diameter are formed on one surface of the heat-resistant sheet material 7 cut to a width of 48 mm and a length of 212 mm. Aqueous dispersion (boron nitride 6.3 containing 30% by weight of a lubricating composition comprising 9% by weight of 0.6 μm alumina powder, 40% by weight of tetrafluoroethylene resin and 30% by weight of mica fluoride as solids. Weight coating, 2.7 wt% alumina, 12 wt% tetrafluoroethylene resin, 9 wt% fluorinated mica and 70 wt% moisture), and the coating operation of drying is repeated three times. A lubricating sliding layer 15 was formed. Thereafter, a ball-shaped seal body was produced in the same manner as in Example 1.
[0055]
Example 5
A cylindrical base material 14 similar to that in Example 1 was produced. A heat-resistant sheet material 7 similar to the heat-resistant sheet material 7 is prepared separately, and on one surface of the heat-resistant sheet material 7 cut to a width of 48 mm and a length of 212 mm, 21% by weight of boron nitride having an average particle diameter of 7 μm and an average particle An aqueous dispersion containing 30% by weight of a lubricating composition comprising 9% by weight of alumina powder having a diameter of 0.6 μm, 42% by weight of tetrafluoroethylene resin, 23% by weight of fluorinated mica and 5% by weight of graphite. (Boronitride 6.3% by weight, alumina 2.7% by weight, tetrafluoroethylene resin 12.6% by weight, fluorinated mica 6.9% by weight, graphite 1.5% by weight and moisture 70% by weight) The coating operation of coating and drying was repeated three times to form a lubricating slip layer of the lubricating composition. Thereafter, a ball-shaped seal body was produced in the same manner as in Example 1.
[0056]
Comparative Example 1
A cylindrical base material 14 similar to that in Example 1 was produced. A heat-resistant sheet material 7 that is the same as the above heat-resistant sheet material 7 and cut to a width of 48 mm and a length of 212 mm is separately prepared. An aqueous dispersion containing 30% by weight of an ethylene resin as a solid content (30% by weight of tetrafluoroethylene resin, 70% by weight of water) is applied with a roller and dried. The coating operation is repeated three times to repeat the process. The lubricating slip layer was formed as an outer layer forming member.
[0057]
A pre-cylindrical molded body was produced by winding the outer layer forming member around the outer peripheral surface of the cylindrical base material 14 with the surface on which the lubricated slip layer was deposited formed outside. Thereafter, a spherical belt-like sealing body was produced in the same manner as in Example 1. By this compression molding, the ball-shaped base of the ball-shaped seal body is compressed by compressing the heat-resistant sheet material 7 and the reinforcing sheet material 5 made of a wire mesh so that they are intertwined with each other and have structural integrity. The outer layer of the ball-shaped seal body has a reinforcing material made of a wire mesh and a heat-resistant material made of expanded graphite that is filled with the mesh of the reinforcing material and is mixed and integrated with the reinforcing material. Comprises a lubricating slip layer of compressed tetrafluoroethylene resin and has a lubricating composition made of tetrafluoroethylene resin, and the partially convex spherical outer surface exposed to the outside in the outer layer is As a result, a smooth lubricating sliding surface of the lubricating composition made of ethylene tetrafluoride resin is formed, and the compressed heat-resistant sheet material 7 is exposed on the inner surface of the cylinder that defines the through hole of the spherical belt-shaped sealing body. Strip base The heat-resistant material made of expanded graphite is exposed, and the annular end surface of the spherical belt-shaped sealing body is bent and extended at the portion of the heat-resistant sheet material 7 that protrudes from the reinforcing sheet material 5 in the width direction. 7 and covered with compressed expanded graphite.
[0058]
Comparative Example 2
A cylindrical base material 14 similar to that in Example 1 was produced. A heat-resistant sheet material 7 that is the same as the above heat-resistant sheet material 7 and cut to a width of 48 mm and a length of 212 mm is separately prepared. An aqueous dispersion containing 30% by weight of an ethylene resin as a solid content (30% by weight of tetrafluoroethylene resin, 70% by weight of water) is applied with a roller and dried. The coating operation is repeated three times to repeat the process. A lubricating slip layer was formed. In the same manner as in Example 1, after producing the cylindrical wire mesh 1, a belt metal mesh 4 produced by passing this between the rollers 2 and 3 is separately prepared, and the belt metal mesh 4 is lubricated with a tetrafluoroethylene resin. An outer layer forming member in which a heat-resistant sheet material 7 having a slip layer is inserted and integrated between the rollers 16 and 17 and a lubricating slip layer made of ethylene tetrafluoride resin and a wire mesh are mixed on one surface is formed. Produced.
[0059]
