JP3812036B2 - Sphere-shaped sealing body and method for manufacturing the same - Google Patents

Sphere-shaped sealing body and method for manufacturing the same Download PDF

Info

Publication number
JP3812036B2
JP3812036B2 JP04168797A JP4168797A JP3812036B2 JP 3812036 B2 JP3812036 B2 JP 3812036B2 JP 04168797 A JP04168797 A JP 04168797A JP 4168797 A JP4168797 A JP 4168797A JP 3812036 B2 JP3812036 B2 JP 3812036B2
Authority
JP
Japan
Prior art keywords
heat
weight
graphite
resistant
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04168797A
Other languages
Japanese (ja)
Other versions
JPH10231934A (en
Inventor
和嗣 鹿島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Corp
Original Assignee
Oiles Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Corp filed Critical Oiles Corp
Priority to JP04168797A priority Critical patent/JP3812036B2/en
Priority to US09/018,331 priority patent/US6129362A/en
Priority to EP98300898A priority patent/EP0857863B1/en
Priority to DE69828537T priority patent/DE69828537D1/en
Priority to KR1019980003754A priority patent/KR100337092B1/en
Priority to CN98103837A priority patent/CN1101904C/en
Publication of JPH10231934A publication Critical patent/JPH10231934A/en
Application granted granted Critical
Publication of JP3812036B2 publication Critical patent/JP3812036B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Silencers (AREA)
  • Gasket Seals (AREA)
  • Sealing Material Composition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、特に自動車排気管の球面管継手に使用される球帯状シール体ならびにその製造方法に関する。
【0002】
【発明が解決しようとする課題】
自動車用排気管の球面管継手に使用される球帯状シール体としては、例えば特開昭54−76759号公報に開示されているものがある。この公報に開示されたシール体は耐熱性を有し、相手材とのなじみ性に優れ、また衝撃強度も著しく改善されているという反面、乾燥摩擦条件下の摩擦においては往々にして異常音を発生するという欠点がある。このシール体の欠点は該シール体を形成する耐熱材料(膨張黒鉛など)の静止摩擦係数と動摩擦係数との差が大きいこと及びこの耐熱材料から成るシール体のすべり速度に対する動摩擦抵抗が負性抵抗を示すこと等に起因するものと考えられる。
【0003】
そこで、本出願人は上述した欠点を解決するべく、特願平4−300551号(特開平6−123362号)に記載のシール体を提案した。このシール体は、相手材との摺動において、異常摩擦音を発生させることなくシール性に優れたもので、シール体に要求される性能を満足させるものである。
【0004】
しかしながら、上記の提案のシール体においても、近年の自動車エンジンの性能向上等に起因する新たな問題点が提起された。すなわち、自動車エンジンの性能向上に起因する排気ガス温度の上昇により又は自動車のNVH特性(車輛音響振動特性)の向上を目的として、排気ガスの出口(マニホールド)付近に球面管継手を配置する場合、球面管継手がエンジン側により近付くことに起因する排気ガス温度の上昇により、これまでのシール体では耐熱性の点で使用条件を満足し得ず、シール体自体の耐熱性の向上が余儀なくされている。
【0005】
本発明は、前記問題点に鑑みてなされたものであって、その目的とするところは、600℃ないし700℃に至る高温条件下においても、酸化消耗が少なく、異常摩擦音の発生がなく、シール性に優れ、シール体としての機能を満足することができる自動車排気管の球面管継手に使用される球帯状シール体ならびにその製造方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明によれば前記目的は、中央部に貫通孔を規定する円筒内面を備え、外面が部分凸球面状に形成され、この外面の大径側に環状の端面を備えた、とくに排気管継手に使用される球帯状シール体であって、該円筒内面から部分凸球面状の外面近傍にかけてのその内部では、圧縮された金網からなる補強材と、この補強材の金網の網目を充填し、かつこの補強材と混在一体化されて圧縮された耐熱材とを主として具備し、更に、炭化ホウ素及び金属ホウ化物のうちの少なくとも一方と金属フッ化物及び黒鉛とリン酸アルミニウムとを、補強材及び耐熱材と混在一体化させて具備し、部分凸球面状の外面は、炭化ホウ素及び金属ホウ化物のうちの少なくとも一方と金属フッ化物及び黒鉛とリン酸アルミニウムとからなる外面層とこの外面層に混在一体化された金網からなる補強材とが露出した平滑な面に形成されていることを特徴とする球帯状シール体によって達成される。
【0007】
また本発明によれば前記目的は、中央部に貫通孔を規定する円筒内面を備え、外面が部分凸球面状に形成され、この外面の大径側に環状の端面を備えた、とくに排気管継手に使用される球帯状シール体であって、該円筒内面から部分凸球面状の外面にかけてのその内部では、圧縮された金網からなる補強材と、この補強材の金網の網目を充填し、かつこの補強材と混在一体化されて圧縮された耐熱材とを主として具備し、更に、炭化ホウ素及び金属ホウ化物のうちの少なくとも一方と金属フッ化物及び黒鉛とリン酸アルミニウムとを、補強材及び耐熱材と混在一体化させて具備し、部分凸球面状の外面は、少なくとも窒化ホウ素とアルミナ及びシリカのうちの少なくとも一方とからなる潤滑組成物の外面層とこの外面層に混在一体化された金網からなる補強材とが露出した平滑な面に形成されていることを特徴とする球帯状シール体によっても達成される。
【0008】
さらに本発明によれば前記目的は、中央部に貫通孔を規定する円筒内面を備え、外面が部分凸球面状に形成された、この外面の大径側に環状の端面を備えた、とくに排気管継手に使用される球帯状シール体であって、該円筒内面から部分凸球面状の外面にかけてのその内部では、耐熱シートの表面全体に炭化ホウ素及び金属ホウ化物のうちの少なくとも一方と金属フッ化物及び黒鉛とリン酸アルミニウムとの混合物からなる耐熱被膜を備えてなる耐熱シート材と金網からなる補強材とが圧縮され、互いに絡み合って構造的一体性を有するように構成されており、該部分凸球面状の外面は、耐熱被膜からなる外面層とこの外面層に混在一体化された金網からなる補強材とが露出した平滑な面に形成されていることを特徴とする球帯状シール体によっても達成される。
【0009】
さらにまた本発明によれば前記目的は、中央部に貫通孔を規定する円筒内面を備え、外面が部分凸球面状に形成され、この外面の大径側に環状の端面を備えた、とくに排気管継手に使用される球帯状シール体であって、該円筒内面から部分凸球面状の外面にかけてのその内部では、耐熱シートの表面全体に炭化ホウ素及び金属ホウ化物のうちの少なくとも一方と金属フッ化物及び黒鉛とリン酸アルミニウムとの混合物からなる耐熱被膜を備えてなる耐熱シート材と金網からなる補強材とが圧縮され、互いに絡み合って構造的一体性を有するように構成されており、該部分凸球面状の外面は、少なくとも窒化ホウ素とアルミナ及びシリカのうちの少なくとも一方とからなる潤滑組成物の外面層とこの外面層に混在一体化された金網からなる補強材とが露出した平滑な面に形成されていることを特徴とする球帯状シール体によっても達成される。
【0010】
また本発明によれば前記目的は更に、中央部に貫通孔を規定する円筒内面を備え、部分凸球面状の形状の外面をもち、この外面の大径側に環状の端面を備えた、とくに排気管継手に使用される球帯状シール体の製造方法であって、(a)耐熱シートの表面全体に一様な厚さの炭化ホウ素及び金属ホウ化物のうちの少なくとも一方と金属フッ化物及び黒鉛とリン酸アルミニウムとの混合物からなる耐熱被膜を備えてなる耐熱シート材を準備する工程と、(b)金属細線を織ったり、編んだりして得られる金網からなる補強材を準備し、該補強材を前記耐熱シート材に重ね合わせたのち、該耐熱シート材を内側にしてうず巻き状に捲回し、筒状母材を形成する工程と、(c)別の耐熱シートの表面全体に一様な厚さの炭化ホウ素及び金属ホウ化物のうちの少なくとも一方と金属フッ化物及び黒鉛とリン酸アルミニウムとの混合物からなる別の耐熱被膜を備えてなる別の耐熱シート材を準備し、該別の耐熱シート材と、該別の耐熱シート材の耐熱被膜を覆って配された金網からなる別の補強材とからなる外面層形成部材を形成する工程と、(d)該外面層形成部材を、前記筒状母材の外周面に捲回して予備円筒成形体を形成する工程と、(e)該予備円筒成形体を金型のコア外周面に挿入し、該コアを金型内に配置するとともに該金型内において予備円筒成形体をコア軸方向に圧縮成型する工程と、からなり、円筒内面から部分凸球面状の外面にかけての内部では、耐熱被膜を備えた耐熱シート材と金網からなる補強材とが圧縮され、互いに絡み合って構造的一体性を有するように構成されており、該部分凸球面状の外面は、別の耐熱被膜が別の補強材の網目を充填して両者が混在一体となった平滑な面に形成されていることを特徴とする球帯状シール体の製造方法によっても達成される。
【0011】
本発明によれば前記目的は更に、中央部に貫通孔を規定する円筒内面を備え、部分凸球面状の形状の外面をもち、この外面の大径側に環状の端面を備えた、特に排気管継手に使用される球帯状シール体の製造方法であって、(a)耐熱シートの表面全体に一様な厚さの炭化ホウ素及び金属ホウ化物のうちの少なくとも一方と金属フッ化物及び黒鉛とリン酸アルミニウムとの混合物からなる耐熱被膜を備えてなる耐熱シート材を準備する工程と、(b)金属細線を織ったり、編んだりして得られる金網からなる補強材を準備し、該補強材を前記耐熱シート材に重ね合わせたのち、該耐熱シート材を内側にしてうず巻き状に捲回し、筒状母材を形成する工程と、(c)別の耐熱シートの表面全体に一様な厚さの炭化ホウ素及び金属ホウ化物のうちの少なくとも一方と金属フッ化物及び黒鉛とリン酸アルミニウムとの混合物からなる別の耐熱被膜を備えてなる別の耐熱シート材を準備し、該別の耐熱シート材と該別の耐熱シート材の一方の面の耐熱被膜の表面に被覆された少なくとも窒化ホウ素とアルミナ及びシリカのうちの少なくとも一方とからなる潤滑組成物の表面層と該表面層を覆って配された金網からなる別の補強材とからなる外面層形成部材を形成する工程と、(d)該外面層形成部材を、表面層の面を外側にして前記筒状母材の外周面に捲回して予備円筒成形体を形成する工程と、(e)該予備円筒成形体を金型のコア外周面に挿入し、該コアを金型内に配置するとともに該金型内において予備円筒成形体をコア軸方向に圧縮成型する工程と、からなり、円筒内面から部分凸球面状の外面にかけての内部では、耐熱被膜を備えた耐熱シート材と金網からなる補強材とが圧縮され、互いに絡み合って構造的一体性を有するように構成されており、該部分凸球面状の外面は、潤滑組成物が補強材の網目を充填して両者が混在一体となった平滑な面に形成されていることを特徴とする球帯状シール体の製造方法によっても達成される。
【0012】
上記構成からなる球帯状シール体において、円筒内面から部分凸球面状の外面にかけての内部には、重量比率において、耐熱材100に対し、炭化ホウ素及び金属ホウ化物のうちの少なくとも一方と金属フッ化物及び黒鉛黒鉛とリン酸及びリン酸塩のうちの少なくとも一方とが5〜45の割合で含まれている。
【0013】
また、円筒内面から部分凸球面状の外面にかけての内部には、(A)炭化ホウ素及び金属ホウ化物のうちの少なくとも一方並びに金属フッ化物及び黒鉛と(B)リン酸アルミニウムとが重量比率で(A):(B)=1:0.5〜3の割合で含まれており、この割合下における炭化ホウ素及び金属ホウ化物のうちの少なくとも一方と金属フッ化物及び黒鉛とにおいて、炭化ホウ素及び金属ホウ化物のうちの少なくとも一方が5〜25重量%、金属フッ化物が1〜15重量%、黒鉛が60〜90重量%の割合で含まれている。
【0014】
外面層は、(A)炭化ホウ素及び金属ホウ化物のうちの少なくとも一方並びに金属フッ化物及び黒鉛と(B)リン酸アルミニウムとが重量比率で(A):(B)=1:0.5〜3の割合で含まれており、この割合下における炭化ホウ素及び金属ホウ化物のうちの少なくとも一方と金属フッ化物及び黒鉛とにおいて、炭化ホウ素及び金属ホウ化物のうちの少なくとも一方が5〜25重量%、金属フッ化物が1〜15重量%、黒鉛が60〜90重量%の割合で含まれてなる混合物若しくはこの混合物からなる耐熱被膜から形成されるか、又は窒化ホウ素70〜90重量%とアルミナ及びシリカのうちの少なくとも一方が10〜30重量%とからなる潤滑組成物若しくはこの潤滑組成物である混合物を100重量部とし、これに200重量部以下、好ましくは50〜150重量部のポリテトラフルオロエチレン樹脂が含有されてなる潤滑組成物から形成される。
【0015】
上記構成からなる球帯状シール体においてまた、該貫通孔を規定する円筒内面及び部分凸球面状の外面の大径側の端面には、炭化ホウ素及び金属ホウ化物のうちの少なくとも一方と金属フッ化物及び黒鉛とリン酸アルミニウムとを含む混合物からなる耐熱層又はこの混合物からなる耐熱被膜からなる耐熱層が露出している。
【0016】
また、貫通孔を規定する円筒内面及び部分凸球面状の外面の大径側の端面に露出した耐熱層は、(A)炭化ホウ素及び金属ホウ化物のうちの少なくとも一方並びに金属フッ化物及び黒鉛と(B)リン酸アルミニウムとの重量比率が(A):(B)=1:0.5〜3の割合で含まれており、この割合下における炭化ホウ素及び金属ホウ化物のうちの少なくとも一方と金属フッ化物及び黒鉛とにおいて、炭化ホウ素及び金属ホウ化物のうちの少なくとも一方が5〜25重量%、金属フッ化物が1〜15重量%、黒鉛が60〜90重量%の割合で含まれてなる混合物又はこの混合物からなる耐熱被膜から形成される。
【0017】
上述した製造方法において、両耐熱被膜のうちの少なくとも一方は、具体的には、▲1▼(A)炭化ホウ素と金属フッ化物と黒鉛との混合物であって、炭化ホウ素が5〜25重量%、金属フッ化物が1〜15重量%、黒鉛が60〜90重量%の割合の混合物と(B)リン酸アルミニウムとが重量比率で(A):(B)=1:0.5〜3の割合で配合された混合物、▲2▼(A)金属ホウ化物と金属フッ化物と黒鉛との混合物であって、金属ホウ化物が5〜25重量%、金属フッ化物が1〜15重量%、黒鉛が60〜90重量%の割合の混合物と(B)リン酸アルミニウムとが重量比率で(A):(B)=1:0.5〜3の割合で配合された混合物、又は▲3▼(A)炭化ホウ素と金属ホウ化物と金属フッ化物と黒鉛との混合物であって、炭化ホウ素が5〜25重量%、金属ホウ化物が5〜25重量%、金属フッ化物が1〜15重量%、黒鉛が60〜90重量%の割合の混合物と(B)リン酸アルミニウムとが重量比率で(A):(B)=1:0.5〜3の割合で配合された混合物、から形成される。そして、この耐熱被膜は、耐熱シートの表面全体に0.1〜0.8g/100cm2 の一様な厚さに形成される。
【0018】
上述した製造方法において、外面層形成部材は、▲1▼(A)炭化ホウ素と金属フッ化物と黒鉛との混合物であって、炭化ホウ素が5〜25重量%、金属フッ化物が1〜15重量%、黒鉛が60〜90重量%の割合の混合物と(B)リン酸アルミニウムとが重量比率で(A):(B)=1:0.5〜3の割合で配合された混合物、▲2▼(A)金属ホウ化物と金属フッ化物と黒鉛との混合物であって、金属ホウ化物が5〜25重量%、金属フッ化物が1〜15重量%、黒鉛が60〜90重量%の割合の混合物と(B)リン酸アルミニウムとが重量比率で(A):(B)=1:0.5〜3の割合で配合された混合物、又は▲3▼(A)炭化ホウ素と金属ホウ化物と金属フッ化物と黒鉛との混合物であって、炭化ホウ素が5〜25重量%、金属ホウ化物が5〜25重量%、金属フッ化物が1〜15重量%、黒鉛が60〜90重量%の割合の混合物と(B)リン酸アルミニウムとが重量比率で(A):(B)=1:0.5〜3の割合で配合された混合物からなり、該耐熱シートの表面全体に0.1〜0.8g/100cm2 の一様な厚さの耐熱被膜を備えてなる耐熱シート材と、この耐熱シート材を覆って配された金網からなる補強材とから形成される。
【0019】
上述した製造方法において、外面層形成部材は、▲1▼(A)炭化ホウ素と金属フッ化物と黒鉛との混合物であって、炭化ホウ素が5〜25重量%、金属フッ化物が1〜15重量%、黒鉛が60〜90重量%の割合の混合物と(B)リン酸アルミニウムとが重量比率で(A):(B)=1:0.5〜3の割合で配合された混合物、▲2▼(A)金属ホウ化物と金属フッ化物と黒鉛との混合物であって、金属ホウ化物が5〜25重量%、金属フッ化物が1〜15重量%、黒鉛が60〜90重量%の割合の混合物と(B)リン酸アルミニウムとが重量比率で(A):(B)=1:0.5〜3の割合で配合された混合物、又は▲3▼(A)炭化ホウ素と金属ホウ化物と金属フッ化物と黒鉛との混合物であって、炭化ホウ素が5〜25重量%、金属ホウ化物が5〜25重量%、金属フッ化物が1〜15重量%、黒鉛が60〜90重量%の割合の混合物と(B)リン酸アルミニウムとが重量比率で(A):(B)=1:0.5〜3の割合で配合された混合物からなり、該耐熱シートの表面全体に0.1〜0.8g/100cm2 の一様な厚さの耐熱被膜を備えてなる耐熱シート材と、この耐熱シート材の一方の面の耐熱被膜の表面に被覆された窒化ホウ素が70〜90重量%とアルミナ及びシリカのうちの少なくとも一方が10〜30重量%とからなる潤滑組成物又はこの潤滑組成物である混合物を100重量部とし、これに200重量部以下、好ましくは50〜150重量部の割合のポリテトラフルオロエチレン樹脂が含有された潤滑組成物からなる表面層と、該表面層を覆って配された金網からなる補強材とから形成されてもよい。
【0020】
以下、上記球帯状シール体における構成材料並びに該シール体の製造方法について説明する。
【0021】
耐熱シートは、膨張黒鉛、マイカ及びアスベストのうちの一種又は二種以上から選択された耐熱材からなるシート材で形成され、耐熱被膜は、該シート材の表面全体に形成される。膨張黒鉛からなる耐熱シートには、特公昭44−23966号公報に開示されている米国ユニオンカーバイド社製の「グラフォイル(商品名)」あるいは日本カーボン社製の「ニカフィルム(商品名)」など、厚さ0.3〜1.0mmの膨張黒鉛シートが好適である。マイカからなるシート材としては、シリコン樹脂で接合したマイカペーパー、アスベストからなるシート材としては、クリソタイル又はアモサイト系のアスベストペーパー又はシートが使用される。
【0022】
耐熱シートの表面全体に形成される耐熱被膜は、▲1▼(A)炭化ホウ素、金属フッ化物及び黒鉛の混合物と(B)リン酸アルミニウムとの混合物、▲2▼(A)金属ホウ化物、金属フッ化物及び黒鉛の混合物と(B)リン酸アルミニウムとの混合物、▲3▼(A)炭化ホウ素、金属ホウ化物、金属フッ化物及び黒鉛の混合物と(B)リン酸アルミニウムとの混合物、のいずれかが使用される。
【0023】
この耐熱被膜を具体的に説明する。
▲1▼(A)炭化ホウ素、金属フッ化物及び黒鉛の混合物と(B)リン酸アルミニウムとの混合物からなる耐熱被膜:
(A)炭化ホウ素が5〜25重量%、金属フッ化物が1〜15重量%、黒鉛が60〜90重量%の割合の混合物と(B)リン酸アルミニウムとが重量比率で(A):(B)=1:0.5〜3の割合で配合された混合物からなる耐熱被膜である。製造の一例を示すと、濃度25%の第一リン酸アルミニウム水溶液30gに、炭化ホウ素10重量%、金属フッ化物5重量%及び黒鉛85重量%の混合物7.5gを配合した混合物を耐熱シートの表面全体に、刷毛塗り、ローラ塗り、浸漬等の手段により被覆し、その後、これを乾燥させることにより、該耐熱シートの表面全体に、(A)と(B)との混合物であって、その重量比率が1:1の割合をもった耐熱被膜が形成される。
【0024】
▲2▼(A)金属ホウ化物、金属フッ化物及び黒鉛の混合物と(B)リン酸アルミニウムとの混合物からなる耐熱被膜:
(A)金属ホウ化物が5〜25重量%、金属フッ化物が1〜15重量%、黒鉛が60〜90重量%の割合の混合物と(B)リン酸アルミニウムとが重量比率で(A):(B)=1:0.5〜3の割合で配合された混合物からなる耐熱被膜である。製造の一例を示すと、濃度25%の第一リン酸アルミニウム水溶液30gに、金属ホウ化物10重量%、金属フッ化物5重量%及び黒鉛85重量%の混合物7.5gを配合した混合物を耐熱シートの表面全体に、刷毛塗り、ローラ塗り、浸漬等の手段により被覆し、その後、これを乾燥させることにより、該耐熱シートの表面全体に、(A)と(B)との混合物であって、その重量比率が1:1の割合をもった耐熱被膜が形成される。
【0025】
▲3▼(A)炭化ホウ素、金属ホウ化物、金属フッ化物及び黒鉛の混合物と(B)リン酸アルミニウムとの混合物からなる耐熱被膜:
(A)炭化ホウ素が5〜25重量%、金属ホウ化物が5〜25重量%、金属フッ化物が1〜15重量%、黒鉛が60〜90重量%の割合の混合物と(B)リン酸アルミニウムとが重量比率で(A):(B)=1:0.5〜3の割合で配合された混合物からなる耐熱被膜である。製造の一例を示すと、濃度25%の第一リン酸アルミニウム水溶液30gに、炭化ホウ素10重量%、金属ホウ化物10重量%、金属フッ化物5重量%及び黒鉛75重量%の混合物7.5gを配合した混合物を耐熱シートの表面全体に、刷毛塗り、ローラ塗り、浸漬等の手段により被覆し、その後、これを乾燥させることにより、該耐熱シートの表面全体に、(A)と(B)との混合物であって、その重量比率が1:1の割合をもった耐熱被膜が形成される。
【0026】
これら▲1▼、▲2▼及び▲3▼からなる耐熱被膜は、耐熱シートの表面全体に0.1〜0.8g/100cm2 、好ましくは0.2〜0.5g/100cm2 の量で、かつ一様な厚さに形成される。耐熱被膜の量が耐熱シートの表面全体に0.1g/100cm2 以下では膜厚の均一性が低下し、耐熱シートの高温酸化等に対する防御効果が十分得られず、また0.8g/100cm2 を超えた場合、耐熱シートの高温酸化等に対する防御効果に大きな変化がないばかりでなく、耐熱被膜を備えた耐熱シート材の巻き加工性に問題を生じることになる。
【0027】
このように形成された耐熱被膜において、リン酸アルミニウムはそれ自体耐熱性を有するものであり、かつその接着性が高いため、耐熱性を有する炭化ホウ素と金属フッ化物と黒鉛との混合粉末粒子同志、金属ホウ化物と金属フッ化物と黒鉛との混合粉末粒子同志、炭化ホウ素と金属ホウ化物と金属フッ化物と黒鉛との混合粉末粒子同志の接着性と、これらからなる耐熱被膜の該耐熱シート表面への接着性、換言すれば該耐熱シート表面への耐熱被膜の保持性を高める作用をなす。
【0028】
耐熱被膜を形成する混合物において、主成分をなす黒鉛はそれ自体耐熱性を有すると共に自己潤滑性を有するもので、シール体の円筒内面から部分凸球面状の外面にかけての内部ではその耐熱性が発揮され、また部分凸球面状の外面では耐熱性に加えて自己潤滑性が発揮される。そして、その配合量は60〜90重量%が適当である。
【0029】
この主成分をなす黒鉛に配合される金属フッ化物は黒鉛同様耐熱性を有し、とくに高温において優れた自己潤滑性を有する。この金属フッ化物は黒鉛に配合されることにより、黒鉛の自己潤滑性と協同して一層潤滑性を高める作用をなし、部分凸球面状の外面では黒鉛と協同して相手材(下流側排気管の凹球面部)との間の摺動摩擦抵抗を減ずる効果を発揮する。そして、金属フッ化物の黒鉛への配合量は1〜15重量%、就中5〜10重量%が適当である。配合量が1重量%以下では黒鉛の潤滑性を向上させる効果が発揮されず、また15重量%を超えて配合すると、却って黒鉛の潤滑性を損ない、黒鉛との協同作用が発揮されない。このような作用を発揮する金属フッ化物としては、フッ化カルシウム(CaF2 )、フッ化リチウム(LiF2 )、フッ化ナトリウム(NaF2 )及びフッ化バリウム(BaF2 )のうちの一種又は二種以上が選択されて使用される。
【0030】
また、上記黒鉛及び金属フッ化物に配合される炭化ホウ素及び金属ホウ化物はそれ自体耐熱性を有するため、シール体の円筒内面から部分凸球面状の外面にかけての内部ではその耐熱性が発揮される。また、炭化ホウ素及び金属ホウ化物は上記黒鉛や金属フッ化物のような自己潤滑性を示さないが、黒鉛及び金属フッ化物に含有されることにより、相手材との摩擦において相手材表面に固体潤滑被膜(金属フッ化物及び黒鉛)の造膜性を助長し、乾燥摩擦における被膜の耐久性を増大させる作用を発揮する。この作用は、特に部分凸球面状の外面において、相手材表面に固体潤滑被膜の造膜性を助長すると共に被膜の耐久性を増大させることになり、相手材との間の摩擦抵抗を低減させる効果に寄与する。そして、その配合量はそれぞれ5〜25重量%、就中10〜20重量%が適当である。配合量が5重量%以下では上記黒鉛及び金属フッ化物からなる固体潤滑被膜の造膜性に効果が発揮されず、また25重量%を超えて配合すると固体潤滑被膜の相手材表面への造膜量が過剰となり、却って摩擦抵抗を減ずる作用を低下させることになる。
【0031】
そして、金属ホウ化物としては、元素周期律表の第IVa族、第Va族及び第VIa族の中から選択された金属ホウ化物、具体的には、ホウ化チタン(TiB)、二ホウ化チタン(TiB2 )、二ホウ化ジルコニウム(ZrB2 )、十二ホウ化ジルコニウム(ZrB12)、二ホウ化ハフニウム(HfB2 )、二ホウ化バナジウム(VB2 )、二ホウ化ニオブ(NbB2 )、二ホウ化タンタル(TaB2 )、ホウ化クロム(CrB)、二ホウ化クロム(CrB2 )、ホウ化モリブデン(MoB)、二ホウ化モリブデン(MoB2 )、五ホウ化二モリブデン(Mo2 5 )、ホウ化タングステン(WB)、二ホウ化タングステン(WB2 )、ホウ化二タングステン(W2 B)、五ホウ化二タングステン(W2 5 )などが挙げられる。
【0032】