A pre-cylindrical molded body was produced by winding the outer layer forming member around the outer peripheral surface of the same cylindrical base material 14 as in Example 1 with the surface in which the lubrication assembly sliding layer and the wire mesh were mixed outward. Thereafter, a spherical belt-like sealing body was produced in the same manner as in Example 1. By this compression molding, the ball-shaped base of the ball-shaped seal body is compressed by compressing the heat-resistant sheet material 7 and the reinforcing sheet material 5 made of a wire mesh so that they are intertwined with each other and have structural integrity. The outer layer of the ball-shaped seal body has a reinforcing material made of a wire mesh and a heat-resistant material made of expanded graphite that is filled with the mesh of the reinforcing material and is mixed and integrated with the reinforcing material. Is formed by compressing a lubricating slip layer made of ethylene tetrafluoride resin and a reinforcing material 5 made of a wire mesh integrated with the lubricating slip layer so as to be intertwined with each other and to have structural integrity. A partially convex spherical outer surface exposed to the outside in such an outer layer has a lubricating composition composed of an ethylene resin and a reinforcing material composed of a wire mesh mixed and integrated in the lubricating composition. Resin or As a result, the lubricating composition and the reinforcing material are mixed and integrated into a smooth lubricating sliding surface, and the compressed heat-resistant sheet material 7 is exposed on the inner surface of the cylinder that defines the through hole of the ball-shaped seal body. The heat-resistant material made of expanded graphite forming the spherical belt-shaped substrate is exposed, and the annular end surface of the spherical belt-shaped seal body is bent and spread out at the portion of the heat-resistant sheet material 7 protruding from the reinforcing sheet material 5 in the width direction. As a result, the heat-resistant sheet material 7 is covered with compressed expanded graphite.
[0060]
Next, the following tests were carried out using the exhaust pipe spherical joint shown in FIG. 14 for the above-described spherical belt-shaped sealing bodies according to the examples and the spherical belt-shaped sealing bodies according to the comparative examples.
[0061]
<Test 1: 300 ° C. durability test>
<Test conditions>
Pressing force by a coil spring (spring set force): 706N
Oscillation angle: ± 0.5 °
Oscillation frequency: 12 hertz (Hz)
Atmospheric temperature (outer surface temperature of concave spherical surface portion 302 shown in FIG. 14): 300 ° C.
Endurance time: 24 hours
<Test 2: 500 ° C. durability test>
<Test conditions>
Pressing force by a coil spring (spring set force): 706N
Oscillation angle: ± 0.5 °
Oscillation frequency: 12 hertz (Hz)
Atmospheric temperature (same as above): 500 ° C
Endurance time: 24 hours
[0062]
<Test method (both test 1 and test 2)>
After raising the ambient temperature to 300 ° C. (Test 1) and 500 ° C. (Test 2), a rocking motion of ± 0.5 ° was continuously performed for 24 hours at a rocking frequency of 12 Hz, and 4 hours after the start of the test. Each friction torque (N · m) was measured and whether or not abnormal friction noise was generated was confirmed.
[0063]
<Test 3: Hot durability test>
<Test conditions>
Pressing force by a coil spring (spring set force): 706N
Swing angle: ± 3 °
Oscillation frequency: 12 hertz (Hz)
Atmospheric temperature (outer surface temperature of concave spherical surface portion 302 shown in FIG. 14): 500 ° C.
[0064]
<Test method (Test 3)>
After performing 45,000 cycles of ± 3 ° rocking motion at a frequency of 12 Hz at room temperature, the ambient temperature was raised to a temperature of 500 ° C. while continuing the rocking motion. When the atmospheric temperature reaches 500 ° C., 115,000 rocking motions are performed, and then the ambient temperature is lowered to room temperature while continuing the rocking motion ( The total number of oscillations of 250,000 times, that is, the number of oscillations of 45,000 times during temperature reduction) is 4 cycles.
[0065]
The evaluation of the occurrence of abnormal frictional noise was performed in the following manner for both Test 1, Test 2 and Test 3.
Evaluation symbol I: No abnormal frictional noise.
Evaluation symbol II: An abnormal frictional sound can be heard with the ear close to the test piece.
Evaluation symbol III: The sound is erased by the living environment sound at a fixed position (position 1.5 m away from the test piece), which is generally difficult to distinguish but can be identified as an abnormal friction sound by the person in charge of the test.
Evaluation symbol IV: A sound that can be identified as an abnormal frictional sound (unpleasant sound) by anyone at a fixed position.
[0066]
The test results of Test 1 and Test 2 of the ball-shaped seal bodies of Examples 1 to 5 obtained by the above test method are shown in Table 1, and Test 1 and Test of the ball-shaped seal bodies of Comparative Example 1 and Comparative Example 2 are shown in Table 1. Table 2 shows the test results of 2 and Table 3 shows the test results of Test 3 of the ball-shaped seal bodies of Examples 1 to 5 and the ball-shaped seal bodies of Comparative Examples 1 and 2. In Tables 1 to 3, BN in the component composition of the lubricating slip layer is boron nitride, Al2O3Represents alumina, and PTFE represents tetrafluoroethylene resin.
(The following margin)
[0067]
[Table 1]
Figure 0004209632
(The following margin)
[0068]
[Table 2]
Figure 0004209632
(The following margin)
[0069]
[Table 3]
Figure 0004209632
[0070]
From the test results shown in the above table, under the conditions of Test 1, no performance difference was observed between Examples 1 to 5 and Comparative Examples 1 and 2, and no abnormal frictional noise was observed. . On the other hand, under the conditions of Test 2 and Test 3, generation of abnormal frictional noise was recognized in the ball-shaped seal body made of the comparative example. In particular, the spherical belt-shaped sealing body of Comparative Example 1 was melted and softened in the outer layer of the tetrafluoroethylene resin when the ambient temperature exceeded 300 ° C. under the conditions of Test 3, and the tetrafluoride was continuously oscillated in that state. The ethylene resin is flowed and discharged from the partially convex spherical outer surface 36, and the friction between the spherical belt-shaped sealing body and the counterpart material shifts to the friction with the heat-resistant material (expanded graphite), which causes the generation of abnormal frictional noise. Moreover, since the partially convex spherical outer surface of the spherical belt-shaped sealing body of Comparative Example 2 is a mixture of a tetrafluoroethylene resin and a reinforcing material made of a wire mesh, the spherical belt-shaped sealing body as in Comparative Example 1 The phenomenon that the outer layer ethylene tetrafluoride resin flows out from the partially convex spherical outer surface does not occur, but the low friction property of the ethylene tetrafluoride resin disappears when the ambient temperature is 500 ° C. The friction between the body and the mating material shifted to metal-to-metal friction with the reinforcing material (wire mesh), causing abnormal frictional noise.
[0071]
On the other hand, the ball-shaped sealing body 30 according to the embodiment is boron nitride and mica fluoride, or boron nitride, mica fluoride and graphite blended in the lubricating composition forming the partially convex spherical outer surface 36 of the outer layer 34. Thus, the heat resistance and durability of the partially convex spherical outer surface 36 of the outer layer 34 are improved by the lubricating composition, so that the lubricity of the partially convex spherical outer surface 36 is impaired even at an ambient temperature of 500 ° C. I will not. In the friction between the ball-shaped seal body and the mating member, the lubricating composition of the partially convex spherical outer surface 36 is transferred to the mating material surface and a lubricating film is formed thereon. In addition, since the lubricating composition and the reinforcing material made of wire mesh are mixed and integrated with each other, the partially convex spherical outer surface 36 slides on the transfer formed lubricating coating, so that the friction torque is stable and abnormal friction noise is generated. Does not happen.
[0072]
From the above test results, the ball-shaped seal body 30 of the example has a stable friction torque with respect to the relative angular displacement of the upper and downstream exhaust pipes and an abnormal friction noise in a wide range of ambient temperature from room temperature to 500 ° C. While it can be tolerated without occurrence, the spherical belt-shaped sealing body according to the comparative example is limited to the ambient temperature range from room temperature to 300 ° C., and is naturally restricted by the use conditions and the use site.
[0073]
【The invention's effect】
The spherical band-shaped sealing body of the present invention comprises 10 to 25% by weight of boron nitride, 3 to 10% by weight of at least one of alumina and silica, 30 to 50% by weight of ethylene tetrafluoride resin, and 20% of mica fluoride. A lubricating composition comprising -40 wt%, or 10-25 wt% boron nitride, 3-10 wt% at least one of alumina and silica, and 30-50 wt% ethylene tetrafluoride resin. And a lubricating composition comprising 20 to 40% by weight of fluorinated mica and 3 to 10% by weight of graphite and a reinforcing material made of a wire mesh are mixed and integrated into a smooth lubricating sliding surface. Since it has a partially convex spherical outer surface, and this partial convex spherical outer surface is a sliding surface with the counterpart material, it is stable in sliding with the counterpart material over a wide range of ambient temperature from room temperature to 500 ° C. Due to the friction torque It can allow relative angular displacement of the flow-side exhaust pipe, this time, never causing an abnormal frictional noise.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a ball-shaped seal body of the present invention.
FIG. 2 is a partially enlarged cross-sectional view of a partially convex spherical outer surface of the ball-shaped seal body shown in FIG.
FIG. 3 is an explanatory view of a method for forming a reinforcing sheet material made of a wire mesh in the manufacturing process of the spherical belt-shaped sealing body of the present invention.
FIG. 4 is a perspective view of a heat-resistant sheet material in the manufacturing process of the ball-shaped seal body of the present invention.
FIG. 5 is a perspective view of a polymer in the manufacturing process of the spherical belt-shaped sealing body of the present invention.
FIG. 6 is a plan view of a cylindrical base material in the manufacturing process of the ball-shaped seal body of the present invention.
7 is a longitudinal sectional view of the cylindrical base material shown in FIG.
FIG. 8 is a perspective view of a heat-resistant sheet material in the manufacturing process of the ball-shaped seal body of the present invention.
FIG. 9 is a longitudinal cross-sectional view of a heat-resistant sheet material on which a lubricating slip layer is formed in the manufacturing process of the spherical belt-shaped sealing body of the present invention.
FIG. 10 is an explanatory diagram of a method for forming an outer layer forming member in the manufacturing process of the ball-shaped seal body of the present invention.
FIG. 11 is an explanatory diagram of a method for forming an outer layer forming member in the manufacturing process of the spherical belt-shaped sealing body of the present invention.
FIG. 12 is a plan view of a pre-cylindrical molded body in the manufacturing process of the ball-shaped seal body of the present invention.
FIG. 13 is a longitudinal sectional view showing a state in which a pre-cylindrical molded body is inserted into a mold in the manufacturing process of the ball-shaped seal body of the present invention.
FIG. 14 is a vertical cross-sectional view of an exhaust pipe spherical joint incorporating the ball-shaped seal body of the present invention.
[Explanation of symbols]
1 Tubular wire mesh
4 Banded wire mesh
5 Reinforcing sheet material
7 Heat-resistant sheet material
14 Tubular base material
15 Lubrication sliding layer
18 Outer layer forming member
19 Preliminary cylindrical molded body
26 Mold
30 Ball-like seal body