上述した耐熱被膜における黒鉛及び金属フッ化物は円筒内面から部分凸球面状の外面にかけてのその内部ではその耐熱性により耐熱シートの高温酸化等に対する保護効果がいかんなく発揮され、部分凸球面状の外面においては耐熱性に加え自己潤滑性がいかんなく発揮される。また、炭化ホウ素及び金属ホウ化物は同様に円筒内面から部分凸球面状の外面にかけてのその内部ではその耐熱性により耐熱シートの高温酸化等に対する保護効果がいかんなく発揮され、部分凸球面状の外面においては耐熱性に加え金属フッ化物及び黒鉛の潤滑被膜の相手材表面への造膜性を助長し、固体潤滑被膜の耐久性を増大させる効果がいかんなく発揮される。
【0033】
補強材は、鉄系としてオーステナイト系のSUS304、SUS316、フェライト系のSUS430などのステンレス鋼線又は鉄線(JIS−G−3532)若しくは亜鉛メッキ鉄線(JIS−G−3547)、また銅系として銅−ニッケル合金(白銅)、銅−ニッケル−亜鉛合金(洋白)、黄銅、ベリリウム銅から成る線材を1本又は2本以上使用して織ったり、編んだりして形成される金網が使用される。該金網を形成する金属細線の線径は0.10〜0.32mm程度のものが使用され、該金網の網目は3〜6mm程度のものが使用されて好適である。
【0034】
外面層形成部材は、前述した耐熱シートの表面全体に耐熱被膜を備えてなる耐熱シート材と同様の耐熱シート材、すなわち耐熱シートの表面全体にわたって▲1▼(A)炭化ホウ素、金属フッ化物及び黒鉛の混合物と(B)リン酸アルミニウムとの混合物、▲2▼(A)金属ホウ化物、金属フッ化物及び黒鉛の混合物と(B)リン酸アルミニウムとの混合物、▲3▼(A)炭化ホウ素、金属ホウ化物、金属フッ化物及び黒鉛の混合物と(B)リン酸アルミニウムとの混合物、のいずれかの混合物からなる耐熱被膜を備えてなる耐熱シート材と、該耐熱シート材の耐熱被膜を覆って配された金網からなる補強材とからなるもの、又は耐熱シートの表面全体に該耐熱被膜を備えてなる耐熱シート材と該耐熱シート材の一方の面の耐熱被膜の表面に被覆された窒化ホウ素又は窒化ホウ素及びポリテトラフルオロエチレン樹脂とアルミナ及びシリカのうちの少なくとも一方とからなる潤滑組成物の表面層とこの表面層を覆って配された金網からなる補強材とからなるものが使用される。後者の外面層形成部材は、相手材との摩擦初期における摩擦トルクの低減に効果を発揮する。この外面層形成部材における耐熱被膜及び金網からなる補強材は前述したものと同様のものを使用するため、その説明は省略する。
【0035】
前述した後者の外面層形成部材における潤滑組成物の作製に際しては、窒化ホウ素70〜90重量%とアルミナ及びシリカのうちの少なくとも一方が10〜30重量%とからなる潤滑組成物を固形分として20〜50重量%分散含有した水性ディスパージョンが、またこれに代えて、窒化ホウ素70〜90重量%とアルミナ及びシリカのうちの少なくとも一方が10〜30重量%とからなる混合物を100重量部とし、これに200重量部以下、好ましくは50〜150重量部の割合でポリテトラフルオロエチレン樹脂が含有されてなる潤滑組成物を固形分として20〜50重量%分散含有した水性ディスパージョンが使用される。上記潤滑組成物の水性ディスパージョンは、後述する製造方法において、耐熱シート材の表面に形成された耐熱被膜に、刷毛塗り、ローラー塗り、スプレー等の手段によって被覆され、分散含有された潤滑組成物は、最終の圧縮工程においてシール体の部分凸球面状の外面に均一かつ微小厚さ(10〜300μm)に展延されて外面層を形成する。
【0036】
上記潤滑組成物中の窒化ホウ素は、とくに高温において優れた潤滑性を発揮するものであるが、窒化ホウ素単独では耐熱被膜への被着性、ひいては最終の圧縮工程におけるシール体の部分凸球面状の外面での被着性が劣り、部分凸球面状の外面から容易に剥離してしまうという欠点があるが、窒化ホウ素に対し一定量の割合でアルミナ及びシリカのうちの少なくとも一方を配合することにより、上記窒化ホウ素の欠点を回避し、耐熱被膜への被着性、ひいては最終の圧縮工程におけるシール体の部分凸球面状の外面での被着性を大幅に改善し、該シール体の部分凸球面状の外面での潤滑組成物からなる外面層の保持性を高めることができる。そして、窒化ホウ素に対するアルミナ及びシリカのうちの少なくとも一方の配合割合は、窒化ホウ素の具有する潤滑性を損なうことなく、かつ被着性を改善するという観点から決定され、10〜30重量%の範囲が好ましい。
【0037】
上述した窒化ホウ素70〜90重量%とアルミナ及びシリカのうちの少なくとも一方が10〜30重量%とからなる混合物を100重量部とし、これに一定量の割合でポリテトラフルオロエチレン樹脂を含有した潤滑組成物において、ポリテトラフルオロエチレン樹脂は、それ自身低摩擦性を有するもので、窒化ホウ素とアルミナ及びシリカのうちの少なくとも一方とからなる潤滑組成物に配合されることにより、該潤滑組成物の低摩擦性を向上させる作用と、圧縮成形時の該潤滑組成物の展延性を高める作用をなす。上記窒化ホウ素70〜90重量%とアルミナ及びシリカのうちの少なくとも一方が10〜30重量%とからなる混合物100重量部に対し、ポリテトラフルオロエチレン樹脂の配合割合は、200重量部以下、好ましくは50〜150重量部の範囲である。このポリテトラフルオロエチレン樹脂の配合割合が200重量部を超えると、潤滑組成物中に占める割合が多くなり潤滑組成物の耐熱性を低下させる結果となり、また、ポリテトラフルオロエチレン樹脂の配合割合が50〜150重量部の範囲であれば、潤滑組成物の耐熱性を損なうことなく低摩擦性をいかんなく発揮させることができる。
【0038】
水性ディスパージョンを形成する窒化ホウ素、アルミナ及びシリカのうちの少なくとも一方及びこれらに配合されるポリテトラフルオロエチレン樹脂は、可及的に微粉末であることが好ましく、これらには、平均粒径10μm以下、さらに好ましくは0.5μm以下の微粉末が使用される。
【0039】
つぎに、上述した構成材料から成る球帯状シール体の製造方法について図面に基づき説明する。
【0040】
図3に示すように、所定の幅に切断した短冊状の膨張黒鉛シート、マイカシート又はアスベストシートからなる耐熱シート1を用意する。ついで、▲1▼所定濃度のリン酸アルミニウム水溶液に炭化ホウ素粉末、金属フッ化物粉末及び黒鉛粉末を配合した混合物、▲2▼所定濃度のリン酸アルミニウム水溶液に金属ホウ化物粉末、金属フッ化物粉末及び黒鉛粉末を配合した混合物、又は▲3▼所定濃度のリン酸アルミニウム水溶液に炭化ホウ素粉末、金属ホウ化物粉末、金属フッ化物及び黒鉛粉末を配合した混合物のいずれかを用意し、この混合物をシート1の表面全体に刷毛塗り、ローラ塗り又は浸漬等の手段により被覆し、その後乾燥させて、図4に示すように、シート1の表面全体(表、裏及び側面等全体)に0.1〜0.8g/100cm2 の量で、かつ一様な厚さの耐熱被膜2を形成した耐熱シート材3を作製する。
【0041】
このように耐熱シート1の表面全体に被覆された耐熱被膜2は、▲1▼(A)炭化ホウ素と金属フッ化物と黒鉛との混合物であって、炭化ホウ素が5〜25重量%、金属フッ化物が1〜15重量%、黒鉛が60〜90重量%の割合の混合物と(B)リン酸アルミニウムとが重量比率で(A):(B)=1:0.5〜3の割合で配合された混合物、▲2▼(A)金属ホウ化物と金属フッ化物と黒鉛との混合物であって、金属ホウ化物が5〜25重量%、金属フッ化物が1〜15重量%、黒鉛が60〜90重量%の割合の混合物と(B)リン酸アルミニウムとが重量比率で(A):(B)=1:0.5〜3の割合で配合された混合物、又は▲3▼炭化ホウ素と金属ホウ化物と金属フッ化物と黒鉛との混合物であって、炭化ホウ素が5〜25重量%、金属ホウ化物が5〜25重量%、金属フッ化物が1〜15重量%、黒鉛が60〜90重量%の割合の混合物と(B)リン酸アルミニウムとが重量比率で(A):(B)=1:0.5〜3の割合で配合された混合物で形成されるように、炭化ホウ素及び金属ホウ化物のうちの少なくとも一方と金属フッ化物及び黒鉛とのリン酸アルミニウム水溶液への配合割合、及びリン酸アルミニウム水溶液の濃度を適宜調整することにより行われる。なお、上述した耐熱被膜2の形成方法において、リン酸アルミニウム水溶液の濃度は10〜50%のものが使用可能であるが、耐熱シート1への被覆操作、その後の乾燥工程等を考慮すると、その濃度は20〜25%程度のものが好ましい。
【0042】
金属細線を織ったり、編んだりすることによって形成される金網を用意し、この金網を所定の幅(耐熱シート1の幅よりも幅狭)に切断して短冊状にするか、図5に示すように、金属細線を編んで円筒状金網5を形成したのち、これをローラ6及び7間に通して帯状金網8を作成し、これを短冊状に切断して補強材9として使用する。
【0043】
前記耐熱シート材3をうず巻き状に一周分捲回したのち、該耐熱シート材3の内側に補強材9を重ね合わせ、うず巻き状に捲回して図6及び図7に示すように、最外周に耐熱シート材3を位置させた筒状母材10を形成する。この筒状母材10においては、耐熱シート材3の幅方向の両端部はそれぞれ補強材9の幅方向に突出している。
【0044】
前記と同様の方法で作成した耐熱シート材3を別途用意する。先に図5において説明したように、金属細線を編んで円筒状金網5を形成した後、これをローラ6及び7間に通して作成した帯状金網8からなる補強材9を別途用意し、図8に示すように、帯状金網8内に、該耐熱シート材3を挿入すると共にこれらを図9に示すように、ローラ15及び16間に通して一体化させ、これを外面層形成部材21とする。この場合、耐熱シート材3の幅寸法は帯状金網8からなる補強材9の内側寸法より小さく形成されている。この外面層形成部材21を作製する別の方法としては、金属細線を円筒状金網に編むとと同時に耐熱シート材3をその内側に挿入し、これをローラ15及び16間に通して一体化させたのち、所望の寸法に切断して作製する方法でもよい。
【0045】
このようにして得た外面層形成部材21を前記筒状母材10の外周面に捲回し、図10に示すような予備円筒成形体22を作成する。
【0046】
内面に円筒壁面31と円筒壁面31に連なる部分凹球壁面32と部分凹球壁面32に連なる貫通孔33とを備え、該貫通孔33に段付きコア34を嵌挿することによって内部に中空円筒部35と該中空円筒部35に連なる球帯状中空部36とが形成された図11に示すような金型37を用意し、該金型37の段付きコア34に予備円筒成形体22を挿入する。
【0047】
金型37の中空部35、36に位置せしめられた予備円筒成形体22をコア軸方向に1〜3トン/cm2 の圧力で圧縮成形し、図1に示すような、中央部に貫通孔51を規定する円筒内面52を備え、外面53が部分凸球面状に形成され、外面53の大径側に環状の端面54を備えた球帯状シール体55を作成する。この圧縮成形により、円筒内面52から部分凸球面状の外面53にかけての球帯状シール体55の内部では、耐熱シート1の表面全体に耐熱被膜2を備えてなる耐熱シート材3と金網8からなる補強材9とが圧縮され、互いに絡み合って構造的一体性を有するように構成され、部分凸球面状の外面53は、耐熱被膜2からなる外面層56の露出面からなり、該外面層56には、当該外面層56に一体化された金網8からなる補強材9が配されており、外面層56とこの外面層56に混在一体化された金網8からなる補強材9とが露出した該部分凸球面状の外面53は、平滑な面に形成され、貫通孔51を規定する円筒内面52及び球帯状シール体55の大径側の端面54は、耐熱被膜2からなる耐熱層が露出して形成される。
【0048】
上述した方法によって作成された図1及び図2に示す球帯状シール体55において、耐熱シート材3は、内部構造を形成する金網8から成る補強材9と絡み合って一体となっており、部分凸球面状の外面53は、外面層形成部材21によって形成された耐熱被膜2からなる外面層56の露出面と金網8からなる補強材9とが混在一体となった平滑な面に形成されている。
【0049】
次に、他の球帯状シール体55の製造方法を説明する。
【0050】
前記図3に示すように、所定の幅に切断した短冊状の膨張黒鉛シート、マイカシート又はアスベストシートからなる耐熱シート1を用意する。ついで、耐熱シート1の表面全体(表、裏及び側面等全体)に0.1〜0.8g/100cm2 の一様な厚さの耐熱被膜2を形成し、これを耐熱シート材3(図4)とする。
【0051】
前記と同様にして、金属細線を織ったり、編んだりすることによって形成される金網を用意し、この金網を所定の幅(耐熱シート1の幅より幅狭)に切断して短冊状にするか、図5に示すように、金属細線を編んで円筒状金網5を形成した後、これをローラ6及び7間に通して帯状金網8を作成し、これを短冊状に切断して補強材9として使用する。
【0052】
前記耐熱シート材3をうず巻き状に一周分捲回したのち、該耐熱シート材3の内側に補強材9を重ね合わせ、うず巻き状に捲回して図6及び図7に示すように、最外周に耐熱シート材3を位置させた筒状母材10を形成する。この筒状母材10においては、耐熱シート材3の幅方向の両端部はそれぞれ補強材9の幅方向に突出している。
【0053】
前記と同様な耐熱シート材3を別途用意し、耐熱シート材3の一方の面の耐熱被膜2の表面に、窒化ホウ素70〜90重量%とアルミナ及びシリカのうちの少なくとも一方が10〜30重量%とからなる潤滑組成物を固形分として20〜50重量%分散含有した水性ディスパージョン、又は窒化ホウ素70〜90重量%とアルミナおよびシリカのうちの少なくとも一方が10〜30重量%とからなる混合物を100重量部とし、これに200重量部以下、好ましくは50〜150重量部の割合でポリテトラフルオロエチレン樹脂が含有されてなる潤滑組成物を固形分として20〜50重量%分散含有した水性ディスパージョンを、刷毛塗り、ローラ塗り又はスプレー等の手段で被覆し、これを乾燥させて、図12に示すような潤滑組成物の表面層11を形成する。
【0054】
前記図5において説明したように、金属細線を編んで円筒状金網5を形成した後、これをローラ6及び7間に通して作成した帯状金網8からなる補強材9を別途用意し、図13に示すように、帯状金網8内に、表面層11を備えた耐熱シート材3を挿入するとともに、これらを図14に示すように、ローラ15及び16間に通して一体化させ、これを外面層形成部材21とする。この外面層形成部材を作製する別の方法としては、前述した方法と同様、金属細線を円筒状金網に編むとと同時に耐熱シート材3をその内側に挿入し、これをローラ15及び16間に通して一体化させたのち、所望の寸法に切断して作製する方法でもよい。
【0055】
このようにして得た外面層形成部材21を表面層11を外側にして前記筒状母材10の外周面に捲回し、図15に示すような予備円筒成形体22を作成する。
【0056】
以下、前記図11に示す金型37を使用し同様な方法で圧縮成形し、図16及び17に示すような、中央部に貫通孔51を規定する円筒内面52を備え、外面53が部分凸球面状に形成され、外面53の大径側に環状の端面54を備えた球帯状シール体55を作成する。この圧縮成形により、円筒内面52から部分凸球面状の外面53にかけての球帯状シール体55の内部では、耐熱シート1の表面全体に耐熱被膜2を備えてなる耐熱シート材3と金網8からなる補強材9とが圧縮され、互いに絡み合って構造的一体性を有するように構成され、部分凸球面状の外面53は、潤滑組成物の表面層11からなる外面層56の露出面からなり、該外面層56には、当該外面層56に一体化された金網8からなる補強材9が配されており、外面層56とこの外面層56に混在一体化された金網8からなる補強材9とが露出した該部分凸球面状の外面53は、平滑な面に形成され、貫通孔51における円筒内面52及び外面53の大径側の端面54は、耐熱被膜2からなる耐熱層が露出して形成される。
【0057】
上述した方法によって作成された図16及び図17に示す球帯状シール体55において、耐熱シート材3は、内部構造を形成する金網8から成る補強材9と絡み合って一体となっており、部分凸球面状の外面53は、外面層形成部材21によって形成された潤滑組成物の表面層11からなる外面層56の露出面と金網8からなる補強材9とが混在一体となった平滑な面に形成されている。
【0058】
上述した方法にて形成された球帯状シール体55は、例えば図18に示す排気管継手に組込まれて使用される。すなわち、エンジン側に連結された上流側排気管100の外周面には、管端部101を残してフランジ200が立設されており、該管端部101には、貫通孔51を規定する円筒内面52において球帯状シール体55が嵌合されており、大径側の端面54において球帯状シール体55がフランジ200に当接させて着座せしめられている。上流側排気管100と相対向してマフラー側に連結され、端部に凹球面部302と凹球面部302の開口部周縁にフランジ部303を備えた径拡大部301が一体に形成された下流側排気管300が凹球面部302を球帯状シール体55の部分凸球面状の外面53に摺接させて配置されている。
【0059】
一端がフランジ200に固定され、他端が径拡大部301のフランジ部303を挿通して配された一対のボルト400と、ボルト400とフランジ部303との間に配された一対のコイルバネ500とにより、下流側排気管300には常時、上流側排気管100方向にバネ力が付勢されている。そして、上、下流側排気管100、300間に生ずる相対角変位は、球帯状シール体55の部分凸球面状の外面53と下流側排気管300の端部に形成された径拡大部301の凹球面部302との摺接で許容される。
【0060】
【発明の実施の形態】
つぎに、本発明及び本発明の実施の形態を、好ましい実施例に基づいて更に詳細に説明する。なお、本発明はこれらの実施例に何等限定されないのである。
【0061】
【実施例】
<実施例1>
耐熱シートとして、幅55mm、長さ550mm、厚さ0.38mmの膨張黒鉛シート(日本カーボン社製「ニカフィルム」(商品名)」(膨張黒鉛シートの重量11.6g)を用意した。濃度25%の第一リン酸アルミニウム水溶液(Al2 3 ・3P2 5・6H2 O)を用意し、この水溶液30gに、平均粒径1.5μmの炭化ホウ素粉末10重量%と平均粒径4μmの金属フッ化物(フッ化カルシウム)粉末5重量%と平均粒径18μmの黒鉛粉末85重量%とからなる混合粉末を7.5g配合し混合物を得た。この混合物を前記膨張黒鉛シートの表面全体にローラ塗りし、その後、乾燥炉にて230℃の温度で20分間乾燥させて、該膨張黒鉛シートの表面全体に0.3g/100cm2 の一様な厚さの耐熱被膜(炭化ホウ素、フッ化カルシウム及び黒鉛とリン酸アルミニウムとの重量比率は1:1)を形成し、これを耐熱シート材とした。
【0062】
金属細線として、線径0.28mmのオーステナイト系ステンレス鋼線(SUS304)を2本使用して網目4.0mmの円筒状編組金網(2本編み)を作成し、これをローラ間に通して幅36mm、長さ360mmの帯状金網(金網の重量21g)とし、これを補強材とした。
【0063】
前記耐熱シート材をうず巻き状に一周分巻回したのち、該耐熱シート材の内側に補強材を重ね合わせ、うず巻き状に捲回して最外周に耐熱シート材を位置させた筒状母材を作製した。この筒状母材においては、耐熱シート材の幅方向の両端部はそれぞれ補強材の幅方向に突出している。
【0064】
耐熱シート材として、幅48mm、長さ212mm、厚さ0.38mmの膨張黒鉛シート(膨張黒鉛シートの重量3.9g)を別途用意し、上記混合物を使用し、同様の方法にて該膨張黒鉛シートの表面全体に0.3g/100cm2 の一様な厚さの耐熱被膜(炭化ホウ素、フッ化カルシウム及び黒鉛とリン酸アルミニウムとの重量比率は1:1)を形成してなる耐熱シート材を別途作成した。
【0065】
上記と同様の金属細線を1本使用して、網目が4.0mmの円筒状編組金網を作成し、これをローラ間に通して幅53.5mm、長さ212mm帯状金網(金網の重量10g)を作成し、該帯状金網内に該耐熱シート材を挿入するとともにこれらをローラ間に通して一体化させ、補強材と補強材の網目を充填した耐熱被膜とが混在した外面層形成部材を作成した。
【0066】
前記筒状母材の外周面に、この外面層形成部材を捲回して予備円筒成形体を作成した。この予備円筒成形体を図11に示す金型37の段付きコア34に挿入し、該予備円筒成形体を金型37の中空部に位置させた。
【0067】
金型37の中空部に位置させた予備円筒成形体をコア軸方向に2トン/cm2 の圧力で圧縮成形し、中央部に貫通孔51を規定する円筒内面52を備え、外面53が部分凸球面状であって、環状の端面54を備えた球帯状シール体55を作成した。この球帯状シール体における膨張黒鉛シートからなる耐熱材と耐熱被膜を形成する炭化ホウ素、フッ化カルシウム及び黒鉛並びにリン酸アルミニウムとの重量比率は、耐熱材100に対し耐熱被膜15.8(炭化ホウ素0.79とフッ化カルシウム0.39と黒鉛6.72との混合物:7.9、リン酸アルミニウム:7.9)の割合となる。
【0068】
このようにして作製した球帯状シール体において、円筒内面から部分凸球面状の外面にかけてのその内部では、耐熱シート材と金網からなる補強材とが圧縮され、互いに絡み合って構造的一体性を有するように構成され、部分凸球面状の外面は、耐熱被膜からなる外面層の露出面からなり、該外面層には、当該外面層に一体化された金網からなる補強材が配されており、外面層とこの外面層に混在一体化された金網からなる補強材とが露出した該部分凸球面状の外面は平滑な面に形成され、貫通孔を規定する円筒内面及び外面の大径側の端面には耐熱被膜からなる耐熱層が露出して形成されている。
【0069】
<実施例2>
耐熱シートとして、前記実施例1と同様の幅55mm、長さ550mm、厚さ0.38mmの膨張黒鉛シート(膨張黒鉛シートの重量11.6g)を用意した。この膨張黒鉛シートの表面全体に、前記実施例1と同様の混合物をローラ塗りするという操作を2回繰り返し、その後、乾燥炉にて230℃の温度で20分間乾燥させて、該膨張黒鉛シートの表面全体に0.5g/100cm2 の一様な厚さの耐熱被膜(炭化ホウ素、フッ化カルシウム及び黒鉛とリン酸アルミニウムとの重量比率は1:1)を形成し、これを耐熱シート材とした。
【0070】
前記実施例1と同様の補強材を用意し、該補強材と該耐熱シート材とで実施例1と同様にして筒状母材を作成した。耐熱シートとして、前記実施例1と同様の幅48mm、長さ212mm、厚さ0.38mmの膨張黒鉛シート(膨張黒鉛シートの重量3.9g)を別途用意し、前記実施例1と同様の混合物を膨張黒鉛シートの表面全体にローラ塗りするという操作を2回繰り返し、その後、乾燥炉にて230℃の温度で20分間乾燥させて、該膨張黒鉛シートの表面全体に0.5g/100cm2 の量で、かつ一様な厚さの耐熱被膜(炭化ホウ素、フッ化カルシウム及び黒鉛とリン酸アルミニウムとの重量比率は1:1)を形成してなる耐熱シート材を別途作製した。
【0071】
以下、実施例1と同様にして外面層形成部材を作製し、実施例1と同様の方法で球帯状シール体を作製した。この球帯状シール体における膨張黒鉛シートからなる耐熱材と耐熱被膜を形成する炭化ホウ素、フッ化カルシウム及び黒鉛並びにリン酸アルミニウムとの重量比率は、耐熱材100に対し耐熱被膜26.32(炭化ホウ素1.32とフッ化カルシウム0.66と黒鉛11.18との混合物:13.16、リン酸アルミニウム:13.16)の割合となる。
【0072】
<実施例3>
耐熱シートとして、前記実施例1と同様の幅55mm、長さ550mm、厚さ0.38mmの膨張黒鉛シート(膨張黒鉛シートの重量11.6g)を用意した。濃度25%の第一リン酸アルミニウム水溶液を用意し、この水溶液30gに、平均粒径1.5μmの炭化ホウ素粉末10重量%と平均粒径4μmの金属フッ化物(フッ化リチウム:LiF2 )粉末5重量%と平均粒径18μmの黒鉛粉末85重量%とからなる混合粉末を7.5g配合し混合物を得た。この混合物を前記膨張黒鉛シートの表面全体にローラ塗りし、その後、乾燥炉にて230℃の温度で20分間乾燥させて、該膨張黒鉛シートの表面全体に0.3g/100cm2 の一様な厚さの耐熱被膜(炭化ホウ素、フッ化リチウム及び黒鉛とリン酸アルミニウムとの重量比率は1:1)を形成し、これを耐熱シート材とした。
【0073】
実施例1と同様の補強材を用意し、該補強材と該耐熱シート材とで実施例1と同様にして筒状母材を作製した。耐熱シートとして、実施例1と同様の幅48mm、長さ212mm、厚さ0.38mmの膨張黒鉛シート(膨張黒鉛シートの重量3.9g)を別途用意し、上記混合物を膨張黒鉛シートの表面全体にローラ塗り、その後、乾燥炉にて230℃の温度で20分間乾燥させて、該膨張黒鉛シートの表面全体に0.3g/100cm2 の一様な厚さの耐熱被膜(炭化ホウ素、フッ化リチウム及び黒鉛とリン酸アルミニウムとの重量比率は1:1)を形成してなる耐熱シート材を別途作製した。
【0074】
以下、実施例1と同様にして外面層形成部材を作製し、実施例1と同様の方法で球帯状シール体を作製した。この球帯状シール体における膨張黒鉛シートからなる耐熱材と耐熱被膜を形成する炭化ホウ素、フッ化リチウム及び黒鉛並びにリン酸アルミニウムとの重量比率は、耐熱材100に対し耐熱被膜15.8(炭化ホウ素0.79とフッ化リチウム0.39と黒鉛6.72との混合物:7.9、リン酸アルミニウム:7.9)の割合となる。
【0075】
<実施例4>
耐熱シートとして、前記実施例1と同様の幅55mm、長さ550mm、厚さ0.38mmの膨張黒鉛シート(膨張黒鉛シートの重量11.6g)を用意した。濃度25%の第一リン酸アルミニウム水溶液を用意し、この水溶液30gに、平均粒径7μmの金属ホウ化物(二ホウ化クロム)粉末10重量%と平均粒径4μmの金属フッ化物(フッ化カルシウム)粉末5重量%と平均粒径18μmの黒鉛粉末85重量%とからなる混合粉末を7.5g配合し混合物を得た。この混合物を前記膨張黒鉛シートの表面全体にローラ塗り、その後、乾燥炉にて230℃の温度で20分間乾燥させて、該膨張黒鉛シートの表面全体に0.3g/100cm2 の一様な厚さの耐熱被膜(二ホウ化クロム、フッ化カルシウム及び黒鉛とリン酸アルミニウムとの重量比率は1:1)を形成し、これを耐熱シート材とした。
【0076】
実施例1と同様の補強材を用意し、該補強材と該耐熱シート材とで実施例1と同様にして筒状母材を作製した。耐熱シートとして、実施例1と同様の幅48mm、長さ212mm、厚さ0.38mmの膨張黒鉛シート(膨張黒鉛シートの重量3.9g)を別途用意し、上記混合物を膨張黒鉛シートの表面全体にローラ塗りし、その後、乾燥炉にて230℃の温度で20分間乾燥させて、該膨張黒鉛シートの表面全体に0.3g/100cm2 の一様な厚さの耐熱被膜(二ホウ化クロム、フッ化カルシウム及び黒鉛とリン酸アルミニウムとの重量比率は1:1)を形成してなる耐熱シート材を別途作製した。
【0077】
以下、実施例1と同様にして外面層形成部材を作製し、実施例1と同様の方法で球帯状シール体を作製した。この球帯状シール体における膨張黒鉛シートからなる耐熱材と耐熱被膜を形成する二ホウ化素クロム、フッ化カルシウム及び黒鉛並びにリン酸アルミニウムとの重量比率は、耐熱材100に対し耐熱被膜15.8(二ホウ化クロム0.79とフッ化カルシウム0.39と黒鉛6.72との混合物:7.9、リン酸アルミニウム:7.9)の割合となる。
【0078】
<実施例5>
耐熱シートとして、前記実施例1と同様の幅55mm、長さ550mm、厚さ0.38mmの膨張黒鉛シート(膨張黒鉛シートの重量11.6g)を用意した。濃度25%の第一リン酸アルミニウム水溶液を用意し、この水溶液30gに、平均粒径7μmの金属ホウ化物(二ホウ化モリブデン:MoB2 )粉末10重量%と平均粒径4μmの金属フッ化物(フッ化リチウム)粉末5重量%と平均粒径18μmの黒鉛粉末85重量%とからなる混合粉末を7.5g配合し混合物を得た。この混合物を前記膨張黒鉛シートの表面全体にローラ塗りし、その後、乾燥炉にて230℃の温度で20分間乾燥させて、該膨張黒鉛シートの表面全体に0.3g/100cm2 の量で、かつ一様な厚さの耐熱被膜(二ホウ化モリブデン、フッ化リチウム及び黒鉛とリン酸アルミニウムとの重量比率は1:1)を形成し、これを耐熱シート材とした。
【0079】
実施例1と同様の補強材を用意し、該補強材と該耐熱シート材とで実施例1と同様にして筒状母材を作製した。耐熱シートとして、実施例1と同様の幅48mm、長さ212mm、厚さ0.38mmの膨張黒鉛シート(膨張黒鉛シートの重量3.9g)を別途用意し、上記混合物を膨張黒鉛シートの表面全体にローラ塗りし、その後、乾燥炉にて230℃の温度で20分間乾燥させて、該膨張黒鉛シートの表面全体に0.3g/100cm2 の量で、かつ一様な厚さの耐熱被膜(二ホウ化モリブデン、フッ化リチウム及び黒鉛とリン酸アルミニウムとの重量比率は1:1)を形成してなる耐熱シート材を別途作製した。
【0080】
以下、実施例1と同様にして外面層形成部材を作製し、実施例1と同様の方法で球帯状シール体を作製した。この球帯状シール体における膨張黒鉛シートからなる耐熱材と耐熱被膜を形成する二ホウ化モリブデン、フッ化リチウム及び黒鉛並びにリン酸アルミニウムとの重量比率は、耐熱材100に対し耐熱被膜15.8(二ホウ化モリブデン0.79とフッ化リチウム0.39と黒鉛6.72との混合物:7.9、リン酸アルミニウム:7.9)の割合となる。
【0081】
<実施例6>
耐熱シート材として、前記実施例1と同様の幅55mm、長さ550mm、厚さ0.38mmの膨張黒鉛シート(膨張黒鉛シートの重量11.6g)を用意した。濃度25%の第一リン酸アルミニウム水溶液を用意し、この水溶液30gに、平均粒径1.5μmの炭化ホウ素粉末10重量%と平均粒径7μmの金属ホウ化物(二ホウ化クロム)粉末15重量%と平均粒径4μmの金属フッ化物(フッ化カルシウム)粉末5重量%と平均粒径18μmの黒鉛粉末70重量%とからなる混合粉末を7.5g配合し混合物を得た。この混合物を前記膨張黒鉛シートの表面全体にローラ塗りし、その後、乾燥炉にて230℃の温度で20分間乾燥させて、該膨張黒鉛シートの表面全体に0.3g/100cm2 の量で、かつ一様な厚さの耐熱被膜(炭化ホウ素、二ホウ化クロム、フッ化カルシウム及び黒鉛とリン酸アルミニウムとの重量比率は1:1)を形成し、これを耐熱シート材とした。
【0082】
実施例1と同様の補強材を用意し、該補強材と該耐熱シート材とで実施例1と同様にして筒状母材を作製した。耐熱シートとして、実施例1と同様の幅48mm、長さ212mm、厚さ0.38mmの膨張黒鉛シート(膨張黒鉛シートの重量3.9g)を別途用意し、上記混合物を膨張黒鉛シートの表面全体にローラ塗り、その後、乾燥炉にて230℃の温度で20分間乾燥させて、該膨張黒鉛シートの表面全体に0.3g/100cm2 の一様な厚さの耐熱被膜(炭化ホウ素、二ホウ化クロム、フッ化カルシウム及び黒鉛とリン酸アルミニウムとの重量比率は1:1)を形成してなる耐熱シート材を別途作製した。
【0083】
以下、実施例1と同様にして外面層形成部材を作製し、実施例1と同様の方法で球帯状シール体を作製した。この球帯状シール体における膨張黒鉛シートからなる耐熱材と耐熱被膜を形成する炭化ホウ素、二ホウ化クロム、フッ化カルシウム及び黒鉛並びにリン酸アルミニウムとの重量比率は、耐熱材100に対し耐熱被膜15.8(炭化ホウ素0.79と二ホウ化クロム1.19とフッ化カルシウム0.39と黒鉛5.53との混合物:7.9、リン酸アルミニウム:7.9)の割合となる。
【0084】
<実施例7>
耐熱シート材として、前記実施例1と同様の幅55mm、長さ550mm、厚さ0.38mmの膨張黒鉛シート(膨張黒鉛シートの重量11.6g)を用意した。この膨張黒鉛シートの表面全体に、前記実施例6と同様の混合物をローラ塗りするという操作を2回繰り返し、その後、乾燥炉にて230℃の温度で20分間乾燥させて、該膨張黒鉛シートの表面全体に0.5g/100cm2 の一様な厚さの耐熱被膜(炭化ホウ素、二ホウ化クロム、フッ化カルシウム及び黒鉛とリン酸アルミニウムとの重量比率は1:1)を形成し、これを耐熱シート材とした。
【0085】
実施例1と同様の補強材を用意し、該補強材と該耐熱シート材とで実施例1と同様にして筒状母材を作製した。耐熱シートとして、実施例1と同様の幅48mm、長さ212mm、厚さ0.38mmの膨張黒鉛シート(膨張黒鉛シートの重量3.9g)を別途用意し、前記実施例6と同様の混合物を膨張黒鉛シートの表面全体にローラ塗りするという操作を2回繰り返し、その後、乾燥炉にて230℃の温度で20分間乾燥させて、該膨張黒鉛シートの表面全体に0.5g/100cm2 の一様な厚さの耐熱被膜(炭化ホウ素、二ホウ化クロム、フッ化カルシウム及び黒鉛とリン酸アルミニウムとの重量比率は1:1)を形成してなる耐熱シート材を別途作製した。
【0086】
以下、実施例1と同様にして外面層形成部材を作製し、実施例1と同様の方法で球帯状シール体を作製した。この球帯状シール体における膨張黒鉛シートからなる耐熱材と耐熱被膜を形成する炭化ホウ素、二ホウ化クロム、フッ化カルシウム及び黒鉛並びにリン酸アルミニウムとの重量比率は、耐熱材100に対し耐熱被膜26.32(炭化ホウ素1.32と二ホウ化クロム1.97とフッ化カルシウム0.66と黒鉛9.21との混合物:13.16、リン酸アルミニウム:13.16)の割合となる。
【0087】
<実施例8>
耐熱シート材として、前記実施例1と同様の幅55mm、長さ550mm、厚さ0.38mmの膨張黒鉛シート(膨張黒鉛シートの重量11.6g)を用意した。濃度25%の第一リン酸アルミニウム水溶液を用意し、この水溶液30gに、平均粒径1.5μmの炭化ホウ素粉末10重量%と平均粒径7μmの金属ホウ化物(二ホウ化モリブデン)粉末10重量%と平均粒径4μmの金属フッ化物(フッ化カルシウム)粉末5重量%と平均粒径18μmの黒鉛粉末75重量%とからなる混合粉末を7.5g配合し混合物を得た。この混合物を前記膨張黒鉛シートの表面全体にローラー塗りするという操作を2回繰り返し、その後、乾燥炉にて230℃の温度で20分間乾燥させて、該膨張黒鉛シートの表面全体に0.5g/100cm2 の一様な厚さの耐熱被膜(炭化ホウ素、二ホウ化モリブデン、フッ化カルシウム及び黒鉛とリン酸アルミニウムとの重量比率は1:1)を形成し、これを耐熱シート材とした。
【0088】
実施例1と同様の補強材を用意し、該補強材と該耐熱シート材とで実施例1と同様にして筒状母材を作製した。耐熱シートとして、実施例1と同様の幅48mm、長さ212mm、厚さ0.38mmの膨張黒鉛シート(膨張黒鉛シートの重量3.9g)を別途用意し、上記混合物を膨張黒鉛シートの表面全体にローラ塗りするという操作を2回繰り返し、その後、乾燥炉にて230℃の温度で20分間乾燥させて、該膨張黒鉛シートの表面全体に0.5g/100cm2 の一様な厚さの耐熱被膜(炭化ホウ素、二ホウ化モリブデン、フッ化カルシウム及び黒鉛とリン酸アルミニウムとの重量比率は1:1)を形成してなる耐熱シート材を別途作製した。
【0089】
以下、実施例1と同様にして外面層形成部材を作製し、実施例1と同様の方法で球帯状シール体を作製した。この球帯状シール体における膨張黒鉛シートからなる耐熱材と耐熱被膜を形成する炭化ホウ素、二ホウ化モリブデン、フッ化カルシウム及び黒鉛並びにリン酸アルミニウムとの重量比率は、耐熱材100に対し耐熱被膜26.32(炭化ホウ素1.32と二ホウ化モリブデン1.32とフッ化カルシウム0.66と黒鉛9.87との混合物:13.16、リン酸アルミニウム:13.16)の割合となる。
【0090】
<実施例9>
前記実施例7と同様の筒状母材を作製した。
【0091】
耐熱シートとして、実施例1と同様の幅48mm、長さ212mm、厚さ0.38mmの膨張黒鉛シート(膨張黒鉛シートの重量3.9g)を別途用意し、前記実施例1の混合物を該膨張黒鉛シートの表面全体にローラ塗りするという操作を2回繰り返し、その後、乾燥炉にて230℃の温度で20分間乾燥させて、該膨張黒鉛シートの表面全体に0.5g/100cm2 の量で、かつ一様な厚さの耐熱被膜(炭化ホウ素、フッ化カルシウム及び黒鉛とリン酸アルミニウムとの重量比率は1:1)を形成してなる耐熱シート材を別途作製した。
【0092】
以下、実施例1と同様にして外面層形成部材を作製し、実施例1と同様の方法で球帯状シール体を作製した。この球帯状シール体における膨張黒鉛シートからなる耐熱材と耐熱被膜を形成する炭化ホウ素、二ホウ化クロム、フッ化カルシウム及び黒鉛並びにリン酸アルミニウムとの重量比率は、耐熱材100に対し耐熱被膜26.32(炭化ホウ素1.32と二ホウ化クロム1.45とフッ化カルシウム0.66と黒鉛9.73との混合物:13.16、リン酸アルミニウム:13.16)の割合となる。
【0093】
このようにして作製した球帯状シール体において、円筒内面から部分凸球面状の外面にかけてのその内部では、耐熱シートの表面全体に炭化ホウ素、二ホウ化クロム、フッ化カルシウム及び黒鉛とリン酸アルミニウムとからなる耐熱被膜を備えてなる耐熱シート材と金網からなる補強材とが圧縮され、互いに絡み合って構造的一体性を有するように構成され、部分凸球面状の外面は、該耐熱被膜からなる外面層の露出面からなり、該外面層には当該外面層に一体化された金網からなる補強材が配されており、外面層とこの外面層に混在一体化された金網からなる補強材とが露出した該部分凸球面状の外面は平滑な面に形成され、貫通孔を規定する円筒内面及び外面体の大径側の端面には、該耐熱被膜からなる耐熱層が露出して形成されている。
【0094】
<実施例10>
前記実施例2と同様の筒状母材を作製した。
【0095】
耐熱シートとして、実施例1と同様の幅48mm、長さ212mm、厚さ0.38mmの膨張黒鉛シート(膨張黒鉛シートの重量3.9g)を別途用意し、前記実施例1と同様の混合物を使用し、前記実施例2と同様の方法にて該膨張黒鉛シートの表面全体に0.5g/100cm2 の量で、かつ一様な厚さの耐熱被膜(炭化ホウ素、フッ化カルシウム及び黒鉛とリン酸アルミニウムとの重量比率は1:1)を形成してなる耐熱シート材を別途作製した。
【0096】
該耐熱シート材の一方の面の耐熱被膜の表面に、平均粒径7μmの窒化ホウ素85重量%、平均粒径0.6μmのアルミナ粉末15重量%からなる潤滑組成物を固形分として30重量%分散含有した水性ディスパージョン(窒化ホウ素25.5重量%、アルミナ4.5重量%及び水分70重量%)をローラ塗りし、乾燥するという被覆操作を3回繰り返して該潤滑組成物の表面層を形成し、以下、実施例1と同様の方法で外面層形成部材を作製した。
【0097】
以下、実施例1と同様の方法で球帯状シール体を作製した。この球帯状シール体における膨張黒鉛シートからなる耐熱材と耐熱被膜を形成する炭化ホウ素、フッ化カルシウム及び黒鉛並びにリン酸アルミニウムとの重量比率は、耐熱材100に対し耐熱被膜26.32(炭化ホウ素1.32とフッ化カルシウム0.66と黒鉛11.18との混合物:13.16、リン酸アルミニウム:13.16)の割合となる。
【0098】
このようにして作製した球帯状シール体において、円筒内面から部分凸球面状の外面にかけての内部では、膨張黒鉛シートの表面全体に耐熱被膜を備えてなる耐熱シート材と金網からなる補強材とが圧縮され、互いに絡み合って構造的一体性を有するように構成され、部分凸球面状の外面は、潤滑組成物の表面層からなる外面層の露出面からなり、該外面層には、当該外面層に一体化された金網からなる補強材が配されており、外面層とこの外面層に混在一体化された金網からなる補強材とが露出した該部分凸球面状の外面は平滑な面に形成され、貫通孔を規定する円筒内面及び部分凸球面状の外面の大径側の端面には耐熱被膜からなる耐熱層が露出して形成されている。
【0099】
<実施例11>
前記実施例6と同様の筒状母材を作製した。
【0100】
耐熱シートとして、実施例1と同様の幅48mm、長さ212mm、厚さ0.38mmの膨張黒鉛シート(膨張黒鉛シートの重量3.9g)を別途用意し、前記実施例6と同様にして、該膨張黒鉛シートの表面全体に0.3g/100cm2 の一様な厚さの耐熱被膜(炭化ホウ素、二ホウ化クロム、フッ化カルシウム及び黒鉛とリン酸アルミニウムとの重量比率は1:1)を形成してなる耐熱シート材を別途作製した。
【0101】
該耐熱シート材の一方の面の耐熱被膜の表面に、平均粒径7μmの窒化ホウ素85重量%、平均粒径0.6μmのアルミナ粉末15重量%からなる混合物を100重量部とし、これに平均粒径0.3μmのポリテトラフルオロエチレン樹脂を50重量部含有した潤滑組成物(窒化ホウ素56.7重量%、アルミナ10重量%及びポリテトラフルオロエチレン樹脂33.3重量%)を固形分として30重量%分散含有した水性ディスパージョン(窒化ホウ素17重量%、アルミナ10重量%、ポリテトラフルオロエチレン樹脂10重量%及び水分70重量%)をローラ塗りし、乾燥するという被覆操作を3回繰り返して該潤滑組成物の表面層を形成し、以下、実施例1と同様の方法で外面層形成部材を作製した。
【0102】
以下、実施例1と同様の方法で球帯状シール体を作製した。この球帯状シール体における膨張黒鉛シートからなる耐熱材と耐熱被膜を形成する炭化ホウ素、フッ化カルシウム及び黒鉛並びにリン酸アルミニウムとの重量比率は、耐熱材100に対し耐熱被膜15.8(炭化ホウ素0.79と二ホウ化クロム1.19とフッ化カルシウム0.39と黒鉛5.53との混合物:7.9、リン酸アルミニウム:7.9)の割合となる。
【0103】
このようにして作製した球帯状シール体において、円筒内面から部分凸球面状の外面にかけてのその内部では、耐熱シートの表面全体に耐熱被膜を備えてなる耐熱シート材と金網からなる補強材とが圧縮され、互いに絡み合って構造的一体性を有するように構成され、部分凸球面状の外面は、潤滑組成物の表面層からなる外面層の露出面からなり、該外面層には、当該外面層に一体化された金網からなる補強材が配されており、外面層とこの外面層に混在一体化された金網からなる補強材とが露出した該部分凸球面状の外面は平滑な面に形成され、貫通孔を規定する円筒内面及び部分凸球面状の外面の大径側の端面には耐熱被膜からなる耐熱層が露出して形成されている。
【0104】
<実施例12>
前記実施例7と同様の筒状母材を作製した。
【0105】
耐熱シートとして、実施例1と同様の幅48mm、長さ212mm、厚さ0.38mmの膨張黒鉛シート(膨張黒鉛シートの重量3.9g)を別途用意し、前記実施例7と同様にして、該膨張黒鉛シートの表面全体に0.5g/100cm2 の一様な厚さの耐熱被膜(炭化ホウ素、二ホウ化クロム、フッ化カルシウム及び黒鉛とリン酸アルミニウムとの重量比率は1:1)を形成してなる耐熱シート材を別途作製した。
【0106】
該耐熱シート材の一方の面の耐熱被膜の表面に、平均粒径7μmの窒化ホウ素85重量%、平均粒径0.6μmのアルミナ粉末15重量%からなる混合物を100重量部とし、これに平均粒径0.3μmのポリテトラフルオロエチレン樹脂を50重量部含有した潤滑組成物(窒化ホウ素56.7重量%、アルミナ10重量%及びポリテトラフルオロエチレン樹脂33.3重量%)を固形分として30重量%分散含有した水性ディスパージョン(窒化ホウ素17重量%、アルミナ10重量%、ポリテトラフルオロエチレン樹脂10重量%及び水分70重量%)をローラ塗りし、乾燥するという被覆操作を3回繰り返して該潤滑組成物の表面層を形成し、以下、実施例1と同様の方法で外面層形成部材を作製した。
【0107】
以下、実施例1と同様の方法で球帯状シール体を作製した。この球帯状シール体における膨張黒鉛シートからなる耐熱材と耐熱被膜を形成する炭化ホウ素、フッ化カルシウム及び黒鉛並びにリン酸アルミニウムとの重量比率は、耐熱材100に対し耐熱被膜26.32(炭化ホウ素1.32と二ホウ化クロム1.97とフッ化カルシウム0.66と黒鉛9.21との混合物:13.16、リン酸アルミニウム:13.16)の割合となる。
【0108】
<比較例1>
耐熱シート材として、前記実施例1と同様の幅55mm、長さ550mm、厚さ0.38mmの膨張黒鉛シートを、補強材として前記実施例1と同様の帯状金網(幅36mm、長さ360mm)を用意し、これらを重ね合わせるとともに該膨張黒鉛シート側を内側にしてうず巻き状に捲回し、最外周に膨張黒鉛シートが位置した筒状母材を作製した。
【0109】
前記実施例1と同様の幅48mm、長さ212mm、厚さ0.38mmの膨張黒鉛シートを別途用意し、この膨張黒鉛シートの一方の表面に、平均粒径7μmの窒化ホウ素粉末85重量%、平均粒径0.6μmのアルミナ粉末15重量%から成る潤滑組成物を固形分として30重量%分散含有した水性ディスパージョン(窒化ホウ素25.5重量%、アルミナ4.5重量%、水分70重量%)をローラ塗りし、乾燥するという被覆操作を3回繰り返して該潤滑組成物の表面層を形成したのち、別途作製した帯状金網(幅53.5mm、長さ212mm)内に前記表面層を備えた膨張黒鉛シートを挿入すると共にこれらをローラ間に通して一体化させ、一方の面に潤滑組成物と金網とが混在した外面層形成部材を作製した。
【0110】
前記筒状母材の外周面に、この外面層形成部材を表面層側を外側にして捲回し、予備円筒成形体を作成したのち、前記実施例1と同様の方法で、内面に貫通孔を規定する円筒内面を備え、外面が部分凸球面状であって、この外面の大径側に環状の端面を備えた球帯状シール体を作製した。
【0111】
<比較例2>
前記比較例1と同様の筒状母材を作製した。前記実施例1と同様の幅48mm、長さ212mm、厚さ0.38mmの膨張黒鉛シートを別途用意し、この膨張黒鉛シートの一方の表面に、平均粒径7μmの窒化ホウ素粉末85重量%、平均粒径0.6μmのアルミナ粉末15重量%から成る混合物を100重量部とし、これに平均粒径0.3μmのポリテトラフルオロエチレン樹脂粉末を50重量部含有した潤滑組成物(窒化ホウ素56.7重量%、アルミナ10重量%、ポリテトラフルオロエチレン樹脂33.3重量%)を固形分として30重量%分散含有した水性ディスパージョン(窒化ホウ素17.0重量%、アルミナ3.0重量%、ポリテトラフルオロエチレン樹脂10.0重量%、水分70重量%)をローラ塗りし、乾燥するという操作を3回繰り返して該潤滑組成物の表面層を形成したのち、別途作製した帯状金網(幅53.5mm、長さ212mm)内に前記表面層を備えた膨張黒鉛シートを挿入すると共にこれらをローラ間に通して一体化させ、一方の面に潤滑組成物と金網とが混在した外面層形成部材を作製した。
【0112】
前記筒状母材の外周面に、この外面層形成部材を表面層を外側に巻き付けて予備円筒体を作製したのち、前記実施例1と同様の方法で、内面に貫通孔を規定する円筒内面を備え、外面が部分凸球面状であって、この外面の大径側に環状の端面を備えた球帯状シール体を作製した。
【0113】
つぎに、上述した実施例及び比較例からなる球帯状シール体について、図18に示す排気管継手を使用して、該シール体の1サイクル毎における摩擦トルク(kgf・cm)、異常音の発生の有無、ガス漏れ量及び球帯状シール体の酸化減量について試験した結果を説明する。

Figure 0003812036
<試験方法>(試験I、試験IIとも)
室温において12ヘルツの振動数で±3°の揺動運動を1回として45,000回行なったのち、該揺動運動を継続しながら雰囲気温度を500℃(試験I)、700℃(試験II)まで昇温し(昇温中の揺動回数45,000回)、該雰囲気温度が500℃、700℃に到達した時点で115,000回の揺動運動を行い、ついで該揺動運動を継続しながら雰囲気温度を室温まで降温(降温中の揺動回数45,000回)するという全揺動回数250,000回を1サイクルとして4サイクル行う。
【0114】
また、異常音の発生の有無の評価はつぎのようにして行なった。
評価記号I :異常音の発生のないもの。
評価記号II :試験片に耳を近づけた状態で、かすかに異常音が聴こえるもの。
評価記号III:定位置(試験片から1.5m離れた位置)では生活環境音に消され、一般には判別しがたいが試験担当者には異常音として判別できるもの。
評価記号IV :定位置で誰でも異常音(不快音)として識別できるもの。
【0115】
ガス漏れ量(リットル/min)は、図18に示す排気管継手の一方の排気管100の開口部を閉塞し、他方の排気管300側から、0.5kgf/cm2 の圧力で乾燥空気を流入し、継手部分(球帯状シール体55の外面53と径拡大部301の凹球面部302との摺接部、球帯状シール体55の円筒内面52と排気管100の管端部101との嵌合部及び端面54と排気管100に立設されたフランジ200との当接部)からの漏れ量を流量計にて、試験初期、250,000回後、500,000回後及び1,000,000回後の4回測定した。
【0116】
酸化減量は、試験前、後の球帯状シール体の重量の変化を測定した。実施例及び比較例の球帯状シール体の試験前の重量(g)を表1に示す。
(以下余白)
【0117】
【表1】
Figure 0003812036
【0118】
表2〜表8は、上記試験方法によって得られた試験I及び試験IIの試験結果である。
(以下余白)
【0119】
【表2】
Figure 0003812036
(以下余白)
【0120】
【表3】
Figure 0003812036
(以下余白)
【0121】
【表4】
Figure 0003812036
(以下余白)
【0122】
【表5】
Figure 0003812036
(以下余白)
【0123】
【表6】
Figure 0003812036
(以下余白)
【0124】
【表7】
Figure 0003812036
(以下余白)
【0125】
【表8】
Figure 0003812036
【0126】
表中、1は揺動回数0(試験開始初期)での結果、2は揺動回数25万回での結果、3は揺動回数50万回での結果、4は揺動回数100万回での結果を示したものである。試験Iの結果からは実施例と比較例との間に性能の差は認められず、両者とも摩擦トルクが低く、かつ異常摩擦音の発生も認められず、ガス漏れ量も0.15リットル/min以下という良好な性能を発揮した。
【0127】
しかし、試験IIの結果からは実施例と比較例との間に歴然とした性能の差が認められた。すなわち、比較例からなる球帯状シール体は凹球面部の外表面温度が700℃という高温条件では、ガス漏れ量及び酸化減量の結果から明らかなように、揺動回数の増加に伴い耐熱シートである膨張黒鉛の酸化が進行し、揺動回数が50万回を超えると急激に膨張黒鉛に酸化による消耗が認められ、形崩れ等を生じ、シール体としての機能が消滅した。一方、実施例からなる球帯状シール体は、耐熱シートの表面全体に耐熱被膜が形成されており、シール体自体の耐熱性が高められているため、凹球面部の外表面温度が700℃という高温条件においても膨張黒鉛の酸化消耗は低く抑えられ、シール体としての機能は揺動回数が100万回を超えても依然発揮されるものであった。
【0128】
また、球帯状シール体の酸化減量の結果から明らかなように、実施例1〜実施例12の球帯状シール体は700℃という高温条件下においても、耐熱被膜成分の効果により耐熱材である膨張黒鉛の酸化消耗は低く抑えられており、シール体自体の酸化減量は低い値を示した。
【0129】
【発明の効果】
本発明の球帯状シール体は、円筒内面から部分凸球面状の外面にかけてのその内部では、耐熱シートの表面全体に耐熱被膜を備えてなる耐熱シート材と金網からなる補強材とが互いに絡み合って構造的一体性を有し、該シール体自体の耐熱性が高められているので、700℃という高温条件においてもシール体としての機能を十分発揮するものである。また、製造方法においては、膨張黒鉛シート等の表面全体に耐熱被膜を形成するという工程が加わるだけで、従来の製造方法における製造工程を大幅に変更する必要を生じない。
【図面の簡単な説明】
【図1】本発明の球帯状シール体を示す縦断面説明図である。
【図2】本発明の球帯状シール体の部分凸球面状の外面の部分拡大断面説明図である。
【図3】本発明の球帯状シール体の製造工程における耐熱シートの斜視図である。
【図4】本発明の球帯状シール体の製造工程における耐熱被膜が形成された耐熱シート材の断面図である。
【図5】本発明の球帯状シール体の製造工程における金網からなる補強材の形成方法の説明図である。
【図6】本発明の球帯状シール体の製造工程における筒状母材の平面説明図である。
【図7】本発明の球帯状シール体の製造工程における筒状母材の縦断面説明図である。
【図8】本発明の球帯状シール体の製造工程における表面層形成部材の形成方法の説明図である。
【図9】本発明の球帯状シール体の製造工程における表面層形成部材の形成方法の説明図である。
【図10】本発明の球帯状シール体の製造工程における予備円筒成形体の平面説明図である。
【図11】本発明の球帯状シール体の製造工程における金型中に予備円筒成形体を挿入した状態を示す縦断面説明図である。
【図12】本発明の球帯状シール体の製造工程における潤滑組成物からなる表面層を形成した耐熱シート材の断面図である。
【図13】本発明の球帯状シール体の製造工程における表面層形成部材の形成方法の説明図である。
【図14】本発明の球帯状シール体の製造工程における表面層形成部材の形成方法の説明図である。
【図15】本発明の球帯状シール体の製造工程における予備円筒成形体の平面説明図である。
【図16】本発明の球帯状シール体を示す縦断面説明図である。
【図17】本発明の球帯状シール体の部分凸球面状の外面の部分拡大断面説明図である。
【図18】本発明の球帯状シール体を組込んだ排気管継手の縦断面説明図である。
【符号の説明】
51 貫通孔
52 円筒内面
53 外面
54 端面
55 球帯状シール体[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ball-shaped seal body used for a spherical pipe joint of an automobile exhaust pipe, and a method for manufacturing the same.
[0002]
[Problems to be solved by the invention]
An example of a spherical belt-like sealing body used for a spherical pipe joint of an automobile exhaust pipe is disclosed in, for example, Japanese Patent Application Laid-Open No. 54-76759. The sealing body disclosed in this publication has heat resistance, excellent compatibility with the mating material, and significantly improved impact strength. On the other hand, it often produces abnormal noise in friction under dry friction conditions. There is a disadvantage that it occurs. The disadvantage of this seal body is that the difference between the static friction coefficient and the dynamic friction coefficient of the heat-resistant material (expanded graphite, etc.) forming the seal body is large, and the dynamic friction resistance against the sliding speed of the seal body made of this heat-resistant material is negative resistance. This is considered to be caused by the fact that