Claims (4)

円筒内面と部分凸球面状面と部分凸球面状面の大径側及び小径側の環状の端面により規定された球帯状基体と、この球帯状基体の部分凸球面状面に一体的に形成された外層とを備えた、とくに排気管継手に用いられる球帯状シール体であって、球帯状基体は、圧縮された金網からなる補強材と、この補強材の金網の網目を充填し、かつこの補強材と混在一体化されて圧縮された膨張黒鉛からなる耐熱材とを有しており、外層は、窒化ホウ素を10〜25重量%とアルミナ及びシリカのうちの少なくとも一方を3〜10重量%と四ふっ化エチレン樹脂を30〜50重量%と弗化雲母を20〜40重量%とを有してなる潤滑組成物と、この潤滑組成物に混在一体化された金網からなる補強材とを有しており、外層において外部に露出した部分凸球面状外面は、前記の潤滑組成物と補強材とが混在一体化された平滑な潤滑すべり面となっていることを特徴とする球帯状シール体。A spherical base defined by the cylindrical inner surface, a partially convex spherical surface, and annular end surfaces on the large diameter side and the small diameter side of the partial convex spherical surface, and a partially convex spherical surface of the spherical belt base. A spherical band-shaped sealing body, particularly used for an exhaust pipe joint. It has a heat-resistant material made of expanded graphite mixed and integrated with a reinforcing material, and the outer layer is 10 to 25% by weight of boron nitride and 3 to 10% by weight of at least one of alumina and silica. And a lubricating composition comprising 30 to 50% by weight of tetrafluoroethylene resin and 20 to 40% by weight of fluorinated mica, and a reinforcing material comprising a wire mesh mixed and integrated in the lubricating composition. A partially convex sphere that is exposed to the outside in the outer layer Jogaimen is spherical annular seal member, characterized in that said lubricating composition and the reinforcing material is in the mixed integrated smooth lubrication sliding surface. 潤滑組成物は、黒鉛を3〜10重量%の割合で含有している請求項1に記載の球帯状シール体。The ball-shaped sealing body according to claim 1, wherein the lubricating composition contains graphite in a proportion of 3 to 10% by weight. 円筒内面は、膨張黒鉛からなる耐熱材の露出面からなる請求項1又は2に記載の球帯状シール体。The spherical belt-shaped sealing body according to claim 1 or 2, wherein the cylindrical inner surface is formed of an exposed surface of a heat-resistant material made of expanded graphite. 円筒内面は、金網からなる補強材の露出面からなる請求項1又は2に記載の球帯状シール体。The spherical belt-shaped sealing body according to claim 1 or 2, wherein the cylindrical inner surface is formed of an exposed surface of a reinforcing material made of a wire mesh.
JP2002151694A 2002-05-27 2002-05-27 Ball-shaped seal body Expired - Fee Related JP4209632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002151694A JP4209632B2 (en) 2002-05-27 2002-05-27 Ball-shaped seal body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002151694A JP4209632B2 (en) 2002-05-27 2002-05-27 Ball-shaped seal body