[0003]
Therefore, the present applicant has proposed a sealing body described in Japanese Patent Application No. 4-300551 (Japanese Patent Laid-Open No. 6-123362) in order to solve the above-described drawbacks. This seal body is excellent in sealing performance without causing abnormal frictional noise when sliding with the mating member, and satisfies the performance required for the seal body.
[0004]
However, even with the above-described seal body, new problems have been raised due to the recent improvement in performance of automobile engines. That is, when a spherical pipe joint is disposed in the vicinity of an exhaust gas outlet (manifold) for the purpose of improving the NVH characteristic (vehicle acoustic vibration characteristic) of the automobile due to an increase in exhaust gas temperature due to the performance improvement of the automobile engine, Due to the rise in exhaust gas temperature caused by the closer of the spherical fitting to the engine side, the conventional seal body cannot satisfy the use conditions in terms of heat resistance, and the heat resistance of the seal body itself has to be improved. Yes.
[0005]
The present invention has been made in view of the above-mentioned problems, and the object of the present invention is to reduce the amount of oxidation consumption even under high temperature conditions ranging from 600 ° C. to 700 ° C. An object of the present invention is to provide a ball-shaped seal body used for a spherical pipe joint of an automobile exhaust pipe that is excellent in performance and can satisfy the function as a seal body, and a method for manufacturing the same.
[0006]
[Means for Solving the Problems]
According to the present invention, the object is to provide a cylindrical inner surface that defines a through-hole at the center, an outer surface is formed in a partially convex spherical shape, and an annular end surface is provided on the outer diameter side of this outer surface. A spherical band-shaped sealing body used for the inner surface from the inner surface of the cylindrical surface to the vicinity of the outer surface of the partially convex spherical surface, and a reinforcing material made of a compressed wire mesh, and a mesh of the wire mesh of the reinforcing material, And the heat-resistant material mixed and integrated with the reinforcing material and compressed, and further comprising at least one of boron carbide and metal boride, metal fluoride, graphite, and aluminum phosphate. The outer surface of the partially convex spherical surface is mixed with the heat-resistant material, and has an outer surface layer composed of at least one of boron carbide and metal boride, metal fluoride, graphite, and aluminum phosphate, and the outer surface layer. Mixed A reinforcement consisting of integrated wire mesh is achieved by spherical annular seal member, characterized in that it is formed into a smooth surface exposed.
[0007]
Further, according to the present invention, the object is to provide a cylindrical inner surface that defines a through hole at the center, an outer surface is formed in a partially convex spherical shape, and an annular end surface is provided on the large diameter side of the outer surface, in particular an exhaust pipe. A spherical belt-like seal body used for a joint, and in the inside from the cylindrical inner surface to a partially convex spherical outer surface, a reinforcing material made of a compressed wire mesh, and a mesh of the wire mesh of this reinforcing material are filled, And the heat-resistant material mixed and integrated with the reinforcing material and compressed, and further comprising at least one of boron carbide and metal boride, metal fluoride, graphite, and aluminum phosphate. The outer surface of the partially convex spherical surface is mixed and integrated with the outer surface layer of the lubricating composition composed of at least one of boron nitride and at least one of alumina and silica. Money Also achieved by spherical annular seal member, characterized in that the reinforcing material is formed into a smooth surface exposed consisting.
[0008]
Further, according to the present invention, the object is to provide a cylindrical inner surface that defines a through-hole in the central portion, the outer surface is formed in a partially convex spherical shape, and an annular end surface on the large-diameter side of the outer surface. A spherical belt-like sealing body used for a pipe joint, and at least one of boron carbide and metal boride and a metal fluoride is formed on the entire surface of the heat-resistant sheet inside the cylindrical inner surface to the partially convex spherical outer surface. The heat-resistant sheet material provided with a heat-resistant film made of a mixture of a chemical compound and graphite and aluminum phosphate and the reinforcing material made of a wire mesh are compressed and entangled with each other to have structural integrity. The outer surface of the convex spherical surface is formed on a smooth surface where an outer surface layer made of a heat-resistant film and a reinforcing material made of a wire mesh mixed and integrated with the outer surface layer are exposed. It is also achieved me.
[0009]
Furthermore, according to the present invention, the object is to provide a cylindrical inner surface that defines a through hole in the central portion, the outer surface is formed in a partially convex spherical shape, and an annular end surface on the large-diameter side of the outer surface. A spherical belt-like sealing body used for a pipe joint, and at least one of boron carbide and metal boride and a metal fluoride is formed on the entire surface of the heat-resistant sheet inside the cylindrical inner surface to the partially convex spherical outer surface. The heat-resistant sheet material provided with a heat-resistant film made of a mixture of a chemical compound and graphite and aluminum phosphate and the reinforcing material made of a wire mesh are compressed and entangled with each other to have structural integrity. The outer surface of the convex spherical surface is reinforced by an outer surface layer of a lubricating composition comprising at least boron nitride and at least one of alumina and silica, and a wire mesh mixed and integrated with the outer surface layer. Doo is also achieved by a spherical annular seal member, characterized in that it is formed into a smooth surface exposed.
[0010]
Further, according to the present invention, the object is further provided with a cylindrical inner surface defining a through-hole at the central portion, an outer surface having a partially convex spherical shape, and an annular end surface on the large-diameter side of the outer surface. A manufacturing method of a spherical belt-shaped sealing body used for an exhaust pipe joint, comprising: (a) at least one of boron carbide and metal boride having a uniform thickness over the entire surface of a heat-resistant sheet, metal fluoride and graphite Preparing a heat-resistant sheet material provided with a heat-resistant coating composed of a mixture of aluminum phosphate and (b), and (b) preparing a reinforcing material made of a wire mesh obtained by weaving or knitting a fine metal wire, After the material is superposed on the heat-resistant sheet material, the heat-resistant sheet material is wound in a spiral shape with the heat-resistant sheet material inside, and (c) uniform over the entire surface of another heat-resistant sheet Thickness boron carbide and metal borides Preparing another heat-resistant sheet material comprising another heat-resistant film made of a mixture of at least one of them, a metal fluoride, and graphite and aluminum phosphate, the another heat-resistant sheet material, and the other heat-resistant sheet material Forming an outer surface layer forming member made of another reinforcing material made of a metal mesh disposed so as to cover the heat-resistant coating; and (d) winding the outer surface layer forming member around the outer peripheral surface of the cylindrical base material. Forming a preliminary cylindrical molded body, and (e) inserting the preliminary cylindrical molded body into the outer peripheral surface of the core of the mold, placing the core in the mold, and placing the preliminary cylindrical molded body in the mold. A process of compression molding in the direction of the core axis, and in the interior from the cylindrical inner surface to the partially convex spherical outer surface, a heat-resistant sheet material provided with a heat-resistant coating and a reinforcing material made of a wire mesh are compressed and entangled with each other Structured to have And the outer surface of the partially convex spherical surface is formed into a smooth surface in which another heat-resistant coating is filled with another reinforcing material mesh and the both are mixed and integrated. It is also achieved by the body manufacturing method.
[0011]
According to the present invention, the object is further provided with a cylindrical inner surface defining a through-hole at the center, an outer surface having a partially convex spherical shape, and an annular end surface on the large-diameter side of the outer surface. A manufacturing method of a ball-shaped seal body used for a pipe joint, wherein (a) at least one of boron carbide and metal boride having a uniform thickness on the entire surface of a heat-resistant sheet, metal fluoride and graphite, Preparing a heat-resistant sheet material provided with a heat-resistant film made of a mixture with aluminum phosphate; and (b) preparing a reinforcing material made of a wire mesh obtained by weaving or knitting a thin metal wire, and the reinforcing material On the heat-resistant sheet material, and then spirally winding the heat-resistant sheet material inside to form a cylindrical base material, and (c) a uniform thickness over the entire surface of another heat-resistant sheet. Sano boron carbide and metal borides Preparing another heat-resistant sheet material comprising another heat-resistant film made of a mixture of at least one metal fluoride and graphite and aluminum phosphate, and one of the other heat-resistant sheet material and the other heat-resistant sheet material A surface layer of a lubricating composition composed of at least one of boron nitride and at least one of alumina and silica coated on the surface of the heat-resistant coating on the surface, and another reinforcing material composed of a wire mesh disposed to cover the surface layer Forming an outer surface layer forming member, and (d) winding the outer surface layer forming member around the outer peripheral surface of the cylindrical base material with the surface layer surface facing outward to form a preliminary cylindrical molded body, (E) inserting the preliminary cylindrical molded body into the outer peripheral surface of the core of the mold, placing the core in the mold and compressing the preliminary cylindrical molded body in the mold in the axial direction of the mold; Convex from the inner surface of the cylinder Inside the planar outer surface, a heat-resistant sheet material provided with a heat-resistant coating and a reinforcing material made of a wire mesh are compressed and entangled with each other so as to have structural integrity. The outer surface can also be achieved by a method for manufacturing a spherical belt-shaped sealing body, wherein the lubricating composition is formed into a smooth surface in which the mesh of the reinforcing material is filled and both are mixed and integrated.
[0012]
In the spherical belt-shaped sealing body having the above-described configuration, at least one of boron carbide and metal boride and metal fluoride with respect to the heat-resistant material 100 in the weight ratio inside the cylindrical inner surface to the partially convex spherical outer surface And graphite graphite and at least one of phosphoric acid and phosphate are contained in a ratio of 5 to 45.
[0013]
In addition, in the inside from the cylindrical inner surface to the partially convex spherical outer surface, (A) at least one of boron carbide and metal boride, metal fluoride and graphite, and (B) aluminum phosphate by weight ratio ( A): (B) = 1: 0.5 to 3 included, and boron carbide and metal in at least one of boron carbide and metal boride and metal fluoride and graphite under this ratio At least one of the borides is contained in a proportion of 5 to 25% by weight, metal fluoride is contained in a proportion of 1 to 15% by weight, and graphite is contained in a proportion of 60 to 90% by weight.
[0014]
The outer surface layer has a weight ratio of (A) :( B) = 1: 0.5 to (A) at least one of boron carbide and metal boride and metal fluoride and graphite and (B) aluminum phosphate. 3 and at least one of boron carbide and metal boride and metal fluoride and graphite under this ratio, at least one of boron carbide and metal boride is 5 to 25% by weight. , Formed from a mixture containing 1 to 15% by weight of metal fluoride and 60 to 90% by weight of graphite, or a heat-resistant film made of this mixture, or 70 to 90% by weight of boron nitride and alumina 100 parts by weight of a lubricating composition comprising 10 to 30% by weight of at least one of silica or a mixture of the lubricating composition, and 200 parts by weight or less, Mashiku is formed from lubricating composition is 50 to 150 parts by weight of polytetrafluoroethylene resin formed by containing.
[0015]
In the spherical belt-shaped sealing body having the above-described configuration, at least one of boron carbide and metal boride and metal fluoride are formed on the cylindrical inner surface defining the through hole and the end surface on the large diameter side of the partially convex spherical outer surface. And a heat-resistant layer made of a mixture containing graphite and aluminum phosphate or a heat-resistant layer made of a heat-resistant film made of this mixture is exposed.
[0016]
Further, the heat-resistant layer exposed on the cylindrical inner surface defining the through-hole and the end surface on the large diameter side of the partially convex spherical outer surface is (A) at least one of boron carbide and metal boride, metal fluoride and graphite, (B) The weight ratio with aluminum phosphate is included in a ratio of (A) :( B) = 1: 0.5-3, and at least one of boron carbide and metal boride under this ratio In the metal fluoride and graphite, at least one of boron carbide and metal boride is included in a proportion of 5 to 25 wt%, metal fluoride is 1 to 15 wt%, and graphite is 60 to 90 wt%. It is formed from a mixture or a heat-resistant film made of this mixture.
[0017]
In the manufacturing method described above, at least one of the two heat-resistant coatings is specifically (1) (A) a mixture of boron carbide, metal fluoride, and graphite, and boron carbide is 5 to 25% by weight. The mixture of 1 to 15% by weight of metal fluoride and 60 to 90% by weight of graphite and (B) aluminum phosphate in a weight ratio of (A) :( B) = 1: 0.5-3 (2) (A) a mixture of a metal boride, a metal fluoride and graphite, wherein the metal boride is 5 to 25% by weight, the metal fluoride is 1 to 15% by weight, graphite Is a mixture in which 60% to 90% by weight of the mixture and (B) aluminum phosphate are blended in a weight ratio of (A) :( B) = 1: 0.5-3, or (3) A) A mixture of boron carbide, metal boride, metal fluoride and graphite, 5% to 25% by weight of boron, 5% to 25% by weight of metal boride, 1% to 15% by weight of metal fluoride, and 60% to 90% by weight of graphite and (B) aluminum phosphate by weight In the ratio (A) :( B) = 1: formed from a mixture blended at a ratio of 0.5-3. And this heat-resistant film is 0.1 to 0.8 g / 100 cm over the entire surface of the heat-resistant sheet. 2 The uniform thickness is formed.
[0018]
In the manufacturing method described above, the outer surface layer forming member is (1) (A) a mixture of boron carbide, metal fluoride, and graphite, and boron carbide is 5 to 25% by weight and metal fluoride is 1 to 15% by weight. %, A mixture of 60 to 90% by weight of graphite and (B) aluminum phosphate in a weight ratio of (A) :( B) = 1: 0.5-3, (A) A mixture of a metal boride, a metal fluoride and graphite, wherein the metal boride is 5 to 25% by weight, the metal fluoride is 1 to 15% by weight, and the graphite is 60 to 90% by weight. Mixture and (B) aluminum phosphate blended in a weight ratio of (A) :( B) = 1: 0.5-3, or (3) (A) boron carbide and metal boride It is a mixture of metal fluoride and graphite, and boron carbide is 5 to 25% by weight. (A) :( B) = 1 by weight ratio of a mixture of 5 to 25% by weight of fluoride, 1 to 15% by weight of metal fluoride and 60 to 90% by weight of graphite and (B) aluminum phosphate : It consists of the mixture mix | blended in the ratio of 0.5-3, and 0.1-0.8g / 100cm over the whole surface of this heat-resistant sheet | seat 2 The heat-resistant sheet material provided with a heat-resistant film having a uniform thickness and a reinforcing material made of a metal mesh disposed to cover the heat-resistant sheet material.
[0019]
In the manufacturing method described above, the outer surface layer forming member is (1) (A) a mixture of boron carbide, metal fluoride, and graphite, and boron carbide is 5 to 25% by weight and metal fluoride is 1 to 15% by weight. %, A mixture of 60 to 90% by weight of graphite and (B) aluminum phosphate in a weight ratio of (A) :( B) = 1: 0.5-3, (A) A mixture of a metal boride, a metal fluoride and graphite, wherein the metal boride is 5 to 25% by weight, the metal fluoride is 1 to 15% by weight, and the graphite is 60 to 90% by weight. Mixture and (B) aluminum phosphate blended in a weight ratio of (A) :( B) = 1: 0.5-3, or (3) (A) boron carbide and metal boride It is a mixture of metal fluoride and graphite, and boron carbide is 5 to 25% by weight. (A) :( B) = 1 by weight ratio of a mixture of 5 to 25% by weight of fluoride, 1 to 15% by weight of metal fluoride and 60 to 90% by weight of graphite and (B) aluminum phosphate : It consists of the mixture mix | blended in the ratio of 0.5-3, and 0.1-0.8g / 100cm over the whole surface of this heat-resistant sheet | seat 2 A heat-resistant sheet material having a uniform heat-resistant film, and boron nitride coated on the surface of the heat-resistant film on one side of the heat-resistant sheet material in an amount of 70 to 90% by weight of alumina and silica. 100 parts by weight of a lubricating composition comprising at least one of 10 to 30% by weight or a mixture of the lubricating composition is 200 parts by weight or less, preferably 50 to 150 parts by weight of polytetrafluoroethylene resin May be formed from a surface layer made of a lubricating composition containing, and a reinforcing material made of a wire mesh disposed so as to cover the surface layer.
[0020]
Hereinafter, the constituent material in the spherical belt-shaped sealing body and the manufacturing method of the sealing body will be described.
[0021]
The heat-resistant sheet is formed of a sheet material made of a heat-resistant material selected from one or more of expanded graphite, mica and asbestos, and the heat-resistant film is formed on the entire surface of the sheet material. In the heat-resistant sheet made of expanded graphite, “Grafoil (trade name)” manufactured by US Union Carbide Corporation disclosed in Japanese Patent Publication No. 44-23966, or “Nika Film (trade name)” manufactured by Nippon Carbon Co., Ltd. An expanded graphite sheet having a thickness of 0.3 to 1.0 mm is suitable. As the sheet material made of mica, mica paper joined with a silicon resin, and as the sheet material made of asbestos, chrysotile or amosite-based asbestos paper or sheet is used.
[0022]
The heat-resistant film formed on the entire surface of the heat-resistant sheet is: (1) (A) a mixture of boron carbide, metal fluoride and graphite and (B) a mixture of aluminum phosphate, (2) (A) a metal boride, A mixture of a metal fluoride and graphite and (B) a mixture of aluminum phosphate; (3) (A) a mixture of boron carbide, metal boride, a mixture of metal fluoride and graphite and (B) a mixture of aluminum phosphate; Either is used.
[0023]
This heat resistant coating will be specifically described.
(1) (A) Heat-resistant film comprising a mixture of boron carbide, metal fluoride and graphite and (B) aluminum phosphate:
(A) A mixture of 5 to 25% by weight of boron carbide, 1 to 15% by weight of metal fluoride, and 60 to 90% by weight of graphite and (B) aluminum phosphate in a weight ratio of (A) :( B) = 1: A heat-resistant film made of a mixture blended at a ratio of 0.5 to 3. As an example of production, a mixture of 30 g of an aqueous solution of primary aluminum phosphate having a concentration of 25% and 7.5 g of a mixture of 10% by weight of boron carbide, 5% by weight of metal fluoride and 85% by weight of graphite is used for the heat-resistant sheet. The entire surface is coated by means of brushing, roller coating, dipping, etc., and then dried to form a mixture of (A) and (B) on the entire surface of the heat-resistant sheet, A heat-resistant film having a weight ratio of 1: 1 is formed.
[0024]
(2) (A) Heat-resistant film comprising a mixture of metal boride, metal fluoride and graphite and (B) aluminum phosphate:
(A) 5 to 25% by weight of metal boride, 1 to 15% by weight of metal fluoride, and 60 to 90% by weight of graphite and (B) aluminum phosphate in weight ratio (A): (B) = 1: A heat-resistant film made of a mixture blended at a ratio of 0.5 to 3. As an example of production, a heat-resistant sheet is obtained by mixing 7.5 g of a mixture of 10% by weight of metal boride, 5% by weight of metal fluoride, and 85% by weight of graphite with 30 g of an aqueous solution of primary aluminum phosphate having a concentration of 25%. It is a mixture of (A) and (B) on the entire surface of the heat-resistant sheet by coating the entire surface of the sheet by means of brushing, roller coating, dipping, etc., and then drying it. A heat-resistant film having a weight ratio of 1: 1 is formed.
[0025]
(3) A heat-resistant coating comprising a mixture of (A) boron carbide, metal boride, metal fluoride and graphite and (B) aluminum phosphate:
(A) 5-25% by weight of boron carbide, 5-25% by weight of metal boride, 1-15% by weight of metal fluoride, and 60-90% by weight of graphite and (B) aluminum phosphate Is a heat-resistant film made of a mixture blended in a weight ratio of (A) :( B) = 1: 0.5-3. As an example of production, 7.5 g of a mixture of 10% by weight of boron carbide, 10% by weight of metal boride, 5% by weight of metal fluoride, and 75% by weight of graphite is added to 30 g of an aqueous solution of primary aluminum phosphate having a concentration of 25%. The entire surface of the heat-resistant sheet is coated on the entire surface of the heat-resistant sheet by means of brushing, roller coating, dipping, and the like, and then dried so that the entire surface of the heat-resistant sheet is coated with (A) and (B) And a heat-resistant film having a weight ratio of 1: 1 is formed.
[0026]
These heat-resistant coatings consisting of (1), (2) and (3) are 0.1 to 0.8 g / 100 cm over the entire surface of the heat-resistant sheet. 2 , Preferably 0.2 to 0.5 g / 100 cm 2 And a uniform thickness. The amount of heat-resistant coating is 0.1 g / 100 cm over the entire surface of the heat-resistant sheet 2 In the following, the uniformity of the film thickness is lowered, and a sufficient protective effect against high-temperature oxidation of the heat-resistant sheet cannot be obtained, and 0.8 g / 100 cm. 2 In the case of exceeding the above, not only will there be no significant change in the protective effect against high-temperature oxidation of the heat-resistant sheet, but also there will be a problem in the winding processability of the heat-resistant sheet material provided with a heat-resistant coating.
[0027]
In the heat-resistant film formed in this way, aluminum phosphate itself has heat resistance, and its adhesiveness is high, so mixed powder particles of boron carbide, metal fluoride, and graphite having heat resistance , Mixed powder particles of metal boride, metal fluoride, and graphite, adhesive properties of mixed powder particles of boron carbide, metal boride, metal fluoride, and graphite, and the heat-resistant sheet surface of the heat-resistant coating comprising these In other words, it acts to enhance the heat-resistant coating film retention on the surface of the heat-resistant sheet.
[0028]
In the mixture that forms a heat-resistant coating, graphite, which is the main component, is heat-resistant and self-lubricating, and exhibits its heat resistance inside the cylindrical body of the seal body and the outer surface of the partially convex spherical surface. In addition, the partially convex spherical outer surface exhibits self-lubricating properties in addition to heat resistance. The blending amount is suitably 60 to 90% by weight.
[0029]
The metal fluoride compounded in the graphite as the main component has heat resistance like graphite, and particularly has excellent self-lubricity at high temperatures. When this metal fluoride is blended with graphite, it has the effect of further improving lubricity in cooperation with the self-lubricating property of graphite. On the outer surface of the partially convex spherical surface, it cooperates with graphite (the downstream exhaust pipe). The effect of reducing the sliding frictional resistance with the concave spherical surface portion) is exhibited. And the compounding quantity of the metal fluoride to graphite is 1 to 15% by weight, especially 5 to 10% by weight. If the blending amount is 1% by weight or less, the effect of improving the lubricity of graphite is not exhibited. If the blending amount exceeds 15% by weight, the lubricity of graphite is impaired, and the cooperative action with graphite is not exhibited. As a metal fluoride that exhibits such an action, calcium fluoride (CaF 2 ), Lithium fluoride (LiF) 2 ), Sodium fluoride (NaF) 2 ) And barium fluoride (BaF) 2 ) Are selected and used.
[0030]
Further, since boron carbide and metal boride blended in the graphite and metal fluoride have heat resistance per se, the heat resistance is exhibited in the inside from the cylindrical inner surface of the seal body to the partially convex spherical outer surface. . Boron carbide and metal borides do not exhibit self-lubricating properties like the above-mentioned graphite and metal fluorides. However, when they are contained in graphite and metal fluorides, solid lubricant is applied to the surface of the mating material due to friction with the mating material. It promotes the film-forming properties of the coating (metal fluoride and graphite) and exerts an effect of increasing the durability of the coating in dry friction. This action promotes the formation of the solid lubricating film on the surface of the counterpart material, particularly on the outer surface of the partially convex spherical surface, and increases the durability of the coating, thereby reducing the frictional resistance with the counterpart material. Contributes to the effect. And the blending amount is 5 to 25% by weight, especially 10 to 20% by weight. When the blending amount is 5% by weight or less, the effect of forming the solid lubricating film composed of the above graphite and metal fluoride is not exerted. When the blending amount exceeds 25% by weight, the solid lubricating film is formed on the surface of the counterpart material. The amount becomes excessive, and on the contrary, the effect of reducing the frictional resistance is lowered.
[0031]
As the metal boride, a metal boride selected from Group IVa, Group Va and Group VIa of the Periodic Table of Elements, specifically, titanium boride (TiB), titanium diboride (TiB 2 ), Zirconium diboride (ZrB) 2 ), Zirconate 12 boride (ZrB) 12 ), Hafnium diboride (HfB) 2 ), Vanadium diboride (VB) 2 ), Niobium diboride (NbB) 2 ), Tantalum diboride (TaB) 2 ), Chromium boride (CrB), chromium diboride (CrB) 2 ), Molybdenum boride (MoB), molybdenum diboride (MoB) 2 ), Dimolybdenum pentaboride (Mo) 2 B Five ), Tungsten boride (WB), tungsten diboride (WB) 2 ), Tungsten boride (W 2 B), ditungsten pentaboride (W 2 B Five ) And the like.
[0032]
The graphite and metal fluoride in the heat-resistant coating described above have a protective effect against high-temperature oxidation etc. of the heat-resistant sheet due to its heat resistance inside the cylindrical inner surface to the partially convex spherical outer surface, and the partially convex spherical outer surface In addition to heat resistance, self-lubricating properties are exhibited. Similarly, boron carbide and metal borides have a protective effect against high-temperature oxidation of the heat-resistant sheet due to their heat resistance from the inner surface of the cylindrical surface to the outer surface of the partially convex spherical surface. In addition to heat resistance, the effect of increasing the durability of the solid lubricant film is enhanced by promoting the film-forming property of the lubricant film of metal fluoride and graphite on the surface of the counterpart material.
[0033]
The reinforcing material is austenitic SUS304, SUS316, ferritic SUS430 or the like, iron wire (JIS-G-3532) or galvanized iron wire (JIS-G-3547), and copper-based copper. A wire mesh formed by weaving or knitting one or more wires made of nickel alloy (white copper), copper-nickel-zinc alloy (white), brass, and beryllium copper is used. The wire diameter of the fine metal wire forming the wire mesh is preferably about 0.10 to 0.32 mm, and the wire mesh of about 3 to 6 mm is preferably used.
[0034]
The outer surface layer forming member is a heat-resistant sheet material similar to the heat-resistant sheet material provided with a heat-resistant coating on the entire surface of the heat-resistant sheet, that is, (1) (A) boron carbide, metal fluoride, and the like over the entire surface of the heat-resistant sheet. A mixture of graphite and (B) aluminum phosphate, (2) (A) a mixture of metal boride, metal fluoride and graphite, and (B) a mixture of aluminum phosphate, (3) (A) boron carbide A heat-resistant sheet material comprising a heat-resistant film made of any mixture of a mixture of metal boride, metal fluoride and graphite and (B) a mixture of aluminum phosphate, and covering the heat-resistant film of the heat-resistant sheet material Or a heat-resistant sheet material provided with the heat-resistant coating on the entire surface of the heat-resistant sheet and the surface of the heat-resistant coating on one side of the heat-resistant sheet material. A surface layer of a lubricating composition composed of covered boron nitride or boron nitride and polytetrafluoroethylene resin and at least one of alumina and silica, and a reinforcing material made of a wire mesh disposed to cover the surface layer Things are used. The latter outer surface layer forming member is effective in reducing the friction torque at the initial stage of friction with the counterpart material. Since the reinforcing material composed of the heat-resistant coating and the wire mesh in the outer surface layer forming member is the same as described above, the description thereof is omitted.
[0035]
In producing the lubricating composition in the latter outer surface layer forming member described above, a lubricating composition comprising 70 to 90% by weight of boron nitride and 10 to 30% by weight of at least one of alumina and silica is used as a solid content. An aqueous dispersion containing ˜50% by weight of dispersion is replaced by 100 parts by weight of a mixture comprising 70 to 90% by weight of boron nitride and 10 to 30% by weight of at least one of alumina and silica, An aqueous dispersion in which a lubricating composition containing a polytetrafluoroethylene resin in a proportion of 200 parts by weight or less, preferably 50 to 150 parts by weight is dispersed and contained in an amount of 20 to 50% by weight as a solid content is used. The aqueous dispersion of the lubricating composition is a dispersion composition in which the heat-resistant film formed on the surface of the heat-resistant sheet material is coated and dispersed by means of brushing, roller coating, spraying, etc. in the production method described later. In the final compression step, the outer surface layer is formed by being spread on the outer surface of the partially convex spherical surface of the sealing body uniformly and with a small thickness (10 to 300 μm).
[0036]
Boron nitride in the lubricating composition exhibits excellent lubricity, particularly at high temperatures, but boron nitride alone adheres to heat-resistant coatings, and thus has a partially convex spherical shape in the sealing body in the final compression process. Although there is a disadvantage that the adhesion on the outer surface of the steel is inferior and easily peels off from the outer surface of the partially convex spherical shape, at least one of alumina and silica is blended in a certain ratio with respect to boron nitride. Therefore, the defect of the boron nitride is avoided, the adherence to the heat-resistant coating, and thus the adherence on the outer surface of the convex spherical surface of the seal body in the final compression process is greatly improved. The retainability of the outer surface layer made of the lubricating composition on the convex spherical outer surface can be improved. The blending ratio of at least one of alumina and silica with respect to boron nitride is determined from the viewpoint of improving the adhesion without impairing the lubricity of boron nitride and in the range of 10 to 30% by weight. Is preferred.
[0037]
Lubricant containing 100 parts by weight of the above-described mixture of 70 to 90% by weight of boron nitride and 10 to 30% by weight of at least one of alumina and silica, and containing polytetrafluoroethylene resin in a certain ratio In the composition, the polytetrafluoroethylene resin itself has a low friction property, and is blended with a lubricating composition composed of boron nitride and at least one of alumina and silica. The effect of improving the low friction property and the effect of increasing the spreadability of the lubricating composition during compression molding are achieved. The blending ratio of the polytetrafluoroethylene resin is not more than 200 parts by weight with respect to 100 parts by weight of the mixture composed of 70 to 90% by weight of boron nitride and 10 to 30% by weight of at least one of alumina and silica, preferably It is in the range of 50 to 150 parts by weight. When the blending ratio of the polytetrafluoroethylene resin exceeds 200 parts by weight, the ratio in the lubricating composition increases, resulting in a decrease in the heat resistance of the lubricating composition, and the blending ratio of the polytetrafluoroethylene resin is If it is the range of 50-150 weight part, low friction property can be exhibited without impairing the heat resistance of a lubricating composition.
[0038]
It is preferable that at least one of boron nitride, alumina, and silica forming the aqueous dispersion and the polytetrafluoroethylene resin blended therein are as fine powder as possible, and the average particle diameter thereof is 10 μm. Hereinafter, a fine powder of 0.5 μm or less is more preferably used.
[0039]
Next, a method for manufacturing a spherical belt-shaped sealing body made of the above-described constituent materials will be described with reference to the drawings.
[0040]
As shown in FIG. 3, a heat-resistant sheet 1 made of a strip-shaped expanded graphite sheet, mica sheet or asbestos sheet cut to a predetermined width is prepared. Next, (1) a mixture in which boron carbide powder, metal fluoride powder and graphite powder are blended with a predetermined concentration of aluminum phosphate aqueous solution, and (2) metal boride powder, metal fluoride powder and Prepare either a mixture containing graphite powder or (3) a mixture containing boron carbide powder, metal boride powder, metal fluoride and graphite powder in an aluminum phosphate aqueous solution of a predetermined concentration. The entire surface of the sheet 1 is coated by means such as brushing, roller coating, or dipping, and then dried, and as shown in FIG. 4, the entire surface (front, back, side, etc.) of the sheet 1 is 0.1-0. .8g / 100cm 2 And a heat-resistant sheet material 3 on which a heat-resistant film 2 having a uniform thickness is formed.
[0041]
The heat-resistant coating 2 coated on the entire surface of the heat-resistant sheet 1 is as follows. (1) (A) A mixture of boron carbide, metal fluoride and graphite, and boron carbide is 5 to 25% by weight. Compound containing 1 to 15% by weight of compound and 60 to 90% by weight of graphite and (B) aluminum phosphate are blended in a weight ratio of (A) :( B) = 1: 0.5 to 3 (2) (A) a mixture of a metal boride, a metal fluoride and graphite, wherein the metal boride is 5 to 25% by weight, the metal fluoride is 1 to 15% by weight, and the graphite is 60 to 90% by weight of the mixture and (B) aluminum phosphate in a weight ratio of (A) :( B) = 1: 0.5-3, or (3) boron carbide and metal A mixture of a boride, a metal fluoride, and graphite, and boron carbide is 5 to 25% by weight. (A) :( B) (B) A mixture of 5 to 25% by weight of metal boride, 1 to 15% by weight of metal fluoride, and 60 to 90% by weight of graphite and (B) aluminum phosphate. = 1: Mixing ratio of at least one of boron carbide and metal boride and metal fluoride and graphite to an aqueous aluminum phosphate solution so as to be formed as a mixture mixed at a ratio of 0.5-3. And adjusting the concentration of the aqueous aluminum phosphate solution as appropriate. In addition, in the formation method of the heat-resistant film 2 described above, the concentration of the aluminum phosphate aqueous solution can be 10 to 50%, but considering the covering operation to the heat-resistant sheet 1 and the subsequent drying process, The concentration is preferably about 20 to 25%.
[0042]
A wire mesh formed by weaving or knitting a thin metal wire is prepared, and the wire mesh is cut into a predetermined width (narrower than the width of the heat-resistant sheet 1) to form a strip or as shown in FIG. In this way, after forming a cylindrical wire mesh 5 by knitting fine metal wires, a belt-like wire mesh 8 is formed by passing it between rollers 6 and 7, and this is cut into a strip shape and used as a reinforcing material 9.
[0043]
After winding the heat-resistant sheet material 3 in a spiral shape, the reinforcing material 9 is overlapped on the inside of the heat-resistant sheet material 3 and wound in a spiral shape, as shown in FIG. 6 and FIG. A cylindrical base material 10 on which the heat-resistant sheet material 3 is positioned is formed. In the cylindrical base material 10, both end portions in the width direction of the heat-resistant sheet material 3 protrude in the width direction of the reinforcing material 9.
[0044]
A heat-resistant sheet material 3 prepared by the same method as described above is prepared separately. As described above with reference to FIG. 5, after forming a cylindrical wire mesh 5 by knitting a thin metal wire, a reinforcing material 9 composed of a belt-like wire mesh 8 prepared by passing this wire between rollers 6 and 7 is prepared separately. As shown in FIG. 8, the heat-resistant sheet material 3 is inserted into the belt-shaped wire mesh 8 and, as shown in FIG. 9, the heat-resistant sheet material 3 is integrated by passing between rollers 15 and 16, and this is combined with the outer surface layer forming member 21. To do. In this case, the width dimension of the heat-resistant sheet material 3 is smaller than the inner dimension of the reinforcing material 9 formed of the belt-like wire mesh 8. Another method for producing the outer surface layer forming member 21 is to insert a heat-resistant sheet material 3 into the inner side at the same time that a fine metal wire is knitted into a cylindrical wire mesh, and to pass it between the rollers 15 and 16 to integrate them. After that, a method of cutting to a desired dimension may be used.
[0045]
The outer surface layer forming member 21 obtained in this way is wound around the outer peripheral surface of the cylindrical base material 10 to create a preliminary cylindrical molded body 22 as shown in FIG.
[0046]
A cylindrical wall surface 31, a partially concave spherical wall surface 32 continuous to the cylindrical wall surface 31, and a through hole 33 continuous to the partially concave spherical wall surface 32 are provided on the inner surface, and a hollow cylinder is formed inside by inserting a stepped core 34 into the through hole 33. A mold 37 as shown in FIG. 11 in which a part 35 and a spherical hollow part 36 connected to the hollow cylindrical part 35 are formed is prepared, and the preliminary cylindrical molded body 22 is inserted into the stepped core 34 of the mold 37. To do.
[0047]
The preliminary cylindrical molded body 22 positioned in the hollow portions 35 and 36 of the die 37 is 1 to 3 ton / cm in the core axial direction. 2 As shown in FIG. 1, a cylindrical inner surface 52 that defines a through-hole 51 is provided at the center, and an outer surface 53 is formed in a partially convex spherical shape, and an annular end surface on the large diameter side of the outer surface 53 A ball-like seal body 55 having 54 is created. By this compression molding, the inside of the ball-shaped seal body 55 from the cylindrical inner surface 52 to the partially convex spherical outer surface 53 is composed of the heat-resistant sheet material 3 having the heat-resistant coating 2 on the entire surface of the heat-resistant sheet 1 and the wire mesh 8. The reinforcing material 9 is compressed and entangled with each other to have structural integrity, and the partially convex spherical outer surface 53 is an exposed surface of the outer surface layer 56 made of the heat-resistant coating 2, and is formed on the outer surface layer 56. Is provided with a reinforcing material 9 made of a wire mesh 8 integrated with the outer surface layer 56, and the outer surface layer 56 and the reinforcing material 9 made of a wire mesh 8 mixed and integrated with the outer surface layer 56 are exposed. The partially convex spherical outer surface 53 is formed on a smooth surface, and the heat resistant layer made of the heat resistant coating 2 is exposed on the cylindrical inner surface 52 that defines the through-hole 51 and the end surface 54 on the large diameter side of the ball-shaped seal body 55. Formed.
[0048]
In the spherical belt-shaped sealing body 55 shown in FIGS. 1 and 2 created by the above-described method, the heat-resistant sheet material 3 is intertwined with the reinforcing material 9 formed of the wire mesh 8 that forms the internal structure, and is partially convex. The spherical outer surface 53 is formed on a smooth surface in which the exposed surface of the outer surface layer 56 made of the heat-resistant coating 2 formed by the outer surface layer forming member 21 and the reinforcing material 9 made of the wire mesh 8 are mixed and integrated. .
[0049]
Next, a method for manufacturing another spherical belt-like seal body 55 will be described.
[0050]
As shown in FIG. 3, a heat-resistant sheet 1 made of a strip-like expanded graphite sheet, mica sheet or asbestos sheet cut to a predetermined width is prepared. Next, 0.1 to 0.8 g / 100 cm on the entire surface (front, back, side, etc.) of the heat-resistant sheet 1 2 The heat-resistant coating film 2 having a uniform thickness is formed as a heat-resistant sheet material 3 (FIG. 4).
[0051]
In the same manner as described above, a metal mesh formed by weaving or knitting a thin metal wire is prepared, and the metal mesh is cut into a predetermined width (narrower than the width of the heat-resistant sheet 1) to make a strip shape. As shown in FIG. 5, after forming a cylindrical wire mesh 5 by knitting a thin metal wire, a belt-like wire mesh 8 is formed by passing it between rollers 6 and 7, and this is cut into a strip shape to reinforce material 9 Use as
[0052]
After winding the heat-resistant sheet material 3 in a spiral shape, the reinforcing material 9 is overlapped on the inside of the heat-resistant sheet material 3 and wound in a spiral shape, as shown in FIG. 6 and FIG. A cylindrical base material 10 on which the heat-resistant sheet material 3 is positioned is formed. In the cylindrical base material 10, both end portions in the width direction of the heat-resistant sheet material 3 protrude in the width direction of the reinforcing material 9.
[0053]
A heat-resistant sheet material 3 similar to the above is prepared separately, and 70 to 90% by weight of boron nitride and at least one of alumina and silica is 10 to 30% by weight on the surface of the heat-resistant coating 2 on one side of the heat-resistant sheet material 3. An aqueous dispersion containing 20 to 50% by weight of a lubricating composition comprising, as a solid content, or a mixture comprising 70 to 90% by weight of boron nitride and 10 to 30% by weight of at least one of alumina and silica 100 parts by weight, and an aqueous disperse containing 20 to 50% by weight as a solid content of a lubricating composition containing a polytetrafluoroethylene resin in a proportion of 200 parts by weight or less, preferably 50 to 150 parts by weight. John is coated with a means such as brushing, roller coating or spraying, and dried to obtain a table of the lubricating composition as shown in FIG. To form a layer 11.
[0054]
As described with reference to FIG. 5, after forming a cylindrical wire mesh 5 by knitting a thin metal wire, a reinforcing member 9 made of a belt-like wire mesh 8 formed by passing the wire between the rollers 6 and 7 is prepared separately. As shown in FIG. 14, the heat-resistant sheet material 3 having the surface layer 11 is inserted into the belt-shaped wire mesh 8, and as shown in FIG. The layer forming member 21 is used. As another method for producing this outer surface layer forming member, as in the above-described method, a metal wire is knitted into a cylindrical wire mesh, and at the same time, the heat-resistant sheet material 3 is inserted inside, and this is inserted between the rollers 15 and 16. It is also possible to use a method in which the product is integrated by passing through and then cut into a desired dimension.
[0055]
The outer surface layer forming member 21 thus obtained is wound around the outer peripheral surface of the cylindrical base material 10 with the surface layer 11 facing outside, and a preliminary cylindrical molded body 22 as shown in FIG. 15 is created.
[0056]
In the following, the mold 37 shown in FIG. 11 is used for compression molding in the same manner, and a cylindrical inner surface 52 for defining a through hole 51 is provided at the center as shown in FIGS. 16 and 17, and the outer surface 53 is partially convex. A spherical belt-like seal body 55 is formed which is formed in a spherical shape and has an annular end face 54 on the large diameter side of the outer surface 53. By this compression molding, the inside of the ball-shaped seal body 55 from the cylindrical inner surface 52 to the partially convex spherical outer surface 53 is composed of the heat-resistant sheet material 3 having the heat-resistant coating 2 on the entire surface of the heat-resistant sheet 1 and the wire mesh 8. The reinforcing material 9 is compressed and entangled with each other to have structural integrity, and the partially convex spherical outer surface 53 is an exposed surface of the outer surface layer 56 made of the surface layer 11 of the lubricating composition, The outer surface layer 56 is provided with a reinforcing material 9 made of a wire mesh 8 integrated with the outer surface layer 56, and the outer surface layer 56 and a reinforcing material 9 made of a wire mesh 8 mixed and integrated with the outer surface layer 56. The partially convex spherical outer surface 53 is exposed to a smooth surface, and the cylindrical inner surface 52 in the through hole 51 and the end surface 54 on the larger diameter side of the outer surface 53 are exposed to the heat resistant layer made of the heat resistant coating 2. It is formed.
[0057]
16 and 17 created by the above-described method, the heat-resistant sheet material 3 is intertwined with the reinforcing material 9 made of the metal mesh 8 forming the internal structure, and is partially integrated. The spherical outer surface 53 is a smooth surface in which the exposed surface of the outer surface layer 56 made of the surface layer 11 of the lubricating composition formed by the outer surface layer forming member 21 and the reinforcing material 9 made of the wire mesh 8 are mixed and integrated. Is formed.
[0058]
The ball-shaped seal body 55 formed by the above-described method is used by being incorporated in, for example, an exhaust pipe joint shown in FIG. That is, a flange 200 is erected on the outer peripheral surface of the upstream side exhaust pipe 100 connected to the engine side, leaving the pipe end portion 101, and a cylinder defining the through hole 51 is provided in the pipe end portion 101. A spherical belt-shaped seal body 55 is fitted on the inner surface 52, and the spherical belt-shaped seal body 55 is seated on the flange 200 on the large-diameter end surface 54. Downstream where the upstream side exhaust pipe 100 is opposed to the muffler side and is connected to the muffler side, and a diameter-enlarged portion 301 having a flange portion 303 at the periphery of the opening of the concave spherical portion 302 and the concave spherical portion 302 is integrally formed. The side exhaust pipe 300 is disposed so that the concave spherical surface portion 302 is in sliding contact with the partially convex spherical outer surface 53 of the spherical belt-shaped seal body 55.
[0059]
A pair of bolts 400 having one end fixed to the flange 200 and the other end inserted through the flange portion 303 of the enlarged diameter portion 301; and a pair of coil springs 500 disposed between the bolt 400 and the flange portion 303; Thus, the spring force is always urged toward the upstream side exhaust pipe 100 in the downstream side exhaust pipe 300. The relative angular displacement that occurs between the upper and downstream exhaust pipes 100 and 300 is caused by the partially convex spherical outer surface 53 of the spherical belt-shaped sealing body 55 and the enlarged diameter portion 301 formed at the end of the downstream exhaust pipe 300. Allowed by sliding contact with the concave spherical surface portion 302.
[0060]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention and the embodiments of the present invention will be described in more detail based on preferred examples. In addition, this invention is not limited to these Examples at all.
[0061]
【Example】
<Example 1>
As a heat-resistant sheet, an expanded graphite sheet having a width of 55 mm, a length of 550 mm, and a thickness of 0.38 mm (“Nika Film” (trade name) manufactured by Nippon Carbon Co., Ltd.) (weight of expanded graphite sheet: 11.6 g) was prepared. % Aqueous solution of primary aluminum phosphate (Al 2 O Three ・ 3P 2 O Five ・ 6H 2 O) and 10 g of boron carbide powder having an average particle diameter of 1.5 μm, 5 wt% of metal fluoride (calcium fluoride) powder having an average particle diameter of 4 μm, and graphite powder having an average particle diameter of 18 μm are prepared in 30 g of this aqueous solution. 7.5 g of mixed powder consisting of 85% by weight was blended to obtain a mixture. This mixture was roller-coated on the entire surface of the expanded graphite sheet, and then dried for 20 minutes at a temperature of 230 ° C. in a drying furnace, so that the entire surface of the expanded graphite sheet was 0.3 g / 100 cm. 2 A uniform heat-resistant film (boron carbide, calcium fluoride and graphite and aluminum phosphate in a weight ratio of 1: 1) was formed and used as a heat-resistant sheet material.
[0062]
Using two austenitic stainless steel wires (SUS304) with a wire diameter of 0.28 mm as the fine metal wires, a cylindrical braided wire mesh (double knitting) with a mesh size of 4.0 mm was created, and this was passed between rollers. A belt-like wire mesh (wire weight of 21 g) having a length of 36 mm and a length of 360 mm was used as a reinforcing material.
[0063]
After winding the heat-resistant sheet material in a spiral manner for one round, a reinforcing material is superimposed on the inside of the heat-resistant sheet material and wound in a spiral manner to produce a cylindrical base material in which the heat-resistant sheet material is positioned on the outermost periphery did. In this cylindrical base material, both end portions in the width direction of the heat-resistant sheet material protrude in the width direction of the reinforcing material.
[0064]
As the heat-resistant sheet material, an expanded graphite sheet having a width of 48 mm, a length of 212 mm, and a thickness of 0.38 mm is separately prepared (the weight of the expanded graphite sheet is 3.9 g), and the expanded graphite is prepared in the same manner using the above mixture. 0.3 g / 100 cm over the entire surface of the sheet 2 A heat-resistant sheet material formed by forming a heat-resistant film having a uniform thickness (boron carbide, calcium fluoride and graphite and aluminum phosphate by weight ratio of 1: 1) was separately prepared.
[0065]
Using one thin metal wire similar to the above, a cylindrical braided wire net having a mesh of 4.0 mm is prepared, and this is passed between rollers to form a band metal mesh of 53.5 mm wide and 212 mm long (weight of the metal net 10 g) The heat-resistant sheet material is inserted into the belt-like wire mesh and these are integrated by passing between rollers to create an outer surface layer forming member in which a reinforcing material and a heat-resistant coating filled with the reinforcing material mesh are mixed. did.
[0066]
The outer surface layer forming member was wound around the outer peripheral surface of the cylindrical base material to prepare a preliminary cylindrical molded body. The preliminary cylindrical molded body was inserted into the stepped core 34 of the mold 37 shown in FIG. 11, and the preliminary cylindrical molded body was positioned in the hollow portion of the mold 37.
[0067]
A preliminary cylindrical molded body positioned in the hollow portion of the mold 37 is 2 ton / cm in the core axial direction. 2 A spherical belt-like seal body 55 having a cylindrical inner surface 52 defining a through-hole 51 at the center, an outer surface 53 having a partially convex spherical shape, and an annular end surface 54 was produced. The weight ratio of the heat-resistant material composed of the expanded graphite sheet in this spherical belt-shaped sealing body to the boron carbide, calcium fluoride, graphite, and aluminum phosphate forming the heat-resistant film is 15.8 (boron carbide to the heat-resistant material 100). A ratio of 0.79, calcium fluoride 0.39 and graphite 6.72: 7.9, aluminum phosphate: 7.9).
[0068]
In the spherical belt-shaped sealing body manufactured in this way, the heat-resistant sheet material and the reinforcing material made of a wire mesh are compressed inside the part from the cylindrical inner surface to the partially convex spherical outer surface, and are intertwined with each other to have structural integrity. The outer surface of the partially convex spherical shape is composed of an exposed surface of the outer surface layer made of a heat-resistant coating, and the outer surface layer is provided with a reinforcing material made of a wire mesh integrated with the outer surface layer, The outer surface of the partially convex spherical surface where the outer surface layer and the reinforcing material made of a wire mesh mixed and integrated with the outer surface layer are exposed is formed into a smooth surface, and the cylindrical inner surface defining the through hole and the outer diameter side of the outer surface A heat resistant layer made of a heat resistant coating is exposed on the end face.
[0069]
<Example 2>
As a heat-resistant sheet, an expanded graphite sheet having a width of 55 mm, a length of 550 mm, and a thickness of 0.38 mm (the weight of the expanded graphite sheet was 11.6 g) was prepared. The operation of roller-coating the same mixture as in Example 1 on the entire surface of the expanded graphite sheet was repeated twice, and then dried at a temperature of 230 ° C. for 20 minutes in a drying furnace. 0.5g / 100cm over the entire surface 2 A uniform heat-resistant film (boron carbide, calcium fluoride and graphite and aluminum phosphate in a weight ratio of 1: 1) was formed and used as a heat-resistant sheet material.
[0070]
A reinforcing material similar to that of Example 1 was prepared, and a cylindrical base material was prepared in the same manner as in Example 1 using the reinforcing material and the heat-resistant sheet material. As a heat-resistant sheet, an expanded graphite sheet having a width of 48 mm, a length of 212 mm, and a thickness of 0.38 mm similar to that in Example 1 was prepared separately, and the same mixture as in Example 1 was prepared. Is repeated twice on the entire surface of the expanded graphite sheet, and then dried for 20 minutes at a temperature of 230 ° C. in a drying furnace, and 0.5 g / 100 cm is applied to the entire surface of the expanded graphite sheet. 2 A heat-resistant sheet material formed by forming a heat-resistant coating film with a uniform thickness (boron carbide, calcium fluoride and graphite and aluminum phosphate in a weight ratio of 1: 1) was prepared separately.
[0071]
Thereafter, an outer surface layer forming member was produced in the same manner as in Example 1, and a spherical belt-like sealing body was produced in the same manner as in Example 1. The weight ratio of the heat-resistant material composed of the expanded graphite sheet and the boron carbide, calcium fluoride, graphite, and aluminum phosphate forming the heat-resistant film in the spherical belt-shaped sealing body is 26.32 (boron carbide) The ratio of the mixture of 1.32, calcium fluoride 0.66, and graphite 11.18: 13.16, aluminum phosphate: 13.16).
[0072]
<Example 3>
As a heat-resistant sheet, an expanded graphite sheet having a width of 55 mm, a length of 550 mm, and a thickness of 0.38 mm (the weight of the expanded graphite sheet was 11.6 g) was prepared. An aqueous solution of primary aluminum phosphate having a concentration of 25% was prepared. To 30 g of this aqueous solution, 10% by weight of boron carbide powder having an average particle diameter of 1.5 μm and metal fluoride having an average particle diameter of 4 μm (lithium fluoride: LiF 2 ) 7.5 g of a mixed powder composed of 5% by weight of powder and 85% by weight of graphite powder having an average particle diameter of 18 μm was blended to obtain a mixture. This mixture was roller-coated on the entire surface of the expanded graphite sheet, and then dried for 20 minutes at a temperature of 230 ° C. in a drying furnace, so that the entire surface of the expanded graphite sheet was 0.3 g / 100 cm. 2 A uniform heat-resistant film (boron carbide, lithium fluoride and graphite and aluminum phosphate in a weight ratio of 1: 1) was formed and used as a heat-resistant sheet material.
[0073]
A reinforcing material similar to that in Example 1 was prepared, and a cylindrical base material was produced in the same manner as in Example 1 using the reinforcing material and the heat-resistant sheet material. As a heat-resistant sheet, an expanded graphite sheet having a width of 48 mm, a length of 212 mm, and a thickness of 0.38 mm as in Example 1 was separately prepared, and the above mixture was used as the entire surface of the expanded graphite sheet. And then dried for 20 minutes at a temperature of 230 ° C. in a drying furnace, and the entire surface of the expanded graphite sheet is 0.3 g / 100 cm. 2 A heat-resistant sheet material formed by forming a heat-resistant film having a uniform thickness (boron carbide, lithium fluoride and graphite and aluminum phosphate in a weight ratio of 1: 1) was prepared separately.
[0074]
Thereafter, an outer surface layer forming member was produced in the same manner as in Example 1, and a ball-shaped seal body was produced in the same manner as in Example 1. The weight ratio of the heat-resistant material composed of the expanded graphite sheet and the boron carbide, lithium fluoride, graphite, and aluminum phosphate forming the heat-resistant film in this spherical belt-shaped sealing body is 15.8 (boron carbide to the heat-resistant material 100). The ratio of the mixture of 0.79, lithium fluoride 0.39, and graphite 6.72: 7.9, and aluminum phosphate: 7.9).
[0075]
<Example 4>
As a heat-resistant sheet, an expanded graphite sheet having a width of 55 mm, a length of 550 mm, and a thickness of 0.38 mm (the weight of the expanded graphite sheet was 11.6 g) was prepared. A 25% aqueous solution of primary aluminum phosphate was prepared, and 30 g of this aqueous solution was mixed with 10% by weight of a metal boride (chromium diboride) powder having an average particle size of 7 μm and a metal fluoride (calcium fluoride) having an average particle size of 4 μm. ) 7.5 g of a mixed powder composed of 5% by weight of powder and 85% by weight of graphite powder having an average particle diameter of 18 μm was blended to obtain a mixture. This mixture was roller-coated on the entire surface of the expanded graphite sheet, and then dried for 20 minutes at a temperature of 230 ° C. in a drying furnace, so that the entire surface of the expanded graphite sheet was 0.3 g / 100 cm. 2 A uniform heat-resistant coating film (chromium diboride, calcium fluoride and graphite and aluminum phosphate in a weight ratio of 1: 1) was formed and used as a heat-resistant sheet material.
[0076]
A reinforcing material similar to that in Example 1 was prepared, and a cylindrical base material was produced in the same manner as in Example 1 using the reinforcing material and the heat-resistant sheet material. As a heat-resistant sheet, an expanded graphite sheet having a width of 48 mm, a length of 212 mm, and a thickness of 0.38 mm as in Example 1 was separately prepared, and the above mixture was used as the entire surface of the expanded graphite sheet. And then dried in a drying furnace at a temperature of 230 ° C. for 20 minutes, and the entire surface of the expanded graphite sheet is 0.3 g / 100 cm. 2 A heat-resistant sheet material formed by forming a heat-resistant coating film having a uniform thickness (chromium diboride, calcium fluoride and graphite and aluminum phosphate in a weight ratio of 1: 1) was separately prepared.
[0077]
Thereafter, an outer surface layer forming member was produced in the same manner as in Example 1, and a ball-shaped seal body was produced in the same manner as in Example 1. The weight ratio of the heat-resistant material composed of the expanded graphite sheet and the chromium diboride chromium, calcium fluoride, graphite, and aluminum phosphate forming the heat-resistant film in the spherical belt-shaped sealing body is 15.8 with respect to the heat-resistant material 100. (Mixture of chromium diboride 0.79, calcium fluoride 0.39 and graphite 6.72: 7.9, aluminum phosphate: 7.9).
[0078]
<Example 5>
As a heat-resistant sheet, an expanded graphite sheet having a width of 55 mm, a length of 550 mm, and a thickness of 0.38 mm (the weight of the expanded graphite sheet was 11.6 g) was prepared. A first aluminum phosphate aqueous solution having a concentration of 25% was prepared, and a metal boride (molybdenum diboride: MoB) having an average particle diameter of 7 μm was added to 30 g of the aqueous solution. 2 ) 7.5 g of mixed powder composed of 10% by weight of powder, 5% by weight of metal fluoride (lithium fluoride) powder having an average particle diameter of 4 μm and 85% by weight of graphite powder having an average particle diameter of 18 μm was blended to obtain a mixture. This mixture was roller-coated on the entire surface of the expanded graphite sheet, and then dried for 20 minutes at a temperature of 230 ° C. in a drying furnace, so that the entire surface of the expanded graphite sheet was 0.3 g / 100 cm. 2 And a uniform heat-resistant coating film (molybdenum diboride, lithium fluoride and graphite and aluminum phosphate in a weight ratio of 1: 1) was used as a heat-resistant sheet material.
[0079]
A reinforcing material similar to that in Example 1 was prepared, and a cylindrical base material was produced in the same manner as in Example 1 using the reinforcing material and the heat-resistant sheet material. As a heat-resistant sheet, an expanded graphite sheet having a width of 48 mm, a length of 212 mm, and a thickness of 0.38 mm as in Example 1 was separately prepared, and the above mixture was used as the entire surface of the expanded graphite sheet. And then dried in a drying furnace at a temperature of 230 ° C. for 20 minutes, and the entire surface of the expanded graphite sheet is 0.3 g / 100 cm. 2 And a heat-resistant sheet material having a uniform thickness (molybdenum diboride, lithium fluoride and graphite / aluminum phosphate in a weight ratio of 1: 1) was separately prepared.
[0080]
Thereafter, an outer surface layer forming member was produced in the same manner as in Example 1, and a ball-shaped seal body was produced in the same manner as in Example 1. The weight ratio of the heat-resistant material composed of the expanded graphite sheet in this spherical belt-shaped sealing body to the molybdenum diboride, lithium fluoride, graphite, and aluminum phosphate forming the heat-resistant film is 15.8 ( Mixture of molybdenum diboride 0.79, lithium fluoride 0.39, and graphite 6.72: 7.9, aluminum phosphate: 7.9).
[0081]
<Example 6>
As a heat-resistant sheet material, an expanded graphite sheet having a width of 55 mm, a length of 550 mm, and a thickness of 0.38 mm similar to that of Example 1 (expanded graphite sheet weight: 11.6 g) was prepared. An aqueous solution of primary aluminum phosphate having a concentration of 25% was prepared, and 30 g of this aqueous solution was mixed with 10% by weight of boron carbide powder having an average particle size of 1.5 μm and 15% by weight of metal boride (chromium diboride) powder having an average particle size of 7 μm. And 7.5 g of a mixed powder composed of 5% by weight of metal fluoride (calcium fluoride) powder having an average particle diameter of 4 μm and 70% by weight of graphite powder having an average particle diameter of 18 μm was obtained. This mixture was roller-coated on the entire surface of the expanded graphite sheet, and then dried for 20 minutes at a temperature of 230 ° C. in a drying furnace, so that the entire surface of the expanded graphite sheet was 0.3 g / 100 cm. 2 And a uniform thickness heat-resistant coating (boron carbide, chromium diboride, calcium fluoride and graphite / aluminum phosphate in a weight ratio of 1: 1). did.
[0082]
A reinforcing material similar to that in Example 1 was prepared, and a cylindrical base material was produced in the same manner as in Example 1 using the reinforcing material and the heat-resistant sheet material. As a heat-resistant sheet, an expanded graphite sheet having a width of 48 mm, a length of 212 mm, and a thickness of 0.38 mm as in Example 1 was separately prepared, and the above mixture was used as the entire surface of the expanded graphite sheet. And then dried for 20 minutes at a temperature of 230 ° C. in a drying furnace, and the entire surface of the expanded graphite sheet is 0.3 g / 100 cm. 2 A heat-resistant sheet material formed by forming a heat-resistant film having a uniform thickness (boron carbide, chromium diboride, calcium fluoride, and the weight ratio of graphite and aluminum phosphate is 1: 1) was prepared separately.
[0083]
Thereafter, an outer surface layer forming member was produced in the same manner as in Example 1, and a ball-shaped seal body was produced in the same manner as in Example 1. The weight ratio of the heat-resistant material composed of the expanded graphite sheet in this spherical belt-shaped sealing body to boron carbide, chromium diboride, calcium fluoride, graphite, and aluminum phosphate forming the heat-resistant film is as follows. 0.8 (a mixture of boron carbide 0.79, chromium diboride 1.19, calcium fluoride 0.39, and graphite 5.53: 7.9, aluminum phosphate: 7.9).
[0084]
<Example 7>
As a heat-resistant sheet material, an expanded graphite sheet having a width of 55 mm, a length of 550 mm, and a thickness of 0.38 mm similar to that of Example 1 (expanded graphite sheet weight: 11.6 g) was prepared. The operation of roller-coating the same mixture as in Example 6 on the entire surface of the expanded graphite sheet was repeated twice, and then dried at a temperature of 230 ° C. for 20 minutes in a drying furnace. 0.5g / 100cm over the entire surface 2 A uniform heat-resistant film (boron carbide, chromium diboride, calcium fluoride and graphite and aluminum phosphate in a weight ratio of 1: 1) was formed and used as a heat-resistant sheet material.
[0085]
A reinforcing material similar to that in Example 1 was prepared, and a cylindrical base material was produced in the same manner as in Example 1 using the reinforcing material and the heat-resistant sheet material. As a heat-resistant sheet, an expanded graphite sheet having a width of 48 mm, a length of 212 mm, and a thickness of 0.38 mm similar to that in Example 1 was prepared separately, and the same mixture as in Example 6 was prepared. The operation of applying a roller to the entire surface of the expanded graphite sheet was repeated twice, and then dried for 20 minutes at a temperature of 230 ° C. in a drying furnace, so that the entire surface of the expanded graphite sheet was 0.5 g / 100 cm. 2 A heat-resistant sheet material formed by forming a heat-resistant film having a uniform thickness (boron carbide, chromium diboride, calcium fluoride, and the weight ratio of graphite and aluminum phosphate is 1: 1) was prepared separately.
[0086]
Thereafter, an outer surface layer forming member was produced in the same manner as in Example 1, and a ball-shaped seal body was produced in the same manner as in Example 1. The weight ratio of the heat-resistant material composed of the expanded graphite sheet in this spherical belt-shaped sealing body to boron carbide, chromium diboride, calcium fluoride, graphite, and aluminum phosphate forming the heat-resistant film is as follows. .32 (mixture of boron carbide 1.32, chromium diboride 1.97, calcium fluoride 0.66, and graphite 9.21: 13.16, aluminum phosphate: 13.16).
[0087]
<Example 8>
As a heat-resistant sheet material, an expanded graphite sheet having a width of 55 mm, a length of 550 mm, and a thickness of 0.38 mm similar to that of Example 1 (expanded graphite sheet weight: 11.6 g) was prepared. An aqueous solution of primary aluminum phosphate having a concentration of 25% is prepared, and 30 g of this aqueous solution is mixed with 10% by weight of boron carbide powder having an average particle diameter of 1.5 μm and 10% by weight of metal boride (molybdenum diboride) powder having an average particle diameter of 7 μm. And 7.5 g of a mixed powder composed of 5% by weight of metal fluoride (calcium fluoride) powder having an average particle size of 4 μm and 75% by weight of graphite powder having an average particle size of 18 μm was obtained. The operation of roller-coating this mixture over the entire surface of the expanded graphite sheet was repeated twice, and then the mixture was dried at a temperature of 230 ° C. for 20 minutes in a drying furnace, so that 0.5 g / 100cm 2 A uniform heat-resistant film (boron carbide, molybdenum diboride, calcium fluoride and graphite and aluminum phosphate in a weight ratio of 1: 1) was formed, and this was used as a heat-resistant sheet material.
[0088]
A reinforcing material similar to that in Example 1 was prepared, and a cylindrical base material was produced in the same manner as in Example 1 using the reinforcing material and the heat-resistant sheet material. As a heat-resistant sheet, an expanded graphite sheet having a width of 48 mm, a length of 212 mm, and a thickness of 0.38 mm as in Example 1 was separately prepared, and the above mixture was used as the entire surface of the expanded graphite sheet. The operation of roller coating is repeated twice, and then dried in a drying furnace at a temperature of 230 ° C. for 20 minutes, so that the entire surface of the expanded graphite sheet is 0.5 g / 100 cm. 2 A heat-resistant sheet material having a uniform thickness (boron carbide, molybdenum diboride, calcium fluoride and graphite / aluminum phosphate in a weight ratio of 1: 1) was separately prepared.
[0089]
Thereafter, an outer surface layer forming member was produced in the same manner as in Example 1, and a ball-shaped seal body was produced in the same manner as in Example 1. The weight ratio of the heat-resistant material composed of the expanded graphite sheet in this spherical belt-shaped sealing body to boron carbide, molybdenum diboride, calcium fluoride, graphite, and aluminum phosphate forming the heat-resistant film is as follows. .32 (mixture of boron carbide 1.32, molybdenum diboride 1.32, calcium fluoride 0.66, and graphite 9.87: 13.16, aluminum phosphate: 13.16).
[0090]
<Example 9>
A cylindrical base material similar to that in Example 7 was prepared.
[0091]
As the heat-resistant sheet, an expanded graphite sheet having a width of 48 mm, a length of 212 mm, and a thickness of 0.38 mm similar to that of Example 1 was separately prepared (the expanded graphite sheet weight 3.9 g), and the mixture of Example 1 was expanded. The operation of applying a roller to the entire surface of the graphite sheet was repeated twice, and then dried at a temperature of 230 ° C. for 20 minutes in a drying furnace, so that the entire surface of the expanded graphite sheet was 0.5 g / 100 cm. 2 A heat-resistant sheet material formed by forming a heat-resistant coating film with a uniform thickness (boron carbide, calcium fluoride and graphite and aluminum phosphate in a weight ratio of 1: 1) was prepared separately.
[0092]
Thereafter, an outer surface layer forming member was produced in the same manner as in Example 1, and a ball-shaped seal body was produced in the same manner as in Example 1. The weight ratio of the heat-resistant material composed of the expanded graphite sheet in this spherical belt-shaped sealing body to boron carbide, chromium diboride, calcium fluoride, graphite, and aluminum phosphate forming the heat-resistant film is as follows. .32 (mixture of boron carbide 1.32, chromium diboride 1.45, calcium fluoride 0.66, and graphite 9.73: 13.16, aluminum phosphate: 13.16).
[0093]
In the spherical belt-shaped sealing body thus produced, boron carbide, chromium diboride, calcium fluoride, graphite and aluminum phosphate are formed on the entire surface of the heat-resistant sheet from the inner surface of the cylindrical surface to the outer surface of the partially convex spherical surface. The heat-resistant sheet material comprising a heat-resistant coating comprising the following and a reinforcing material comprising a wire mesh are compressed and entangled with each other to have structural integrity, and the partially convex spherical outer surface comprises the heat-resistant coating. It consists of an exposed surface of the outer surface layer, and the outer surface layer is provided with a reinforcing material made of a wire mesh integrated with the outer surface layer, and the reinforcing material made of a wire mesh mixed and integrated with the outer surface layer, and The partially convex spherical outer surface exposed is formed as a smooth surface, and a heat-resistant layer made of the heat-resistant coating is formed on the cylindrical inner surface that defines the through hole and the end surface on the large diameter side of the outer surface body. ing
[0094]
<Example 10>
A cylindrical base material similar to that of Example 2 was produced.
[0095]
As a heat-resistant sheet, an expanded graphite sheet having a width of 48 mm, a length of 212 mm, and a thickness of 0.38 mm similar to that in Example 1 was prepared separately, and the same mixture as in Example 1 was prepared. And 0.5 g / 100 cm over the entire surface of the expanded graphite sheet in the same manner as in Example 2. 2 A heat-resistant sheet material formed by forming a heat-resistant coating film with a uniform thickness (boron carbide, calcium fluoride and graphite and aluminum phosphate in a weight ratio of 1: 1) was prepared separately.
[0096]
On the surface of the heat-resistant coating on one surface of the heat-resistant sheet material, a lubricating composition comprising 85% by weight of boron nitride having an average particle diameter of 7 μm and 15% by weight of alumina powder having an average particle diameter of 0.6 μm is 30% by weight as a solid content. The surface layer of the lubricating composition was formed by repeating the coating operation of applying a dispersion-containing aqueous dispersion (25.5% by weight of boron nitride, 4.5% by weight of alumina and 70% by weight of water) and drying three times. Thereafter, an outer surface layer forming member was produced in the same manner as in Example 1.
[0097]
Thereafter, a spherical belt-like sealing body was produced in the same manner as in Example 1. The weight ratio of the heat-resistant material composed of the expanded graphite sheet and the boron carbide, calcium fluoride, graphite, and aluminum phosphate forming the heat-resistant film in the spherical belt-shaped sealing body is 26.32 (boron carbide) The ratio of the mixture of 1.32, calcium fluoride 0.66, and graphite 11.18: 13.16, aluminum phosphate: 13.16).
[0098]
In the spherical belt-shaped sealing body produced in this way, a heat-resistant sheet material provided with a heat-resistant coating on the entire surface of the expanded graphite sheet and a reinforcing material made of a wire mesh are formed inside the cylindrical inner surface and the partially convex spherical outer surface. The outer surface of the partially convex spherical surface is composed of an exposed surface of the outer surface layer composed of the surface layer of the lubricating composition, and the outer surface layer includes the outer surface layer. A reinforcing material made of an integrated wire mesh is arranged, and the partially convex spherical outer surface in which the outer surface layer and the reinforcing material made of a wire mesh mixed and integrated in the outer surface layer are exposed is formed on a smooth surface. A heat-resistant layer made of a heat-resistant coating is exposed on the inner surface of the cylinder defining the through hole and the end surface on the large diameter side of the partially convex spherical outer surface.
[0099]
<Example 11>
A cylindrical base material similar to that in Example 6 was prepared.
[0100]
As a heat-resistant sheet, an expanded graphite sheet having a width of 48 mm, a length of 212 mm, and a thickness of 0.38 mm similar to that of Example 1 was prepared separately, and in the same manner as in Example 6, 0.3 g / 100 cm over the entire surface of the expanded graphite sheet 2 A heat-resistant sheet material formed by forming a heat-resistant film having a uniform thickness (boron carbide, chromium diboride, calcium fluoride, and the weight ratio of graphite and aluminum phosphate is 1: 1) was prepared separately.
[0101]
On the surface of the heat-resistant coating on one side of the heat-resistant sheet material, 100 parts by weight of a mixture comprising 85% by weight of boron nitride having an average particle diameter of 7 μm and 15% by weight of alumina powder having an average particle diameter of 0.6 μm was added. A lubricating composition containing 50 parts by weight of a polytetrafluoroethylene resin having a particle size of 0.3 μm (boron nitride 56.7% by weight, alumina 10% by weight and polytetrafluoroethylene resin 33.3% by weight) as a solid content of 30 An aqueous dispersion containing 17% by weight dispersion (17% by weight of boron nitride, 10% by weight of alumina, 10% by weight of polytetrafluoroethylene resin and 70% by weight of water) was applied with a roller and dried to repeat the coating operation three times. A surface layer of the lubricating composition was formed, and an outer surface layer forming member was prepared in the same manner as in Example 1 below.
[0102]
Thereafter, a spherical belt-like sealing body was produced in the same manner as in Example 1. The weight ratio of the heat-resistant material composed of the expanded graphite sheet in this spherical belt-shaped sealing body to the boron carbide, calcium fluoride, graphite, and aluminum phosphate forming the heat-resistant film is 15.8 (boron carbide to the heat-resistant material 100). The ratio of 0.79, chromium diboride 1.19, calcium fluoride 0.39, and graphite 5.53: 7.9, and aluminum phosphate: 7.9).
[0103]
In the spherical belt-shaped sealing body produced in this way, a heat-resistant sheet material provided with a heat-resistant coating on the entire surface of the heat-resistant sheet and a reinforcing material made of a wire mesh are formed in the inside from the cylindrical inner surface to the partially convex spherical outer surface. The outer surface of the partially convex spherical surface is composed of an exposed surface of the outer surface layer composed of the surface layer of the lubricating composition, and the outer surface layer includes the outer surface layer. A reinforcing material made of an integrated wire mesh is arranged, and the partially convex spherical outer surface in which the outer surface layer and the reinforcing material made of a wire mesh mixed and integrated in the outer surface layer are exposed is formed on a smooth surface. A heat-resistant layer made of a heat-resistant coating is exposed on the inner surface of the cylinder defining the through hole and the end surface on the large diameter side of the partially convex spherical outer surface.
[0104]
<Example 12>
A cylindrical base material similar to that in Example 7 was prepared.
[0105]
As a heat-resistant sheet, an expanded graphite sheet having a width of 48 mm, a length of 212 mm, and a thickness of 0.38 mm as in Example 1 was prepared separately, and in the same manner as in Example 7, 0.5 g / 100 cm over the entire surface of the expanded graphite sheet 2 A heat-resistant sheet material formed by forming a heat-resistant film having a uniform thickness (boron carbide, chromium diboride, calcium fluoride, and the weight ratio of graphite and aluminum phosphate is 1: 1) was prepared separately.
[0106]
On the surface of the heat-resistant coating on one side of the heat-resistant sheet material, 100 parts by weight of a mixture comprising 85% by weight of boron nitride having an average particle diameter of 7 μm and 15% by weight of alumina powder having an average particle diameter of 0.6 μm was added. A lubricating composition containing 50 parts by weight of a polytetrafluoroethylene resin having a particle size of 0.3 μm (boron nitride 56.7% by weight, alumina 10% by weight and polytetrafluoroethylene resin 33.3% by weight) as a solid content of 30 An aqueous dispersion containing 17% by weight dispersion (17% by weight of boron nitride, 10% by weight of alumina, 10% by weight of polytetrafluoroethylene resin and 70% by weight of water) was applied with a roller and dried to repeat the coating operation three times. A surface layer of the lubricating composition was formed, and an outer surface layer forming member was prepared in the same manner as in Example 1 below.
[0107]
Thereafter, a spherical belt-like sealing body was produced in the same manner as in Example 1. The weight ratio of the heat-resistant material composed of the expanded graphite sheet and the boron carbide, calcium fluoride, graphite, and aluminum phosphate forming the heat-resistant film in the spherical belt-shaped sealing body is 26.32 (boron carbide) 1.32, a mixture of chromium diboride 1.97, calcium fluoride 0.66, and graphite 9.21: 13.16, aluminum phosphate: 13.16).
[0108]
<Comparative Example 1>
As a heat-resistant sheet material, an expanded graphite sheet having a width of 55 mm, a length of 550 mm, and a thickness of 0.38 mm, similar to that of Example 1, and as a reinforcing material, a strip-shaped metal mesh similar to that of Example 1 (width: 36 mm, length: 360 mm) Were prepared and overlapped and wound in a spiral shape with the expanded graphite sheet side inward to produce a cylindrical base material having the expanded graphite sheet positioned on the outermost periphery.
[0109]
An expanded graphite sheet having a width of 48 mm, a length of 212 mm, and a thickness of 0.38 mm, which is the same as that of Example 1, was prepared separately. On one surface of this expanded graphite sheet, 85% by weight of boron nitride powder having an average particle size of 7 μm, An aqueous dispersion containing 2% by weight of a lubricating composition comprising 15% by weight of alumina powder having an average particle size of 0.6 μm as a solid content (25.5% by weight of boron nitride, 4.5% by weight of alumina, 70% by weight of water) ) Is applied three times to form a surface layer of the lubricating composition, and then the surface layer is provided in a separately formed belt-like wire mesh (width 53.5 mm, length 212 mm). In addition, the expanded graphite sheet was inserted and integrated between the rollers, and an outer surface layer forming member in which the lubricating composition and the wire mesh were mixed on one surface was produced.
[0110]
On the outer peripheral surface of the cylindrical base material, this outer surface layer forming member is wound with the surface layer side facing outward to create a preliminary cylindrical molded body, and then a through hole is formed on the inner surface in the same manner as in Example 1. A spherical belt-like seal body having a cylindrical inner surface to be defined and having a partially convex spherical outer surface and an annular end surface on the outer diameter side of the outer surface was produced.
[0111]
<Comparative example 2>
A cylindrical base material similar to that of Comparative Example 1 was produced. An expanded graphite sheet having a width of 48 mm, a length of 212 mm, and a thickness of 0.38 mm, which is the same as that of Example 1, was prepared separately. On one surface of this expanded graphite sheet, 85% by weight of boron nitride powder having an average particle size of 7 μm, A lubricating composition (boron nitride 56.56) containing 100 parts by weight of a mixture of 15% by weight of alumina powder having an average particle size of 0.6 μm and 50 parts by weight of polytetrafluoroethylene resin powder having an average particle size of 0.3 μm. 7% by weight, alumina 10% by weight, polytetrafluoroethylene resin 33.3% by weight, an aqueous dispersion (boron nitride 17.0% by weight, alumina 3.0% by weight, polytetrafluoroethylene resin 30% by weight) The surface layer of the lubricating composition was obtained by repeating the operation of applying a roller with tetrafluoroethylene resin (10.0% by weight, moisture 70% by weight) and drying three times. After forming, an expanded graphite sheet provided with the above surface layer is inserted into a separately produced belt-like wire mesh (width 53.5 mm, length 212 mm), and these are integrated by passing between rollers, and lubricated on one surface An outer surface layer forming member in which the composition and the wire mesh were mixed was produced.
[0112]
After the outer surface layer forming member is wound around the outer peripheral surface of the cylindrical base material and the surface layer is wound outside, a preliminary cylindrical body is produced, and then a cylindrical inner surface that defines a through hole on the inner surface in the same manner as in the first embodiment. The outer surface is a partially convex spherical shape, and a spherical belt-shaped sealing body having an annular end surface on the large diameter side of the outer surface was manufactured.
[0113]
Next, with respect to the spherical belt-shaped sealing body composed of the above-described examples and comparative examples, using the exhaust pipe joint shown in FIG. 18, generation of friction torque (kgf · cm) and abnormal noise in each cycle of the sealing body The results of tests on the presence / absence of gas, the amount of gas leakage, and the oxidation loss of the ball-shaped seal body are described.
Figure 0003812036
<Test method> (Both Test I and Test II)
After performing 45,000 cycles of ± 3 ° rocking motion at a frequency of 12 Hz at room temperature, the ambient temperatures were 500 ° C. (Test I) and 700 ° C. (Test II) while continuing the rocking motion. ) (When the atmospheric temperature reaches 500 ° C. and 700 ° C.), 115,000 swing motions are performed, and then the swing motion is performed. While continuing, the temperature of the atmosphere is lowered to room temperature (the number of oscillations during the temperature decrease is 45,000 times).
[0114]
Further, the evaluation of the occurrence of abnormal noise was performed as follows.
Evaluation symbol I: No abnormal sound.
Evaluation symbol II: An abnormal sound faintly heard with the ear close to the test piece.
Evaluation symbol III: A sound that is silenced in the living environment sound at a fixed position (position 1.5 m away from the test piece) and is generally difficult to distinguish but can be identified as an abnormal sound by the person in charge of the test.
Evaluation symbol IV: Anyone at a fixed position can be identified as an abnormal sound (unpleasant sound).
[0115]
The amount of gas leakage (liter / min) is such that the opening of one exhaust pipe 100 of the exhaust pipe joint shown in FIG. 18 is closed, and 0.5 kgf / cm from the other exhaust pipe 300 side. 2 The dry air flows in under the pressure of the joint portion (the sliding contact portion between the outer surface 53 of the spherical belt-shaped seal body 55 and the concave spherical surface portion 302 of the enlarged diameter portion 301, the cylindrical inner surface 52 of the spherical belt-shaped seal body 55, and the exhaust pipe 100). The amount of leakage from the fitting portion with the tube end portion 101 and the contact portion between the end surface 54 and the flange 200 erected on the exhaust pipe 100) was measured with a flow meter at the initial stage of the test, after 250,000 times, Measured 4 times after 000 times and after 1,000,000 times.
[0116]
The loss in oxidation was measured by measuring the change in the weight of the ball-shaped seal body before and after the test. Table 1 shows the weight (g) before the test of the ball-shaped seal bodies of Examples and Comparative Examples.
(The following margin)
[0117]
[Table 1]
Figure 0003812036
[0118]
Tables 2 to 8 show the test results of Test I and Test II obtained by the above test method.
(The following margin)
[0119]
[Table 2]
Figure 0003812036
(The following margin)
[0120]
[Table 3]
Figure 0003812036
(The following margin)
[0121]
[Table 4]
Figure 0003812036
(The following margin)
[0122]
[Table 5]
Figure 0003812036
(The following margin)
[0123]
[Table 6]
Figure 0003812036
(The following margin)
[0124]
[Table 7]
Figure 0003812036
(The following margin)
[0125]
[Table 8]
Figure 0003812036
[0126]
In the table, 1 is the result when the number of swings is 0 (initial test start), 2 is the result when the number of swings is 250,000 times, 3 is the result when the number of swings is 500,000 times, 4 is the number of times the swing is 1 million times This shows the result of. From the results of Test I, there is no difference in performance between the example and the comparative example, both have low friction torque, no abnormal friction noise is observed, and the amount of gas leakage is 0.15 liter / min. The following good performance was demonstrated.
[0127]
However, from the results of Test II, a clear difference in performance was recognized between the example and the comparative example. That is, the spherical belt-shaped sealing body according to the comparative example is a heat-resistant sheet as the number of swings increases as is apparent from the results of gas leakage and oxidation loss under the high temperature condition where the outer surface temperature of the concave spherical portion is 700 ° C. When the oxidation of some expanded graphite progressed and the number of oscillations exceeded 500,000, consumption of the expanded graphite was rapidly observed due to oxidation, causing shape loss and the function as a sealing body disappeared. On the other hand, the spherical belt-shaped sealing body according to the example has a heat-resistant film formed on the entire surface of the heat-resistant sheet, and the heat resistance of the sealing body itself is enhanced. Even under high temperature conditions, the oxidation consumption of expanded graphite was kept low, and the function as a sealing body was still exhibited even when the number of oscillations exceeded 1 million.
[0128]
Further, as is apparent from the results of the oxidation loss of the spherical belt-shaped seal body, the spherical belt-shaped seal bodies of Examples 1 to 12 are expanded as heat-resistant materials due to the effect of the heat-resistant film component even under a high temperature condition of 700 ° C. The oxidation consumption of graphite was kept low, and the oxidation loss of the sealing body itself was low.
[0129]
【The invention's effect】
In the ball-shaped seal body of the present invention, the heat-resistant sheet material provided with a heat-resistant coating on the entire surface of the heat-resistant sheet and the reinforcing material made of a metal mesh are intertwined with each other from the inner surface of the cylindrical surface to the outer surface of the partially convex spherical surface. Since it has structural integrity and the heat resistance of the sealing body itself is enhanced, it functions sufficiently as a sealing body even at a high temperature of 700 ° C. Moreover, in the manufacturing method, only the process of forming a heat-resistant film on the entire surface of the expanded graphite sheet or the like is added, and it is not necessary to significantly change the manufacturing process in the conventional manufacturing method.
[Brief description of the drawings]
FIG. 1 is a longitudinal cross-sectional explanatory view showing a ball-shaped seal body of the present invention.
FIG. 2 is a partially enlarged cross-sectional explanatory diagram of an outer surface of a partially convex spherical surface of a ball-shaped seal body of the present invention.
FIG. 3 is a perspective view of a heat-resistant sheet in the manufacturing process of the ball-shaped seal body of the present invention.
FIG. 4 is a cross-sectional view of a heat-resistant sheet material on which a heat-resistant film is formed in the manufacturing process of the spherical belt-shaped sealing body of the present invention.
FIG. 5 is an explanatory view of a method for forming a reinforcing member made of a wire mesh in the manufacturing process of the spherical belt-shaped sealing body of the present invention.
FIG. 6 is an explanatory plan view of a cylindrical base material in the manufacturing process of the ball-shaped seal body of the present invention.
FIG. 7 is a longitudinal cross-sectional explanatory view of a cylindrical base material in the manufacturing process of the spherical belt-shaped sealing body of the present invention.
FIG. 8 is an explanatory diagram of a method for forming a surface layer forming member in the manufacturing process of the spherical belt-shaped sealing body of the present invention.
FIG. 9 is an explanatory diagram of a method for forming a surface layer forming member in the manufacturing process of the spherical belt-shaped sealing body of the present invention.
FIG. 10 is an explanatory plan view of a pre-cylindrical molded body in the manufacturing process of the spherical belt-shaped sealing body of the present invention.
FIG. 11 is a longitudinal cross-sectional explanatory view showing a state in which a pre-cylindrical molded body is inserted into a mold in the manufacturing process of the ball-shaped seal body of the present invention.
FIG. 12 is a cross-sectional view of a heat-resistant sheet material on which a surface layer made of a lubricating composition is formed in the manufacturing process of the spherical belt-shaped sealing body of the present invention.
FIG. 13 is an explanatory view of a method for forming a surface layer forming member in the manufacturing process of the ball-shaped seal body of the present invention.
FIG. 14 is an explanatory diagram of a method for forming a surface layer forming member in the manufacturing process of the ball-shaped seal body of the present invention.
FIG. 15 is an explanatory plan view of a pre-cylindrical molded body in the manufacturing process of the spherical belt-shaped sealing body of the present invention.
FIG. 16 is a longitudinal cross-sectional explanatory view showing a ball-shaped seal body of the present invention.
FIG. 17 is a partially enlarged cross-sectional explanatory view of the outer surface of the partially convex spherical surface of the ball-shaped seal body of the present invention.
FIG. 18 is a longitudinal cross-sectional explanatory view of an exhaust pipe joint incorporating the ball-shaped seal body of the present invention.
[Explanation of symbols]
51 Through hole
52 Cylindrical inner surface
53 Exterior
54 End face
55 Sphere-shaped seal

Claims (15)

中央部に貫通孔を規定する円筒内面を備え、外面が部分凸球面状に形成され、この外面の大径側に環状の端面を備えた、とくに排気管継手に使用される球帯状シール体であって、該円筒内面から部分凸球面状の外面にかけてのその内部では、圧縮された金網からなる補強材と、この補強材の金網の網目を充填し、かつこの補強材と混在一体化されて圧縮された耐熱材とを主として具備し、更に、炭化ホウ素及び金属ホウ化物のうちの少なくとも一方と金属フッ化物及び黒鉛とリン酸アルミニウムとを、補強材及び耐熱材と混在一体化させて具備し、部分凸球面状の外面は、炭化ホウ素及び金属ホウ化物のうちの少なくとも一方と金属フッ化物及び黒鉛とリン酸アルミニウムとからなる外面層とこの外面層に混在一体化された金網からなる補強材とが露出した平滑な面に形成されていることを特徴とする球帯状シール体 This is a ball-shaped seal body that is used for exhaust pipe joints, especially with a cylindrical inner surface that defines a through-hole at the center, an outer surface that is formed in a partially convex spherical shape, and an annular end surface on the large-diameter side of this outer surface. In the inside from the cylindrical inner surface to the outer surface of the partially convex spherical shape, a reinforcing material made of a compressed wire mesh and a mesh of the wire mesh of the reinforcing material are filled and integrated with the reinforcing material. Mainly comprising a compressed heat-resistant material, and further comprising at least one of boron carbide and metal boride, metal fluoride, graphite and aluminum phosphate mixed and integrated with a reinforcing material and heat-resistant material. The partially convex spherical outer surface is a reinforcement made of at least one of boron carbide and metal boride, an outer surface layer made of metal fluoride, graphite and aluminum phosphate, and a wire mesh mixed and integrated in the outer surface layer. Spherical annular seal member, characterized in that the bets is formed into a smooth surface exposed. 外面層には、炭化ホウ素及び金属ホウ化物のうちの少なくとも一方並びに金属フッ化物及び黒鉛と、リン酸アルミニウムとが重量比率で1:0.5〜3の割合で含まれており、この割合下における炭化ホウ素及び金属ホウ化物のうちの少なくとも一方と金属フッ化物及び黒鉛とにおいて、炭化ホウ素及び金属ホウ化物のうちの少なくとも一方が5〜25重量%、金属フッ化物が1〜15重量%、黒鉛が60〜90重量%の割合で含まれている請求項に記載の球帯状シール体 The outer surface layer contains at least one of boron carbide and metal boride, metal fluoride and graphite, and aluminum phosphate in a weight ratio of 1: 0.5 to 3, and below this ratio In at least one of boron carbide and metal boride and metal fluoride and graphite, at least one of boron carbide and metal boride is 5 to 25% by weight, metal fluoride is 1 to 15% by weight, graphite spherical annular seal member according to claim 1 but which are included in a proportion of 60 to 90 wt%. 円筒内面から部分凸球面状の外面にかけての内部には、重量比率において、耐熱材100に対し、炭化ホウ素及び金属ホウ化物のうちの少なくとも一方と金属フッ化物及び黒鉛とリン酸アルミニウムとが5〜45の割合で含まれている請求項1又は2に記載の球帯状シール体。In the inside from the cylindrical inner surface to the partially convex spherical outer surface, the weight ratio of at least one of boron carbide and metal boride, metal fluoride, graphite, and aluminum phosphate is 5 to 5 with respect to the heat-resistant material 100. The spherical belt-shaped sealing body according to claim 1 or 2 , which is contained at a ratio of 45. 円筒内面から部分凸球面状の外面にかけての内部には、炭化ホウ素及び金属ホウ化物のうちの少なくとも一方並びに金属フッ化物及び黒鉛と、リン酸アルミニウムとが重量比率で1:0.5〜3の割合で含まれており、この割合下における炭化ホウ素及び金属ホウ化物のうちの少なくとも一方と金属フッ化物及び黒鉛とにおいて、炭化ホウ素及び金属ホウ化物のうちの少なくとも一方が5〜25重量%、金属フッ化物が1〜15重量%、黒鉛が60〜90重量%の割合で含まれている請求項1から3のいずれか一項に記載球帯状シール体。In the inside from the cylindrical inner surface to the outer surface of the partially convex spherical shape, at least one of boron carbide and metal boride, metal fluoride and graphite, and aluminum phosphate are in a weight ratio of 1: 0.5-3. In at least one of boron carbide and metal boride and metal fluoride and graphite under this ratio, at least one of boron carbide and metal boride is 5 to 25% by weight, metal The spherical band-shaped sealing body according to any one of claims 1 to 3, wherein fluoride is contained in a proportion of 1 to 15% by weight and graphite is contained in a proportion of 60 to 90% by weight. 該貫通孔を規定する円筒内面及び部分凸球面状の外面の大径側の端面には、炭化ホウ素及び金属ホウ化物のうちの少なくとも一方と金属フッ化物及び黒鉛とリン酸アルミニウムとからなる耐熱層が露出している請求項1から4のいずれか一項に記載球帯状シール体。A heat-resistant layer made of at least one of boron carbide and metal boride, metal fluoride, graphite, and aluminum phosphate is formed on the cylindrical inner surface defining the through hole and the end surface on the large diameter side of the partially convex spherical outer surface. The ball-shaped seal body according to any one of claims 1 to 4 , wherein is exposed. 耐熱層には、炭化ホウ素及び金属ホウ化物のうちの少なくとも一方と金属フッ化物及び黒鉛と、リン酸アルミニウムとが重量比率で1:0.5〜3の割合で含まれており、この割合下における炭化ホウ素及び金属ホウ化物のうちの少なくとも一方と金属フッ化物及び黒鉛において、炭化ホウ素及び金属ホウ化物のうちの少なくとも一方が5〜25重量%、金属フッ化物が1〜15重量%、黒鉛が60〜90重量%の割合で含まれている請求項に記載の球帯状シール体 The heat-resistant layer contains at least one of boron carbide and metal boride, metal fluoride and graphite, and aluminum phosphate in a weight ratio of 1: 0.5 to 3, and below this ratio In at least one of boron carbide and metal boride and metal fluoride and graphite, at least one of boron carbide and metal boride is 5 to 25% by weight, metal fluoride is 1 to 15% by weight, and graphite is The spherical belt-shaped sealing body according to claim 5 , which is contained at a ratio of 60 to 90% by weight . 耐熱材は、膨張黒鉛、マイカ及びアスベストのうちの一種又は二種以上から選択されたものである請求項1から6のいずれか一項に記載の球帯状シール体。The ball-shaped seal body according to any one of claims 1 to 6 , wherein the heat-resistant material is selected from one or more of expanded graphite, mica, and asbestos. 中央部に貫通孔を規定する円筒内面を備え、外面が部分凸球面状に形成され、この外面の大径側に環状の端面を備えた、とくに排気管継手に使用される球帯状シール体であって、該円筒内面から部分凸球面状の外面にかけてのその内部では、耐熱シートの表面全体に炭化ホウ素及び金属ホウ化物のうちの少なくとも一方と金属フッ化物及び黒鉛とリン酸アルミニウムとの混合物からなる耐熱被膜を備えてなる耐熱シート材と金網からなる補強材とが圧縮され、互いに絡み合って構造的一体性を有するように構成されており、該部分凸球面状の外面は、耐熱被膜からなる外面層とこの外面層に混在一体化された金網からなる補強材とが露出した平滑な面に形成されていることを特徴とする球帯状シール体。  This is a ball-shaped seal body that is used for exhaust pipe joints, especially with a cylindrical inner surface that defines a through-hole at the center, an outer surface that is formed in a partially convex spherical shape, and an annular end surface on the large-diameter side of this outer surface. In the interior from the cylindrical inner surface to the partially convex spherical outer surface, the entire surface of the heat-resistant sheet is made of a mixture of at least one of boron carbide and metal boride, metal fluoride, graphite, and aluminum phosphate. The heat-resistant sheet material provided with the heat-resistant coating and the reinforcing material made of wire mesh are compressed and entangled with each other to have structural integrity, and the outer surface of the partially convex spherical surface is made of the heat-resistant coating. A spherical belt-like sealing body, characterized in that the outer surface layer and a reinforcing material made of a wire mesh mixed and integrated in the outer surface layer are formed on a smooth surface exposed. 該貫通孔を規定する円筒内面及び部分凸球面状の外面の大径側の端面には、該耐熱被膜からなる耐熱層が露出している請求項に記載の球帯状シール体。The spherical belt-shaped sealing body according to claim 8 , wherein a heat-resistant layer made of the heat-resistant coating is exposed on a large-diameter side end surface of the cylindrical inner surface and the partially convex spherical outer surface defining the through hole. 耐熱シートと耐熱被膜との重量比率が、耐熱シート100に対し耐熱被膜5〜45の割合である請求項8又は9に記載の球帯状シール体。The spherical belt-shaped sealing body according to claim 8 or 9 , wherein the weight ratio of the heat-resistant sheet and the heat-resistant film is a ratio of the heat-resistant film to 45 to 45 with respect to the heat-resistant sheet 100. 耐熱被膜は、炭化ホウ素及び金属ホウ化物のうちの少なくとも一方並びに金属フッ化物及び黒鉛と、リン酸アルミニウムとが重量比率で1:0.5〜3の割合で含まれており、この割合下における炭化ホウ素及び金属ホウ化物のうちの少なくとも一方と金属フッ化物及び黒鉛とにおいて、炭化ホウ素及び金属ホウ化物のうちの少なくとも一方が5〜25重量%、金属フッ化物が1〜15重量%、黒鉛が60〜90重量%の割合で含まれてなる混合物からなる請求項8から10のいずれか一項に記載の球帯状シール体 The heat-resistant film contains at least one of boron carbide and metal boride, metal fluoride and graphite, and aluminum phosphate in a weight ratio of 1: 0.5 to 3, and under this ratio In at least one of boron carbide and metal boride and metal fluoride and graphite, at least one of boron carbide and metal boride is 5 to 25% by weight, metal fluoride is 1 to 15% by weight, and graphite is The spherical belt-shaped sealing body according to any one of claims 8 to 10 , comprising a mixture which is contained at a ratio of 60 to 90% by weight . 耐熱シートは、膨張黒鉛、マイカ及びアスベストのうちの一種又は二種以上から選択されたものである請求項8から11のいずれか一項に記載の球帯状シール体 The ball-shaped seal body according to any one of claims 8 to 11 , wherein the heat-resistant sheet is selected from one or more of expanded graphite, mica, and asbestos . 金属ホウ化物は、元素周期律表の第IVa族、第Va族及び第VIa族の中から選択されたものである請求項1から12のいずれか一項に記載の球帯状シール体。 Metal borides, group IVa of the Periodic Table of the Elements, spherical annular seal member according to any one of claims 1 to 12 are those selected from among the Group Va and Group VIa. 金属ホウ化物は、ホウ化チタン、二ホウ化チタン、二ホウ化ジルコニウム、十二ホウ化ジルコニウム、二ホウ化ハフニウム、二ホウ化バナジウム、二ホウ化ニオブ、二ホウ化タンタル、ホウ化クロム、二ホウ化クロム、ホウ化モリブデン、二ホウ化モリブデン、ホウ化二モリブデン、五ホウ化二モリブデン、ホウ化タングステン、二ホウ化タングステン、ホウ化二タングステン及び五ホウ化二タングステンから選択されたものである請求項1から13のいずれか一項に記載の球帯状シール体。 Metal borides include titanium boride, titanium diboride, zirconium diboride, zirconium twelve boride, hafnium diboride, vanadium diboride, niobium diboride, tantalum diboride, chromium boride, di It is selected from chromium boride, molybdenum boride, molybdenum diboride, dimolybdenum boride, dimolybdenum pentaboride, tungsten boride, tungsten diboride, ditungsten boride and ditungsten pentaboride. The spherical belt-shaped sealing body according to any one of claims 1 to 13 . 金属フッ化物は、フッ化カルシウム、フッ化リチウム、フッ化ナトリウム及びフッ化バリウムのうちの一種又は二種以上から選択されたものである請求項1から14のいずれか一項に記載の球帯状シール体。 The spherical band shape according to any one of claims 1 to 14 , wherein the metal fluoride is selected from one or more of calcium fluoride, lithium fluoride, sodium fluoride, and barium fluoride. Seal body.
JP04168797A 1997-02-10 1997-02-10 Sphere-shaped sealing body and method for manufacturing the same Expired - Lifetime JP3812036B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP04168797A JP3812036B2 (en) 1997-02-10 1997-02-10 Sphere-shaped sealing body and method for manufacturing the same
US09/018,331 US6129362A (en) 1997-02-10 1998-02-04 Spherical annular seal member and method of manufacturing the same
EP98300898A EP0857863B1 (en) 1997-02-10 1998-02-06 Spherical annular seal member and method of manufacturing the same
DE69828537T DE69828537D1 (en) 1997-02-10 1998-02-06 Spherical ring seal part and its manufacturing process
KR1019980003754A KR100337092B1 (en) 1997-02-10 1998-02-09 Spherical strip-shaped solid body and its manufacturing method
CN98103837A CN1101904C (en) 1997-02-10 1998-02-10 Ball ring shaped sealing element and making method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04168797A JP3812036B2 (en) 1997-02-10 1997-02-10 Sphere-shaped sealing body and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH10231934A JPH10231934A (en) 1998-09-02
JP3812036B2 true JP3812036B2 (en) 2006-08-23

Family

ID=12615347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04168797A Expired - Lifetime JP3812036B2 (en) 1997-02-10 1997-02-10 Sphere-shaped sealing body and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP3812036B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4549067B2 (en) * 2004-01-15 2010-09-22 日本リークレス工業株式会社 High heat resistant expanded graphite sheet
JP5673219B2 (en) * 2011-03-02 2015-02-18 オイレス工業株式会社 Sphere-shaped sealing body and method for manufacturing the same
JP5834806B2 (en) 2011-11-17 2015-12-24 オイレス工業株式会社 Cylindrical gasket, manufacturing method thereof, and plug-in type exhaust pipe joint using the cylindrical gasket
EP2910617B1 (en) 2012-10-16 2019-11-06 Oiles Corporation Spherical band-shaped sealing body
JP5978989B2 (en) 2012-12-27 2016-08-24 オイレス工業株式会社 Sphere seal

Also Published As

Publication number Publication date
JPH10231934A (en) 1998-09-02

Similar Documents

Publication Publication Date Title
JP3812035B2 (en) Sphere-shaped sealing body and method for manufacturing the same
JP4617521B2 (en) Sphere-shaped sealing body and manufacturing method thereof
CN1989362B (en) Ring seal for spherical exhaust-pipe joint and process for producing the same
KR100337092B1 (en) Spherical strip-shaped solid body and its manufacturing method
JPH06123362A (en) Spherical zone seal body
JP3937473B2 (en) Composition for sliding member, sliding member comprising the composition, and ball-shaped seal body
JP5533990B2 (en) Sphere-shaped sealing body and method for manufacturing the same
JP3261767B2 (en) Spherical band-shaped seal body and method for producing the same
JPH0226044B2 (en)
JP3812036B2 (en) Sphere-shaped sealing body and method for manufacturing the same
US5997979A (en) Spherical annular seal member and method of manufacturing the same
WO2004038263A1 (en) Spherical zone seal body
JP3911725B2 (en) Sphere-shaped sealing body and manufacturing method thereof
JP3812037B2 (en) Sphere-shaped sealing body and method for manufacturing the same
JPH109397A (en) Spherical band seal body and its manufacture
JP4487494B2 (en) Sphere seal
JP6427916B2 (en) Sphere seal
JP4953222B2 (en) Sphere seal
JP4371349B2 (en) Ball-shaped seal body
JP2003014177A (en) Jointing device for exhaust pipe
JP4355129B2 (en) Ball-shaped seal body
JP2003343729A (en) Spherical band-shaped seal body
JPS6237569A (en) Seal member for vibration-proof coupling

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060522

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term