Publications (2)

Publication Number Publication Date
JP2003343729A JP2003343729A (en) 2003-12-03
JP4209632B2 true JP4209632B2 (en) 2009-01-14

Family

ID=29769196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002151694A Expired - Fee Related JP4209632B2 (en) 2002-05-27 2002-05-27 Ball-shaped seal body

Country Status (1)

Country Link
JP (1) JP4209632B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9730320B2 (en) 2010-10-29 2017-08-08 Panasonic Intellectual Property Management Co., Ltd. Prepreg, laminate, metal foil-clad laminate, circuit board and LED module

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5120995B2 (en) * 2004-07-12 2013-01-16 本田技研工業株式会社 Sphere-shaped sealing body and method for manufacturing the same
JP5246724B2 (en) * 2004-07-12 2013-07-24 本田技研工業株式会社 Sphere-shaped sealing body and method for manufacturing the same
JP5724315B2 (en) * 2010-11-16 2015-05-27 オイレス工業株式会社 Sphere seal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9730320B2 (en) 2010-10-29 2017-08-08 Panasonic Intellectual Property Management Co., Ltd. Prepreg, laminate, metal foil-clad laminate, circuit board and LED module

Also Published As

Publication number Publication date
JP2003343729A (en) 2003-12-03

Similar Documents

Publication Publication Date Title
JP4617521B2 (en) Sphere-shaped sealing body and manufacturing method thereof
JP3812035B2 (en) Sphere-shaped sealing body and method for manufacturing the same
JPH06123362A (en) Spherical zone seal body
JP3261767B2 (en) Spherical band-shaped seal body and method for producing the same
JP5095222B2 (en) Annular seal body for exhaust pipe spherical joint and manufacturing method thereof
JP5533990B2 (en) Sphere-shaped sealing body and method for manufacturing the same
JP5347971B2 (en) Sphere-shaped sealing body and method for manufacturing the same
JP3937473B2 (en) Composition for sliding member, sliding member comprising the composition, and ball-shaped seal body
JP5771945B2 (en) Sphere seal
JP5531885B2 (en) Sphere-shaped sealing body and method for manufacturing the same
JP4209632B2 (en) Ball-shaped seal body
JP4487494B2 (en) Sphere seal
US5997979A (en) Spherical annular seal member and method of manufacturing the same
JP4371349B2 (en) Ball-shaped seal body
JP4355129B2 (en) Ball-shaped seal body
JP4953222B2 (en) Sphere seal
JP3911725B2 (en) Sphere-shaped sealing body and manufacturing method thereof
JPH109397A (en) Spherical band seal body and its manufacture
JP5246724B2 (en) Sphere-shaped sealing body and method for manufacturing the same
JP3812036B2 (en) Sphere-shaped sealing body and method for manufacturing the same
JP5120995B2 (en) Sphere-shaped sealing body and method for manufacturing the same
JP4617658B2 (en) Sphere-like seal body and exhaust pipe joint device using the same
JP3812037B2 (en) Sphere-shaped sealing body and method for manufacturing the same
JP2003014177A (en) Jointing device for exhaust pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081023

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4209632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees