JP4208058B2 - Liquid crystalline (meth) acrylate compound and liquid crystal composition containing the compound - Google Patents

Liquid crystalline (meth) acrylate compound and liquid crystal composition containing the compound Download PDF

Info

Publication number
JP4208058B2
JP4208058B2 JP28854498A JP28854498A JP4208058B2 JP 4208058 B2 JP4208058 B2 JP 4208058B2 JP 28854498 A JP28854498 A JP 28854498A JP 28854498 A JP28854498 A JP 28854498A JP 4208058 B2 JP4208058 B2 JP 4208058B2
Authority
JP
Japan
Prior art keywords
group
liquid crystal
groups
substituted
coo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28854498A
Other languages
Japanese (ja)
Other versions
JP2000119222A (en
Inventor
浩史 長谷部
洋 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
DIC Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical DIC Corp
Priority to JP28854498A priority Critical patent/JP4208058B2/en
Publication of JP2000119222A publication Critical patent/JP2000119222A/en
Application granted granted Critical
Publication of JP4208058B2 publication Critical patent/JP4208058B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0448Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0477Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by the positioning of substituents on phenylene
    • C09K2019/0481Phenylene substituted in meta position

Landscapes

  • Heterocyclic Compounds That Contain Two Or More Ring Oxygen Atoms (AREA)
  • Pyridine Compounds (AREA)
  • Pyrane Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Liquid Crystal Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光学、表示、記録材料、液晶ディスプレイの光学補償板や偏光プリズム材料として利用される新規な液晶性(メタ)アクリレート化合物、該化合物を含有する液晶組成物及び、これを用いた光学異方体に関する。
【0002】
【従来の技術】
近年、液晶物質は、TN(ツイステッド・ネマチック)型やSTN(スーパー・ツイステッド・ネマチック)型に代表されるディスプレイ素子等の、液晶分子の可逆的運動を利用した表示媒体への応用以外にも、その配向性と屈折率、誘電率、磁化率等の物理的性質の異方性を利用して、位相差板、偏光板、偏光プリズム、各種光フィルター等の光学異方体への応用が検討されている。
このような液晶物質を構成材料とする光学異方体には、安定で均一な光学特性が必要とされ、そのためには、液晶状態における液晶分子の配向状態構造を半永久的に固定化することが必須である。
【0003】
液晶状態における液晶分子の配向状態構造を半永久的に固定化する手段としては、重合性官能基を有する液晶性化合物又はこのような化合物を含有する重合性液晶組成物を、液晶状態で配向させた後、その状態で紫外線等のエネルギー線を照射することによって高分子化させる方法が知られている。
このような技術に適用できる重合性官能基を有する液晶材料が、特開昭58−102205号公報、特開昭62−70406号公報、特公平8−3586号公報、特開平4−227611号公報、ドイツ公開特許DE4226994号等に開示されている。
しかしながら、これらの材料は、液晶相を呈する温度が高いため、配向工程において、望ましくない熱重合が誘起され、均一性に優れた光学異方体を作製できないという問題、もしくは作製した光学異方体の耐熱性が十分でないという問題があった。
【0004】
これらの問題が解決可能なものとして、2つまたは2つ以上の重合性官能基を有し、かつ室温で液晶相を呈するような液晶材料が、ドイツ公開特許DE4408171号、PCT国際公開WO97/14674、特開平8−245520号公報、特開平8−104870号公報等に開示されている。
しかしながら、これらの材料のほとんどは、液晶骨格中にベンゼン環やシクロヘキサン環等の6員環を3つ以上有しており、分子量が約500〜1000程度と大きいという問題を有していた。液晶ディスプレイの分野で使用されている非重合性の液晶材料の(平均)分子量は約250〜450程度であるのに対して、このように(平均)分子量が大きいと、粘度を増大させ、均一な配向状態を得るのに時間がかかるという問題を生じてしまう。特に、配向状態を領域毎に変える配向分割技術を用いる場合には、粘度が高いと配向が安定するまでに30分以上の時間が必要な場合があるため、光学異方体の製造プロセスの効率を著しく悪化させてしまうという問題があった。
【0005】
室温で液晶相を呈し、重合後の光学異方体の耐熱性にすぐれ、かつ(平均)分子量が約250〜450程度と小さい重合性の液晶材料が、特開平8−3111号公報に開示されている。
しかしながら、この重合性液晶材料を用いて膜厚が30ミクロン以上の光学異方体を作製した場合、光学異方体が白濁し、透明度が悪化してしまうという問題があった。
【0006】
【発明が解決しようとする課題】
よって、本発明における課題は、重合後に透明性に優れた光学異方体を得ることができる液晶性(メタ)アクリレート化合物および該化合物を含有する液晶組成物、さらには、(平均)分子量が約250〜450程度と低く、均一な配向状態を素早く得ることができ、室温で液晶相を呈し、かつ重合後には均一性、耐熱性および透明性に優れた光学異方体を得ることができる液晶組成物、およびこれら液晶組成物から得られる光学異性体を提供することにある。
【0007】
【課題を解決するための手段】
本発明者等は、重合性液晶材料の化学構造と液晶温度範囲との相関、及び重合後に得られる光学異方体の透明性との相関について鋭意検討した結果、特定の化学構造を有する液晶性(メタ)アクリレート化合物の使用により、上記課題を解決できることを見出し、本発明を完成するに至った。
すなわち、本発明の液晶性(メタ)アクリレート化合物は、下記一般式(I)で表されることを特徴とする。
【0008】
【化3】

Figure 0004208058
【0009】
(式中、L1 、L2 はそれぞれ独立的に水素原子またはメチル基を表し、6員環A、Bはそれぞれ独立的に、1,4−フェニレン基、1つ又は隣接しない2つのCH基が窒素で置換された1,4−フェニレン基、1,4−シクロヘキシレン基、1つ又は隣接しない2つのCH2 基が酸素原子又は硫黄原子で置換された1,4−シクロヘキシレン基、又はシクロヘキセン−1,4−ジイル基を表し、これらの6員環AとBは、さらに炭素原子数1〜7のアルキル基、アルコキシ基、アルカノイル基、シアノ基、又はハロゲン原子で1つ以上置換されていても良く、6員環Cは1,3−フェニレン基、1つ又は隣接しない2つのCH基が窒素で置換された1,3−フェニレン基、1,3−シクロヘキシレン基、1つ又は隣接しない2つのCH2 基が酸素原子又は硫黄原子で置換された1,3−シクロヘキシレン基、又はシクロヘキセン−1,3−ジイル基を表し、6員環Cは、さらに炭素原子数1〜7のアルキル基、アルコキシ基、アルカノイル基、シアノ基、又はハロゲン原子で置換されていても良く、Y1 、Y2 はそれぞれ独立的に単結合、−CH2CH2−、−CH2O− 、−OCH2− 、−COO−、−OCO−、−C≡C−、−CH=CH−、−CF=CF−、−(CH24−、−CH2CH2CH2O−、−OCH2CH2CH2−、−CH=CH−CH2CH2−、−CH2CH2−CH=CH−、−CH=CH−COO−、−OCO−CH=CH−、−OCO−COO−を表し、X1 、X2 はそれぞれ独立的に単結合、−O−、−COO−、−OCO−を表し、Sp1 、Sp2それぞれ独立的に炭素原子数1から20の水素原子がハロゲン原子に置換されていても良い、直鎖アルキレン基、分岐アルキレン基、隣接しない炭素原子が酸素原子、カルボニル基、エステル基で置換された直鎖アルキレン基、分岐アルキレン基を表す。)
【0010】
また、本発明の液晶性(メタ)アクリレート化合物は、上記一般式(I)において、L1 、L2 が水素原子であり、6員環A、Bが1,4−フェニレン基であり、6員環Cが1,3−フェニレン基であり、Sp1 、Sp2 が炭素原子数2から12を有するアルキレン基であり、Y1 が単結合であり、Y2 が−COO−、−OCO−であり、X1 、X2 が−O−であることが望ましい。
また、本発明の液晶組成物は、上記液晶性(メタ)アクリレート化合物を含有し、液晶相を呈することを特徴とする。
また、本発明の液晶組成物は、さらに下記一般式(II)で表される液晶性(メタ)アクリレート化合物を含有することが望ましい。
【0011】
【化4】
Figure 0004208058
【0012】
(式中、L3 は水素原子又はメチル基を表し、nは0又は1の整数を表し、6員環D、E、Fはそれぞれ独立的に、1,4−フェニレン基、1つ又は隣接しない2つのCH基が窒素で置換された1,4−フェニレン基、1,4−シクロヘキシレン基、1つ又は隣接しない2つのCH2 基が酸素原子又は硫黄原子で置換された1,4−シクロヘキシル基、又はシクロヘキセン−1,4−ジイル基を表し、これらの6員環D、E、Fは、さらに炭素原子数1〜7のアルキル基、アルコキシ基、アルカノイル基、シアノ基、又はハロゲン原子で一つ以上置換されていても良く、Y3 、Y4 はそれぞれ独立的に単結合、−CH2CH2−、−CH2O− 、−OCH2− 、−COO−、−OCO−、−C≡C−、−CH=CH−、−CF=CF−、−(CH24−、−CH2CH2CH2O−、−OCH2CH2CH2−、−CH=CH−CH2CH2−、−CH2CH2−CH=CH−、−CH=CH−COO−、−OCO−CH=CH−を表し、Y5 は単結合、−O−、−OCO−、−COO−、−CH=CH−COO−を表し、Z1 は水素原子、ハロゲン原子、シアノ基、炭素原子1〜20の炭化水素基を表す。)
【0013】
また、本発明の液晶組成物は、摂氏25度において液晶相を呈することが望ましい。
【0014】
【発明の実施の形態】
一般式(I)で表される液晶性(メタ)アクリレート化合物を、例えば特開平8−3111号公報に開示されているような分子量が約250〜450程度と小さい重合性液晶材料に少量添加した液晶組成物を用いて、光学異方体を作製すると、添加しなかった場合と比較して、(平均)分子量及び粘度を著しく増大させることなく、透明性を改善することができる。一般式(I)で表される液晶性(メタ)アクリレートの分子量は約500〜1000程度となるが、添加量は少量であるので、(平均)分子量の著しい上昇は避けることができる。
【0015】
一般式(I)で表される液晶性(メタ)アクリレート化合物の添加により、重合により得られる光学異方体の透明性が改善される理由は必ずしも明らかではない。しかし、−X2−Sp2−OCOC(L2)=CH2で表される側鎖基が、連結基Y2 に対してメタ位に位置しているという構造上の特徴が関係していると考えられる。本発明の化合物のように側鎖基の伸長方向が、液晶骨格の長軸方向に平行でない場合、分子の直線性が減ぜられる。この減ぜられた直線性により、光重合過程における液晶分子の配向状態に何らかの変化が誘起されたものと考えられる。また、分子の直線性が減ぜられると、結晶性が低下する。これにより、本発明の化合物を室温で液晶相を呈するような液晶組成物に添加しても、結晶相−液晶相転移温度を上昇させにくい。つまり、特開平8−3111号公報に開示されているような重合性液晶組成物に添加しても、室温での液晶相を損ねにくいという特徴がある。
【0016】
本発明の一般式(I)で表される液晶性(メタ)アクリレート化合物(以下、本発明の化合物という)において、L1 、L2 はそれぞれ独立的に、水素原子、またはメチル基を表す。L1 、L2 として水素原子を選択した方が、メチル基を選択した場合よりも、反応性が高い。従って、光重合が迅速に進行する材料が必要な時には水素原子を選択するのが好ましく、反応性を低く調節する必要があるときには、L1 、L2 のどちらか一方、または両方にメチル基を選択するのが好ましい。
【0017】
6員環A、Bはそれぞれ独立的に、1,4−フェニレン基、1つ又は隣接しない2つのCH基が窒素で置換された1,4−フェニレン基、1,4−シクロヘキシレン基、1つ又は隣接しない2つのCH2 基が酸素原子又は硫黄原子で置換された1,4−シクロヘキシレン基、又はシクロヘキセン−1,4−ジイル基を表す。これらの6員環AとBは、さらに炭素原子数1〜7のアルキル基、アルコキシ基、アルカノイル基、シアノ基、又はハロゲン原子で1つ以上置換されていても良い。
【0018】
複屈折率が大きな化合物が必要な場合には、共役系が分子の長軸方向に伸びている必要があるので、6員環A、Bとしては、無置換の1,4−フェニレン基もしくは炭素原子数1〜7のアルキル基、アルコキシ基、アルカノイル基、シアノ基、又はハロゲン原子で1つ以上置換された1,4−フェニレン基、または、さらに1つ又は隣接しない2つのCH基が窒素で置換された1,4−フェニレン基を選択するのが好ましい。逆に、複屈折率が小さな化合物が必要な場合には、6員環A、Bとしては、無置換の1,4−シクロヘキシレン基もしくは炭素原子数1〜7のアルキル基、アルコキシ基、アルカノイル基、シアノ基、又はハロゲン原子で1つ以上置換された1,4−シクロヘキシレン基、または、さらに1つ又は隣接しない2つのCH2 基が酸素原子又は硫黄原子で置換された1,4−シクロヘキシレン基;シクロヘキセン−1,4−ジイル基を選択するのが好ましい。
【0019】
6員環A又はBへの置換基の導入は、液晶温度の低減効果をもたらすが、同時にまた、分子量の増大も招く。従って、置換基としてのハロゲン原子は、原子量が比較的小さいフッ素原子が特に好ましい。また、置換基としてアルキル基、アルコキシ基、アルカノイル基を選択する場合、炭素原子数は5以下がさらに好ましく、3以下が特に好ましい。
【0020】
同様に、6員環Cも、複屈折率が大きな化合物が必要な場合には、無置換の1,3−フェニレン基もしくは炭素原子数1〜7のアルキル基、アルコキシ基、アルカノイル基、シアノ基、又はハロゲン原子で1つ以上置換された1,3−フェニレン基、または、さらに1つ又は隣接しない2つのCH基が窒素で置換された1,3−フェニレン基を選択するのが好ましい。複屈折率が小さな化合物が必要な場合には、6員環Cとしては、無置換の1,3−シクロヘキシレン基もしくは炭素原子数1〜7のアルキル基、アルコキシ基、アルカノイル基、シアノ基、又はハロゲン原子で1つ以上置換されてた1,3−シクロヘキシレン基、または、さらに1つ又は隣接しない2つのCH2 基が酸素原子又は硫黄原子で置換された1,3−シクロヘキシレン基;シクロヘキセン−1,3−ジイル基を選択するのが好ましい。
【0021】
6員環Cへ置換基を導入することによって現れる効果は、その導入の位置によって異なる。連結基Y2 に対してパラ位に導入した場合には、分子の直線性を減ぜられないため、液晶温度の低減効果は無い。しかし、この位置にフッ素原子やシアノ基を導入すると、分子長軸方向の誘電率を大きくできるので、例えば、光学異方体を作製する際、液晶組成物の配向手段として電界を使用する場合には、好適に用いることができる。また、パラ位に炭素原子数1〜7のアルキル基、アルコキシ基、アルカノイル基を導入すると、液晶温度範囲を広げることが可能になる。この目的からは、炭素原子数2以上が好ましく、炭素原子数3以上がさらに好ましい。パラ位以外の位置に置換基を導入した場合には、液晶温度の低減効果をもたらす。しかし、同時に分子量の増大も招く。従って、置換基としてのハロゲン原子は、原子量が比較的小さいフッ素原子が特に好ましい。また、アルキル基、アルコキシ基、アルカノイル基を選択する場合、炭素原子数は5以下がさらに好ましく、3以下が特に好ましい。
【0022】
1 、Y2 は、それぞれ独立的に単結合、−CH2CH2−、−CH2O− 、−OCH2− 、−COO−、−OCO−、−C≡C−、−CH=CH−、−CF=CF−、−(CH24−、−CH2CH2CH2O− 、−OCH2CH2CH2− 、−CH=CH−CH2CH2−、−CH2CH2−CH=CH−、−CH=CH−COO−、−OCO−CH=CH−−OCO−COO−を表す。複屈折率が大きな化合物が必要な場合には、共役系が分子の長軸方向に伸びている必要があるので、Y1 、Y2 は単結合、−COO−、−OCO−、−C≡C−、−CH=CH−、−CF=CF−を選択するのが好ましい。逆に、複屈折率が小さな化合物が必要な場合には、−CH2CH2−、−CH2O− 、−OCH2− 、−(CH24−、−CH2CH2CH2O− 、−OCH2CH2CH2− を選択するのが好ましい。
【0023】
Sp1 、Sp2 はそれぞれ独立的に、炭素原子数1から20のスペーサー基を表す。スペーサー基としては、直鎖アルキレン基、分岐アルキレン基、隣接しない炭素原子が、酸素原子、カルボニル基、エステル基で置換された直鎖アルキレン基、分岐アルキレン基等を挙げることができる。また、これらスペーサー基中の水素原子は、フッ素原子等のハロゲン原子で置換されていても良い。スペーサー基としては、粘度の低減という観点から、置換されていない直鎖アルキレン鎖、及び分岐アルキレン鎖を選択するのが好ましく、置換されていない直鎖アルキレン鎖が特に好ましい。炭素原子数は、2〜12が好ましく、2〜8がさらに好ましく、3〜6が特に好ましい。炭素原子数が多くなると、分子量が増大し、粘度が高くなってしまう傾向があり、炭素原子数が少なくなると、化合物の液晶温度が高くなってしまう傾向がある。
【0024】
1 、X2 はそれぞれ独立的に、単結合、−COO−、−OCO−、−O−を表す。化合物の加水分解による劣化を最低限に抑制するためには、−O−を選択するのが好ましい。
【0025】
置換基L1、L2、6員環A、B、C、連結基Y1 、Y2 、X1 、X2 、Sp1 、Sp2 の選択について、化合物の複屈折率を基準として述べたが、本発明の化合物の目的は、少量の添加により、(平均)分子量を著しく増大させることなく、透明性に優れた光学異方体を作製可能な液晶組成物を実現することにあるので、この目的を逸脱することの無いよう留意する必要がある。本発明の特に好ましい化学構造(式(1)〜(150))を以下に例示する。
(式中、L1、L2は水素原子またはメチル基を表し、s、tは1〜20の整数を表し、シクロヘキサン環はトランスシクロヘキサン環を表す。)
【0026】
【化5】
Figure 0004208058
【化6】
Figure 0004208058
【0027】
【化7】
Figure 0004208058
【化8】
Figure 0004208058
【0028】
【化9】
Figure 0004208058
【化10】
Figure 0004208058
【0029】
【化11】
Figure 0004208058
【化12】
Figure 0004208058
【0030】
【化13】
Figure 0004208058
【化14】
Figure 0004208058
【0031】
【化15】
Figure 0004208058
【化16】
Figure 0004208058
【0032】
【化17】
Figure 0004208058
【化18】
Figure 0004208058
【0033】
【化19】
Figure 0004208058
【化20】
Figure 0004208058
【0034】
【化21】
Figure 0004208058
【化22】
Figure 0004208058
【0035】
【化23】
Figure 0004208058
【化24】
Figure 0004208058
【0036】
【化25】
Figure 0004208058
【化26】
Figure 0004208058
【0037】
【化27】
Figure 0004208058
【化28】
Figure 0004208058
【0038】
【化29】
Figure 0004208058
【化30】
Figure 0004208058
【0039】
【化31】
Figure 0004208058
【化32】
Figure 0004208058
【0040】
【化33】
Figure 0004208058
【化34】
Figure 0004208058
【0041】
以上に例示した本発明の化合物は、上記一般式(I)において−X2−Sp2−OCOC(L2)=CH2で表される側鎖基が、連結基Y2 に対してメタ位に位置していることが特徴であることを除けば、化学構造自体は液晶材料の技術分野においては特別なものでは無い。従って、本発明の化合物の合成には、従来の液晶化合物または液晶性(メタ)アクリレートの技術分野で確立された合成方法を、ほぼそのまま適用することができる。例えば、特表平6−507987号公報や特公平8−3111号公報に開示されている方法を用いることができる。
【0042】
上記に例示したような化合物の中でも、一般式(I)において6員環A、Bが、無置換の1,4−フェニレン基もしくは炭素原子数1〜7のアルキル基、アルコキシ基、アルカノイル基、シアノ基、又はハロゲン原子で1つ以上置換された1,4−フェニレン基であり、6員環Cが、無置換の1,3−フェニレン基もしくは炭素原子数1〜7のアルキル基、アルコキシ基、アルカノイル基、又はシアノ基、ハロゲン原子で1つ以上置換された1,3−フェニレン基であり、Y1 が単結合であり、Y2 が−COO−又は−OCO−であるような液晶骨格を有するものは、化合物単体の液晶温度範囲を100℃以下に抑制することが容易であり、製造も容易であることから有用である。この中でも特に6員環A、Bが、無置換の1,4−フェニレン基、6員環Cが無置換の1,3−フェニレン基、Y1 が単結合、Y2 が−COO−又は−OCO−の化合物は、特に製造が容易であるので、工業的価値が高い。
このような化合物は、例えば、以下の方法によって合成することができる。
【0043】
【化35】
Figure 0004208058
【化36】
Figure 0004208058
【0044】
(式中、Xはハロゲン原子、6員環A’、B’は、無置換の1,4−フェニレン基もしくは炭素原子数1〜7のアルキル基、アルコキシ基、アルカノイル基、シアノ基、又はハロゲン原子で1つ以上置換された1,4−フェニレン基、6員環C’は無置換の1,3−フェニレン基もしくは炭素原子数1〜7のアルキル基、アルコキシ基、アルカノイル基、シアノ基、又はハロゲン原子で1つ以上置換された1,3−フェニレン基を表し、L1 、L2 は水素原子またはメチル基を表し、Sp1 、Sp2 は炭素原子数1から20のスペーサー基を表す。)
【0045】
ここに示したように、一般式(III)のビフェニル誘導体に、水酸化ナトリウムや炭酸カリウム等の塩基を用いて、水酸基が付与されたスペーサー基を結合させて一般式(IV)の化合物を得て、これをp−トルエンスルホン酸等の酸触媒を用いて(メタ)アクリル酸とエステル化することにより、一般式(V)の化合物を得る。ついで、ヒドロキシ安息香酸誘導体(VI)に水酸化ナトリウムや炭酸カリウム等の塩基を用いて、水酸基が付与されたスペーサー基を結合させて一般式(VII)の化合物を得て、これをp−トルエンスルホン酸等の酸触媒を用いて(メタ)アクリル酸とエステル化することにより、一般式(VIII)の化合物を得る。得られた一般式(V)及び一般式(VIII)の化合物を、ジシクロヘキシルカルボジイミド(DCC)の如き縮合剤とジメチルアミノピリジン(DMAP)の如き塩基触媒を用いてエステル縮合させることにより、または、一般式(VIII)のカルボキシル基を、ハロゲン化チオニル等でハロゲン化アシル基に変換し、ピリジンの如き塩基触媒を用いて一般式(V)の化合物とエステル縮合させることにより、一般式(IX)で表される本発明の化合物を合成できる。
また、本発明の化合物は、以下の方法によっても合成することができる。
【0046】
【化37】
Figure 0004208058
【化38】
Figure 0004208058
【0047】
(式中、Xはハロゲン原子、6員環A’、B’は、無置換の1,4−フェニレン基もしくは炭素原子数1〜7のアルキル基、アルコキシ基、アルカノイル基、又はシアノ基、ハロゲン原子で1つ以上置換された1,4−フェニレン基、6員環C’は無置換の1,3−フェニレン基もしくは炭素原子数1〜7のアルキル基、アルコキシ基、アルカノイル基、シアノ基、又はハロゲン原子で1つ以上置換された1,3−フェニレン基を表し、L1 、L2 は水素原子またはメチル基を表し、Sp1 、Sp2 は炭素原子数1から20のスペーサー基を表す。)
【0048】
ここに示したように、一般式(X)のビフェニル誘導体に、水酸化ナトリウムや炭酸カリウム等の塩基を用いて、水酸基が付与されたスペーサー基を結合させて一般式(XI)の化合物を得て、これをp−トルエンスルホン酸等の酸触媒を用いて(メタ)アクリル酸とエステル化することにより、一般式(XII)の化合物を得る。ついで、ヒドロキノン誘導体(XIII)に水酸化ナトリウムや炭酸カリウム等の塩基を用いて、水酸基が付与されたスペーサー基を結合させて一般式(XIV)の化合物を得て、これをp−トルエンスルホン酸等の酸触媒を用いて(メタ)アクリル酸とエステル化することにより、一般式(XV)の化合物を得る。得られた一般式(XII)及び一般式(XV)の化合物を、ジシクロヘキシルカルボジイミド(DCC)の如き縮合剤とジメチルアミノピリジン(DMAP)の如き塩基触媒を用いてエステル縮合させることにより、または、一般式(XII)のカルボキシル基を、ハロゲン化チオニル等でハロゲン化アシル基に変換し、ピリジンの如き塩基触媒を用いて一般式(XV)の化合物とエステル縮合させることにより、一般式(XVI)で表される本発明の化合物を合成できる。
また、本発明の化合物は、以下の方法によっても合成することができる。
【0049】
【化39】
Figure 0004208058
【0050】
(式中、Lは水素原子またはメチル基を表し、6員環A’、B’は、無置換の1,4−フェニレン基もしくは炭素原子数1〜7のアルキル基、アルコキシ基、アルカノイル基、シアノ基、又はハロゲン原子で1つ以上置換された1,4−フェニレン基、6員環C’は無置換の1,3−フェニレン基もしくは炭素原子数1〜7のアルキル基、アルコキシ基、アルカノイル基、シアノ基、又はハロゲン原子で1つ以上置換された1,3−フェニレン基を表し、L1 、L2 は水素原子またはメチル基を表し、Sp1 、Sp2 は炭素原子数1から20のスペーサー基を表す。)
【0051】
ここに示したように、一般式(XVII)のビフェニル誘導体と一般式(XVIII)の安息香酸誘導体をジシクロヘキシルカルボジイミド(DCC)の如き縮合剤とジメチルアミノピリジン(DMAP)の如き塩基触媒を用いてエステル縮合させることにより、または、一般式(XVIII)のカルボキシル基を、ハロゲン化チオニル等でハロゲン化アシル基に変換し、ピリジンの如き塩基触媒を用いて一般式(XVII)の化合物とエステル縮合させることにより、一般式(XIX)の化合物を得る。その後、ベンジルアミンの如き塩基を用いて、アセチル基を脱保護することにより一般式(XX)の化合物を得る。これに一般式(XXI)のカルボン酸誘導体をジシクロヘキシルカルボジイミド(DCC)の如き縮合剤とジメチルアミノピリジン(DMAP)の如き塩基触媒を用いてエステル縮合させることにより、または、一般式(XXI)のカルボキシル基を、ハロゲン化チオニル等でハロゲン化アシル基に変換し、ピリジンの如き塩基触媒を用いて一般式(XX)の化合物とエステル縮合させることにより、一般式(XXII)で表される本発明の化合物を合成することができる。
また、本発明の化合物は、以下の方法によっても合成することができる。
【0052】
【化40】
Figure 0004208058
【0053】
(式中、Lは水素原子またはメチル基を表し、6員環A’、B’は無置換の1,4−フェニレン基もしくは炭素原子数1〜7のアルキル基、アルコキシ基、アルカノイル基、シアノ基、又はハロゲン原子で1つ以上置換された1,4−フェニレン基、6員環C’は無置換の1,3−フェニレン基もしくは炭素原子数1〜7のアルキル基、アルコキシ基、アルカノイル基、シアノ基、又はハロゲン原子で1つ以上置換された1,3−フェニレン基を表し、Sp1 、Sp2 は炭素原子数1から20のスペーサー基を表す。)
【0054】
ここに示したように、一般式(XXIII)のビフェニル誘導体と一般式(XXIV)の安息香酸誘導体を、p−トルエンスルホン酸の如き酸触媒の存在下、230℃以上に加熱することによって一般式(XXV)の化合物を得る。これに一般式(XXVI)のアルコール誘導体をジシクロヘキシルカルボジイミド(DCC)の如き縮合剤とジメチルアミノピリジン(DMAP)の如き塩基触媒を用いてエステル縮合させることにより、または、一般式(XXV)のカルボキシル基を、ハロゲン化チオニル等でハロゲン化アシル基に変換し、ピリジンの如き塩基触媒を用いて一般式(XXVI)の化合物とエステル縮合させることにより、一般式(XXVII)で表される本発明の化合物を合成することができる。
【0055】
本発明の液晶組成物は、通常この技術分野で液晶相と認識される相を示す組成物であればよい。そのような液晶組成物の中でも、液晶相として、ネマチック相、スメクチックA相、(カイラル)スメクチックC相、コレステリック相を発現するものが好ましい。この中でも、ネマチック相は粘度が低くなる傾向があり、光学異方体の製造時の配向工程において、安定した配向状態を迅速に得られる傾向があるため、特に好ましい。また、(カイラル)スメクチックC相を示す場合には、該(カイラル)スメクチックC相の温度領域より上の温度領域でスメクチックA相を、スメクチックA相を示す場合には、該スメクチックA相の温度領域より上の温度領域でネマチック相を、それぞれ発現する液晶組成物は、良好な一軸の配向特性が得られるので好ましい。
【0056】
本発明の液晶組成物は、液晶相の温度領域で紫外線を照射して、組成物中の(メタ)アクリレート化合物を重合させて光学異方体を製造することを目的としている。従って、紫外線照射工程における、望ましくない熱重合の誘起を避け、均一性に優れた光学異方体を製造するために、本発明の液晶組成物は、室温または室温付近、即ち、典型的には25℃で液晶相を呈するが好ましい。例えば、(カイラル)スメクチックC相で本発明の液晶組成物に紫外線を照射して、組成物中の(メタ)アクリレート化合物を重合させる場合、室温または室温付近、即ち、典型的には25℃で(カイラル)スメクチックC相を発現するものが好ましい。
【0057】
本発明の液晶組成物中の一般式(I)で表される化合物の濃度は、5〜40重量%が好ましく、10〜30重量%がさらに好ましく、15〜25重量%が特に好ましい。濃度が5重量%未満では、本発明の液晶組成物を用いて作製する光学異方体の透明性の改善効果が得にくく、濃度が40重量%を超えると、液晶組成物中の平均分子量が高くなってしまう傾向がある。
【0058】
粘度の増大を抑制し、光学異方体の製造時の配向工程において安定した配向状態を迅速に得る目的で、本発明の液晶組成物の(平均)分子量は約250〜450に抑制するのが好ましい。また、安定した配向状態を迅速に得るために、透明点(液晶相から等方性液体相へ転移する温度)を調節するのも重要である。透明点を低くすれば、必然的に流動性が高い状態で配向処理を行うことになり、迅速に配向が安定する効果が得られる。透明点としては80℃以下が好ましく、70℃以下がさらに好ましく、60℃以下が特に好ましい。
【0059】
本発明の光学異方体製造時における液晶組成物の基板へのコーティング工程または液晶セルへの注入工程において、均一な配向状態を迅速に得る目的で、一時的に液晶組成物を等方性液体相状態にすることは有効な手段である。透明点が60〜80℃以上に高くなると等方性液体相状態にした時、望ましくない熱重合が誘起されてしまい、均一性の良い光学異方体を作製できなくなる危険がある。この点からも、透明点を上記のように調節するのは有効である。
【0060】
本発明の液晶組成物には、さらに上記一般式(II)(式中、L3 は水素原子又はメチル基を表し、nは0又は1の整数を表し、6員環D、E、Fはそれぞれ独立的に、1,4−フェニレン基、1つ又は隣接しない2つのCH基が窒素で置換された1,4−フェニレン基、1,4−シクロヘキシレン基、1つ又は隣接しない2つのCH2 基が酸素原子又は硫黄原子で置換された1,4−シクロヘキシル基、又はシクロヘキセン−1,4−ジイル基を表し、これらの6員環D、E、Fは、さらに炭素原子数1〜7のアルキル基、アルコキシ基、アルカノイル基、シアノ基、又はハロゲン原子で一つ以上置換されていても良く、Y3 、Y4 はそれぞれ独立的に単結合、−CH2CH2−、−CH2O− 、−OCH2− 、−COO−、−OCO−、−C≡C−、−CH=CH−、−CF=CF−、−(CH24−、−CH2CH2CH2O−、−OCH2CH2CH2− 、−CH=CH−CH2CH2− 、−CH2CH2−CH=CH−、−CH=CH−COO−、−OCO−CH=CH−を表し、Y5 は単結合、−O−、−OCO−、−COO−、−CH=CH−COO−を表し、Z1 は水素原子、ハロゲン原子、シアノ基、炭素原子1〜20の炭化水素基を表す)で表される液晶性(メタ)アクリレート化合物を含有させることが好ましい。
【0061】
一般式(II)で表される液晶性(メタ)アクリレート化合物は、粘度を抑制する観点から、式中、nは0が特に好ましく、Y3 、Y4 はそれぞれ独立的に、単結合、−CH2CH2−、−CH2O− 、−OCH2− 、−COO−、−OCO−、−C≡C−、−CH=CH−、−CF=CF−が特に好ましく、Y5 は単結合、−O−、−OCO−、−COO−が特に好ましく、Z1 はハロゲン原子、シアノ基、炭素原子数1〜5の炭化水素基が特に好ましい。
【0062】
本発明の液晶組成物中における一般式(II)で表される液晶性(メタ)アクリレート化合物の濃度は、60〜95重量%が好ましく、70〜90重量%がさらに好ましく、75〜85重量%が特に好ましい。濃度が60重量%未満では、粘度が増大してしまう傾向があり、濃度が95重量%を超えると、液晶組成物を用いて作製する光学異方体の透明性が悪化してしまう傾向がある。
一般式(II)の化合物の具体的な例として、式(151)〜(175)の化合物の構造と相転移温度を以下に示す。しかしながら、本発明の液晶組成物において使用することができる重合性の液晶化合物はこれらに限定されるものではない。
(式中、シクロヘキサン環はトランスシクロヘキサン環を表し、数字は相転移温度を表し、相転移温度におけるCは結晶相、Nはネマチック相、Sはスメクチック相、Iは等方性液体相をそれぞれ表す。)
【0063】
【化41】
Figure 0004208058
【化42】
Figure 0004208058
【0064】
【化43】
Figure 0004208058
【化44】
Figure 0004208058
【0065】
【化45】
Figure 0004208058
【化46】
Figure 0004208058
【0066】
【化47】
Figure 0004208058
【0067】
また、本発明の液晶組成物には、重合性官能基を有していない液晶化合物を用途に応じて添加することもできる。しかしながら、液晶組成物を用いて作製する光学異方体の耐熱性を確保する観点から、その添加量は10重量%以下にするのが好ましい。
また、本発明の液晶組成物には、重合性官能基を有する化合物であって、液晶性を示さない化合物も添加することができる。このような化合物としては、通常、この技術分野で高分子形成性モノマーあるいは高分子形成性オリゴマーとして認識されるものであれば特に制限なく使用することができるが、アクリレート化合物、メタクリレート化合物、ビニルエーテル化合物が特に好ましい。
【0068】
以上のように、本発明の液晶組成物には、一般式(I)で表される液晶性(メタ)アクリレート以外に、重合性官能基を有する液晶化合物、重合性官能基を有さない液晶化合物、液晶性を示さない重合性化合物を適宜組み合わせて添加してもよいが、少なくとも得られる液晶組成物の液晶性が失われないよう、また粘度が著しく増大しないように各成分の添加量を調整する必要がある。
【0069】
更に本発明の液晶組成物には、その重合反応性を向上させることを目的として、熱重合開始剤、光重合開始剤等の重合開始剤を添加することもできる。
熱重合開始剤としては、例えば、過酸化ベンゾイル、ビスアゾブチロニトリル等が挙げられる。また、光重合開始剤としては、例えば、ベンゾインエーテル類、ベンゾフェノン類、アセトフェノン類、ベンジルケタール類等が挙げられる。熱重合開始剤あるいは光重合開始剤を添加する場合の添加量は、液晶組成物に対して10重量%以下が好ましく、5重量%以下が特に好ましく、0.5〜1.5重量%の範囲が更に好ましい。
【0070】
また、本発明の液晶組成物には、その保存安定性を向上させるために、安定剤を添加することもできる。使用できる安定剤としては、例えば、ヒドロキノン、ヒドロキノンモノアルキルエーテル類、第三ブチルカテコール等が挙げられる。安定剤を使用する場合の添加量は、液晶組成物に対して1重量%以下が好ましく、0.5重量%以下が特に好ましい。
【0071】
また、本発明の液晶組成物には、液晶骨格の螺旋構造を内部に有する重合体を得ることを目的として、カイラル(光学活性)化合物を添加することもできる。そのような目的で使用するカイラル化合物は、それ自体が液晶性を示す必要は無く、また重合性官能基を有していても、有していなくても良い。また、その螺旋の向きは、重合体の使用用途によって適宜選択することができる。そのようなカイラル化合物としては、例えば、光学活性基としてコレステリル基を有するペラルゴン酸コレステロール、ステアリン酸コレステロール;光学活性基として2−メチルブチル基を有するビーディーエイチ社(BDH社、イギリス国)製の「CB−15」、「C−15」、メルク社(ドイツ国)製の「S−1082」、チッソ社製の「CM−19」、「CM−20」、「CM」;光学活性基として1−メチルヘプチル基を有するメルク社製の「S−811」、チッソ社製の「CM−21」、「CM−22」等を挙げることができる。カイラル化合物を添加する場合の好ましい添加量は、液晶組成物の用途によるが、重合して得られる重合体の厚み(d)を重合体中での螺旋ピッチ(P)で除した値(d/P)が0.1〜20の範囲となる量が好ましい。
【0072】
また、本発明の液晶組成物を偏光フィルムや配向膜の原料、又は印刷インキ及び塗料等として利用する場合には、その目的に応じて金属、金属錯体、染料、顔料、色素、界面活性剤、ゲル化剤、紫外線吸収剤、抗酸化剤、イオン交換樹脂、酸化チタンの金属酸化物等を添加することもできる。
【0073】
本発明の光学異方体は、本発明の液晶組成物を配向させた状態において、重合させることにより製造することができる。例えば、表面を布等でラビング処理した基板、もしくは有機薄膜を形成した基板表面を布等でラビング処理した基板、あるいはSiO2 を斜方蒸着した配向膜を有する基板上にコーティング等の手段により担持させるか、基板間に挟持させた後、本発明の液晶を重合させる方法が挙げられる。その他の配向処理方法としては、液晶組成物の流動配向の利用や、電場又は磁場の利用を挙げることができる。これらの配向手段は単独で用いても、また組み合わせて用いても良い。その中でも基板表面を布等でラビング処理した基板を用いる方法が、その簡便性から特に好ましい。
【0074】
基板を構成する材料は、有機材料、無機材料を問わずに用いることができる。基板の材料となる有機材料としては、例えば、ポリエチレンテレフタレート、ポリカーボネート、ポリイミド、ポリアミド、ポリメタクリル酸メチル、ポリスチレン、ポリ塩化ビニル、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリアリレート、ポリスルホン、トリアセチルセルロース、セルロース、ポリエーテルエーテルケトン等が挙げられ、また、無機材料としては、例えば、シリコン、ガラス、方解石等が挙げられる。
【0075】
これらの基板を布等でラビングすることによって適当な配向性を得られない場合、公知の方法に従ってポリイミド薄膜又はポリビニルアルコール薄膜等の有機薄膜を基板表面に形成し、これを布等でラビングしても良い。また、通常のツイステッド・ネマチック(TN)素子又はスーパー・ツイステッド・ネマチック(STN)素子で使用されているプレチルト角を与えるポリイミド薄膜は、光学異方体内部の分子配向構造を更に精密に制御することができることから、特に好ましい。
【0076】
また、電場によって配向状態を制御する場合には、電極層を有する基板を使用する。この場合、電極上に前述のポリイミド薄膜等の有機薄膜を形成するのが好ましい。
さらに、ラビングに代わる配向処理方法として、光配向法を用いることもできる。この方法は、ポリビニルシンナメート等の分子内に光二量化反応する官能基を有する有機薄膜、光で異性化する官能基を有する有機薄膜又はポリイミド等の有機薄膜に、偏光した光、好ましくは偏光した紫外線を照射することによって、配向膜を形成するものである。この光配向法に光マスクを適用することにより配向のパターン化が容易に達成できるので、光学異方体内部の分子配向も精密に制御することが可能となる。
【0077】
本発明の液晶組成物を重合させる方法としては、迅速な重合の進行が望ましいので、紫外線又は電子線等の光エネルギーを照射することによって光重合させる方法が好ましい。光重合させる際の光源としては、偏光光源を用いても良いし、非偏光光源を用いても良い。また、液晶組成物を2枚の基板間に挟持させて状態で光重合を行う場合には、少なくとも照射面側の基板は適当な透明性が与えられていなければならない。また、照射時の温度は、本発明の液晶組成物の液晶状態が保持される温度範囲内であることが好ましい。特に、光重合によって光学異方体を製造しようとする場合には、意図しない熱重合の誘起を避ける意味からも可能な限り室温または室温に近い温度、即ち、典型的には25℃での温度で重合させることが好ましい。
【0078】
重合によって得られた本発明の光学異方体には、初期の特性変化を軽減し、安定的な特性発現を図ることを目的として、熱処理を施すこともできる。熱処理の温度は50〜250℃の範囲で、また熱処理時間は30秒〜12時間の範囲が好ましい。
このような方法によって製造される本発明の光学異方体は、基板から剥離して用いても、剥離せずに用いても良い。
【0079】
【実施例】
以下、本発明の実施例を示し、本発明を更に詳細に説明する。しかしながら、本発明はこれらの実施例の限定されるものではない。
【0080】
(実施例1)液晶性アクリレート化合物の合成(その1)
4,4’−ビフェノール120.0g、6−クロロ−1−ヘキサノール88.0g、水酸化ナトリウム25.7g、ヨウ化カリウム25.0g、エタノール480ml及び水440mlから成る混合物を攪拌しながら、80℃で4時間加熱した。得られた反応液を室温まで冷却後、反応液の水層が弱酸性になるまで希塩酸を加えた。析出した結晶をガラスフィルターを用いて、ろ取した後、結晶を水2000mlで洗うことにより、粗生成物900gを得た。この粗生成物をメタノール900mlからの再結晶を1回、メタノール300mlからの再結晶を2回行うことにより精製を行い、下記式(a)で表される化合物を50.0g得た。
【0081】
【化48】
Figure 0004208058
【0082】
式(a)の化合物48.0g、アクリル酸48.3g、p−トルエンスルホン酸15.0g、ヒドロキノン2.5g、トルエン220ml、テトラヒドロフラン90ml、n−ヘキサン130mlからなる混合物を加熱攪拌し、生成してくる水を留去しながら4時間還流させた。反応液を室温まで冷却後、反応液に飽和食塩水1000ml、酢酸エチル700mlを加えて抽出を行った。有機層を水洗した後、酢酸エチルを減圧留去して粗生成物60.9g得た。得られた粗生成物をトルエン60mlとヘキサン120mlの混合溶媒から再結晶を行い、不純物であるアクリル酸の大部分を除いた粗生成物41.8gを得た。このうちの31.8gを酢酸エチル及びトルエンからなる混合溶媒(容量比で酢酸エチル:トルエン=1:4、Rf=0.52)を展開溶媒とするシリカゲルカラムクロマトグラフィーを用いて精製して、下記式(b)で表される化合物を19.0g得た。
【0083】
【化49】
Figure 0004208058
【0084】
3−ヒドロキシ安息香酸15.0g、6−クロロ−1−ヘキサノール14.8g、水酸化ナトリウム9.1g、ヨウ化カリウム0.5g、エタノール45ml、水45mlから成る混合物を攪拌しながら、80℃で16時間加熱した。得られた反応液を室温まで冷却後、反応液に飽和食塩水500mlを加え、反応液の水層が弱酸性になるまで希塩酸を加えた。この反応溶液に酢酸エチル300mlを加えて抽出を行った。有機層を水洗した後、酢酸エチルを減圧留去して下記式(c)の粗生成物25.4gを得た。
【0085】
【化50】
Figure 0004208058
【0086】
式(c)の粗生成物20.0g、アクリル酸24.3g、p−トルエンスルホン酸4.0g、ヒドロキノン0.5g、トルエン100ml、n−ヘキサン100mlから成る混合物を加熱攪拌し、生成してくる水を留去しながら4時間還流させた。反応液を室温まで冷却後、反応液に飽和食塩水500ml、酢酸エチル300mlを加えて抽出を行った。有機層を水洗した後、有機溶媒を減圧留去して粗生成物25.2g得た。得られた粗生成物をヘキサン100mlと酢酸エチル20mlの混合物からの再結晶、ヘキサン50mlと酢酸エチル20mlの混合物からの再結晶、ヘキサン100mlと酢酸エチル20mlの混合物からの再結晶の計3回の再結晶により精製し、式(d)で表される化合物9.5gを得た。
【0087】
【化51】
Figure 0004208058
【0088】
式(b)の化合物1.00g、式(d)の化合物0.86g、N,N−ジメチルアミノピリジン0.12g、テトラヒドロフラン20mlから成る混合物を攪拌しながら、これに10mlのテトラヒドロフランに溶解させたジシクロヘキシルカルボジイミド0.64gを10分かけて滴下した。滴下終了後5時間室温で攪拌した。これにトルエン100mlを加え、析出したジシクロヘキシル尿素をろ別した。得られた有機層を水洗後、トルエンを減圧留去して粗生成物2.7gを得た。これを酢酸エチル及びトルエンからなる混合溶媒(容量比で酢酸エチル:トルエン=1:10、Rf=0.69)を展開溶媒とするシリカゲルカラムクロマトグラフィー、及びメタノール12mlからの再結晶により精製して、式(e)で表される液晶性アクリレート化合物(以下、液晶性アクリレート化合物(e)と記す)0.9gを得た。
【0089】
【化52】
Figure 0004208058
【0090】
液晶性アクリレート化合物(e)の相転移温度は、C相(結晶相)−Sx相(帰属不明のスメクチック相)転移温度が54℃、Sx相−I相(等方性液体相)転移温度が61℃であった。また、 1H−NMR(300MHz、CDCl3 )のデータは、δ1.23〜1.93(m、16H)、4.02(t、2H)、4.04(t、2H)、4.17(t、4H)、5.80(d、2H)、6.12(dd、2H)、6.40(d、2H)、6.95〜7.82(m、12H)であった。
【0091】
(実施例2)液晶性アクリレート化合物の合成(その2)
イソバニリン酸18.4g、6−クロロ−1−ヘキサノール14.8g、水酸化ナトリウム9.1g、ヨウ化カリウム0.2g、エタノール45ml、水45mlから成る混合物を攪拌しながら、80℃で16時間加熱した。得られた反応液を室温まで冷却後、反応液に飽和食塩水500mlを加え、反応液の水層が弱酸性になるまで希塩酸を加えた。この反応溶液に酢酸エチル300mlを加えて抽出を行った。有機層を水洗した後、酢酸エチルを減圧留去して下記式(f)の粗生成物27.0gを得た。
【0092】
【化53】
Figure 0004208058
【0093】
式(f)の粗生成物25.0g、アクリル酸26.9g、p−トルエンスルホン酸4.0g、ヒドロキノン0.5g、トルエン100ml、n−ヘキサン100mlから成る混合物を加熱攪拌し、生成してくる水を留去しながら3時間還流させた。反応液を室温まで冷却後、反応液に飽和食塩水500ml、酢酸エチル300mlを加えて抽出を行った。有機層を水洗した後、有機溶媒を減圧留去して粗生成物31.8g得た。得られた粗生成物をヘキサン80mlと酢酸エチル20mlの混合物からの再結晶により精製し、式(g)で表される化合物15.8gを得た。
【0094】
【化54】
Figure 0004208058
【0095】
式(g)の化合物0.95g、N,N−ジメチルアミノピリジン0.12g、1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩0.62g、テトラヒドロフラン20mlから成る混合物を攪拌しながら、これに10mlのテトラヒドロフランに溶解させた上記式(b)の化合物1.00gを10分かけて滴下した。滴下終了後9時間室温で攪拌した。反応液に飽和食塩水200ml、酢酸エチル100mlを加えて抽出を行った。有機層を水洗後、有機溶媒を減圧留去して粗生成物1.80gを得た。これを酢酸エチル及びトルエンからなる混合溶媒(容量比で酢酸エチル:トルエン=1:7、Rf=0.52)を展開溶媒とするシリカゲルカラムクロマトグラフィー、及びメタノール15mlからの再結晶を2回行うことにより精製して、下記式(h)で表される液晶性アクリレート化合物(以下、液晶性アクリレート化合物(h)と記す)0.88gを得た。
【0096】
【化55】
Figure 0004208058
【0097】
液晶性アクリレート化合物(h)の相転移温度は、C相(結晶相)−I相(等性液体相)転移温度が102℃であった。
【0098】
(実施例3)液晶組成物の調製(その1)
下記式(i)の液晶性アクリレート化合物50重量部、及び下記式(j)の液晶性アクリレート50重量部から成る液晶組成物(A)を調製した。
【0099】
【化56】
Figure 0004208058
【化57】
Figure 0004208058
【0100】
液晶組成物(A)は、室温(25℃)でネマチック液晶相を呈した。N(ネマチック相)−I(等方性液体相)転移温度は46℃であった。また、589nmで測定したne(異常光の屈折率)は1.662で、no(常光の屈折率)は1.510、複屈折率は0.152であった。平均分子量は、293.6であった。
【0101】
実施例1で合成した液晶性アクリレート化合物(e)10重量部、液晶組成物(A)90重量部から成る液晶組成物(B)を調製した。液晶組成物(B)は、室温(25℃)でネマチック液晶相を呈した。N(ネマチック相)−I(等方性液体相)転移温度は40℃であった。また、589nmで測定したne (異常光の屈折率)は1.6541で、no (常光の屈折率)は1.5153、複屈折率は0.1388であった。平均分子量は、309.8であった。
【0102】
(実施例4)液晶組成物の調製(その2)
実施例1で合成した液晶性アクリレート化合物(e)20重量部、液晶組成物(A)80重量部から成る液晶組成物(C)を調製した。液晶組成物(C)は、室温(25℃)でネマチック液晶相を呈した。N(ネマチック相)−I(等方性液体相)転移温度は36℃であった。また、589nmで測定したne (異常光の屈折率)は1.6460で、no (常光の屈折率)は1.5207、複屈折率は0.1253であった。平均分子量は、327.9であった。
【0103】
(実施例5)光学異方体の作製
実施例4で調製した液晶組成物(C)99重量部、光重合開始剤「イルガキュアー651」(チバガイギー社製)1重量部からなる液晶組成物(D)を調製した。セルギャップ50ミクロンのアンチパラレル配向液晶ガラスセル(液晶を一軸配向するよう配向処理を施したガラスセル)に、液晶組成物(D)を室温にて注入した。注入後、1分以内に配向が安定し、均一な一軸配向が得られているのが確認できた。次に、室温にてUVP社のUVGL−25を用いて1mW/cm2の紫外線を10分間照射して、液晶組成物(D)を重合させ、光学異方体を得た。ガラスセルにいれたままの光学異方体の平行光透過率は85.4%で、ヘイズは3.9%であった。
【0104】
(比較例)
実施例3で調製した、本発明の液晶性アクリレート化合物を含有しない液晶組成物(A)99重量部、重合開始剤「イルガキュアー651」(チバガイギー社製)1重量部からなる液晶組成物(E)を調製した。セルギャップ50ミクロンのアンチパラレル配向液晶ガラスセル(液晶を一軸配向するよう配向処理を施したガラスセル)に、液晶組成物(E)を室温にて注入した。注入後、1分以内に配向が安定し、均一な一軸配向が得られているのが確認できた。次に、室温にてUVP社のUVGL−25を用いて1mW/cm2 の紫外線を10分間照射して、液晶組成物(E)を重合させ、光学異方体を得た。ガラスセルにいれたままの光学異方体の平行光透過率は75.9%で、ヘイズは11.0%であった。
【0105】
実施例4と比較例1の結果から、本発明の液晶性アクリレート化合物を含有する液晶組成物を用いると、均一な配向状態が素早く得られ、かつ重合後により作製される光学異方体の透明性が改善されることがわかる。
【0106】
【発明の効果】
以上説明したように、本発明の液晶性(メタ)アクリレート化合物は、上記一般式(I)で表される構造上の特徴を有しているので、該化合物を含有する液晶組成物を重合して得られる光学異性体の透明性を改善することができる。
また、上記一般式(I)において、L1 、L2 が水素原子であり、6員環A、Bが1,4−フェニレン基であり、6員環Cが1,3−フェニレン基であり、Sp1 、Sp2 が炭素原子数2から12を有するアルキレン基であり、Y1 が単結合であり、Y2 が−COO−、−OCO−であり、X1 、X2 が−O−である場合、該化合物単体の液晶温度範囲を100℃以下に抑制することが容易となり、また製造も容易となる。
【0107】
また、本発明の液晶組成物は、上記液晶性(メタ)アクリレート化合物を含有しているので、該液晶組成物を重合して得られる光学異性体の透明性を改善することができる。
また、本発明の液晶化合物が、さらに上記一般式(II)で表される液晶性(メタ)アクリレート化合物を含有している場合、(平均)分子量が約250〜450程度と低くなり、均一な配向状態を素早く得ることができ、また室温で液晶相を呈しているので重合後には耐熱性に優れた光学異方体を得ることができ、かつ均一性および透明性に優れた光学異方体を得ることができる。
【0108】
そして、本発明の光学異方体は、上記液晶組成物の重合体から構成されているので、均一性、耐熱性および透明性に優れたものとなる。
このように、本発明の液晶性(メタ)アクリレート化合物を用いた光学異方体は、透明性が改善されており、位相差板、偏光板、偏光プリズム、各種光フィルター等の光機能フィルムの材料として、非常に有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel liquid crystalline (meth) acrylate compound used as an optical compensator or a polarizing prism material for optical, display and recording materials, liquid crystal displays, a liquid crystal composition containing the compound, and optics using the same Concerning an anisotropic body.
[0002]
[Prior art]
In recent years, liquid crystal substances have been applied to display media using reversible motion of liquid crystal molecules, such as display elements represented by TN (twisted nematic) type and STN (super twisted nematic) type. Using its orientation and anisotropy of physical properties such as refractive index, dielectric constant, and magnetic susceptibility, application to optical anisotropic bodies such as retardation plates, polarizing plates, polarizing prisms, and various optical filters is examined. Has been.
An optical anisotropic body composed of such a liquid crystal substance is required to have stable and uniform optical characteristics. For this purpose, the alignment state structure of the liquid crystal molecules in the liquid crystal state may be fixed semipermanently. It is essential.
[0003]
As a means for semi-permanently fixing the alignment state structure of the liquid crystal molecules in the liquid crystal state, a liquid crystal compound having a polymerizable functional group or a polymerizable liquid crystal composition containing such a compound is aligned in the liquid crystal state. Thereafter, there is known a method of polymerizing by irradiating energy rays such as ultraviolet rays in that state.
Liquid crystal materials having a polymerizable functional group applicable to such a technique are disclosed in JP-A-58-102205, JP-A-62-70406, JP-B-8-3586, and JP-A-4-227611. German published patent DE 4226994 and the like.
However, since these materials have a high temperature to exhibit a liquid crystal phase, undesirable thermal polymerization is induced in the alignment step, and it is impossible to produce an optical anisotropic body having excellent uniformity, or the produced optical anisotropic body. There was a problem that the heat resistance of was not sufficient.
[0004]
As a solution to these problems, a liquid crystal material having two or more polymerizable functional groups and exhibiting a liquid crystal phase at room temperature is disclosed in German Patent DE 4408171, PCT International Publication WO 97/14674. JP-A-8-245520, JP-A-8-104870 and the like.
However, most of these materials have a problem that the liquid crystal skeleton has three or more six-membered rings such as a benzene ring and a cyclohexane ring, and has a large molecular weight of about 500 to 1,000. The non-polymerizable liquid crystal material used in the field of liquid crystal displays has an (average) molecular weight of about 250 to 450, whereas a large (average) molecular weight increases viscosity and makes it uniform. This causes a problem that it takes time to obtain a proper alignment state. In particular, when using an alignment division technique that changes the alignment state for each region, if the viscosity is high, it may take 30 minutes or more to stabilize the alignment. There has been a problem of significantly worsening.
[0005]
JP-A-8-3111 discloses a polymerizable liquid crystal material that exhibits a liquid crystal phase at room temperature, has excellent heat resistance of the optically anisotropic body after polymerization, and has a small (average) molecular weight of about 250 to 450. ing.
However, when an optically anisotropic body having a film thickness of 30 microns or more is produced using this polymerizable liquid crystal material, there is a problem that the optically anisotropic body becomes clouded and transparency is deteriorated.
[0006]
[Problems to be solved by the invention]
Therefore, the problem in the present invention is that a liquid crystalline (meth) acrylate compound capable of obtaining an optically anisotropic body having excellent transparency after polymerization, a liquid crystal composition containing the compound, and an (average) molecular weight of about A liquid crystal that can be obtained as low as about 250 to 450, can quickly obtain a uniform alignment state, exhibits a liquid crystal phase at room temperature, and can obtain an optical anisotropic body excellent in uniformity, heat resistance and transparency after polymerization. It is to provide a composition and an optical isomer obtained from these liquid crystal compositions.
[0007]
[Means for Solving the Problems]
As a result of intensive investigations on the correlation between the chemical structure of the polymerizable liquid crystal material and the liquid crystal temperature range, and the correlation with the transparency of the optically anisotropic substance obtained after polymerization, the present inventors have found that the liquid crystal properties having a specific chemical structure. The present inventors have found that the above problems can be solved by using a (meth) acrylate compound, and have completed the present invention.
That is, the liquid crystalline (meth) acrylate compound of the present invention is represented by the following general formula (I).
[0008]
[Chemical 3]
Figure 0004208058
[0009]
  (Where L1 , L2 Each independently represents a hydrogen atom or a methyl group, and the 6-membered rings A and B are each independently 1,4-phenylene group, 1,4 in which one or two non-adjacent CH groups are substituted with nitrogen. -Phenylene group, 1,4-cyclohexylene group, one or two non-adjacent CH2 Represents a 1,4-cyclohexylene group or a cyclohexene-1,4-diyl group in which the group is substituted with an oxygen atom or a sulfur atom, and these 6-membered rings A and B are further alkyl groups having 1 to 7 carbon atoms. One or more groups, alkoxy groups, alkanoyl groups, cyano groups, or halogen atoms may be substituted, 6-membered ring C is 1,3-phenylene group, one or two non-adjacent CH groups are replaced by nitrogen 1,3-phenylene group, 1,3-cyclohexylene group, one or two non-adjacent CH2 The group represents a 1,3-cyclohexylene group or a cyclohexene-1,3-diyl group substituted with an oxygen atom or a sulfur atom, and the 6-membered ring C is further an alkyl group or alkoxy group having 1 to 7 carbon atoms. , An alkanoyl group, a cyano group, or a halogen atom,1 , Y2 Are each independently a single bond, —CH2CH2-, -CH2O-, -OCH2-, -COO-, -OCO-, -C≡C-, -CH = CH-, -CF = CF-,-(CH2)Four-, -CH2CH2CH2O-, -OCH2CH2CH2-, -CH = CH-CH2CH2-, -CH2CH2-CH = CH-, -CH = CH-COO-, -OCO-CH = CH-, -OCO-COO-1 , X2 Each independently represents a single bond, -O-, -COO-, -OCO-, Sp1 , Sp2 IsEach independently1 to 20 carbon atomsA linear alkylene group or branched alkylene group in which a hydrogen atom may be substituted with a halogen atom, a linear alkylene group or a branched alkylene group in which non-adjacent carbon atoms are substituted with an oxygen atom, a carbonyl group or an ester groupRepresents. )
[0010]
Further, the liquid crystalline (meth) acrylate compound of the present invention is represented by L in the above general formula (I).1 , L2 Is a hydrogen atom, 6-membered rings A and B are 1,4-phenylene groups, 6-membered ring C is 1,3-phenylene groups, Sp1 , Sp2 Is an alkylene group having 2 to 12 carbon atoms, and Y1 Is a single bond, Y2 Are —COO—, —OCO—, and X1 , X2 Is preferably -O-.
In addition, the liquid crystal composition of the present invention contains the liquid crystalline (meth) acrylate compound and exhibits a liquid crystal phase.
In addition, the liquid crystal composition of the present invention preferably further contains a liquid crystalline (meth) acrylate compound represented by the following general formula (II).
[0011]
[Formula 4]
Figure 0004208058
[0012]
(Where LThree Represents a hydrogen atom or a methyl group, n represents an integer of 0 or 1, 6-membered rings D, E, and F are each independently a 1,4-phenylene group, or one or two non-adjacent CH groups. 1,4-phenylene group substituted by nitrogen, 1,4-cyclohexylene group, one or two non-adjacent CH2 Represents a 1,4-cyclohexyl group or a cyclohexene-1,4-diyl group in which the group is substituted with an oxygen atom or a sulfur atom, and these 6-membered rings D, E, and F further have 1 to 7 carbon atoms. One or more alkyl groups, alkoxy groups, alkanoyl groups, cyano groups, or halogen atoms may be substituted.Three , YFour Are each independently a single bond, —CH2CH2-, -CH2O-, -OCH2-, -COO-, -OCO-, -C≡C-, -CH = CH-, -CF = CF-,-(CH2)Four-, -CH2CH2CH2O-, -OCH2CH2CH2-, -CH = CH-CH2CH2-, -CH2CH2-CH = CH-, -CH = CH-COO-, -OCO-CH = CH-Five Represents a single bond, —O—, —OCO—, —COO—, —CH═CH—COO—, and Z1 Represents a hydrogen atom, a halogen atom, a cyano group, or a hydrocarbon group having 1 to 20 carbon atoms. )
[0013]
In addition, the liquid crystal composition of the present invention preferably exhibits a liquid crystal phase at 25 degrees Celsius.Yes.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
A small amount of the liquid crystalline (meth) acrylate compound represented by the general formula (I) is added to a polymerizable liquid crystal material having a molecular weight as small as about 250 to 450 as disclosed in, for example, JP-A-8-3111. When an optical anisotropic body is produced using a liquid crystal composition, the transparency can be improved without significantly increasing the (average) molecular weight and viscosity as compared with the case where the optical anisotropic body is not added. The molecular weight of the liquid crystalline (meth) acrylate represented by the general formula (I) is about 500 to 1000, but since the addition amount is small, a significant increase in (average) molecular weight can be avoided.
[0015]
The reason why the transparency of the optical anisotropic body obtained by polymerization is improved by the addition of the liquid crystalline (meth) acrylate compound represented by the general formula (I) is not necessarily clear. However, -X2-Sp2-OCOC (L2) = CH2The side chain group represented by2 It is thought that the structural feature of being located in the meta position is related to When the extension direction of the side chain group is not parallel to the major axis direction of the liquid crystal skeleton as in the compound of the present invention, the linearity of the molecule is reduced. This reduced linearity is considered to induce some change in the alignment state of the liquid crystal molecules during the photopolymerization process. Also, the crystallinity decreases when the linearity of the molecule is reduced. Thereby, even if the compound of the present invention is added to a liquid crystal composition exhibiting a liquid crystal phase at room temperature, it is difficult to increase the crystal phase-liquid crystal phase transition temperature. That is, even when added to a polymerizable liquid crystal composition as disclosed in JP-A-8-3111, the liquid crystal phase at room temperature is hardly damaged.
[0016]
In the liquid crystalline (meth) acrylate compound represented by the general formula (I) of the present invention (hereinafter referred to as the compound of the present invention), L1 , L2 Each independently represents a hydrogen atom or a methyl group. L1 , L2 The hydrogen atom selected as is more reactive than the methyl group selected. Therefore, it is preferable to select a hydrogen atom when a material capable of rapidly proceeding photopolymerization is necessary, and when the reactivity needs to be adjusted low, L1 , L2 Preferably, a methyl group is selected for either or both.
[0017]
The 6-membered rings A and B are each independently a 1,4-phenylene group, a 1,4-phenylene group in which one or two non-adjacent CH groups are substituted with nitrogen, a 1,4-cyclohexylene group, One or two non-adjacent CHs2 It represents a 1,4-cyclohexylene group or a cyclohexene-1,4-diyl group in which the group is substituted with an oxygen atom or a sulfur atom. These 6-membered rings A and B may be further substituted with one or more alkyl groups, alkoxy groups, alkanoyl groups, cyano groups, or halogen atoms having 1 to 7 carbon atoms.
[0018]
When a compound having a large birefringence is required, the conjugated system needs to extend in the major axis direction of the molecule, so that the 6-membered rings A and B are unsubstituted 1,4-phenylene groups or carbon Nitrogen is an alkyl group having 1 to 7 atoms, an alkoxy group, an alkanoyl group, a cyano group, or a 1,4-phenylene group substituted with one or more halogen atoms, or one or two non-adjacent CH groups. It is preferred to select a substituted 1,4-phenylene group. On the other hand, when a compound having a small birefringence is required, the 6-membered rings A and B include an unsubstituted 1,4-cyclohexylene group or an alkyl group having 1 to 7 carbon atoms, an alkoxy group, an alkanoyl group. 1,4-cyclohexylene group substituted with one or more groups, cyano group, or halogen atom, or one or two non-adjacent CH2 It is preferred to select 1,4-cyclohexylene group; cyclohexene-1,4-diyl group in which the group is substituted with an oxygen atom or a sulfur atom.
[0019]
Introduction of a substituent to the 6-membered ring A or B brings about an effect of reducing the liquid crystal temperature, but at the same time, also raises the molecular weight. Accordingly, the halogen atom as a substituent is particularly preferably a fluorine atom having a relatively small atomic weight. Further, when an alkyl group, an alkoxy group, or an alkanoyl group is selected as a substituent, the number of carbon atoms is more preferably 5 or less, and particularly preferably 3 or less.
[0020]
Similarly, when a compound having a high birefringence is required for the 6-membered ring C, an unsubstituted 1,3-phenylene group or an alkyl group having 1 to 7 carbon atoms, an alkoxy group, an alkanoyl group, a cyano group Or a 1,3-phenylene group substituted with one or more halogen atoms, or a 1,3-phenylene group in which one or two non-adjacent CH groups are substituted with nitrogen. When a compound having a small birefringence is required, the 6-membered ring C includes an unsubstituted 1,3-cyclohexylene group or an alkyl group having 1 to 7 carbon atoms, an alkoxy group, an alkanoyl group, a cyano group, Or 1,3-cyclohexylene group substituted by one or more halogen atoms, or one or two non-adjacent CH2 It is preferred to select a 1,3-cyclohexylene group; a cyclohexene-1,3-diyl group wherein the group is substituted with an oxygen atom or a sulfur atom.
[0021]
The effect that appears when a substituent is introduced into the 6-membered ring C varies depending on the position of the introduction. Linking group Y2 In contrast, when it is introduced at the para position, the linearity of the molecule cannot be reduced, and thus there is no effect of reducing the liquid crystal temperature. However, if a fluorine atom or a cyano group is introduced at this position, the dielectric constant in the molecular long axis direction can be increased. Can be suitably used. In addition, when an alkyl group having 1 to 7 carbon atoms, an alkoxy group, or an alkanoyl group is introduced at the para position, the liquid crystal temperature range can be expanded. For this purpose, 2 or more carbon atoms are preferable, and 3 or more carbon atoms are more preferable. When a substituent is introduced at a position other than the para position, an effect of reducing the liquid crystal temperature is brought about. However, it also causes an increase in molecular weight. Accordingly, the halogen atom as a substituent is particularly preferably a fluorine atom having a relatively small atomic weight. When an alkyl group, an alkoxy group, or an alkanoyl group is selected, the number of carbon atoms is more preferably 5 or less, and particularly preferably 3 or less.
[0022]
Y1 , Y2 Are each independently a single bond, —CH2CH2-, -CH2O-, -OCH2-, -COO-, -OCO-, -C≡C-, -CH = CH-, -CF = CF-,-(CH2)Four-, -CH2CH2CH2O-, -OCH2CH2CH2-, -CH = CH-CH2CH2-, -CH2CH2-CH = CH-, -CH = CH-COO-, -OCO-CH = CH--OCO-COO-. When a compound having a high birefringence is required, the conjugated system needs to extend in the major axis direction of the molecule.1 , Y2 Is preferably a single bond, —COO—, —OCO—, —C≡C—, —CH═CH—, —CF═CF—. Conversely, when a compound having a small birefringence is required, -CH2CH2-, -CH2O-, -OCH2−, − (CH2)Four-, -CH2CH2CH2O-, -OCH2CH2CH2-Is preferably selected.
[0023]
Sp1 , Sp2 Each independently represents a spacer group having 1 to 20 carbon atoms. Examples of the spacer group include a linear alkylene group, a branched alkylene group, a linear alkylene group in which non-adjacent carbon atoms are substituted with an oxygen atom, a carbonyl group, and an ester group, and a branched alkylene group. Moreover, the hydrogen atom in these spacer groups may be substituted with a halogen atom such as a fluorine atom. As the spacer group, an unsubstituted linear alkylene chain and a branched alkylene chain are preferably selected from the viewpoint of viscosity reduction, and an unsubstituted linear alkylene chain is particularly preferable. The number of carbon atoms is preferably 2 to 12, more preferably 2 to 8, and particularly preferably 3 to 6. When the number of carbon atoms increases, the molecular weight tends to increase and the viscosity tends to increase, and when the number of carbon atoms decreases, the liquid crystal temperature of the compound tends to increase.
[0024]
X1 , X2 Each independently represents a single bond, —COO—, —OCO—, or —O—. In order to suppress deterioration due to hydrolysis of the compound to the minimum, it is preferable to select —O—.
[0025]
Substituent L1, L2, 6-membered ring A, B, C, linking group Y1 , Y2 , X1 , X2 , Sp1, Sp2 However, the purpose of the compound of the present invention is to add an optically anisotropic substance having excellent transparency without significantly increasing the (average) molecular weight by adding a small amount. Since it is to realize a liquid crystal composition that can be produced, care must be taken not to depart from this purpose. Particularly preferred chemical structures (formulas (1) to (150)) of the present invention are exemplified below.
(Where L1, L2Represents a hydrogen atom or a methyl group, s and t represent an integer of 1 to 20, and the cyclohexane ring represents a transcyclohexane ring. )
[0026]
[Chemical formula 5]
Figure 0004208058
[Chemical 6]
Figure 0004208058
[0027]
[Chemical 7]
Figure 0004208058
[Chemical 8]
Figure 0004208058
[0028]
[Chemical 9]
Figure 0004208058
[Chemical Formula 10]
Figure 0004208058
[0029]
Embedded image
Figure 0004208058
Embedded image
Figure 0004208058
[0030]
Embedded image
Figure 0004208058
Embedded image
Figure 0004208058
[0031]
Embedded image
Figure 0004208058
Embedded image
Figure 0004208058
[0032]
Embedded image
Figure 0004208058
Embedded image
Figure 0004208058
[0033]
Embedded image
Figure 0004208058
Embedded image
Figure 0004208058
[0034]
Embedded image
Figure 0004208058
Embedded image
Figure 0004208058
[0035]
Embedded image
Figure 0004208058
Embedded image
Figure 0004208058
[0036]
Embedded image
Figure 0004208058
Embedded image
Figure 0004208058
[0037]
Embedded image
Figure 0004208058
Embedded image
Figure 0004208058
[0038]
Embedded image
Figure 0004208058
Embedded image
Figure 0004208058
[0039]
Embedded image
Figure 0004208058
Embedded image
Figure 0004208058
[0040]
Embedded image
Figure 0004208058
Embedded image
Figure 0004208058
[0041]
The compounds of the present invention exemplified above are represented by the formula -I in the general formula (I).2-Sp2-OCOC (L2) = CH2The side chain group represented by2 The chemical structure itself is not special in the technical field of liquid crystal materials, except that it is characterized by being located at the meta position. Therefore, the synthesis method established in the technical field of the conventional liquid crystal compound or liquid crystalline (meth) acrylate can be applied almost as it is to the synthesis of the compound of the present invention. For example, the methods disclosed in JP-T-6-507987 and JP-B-8-3111 can be used.
[0042]
Among the compounds exemplified above, in the general formula (I), the 6-membered rings A and B are unsubstituted 1,4-phenylene groups or alkyl groups having 1 to 7 carbon atoms, alkoxy groups, alkanoyl groups, A cyano group or a 1,4-phenylene group substituted with one or more halogen atoms, wherein the 6-membered ring C is an unsubstituted 1,3-phenylene group, an alkyl group having 1 to 7 carbon atoms, or an alkoxy group , An alkanoyl group, or a cyano group, a 1,3-phenylene group substituted with one or more halogen atoms, Y1 Is a single bond, Y2 Those having a liquid crystal skeleton such that is —COO— or —OCO— are useful because it is easy to suppress the liquid crystal temperature range of a single compound to 100 ° C. or less and the production is easy. Among these, in particular, the 6-membered rings A and B are unsubstituted 1,4-phenylene groups, the 6-membered ring C is unsubstituted 1,3-phenylene groups, Y1 Is a single bond, Y2 However, since the compound of -COO- or -OCO- is particularly easy to produce, it has a high industrial value.
Such a compound can be synthesized, for example, by the following method.
[0043]
Embedded image
Figure 0004208058
Embedded image
Figure 0004208058
[0044]
(Wherein X is a halogen atom, 6-membered rings A ′ and B ′ are an unsubstituted 1,4-phenylene group or an alkyl group having 1 to 7 carbon atoms, an alkoxy group, an alkanoyl group, a cyano group, or a halogen atom. 1,4-phenylene group substituted by one or more atoms, 6-membered ring C ′ is an unsubstituted 1,3-phenylene group or an alkyl group having 1 to 7 carbon atoms, an alkoxy group, an alkanoyl group, a cyano group, Or a 1,3-phenylene group substituted with one or more halogen atoms;1 , L2 Represents a hydrogen atom or a methyl group, Sp1 , Sp2 Represents a spacer group having 1 to 20 carbon atoms. )
[0045]
As shown here, by using a base such as sodium hydroxide or potassium carbonate to a biphenyl derivative of the general formula (III), a spacer group to which a hydroxyl group is attached is bonded to obtain a compound of the general formula (IV). Then, this is esterified with (meth) acrylic acid using an acid catalyst such as p-toluenesulfonic acid to obtain a compound of the general formula (V). Next, a hydroxybenzoic acid derivative (VI) is used with a base such as sodium hydroxide or potassium carbonate, and a spacer group provided with a hydroxyl group is bonded to obtain a compound of the general formula (VII). The compound of general formula (VIII) is obtained by esterification with (meth) acrylic acid using an acid catalyst such as sulfonic acid. The obtained compounds of general formula (V) and general formula (VIII) are subjected to ester condensation using a condensing agent such as dicyclohexylcarbodiimide (DCC) and a base catalyst such as dimethylaminopyridine (DMAP), or By converting the carboxyl group of formula (VIII) to an acyl halide group with thionyl halide and the like, and ester-condensing with the compound of formula (V) using a base catalyst such as pyridine, The compounds of the invention represented can be synthesized.
The compound of the present invention can also be synthesized by the following method.
[0046]
Embedded image
Figure 0004208058
Embedded image
Figure 0004208058
[0047]
(Wherein X is a halogen atom, 6-membered rings A ′ and B ′ are an unsubstituted 1,4-phenylene group or an alkyl group having 1 to 7 carbon atoms, an alkoxy group, an alkanoyl group, a cyano group, a halogen atom, 1,4-phenylene group substituted by one or more atoms, 6-membered ring C ′ is an unsubstituted 1,3-phenylene group or an alkyl group having 1 to 7 carbon atoms, an alkoxy group, an alkanoyl group, a cyano group, Or a 1,3-phenylene group substituted with one or more halogen atoms;1 , L2 Represents a hydrogen atom or a methyl group, Sp1 , Sp2 Represents a spacer group having 1 to 20 carbon atoms. )
[0048]
As shown here, by using a base such as sodium hydroxide or potassium carbonate to a biphenyl derivative of the general formula (X), a spacer group to which a hydroxyl group is attached is bonded to obtain a compound of the general formula (XI). Then, this is esterified with (meth) acrylic acid using an acid catalyst such as p-toluenesulfonic acid to obtain a compound of the general formula (XII). Subsequently, a spacer group to which a hydroxyl group is attached is bonded to the hydroquinone derivative (XIII) using a base such as sodium hydroxide or potassium carbonate to obtain a compound of the general formula (XIV), which is obtained by adding p-toluenesulfonic acid. The compound of general formula (XV) is obtained by esterifying with (meth) acrylic acid using an acid catalyst such as. The obtained compounds of general formula (XII) and general formula (XV) are subjected to ester condensation using a condensing agent such as dicyclohexylcarbodiimide (DCC) and a base catalyst such as dimethylaminopyridine (DMAP), or By converting the carboxyl group of formula (XII) to an acyl halide group with thionyl halide and the like, and ester-condensing with the compound of formula (XV) using a base catalyst such as pyridine, the formula (XVI) The compounds of the invention represented can be synthesized.
The compound of the present invention can also be synthesized by the following method.
[0049]
Embedded image
Figure 0004208058
[0050]
(Wherein L represents a hydrogen atom or a methyl group, 6-membered rings A ′ and B ′ are an unsubstituted 1,4-phenylene group or an alkyl group having 1 to 7 carbon atoms, an alkoxy group, an alkanoyl group, Cyano group or 1,4-phenylene group substituted by one or more halogen atoms, 6-membered ring C ′ is unsubstituted 1,3-phenylene group or alkyl group having 1 to 7 carbon atoms, alkoxy group, alkanoyl A 1,3-phenylene group substituted with one or more groups, cyano groups, or halogen atoms, L1 , L2 Represents a hydrogen atom or a methyl group, Sp1 , Sp2 Represents a spacer group having 1 to 20 carbon atoms. )
[0051]
As shown here, a biphenyl derivative of general formula (XVII) and a benzoic acid derivative of general formula (XVIII) are esterified using a condensing agent such as dicyclohexylcarbodiimide (DCC) and a base catalyst such as dimethylaminopyridine (DMAP). By condensing, or converting the carboxyl group of general formula (XVIII) to an acyl halide group with thionyl halide and the like, and ester condensing with the compound of general formula (XVII) using a base catalyst such as pyridine. To obtain a compound of general formula (XIX). Thereafter, the compound of the general formula (XX) is obtained by deprotecting the acetyl group using a base such as benzylamine. The carboxylic acid derivative of the general formula (XXI) is subjected to ester condensation using a condensing agent such as dicyclohexylcarbodiimide (DCC) and a base catalyst such as dimethylaminopyridine (DMAP), or the carboxyl of the general formula (XXI). The group of the present invention represented by the general formula (XXII) is converted to an acyl halide group with thionyl halide and the like, and ester-condensed with a compound of the general formula (XX) using a base catalyst such as pyridine. Compounds can be synthesized.
The compound of the present invention can also be synthesized by the following method.
[0052]
Embedded image
Figure 0004208058
[0053]
(In the formula, L represents a hydrogen atom or a methyl group, and the 6-membered ring A ′ and B ′ are an unsubstituted 1,4-phenylene group or an alkyl group having 1 to 7 carbon atoms, an alkoxy group, an alkanoyl group, a cyano group. Group, or 1,4-phenylene group substituted by one or more halogen atoms, 6-membered ring C ′ is an unsubstituted 1,3-phenylene group, an alkyl group having 1 to 7 carbon atoms, an alkoxy group, an alkanoyl group , A cyano group, or a 1,3-phenylene group substituted with one or more halogen atoms, Sp1 , Sp2 Represents a spacer group having 1 to 20 carbon atoms. )
[0054]
As shown here, the biphenyl derivative of general formula (XXIII) and the benzoic acid derivative of general formula (XXIV) are heated to 230 ° C. or higher in the presence of an acid catalyst such as p-toluenesulfonic acid. The compound of (XXV) is obtained. By subjecting the alcohol derivative of the general formula (XXVI) to ester condensation using a condensing agent such as dicyclohexylcarbodiimide (DCC) and a base catalyst such as dimethylaminopyridine (DMAP), or a carboxyl group of the general formula (XXV). Is converted to an acyl halide group with thionyl halide and the like, and ester-condensed with a compound of the general formula (XXVI) using a base catalyst such as pyridine, thereby the compound of the present invention represented by the general formula (XXVII) Can be synthesized.
[0055]
The liquid crystal composition of the present invention may be any composition that exhibits a phase that is generally recognized as a liquid crystal phase in this technical field. Among such liquid crystal compositions, those exhibiting a nematic phase, a smectic A phase, a (chiral) smectic C phase, and a cholesteric phase are preferable as the liquid crystal phase. Among these, the nematic phase is particularly preferable because it tends to have a low viscosity and tends to quickly obtain a stable alignment state in the alignment step during the production of the optical anisotropic body. Further, when the (chiral) smectic C phase is indicated, the smectic A phase is indicated in the temperature region above the temperature range of the (chiral) smectic C phase, and when the smectic A phase is indicated, the temperature of the smectic A phase is indicated. A liquid crystal composition that exhibits a nematic phase in a temperature region above the region is preferable because good uniaxial alignment characteristics can be obtained.
[0056]
An object of the liquid crystal composition of the present invention is to produce an optical anisotropic body by irradiating ultraviolet rays in a temperature range of a liquid crystal phase to polymerize a (meth) acrylate compound in the composition. Therefore, in order to avoid the induction of undesirable thermal polymerization in the ultraviolet irradiation step and to produce an optically anisotropic body having excellent uniformity, the liquid crystal composition of the present invention is at or near room temperature, that is, typically It preferably exhibits a liquid crystal phase at 25 ° C. For example, when the (meth) acrylate compound in the composition is polymerized by irradiating the liquid crystal composition of the present invention with ultraviolet rays in the (chiral) smectic C phase, it is room temperature or near room temperature, that is, typically at 25 ° C. Those that develop a (chiral) smectic C phase are preferred.
[0057]
The concentration of the compound represented by formula (I) in the liquid crystal composition of the present invention is preferably 5 to 40% by weight, more preferably 10 to 30% by weight, and particularly preferably 15 to 25% by weight. When the concentration is less than 5% by weight, it is difficult to obtain the effect of improving the transparency of the optical anisotropic body produced using the liquid crystal composition of the present invention. When the concentration exceeds 40% by weight, the average molecular weight in the liquid crystal composition is low. There is a tendency to get higher.
[0058]
The (average) molecular weight of the liquid crystal composition of the present invention is suppressed to about 250 to 450 for the purpose of suppressing an increase in viscosity and quickly obtaining a stable alignment state in the alignment step during the production of the optical anisotropic body. preferable. It is also important to adjust the clearing point (temperature at which the liquid crystal phase transitions to the isotropic liquid phase) in order to quickly obtain a stable alignment state. If the clearing point is lowered, the orientation treatment is inevitably performed in a state where the fluidity is high, and an effect of quickly stabilizing the orientation can be obtained. The clearing point is preferably 80 ° C. or lower, more preferably 70 ° C. or lower, and particularly preferably 60 ° C. or lower.
[0059]
In the process of coating the liquid crystal composition on the substrate or injecting the liquid crystal composition into the liquid crystal cell during the production of the optical anisotropic body of the present invention, the liquid crystal composition is temporarily treated with an isotropic liquid for the purpose of quickly obtaining a uniform alignment state. The phase state is an effective means. When the clearing point is raised to 60 to 80 ° C. or higher, undesirable thermal polymerization is induced when an isotropic liquid phase is formed, and there is a risk that an optical anisotropic body with good uniformity cannot be produced. From this point also, it is effective to adjust the clearing point as described above.
[0060]
The liquid crystal composition of the present invention further includes the above general formula (II) (wherein LThree Represents a hydrogen atom or a methyl group, n represents an integer of 0 or 1, 6-membered rings D, E, and F are each independently a 1,4-phenylene group, or one or two non-adjacent CH groups. 1,4-phenylene group substituted by nitrogen, 1,4-cyclohexylene group, one or two non-adjacent CH2 Represents a 1,4-cyclohexyl group or a cyclohexene-1,4-diyl group in which the group is substituted with an oxygen atom or a sulfur atom, and these 6-membered rings D, E, and F further have 1 to 7 carbon atoms. One or more alkyl groups, alkoxy groups, alkanoyl groups, cyano groups, or halogen atoms may be substituted.Three , YFour Are each independently a single bond, —CH2CH2-, -CH2O-, -OCH2-, -COO-, -OCO-, -C≡C-, -CH = CH-, -CF = CF-,-(CH2)Four-, -CH2CH2CH2O-, -OCH2CH2CH2-, -CH = CH-CH2CH2−, −CH2CH2-CH = CH-, -CH = CH-COO-, -OCO-CH = CH-Five Represents a single bond, —O—, —OCO—, —COO—, —CH═CH—COO—, and Z1 Is preferably a liquid crystal (meth) acrylate compound represented by a hydrogen atom, a halogen atom, a cyano group, or a hydrocarbon group having 1 to 20 carbon atoms.
[0061]
In the formula, the liquid crystalline (meth) acrylate compound represented by the general formula (II) is particularly preferably n in the formula from the viewpoint of suppressing the viscosity.Three , YFour Are each independently a single bond, —CH2CH2-, -CH2O-, -OCH2-, -COO-, -OCO-, -C≡C-, -CH = CH-, -CF = CF- are particularly preferred, YFive Is particularly preferably a single bond, -O-, -OCO-, -COO-,1 Is particularly preferably a halogen atom, a cyano group, or a hydrocarbon group having 1 to 5 carbon atoms.
[0062]
The concentration of the liquid crystalline (meth) acrylate compound represented by the general formula (II) in the liquid crystal composition of the present invention is preferably 60 to 95% by weight, more preferably 70 to 90% by weight, and 75 to 85% by weight. Is particularly preferred. When the concentration is less than 60% by weight, the viscosity tends to increase. When the concentration exceeds 95% by weight, the transparency of the optical anisotropic body produced using the liquid crystal composition tends to deteriorate. .
As specific examples of the compound of the general formula (II), the structures and phase transition temperatures of the compounds of the formulas (151) to (175) are shown below. However, the polymerizable liquid crystal compound that can be used in the liquid crystal composition of the present invention is not limited thereto.
(In the formula, a cyclohexane ring represents a transcyclohexane ring, a number represents a phase transition temperature, C at the phase transition temperature represents a crystalline phase, N represents a nematic phase, S represents a smectic phase, and I represents an isotropic liquid phase. .)
[0063]
Embedded image
Figure 0004208058
Embedded image
Figure 0004208058
[0064]
Embedded image
Figure 0004208058
Embedded image
Figure 0004208058
[0065]
Embedded image
Figure 0004208058
Embedded image
Figure 0004208058
[0066]
Embedded image
Figure 0004208058
[0067]
Moreover, the liquid crystal compound which does not have a polymerizable functional group can also be added to the liquid-crystal composition of this invention according to a use. However, from the viewpoint of ensuring the heat resistance of the optical anisotropic body produced using the liquid crystal composition, the addition amount is preferably 10% by weight or less.
Further, a compound having a polymerizable functional group and not showing liquid crystallinity can be added to the liquid crystal composition of the present invention. Such compounds can be used without particular limitation as long as they are generally recognized as polymer-forming monomers or polymer-forming oligomers in this technical field, but acrylate compounds, methacrylate compounds, vinyl ether compounds. Is particularly preferred.
[0068]
As described above, the liquid crystal composition of the present invention includes a liquid crystal compound having a polymerizable functional group and a liquid crystal having no polymerizable functional group in addition to the liquid crystalline (meth) acrylate represented by the general formula (I). Compounds and polymerizable compounds that do not exhibit liquid crystallinity may be added in combination as appropriate, but at least the addition amount of each component is set so that the liquid crystallinity of the obtained liquid crystal composition is not lost and the viscosity is not significantly increased. It needs to be adjusted.
[0069]
Furthermore, for the purpose of improving the polymerization reactivity, a polymerization initiator such as a thermal polymerization initiator or a photopolymerization initiator can be added to the liquid crystal composition of the present invention.
Examples of the thermal polymerization initiator include benzoyl peroxide and bisazobutyronitrile. Examples of the photopolymerization initiator include benzoin ethers, benzophenones, acetophenones, and benzyl ketals. In the case of adding a thermal polymerization initiator or a photopolymerization initiator, the addition amount is preferably 10% by weight or less, particularly preferably 5% by weight or less, and a range of 0.5 to 1.5% by weight based on the liquid crystal composition. Is more preferable.
[0070]
In addition, a stabilizer can be added to the liquid crystal composition of the present invention in order to improve its storage stability. Examples of the stabilizer that can be used include hydroquinone, hydroquinone monoalkyl ethers, and tert-butylcatechol. When the stabilizer is used, the amount added is preferably 1% by weight or less, particularly preferably 0.5% by weight or less, based on the liquid crystal composition.
[0071]
In addition, a chiral (optically active) compound can be added to the liquid crystal composition of the present invention for the purpose of obtaining a polymer having a helical structure of a liquid crystal skeleton inside. The chiral compound used for such a purpose does not need to exhibit liquid crystal properties per se, and may or may not have a polymerizable functional group. Moreover, the direction of the spiral can be appropriately selected depending on the intended use of the polymer. As such a chiral compound, for example, “Pelargonic acid cholesterol having a cholesteryl group as an optically active group, cholesterol stearate; "CB-15", "C-15", "S-1082" manufactured by Merck (Germany), "CM-19", "CM-20", "CM" manufactured by Chisso; 1 as an optically active group -“S-811” manufactured by Merck Co., Ltd. having a methylheptyl group, “CM-21” manufactured by Chisso Corporation, “CM-22” and the like can be mentioned. A preferable addition amount in the case of adding a chiral compound depends on the use of the liquid crystal composition, but is a value obtained by dividing the thickness (d) of the polymer obtained by polymerization by the helical pitch (P) in the polymer (d / P) is preferably in the range of 0.1-20.
[0072]
In addition, when the liquid crystal composition of the present invention is used as a raw material for a polarizing film or an alignment film, or a printing ink and a paint, a metal, a metal complex, a dye, a pigment, a pigment, a surfactant, Gelling agents, ultraviolet absorbers, antioxidants, ion exchange resins, titanium oxide metal oxides, and the like can also be added.
[0073]
The optical anisotropic body of the present invention can be produced by polymerizing the liquid crystal composition of the present invention in an aligned state. For example, a substrate whose surface is rubbed with a cloth, a substrate on which an organic thin film is formed, a substrate whose surface is rubbed with a cloth, or SiO2And a method of polymerizing the liquid crystal of the present invention after the substrate is supported on a substrate having an orientation film deposited obliquely by means such as coating or sandwiched between the substrates. Examples of other alignment treatment methods include use of fluid alignment of a liquid crystal composition and use of an electric field or a magnetic field. These orientation means may be used alone or in combination. Among these methods, a method using a substrate whose surface is rubbed with a cloth or the like is particularly preferable because of its simplicity.
[0074]
The material which comprises a board | substrate can be used regardless of an organic material and an inorganic material. Examples of the organic material used as the substrate material include polyethylene terephthalate, polycarbonate, polyimide, polyamide, polymethyl methacrylate, polystyrene, polyvinyl chloride, polytetrafluoroethylene, polychlorotrifluoroethylene, polyarylate, polysulfone, and triacetyl. Cellulose, cellulose, polyetheretherketone and the like can be mentioned, and examples of the inorganic material include silicon, glass and calcite.
[0075]
When appropriate orientation cannot be obtained by rubbing these substrates with a cloth or the like, an organic thin film such as a polyimide thin film or a polyvinyl alcohol thin film is formed on the substrate surface according to a known method, and this is rubbed with a cloth or the like. Also good. In addition, the polyimide thin film that gives the pretilt angle used in ordinary twisted nematic (TN) or super twisted nematic (STN) elements should control the molecular orientation structure inside the optical anisotropic body more precisely. Is particularly preferable.
[0076]
In the case where the alignment state is controlled by an electric field, a substrate having an electrode layer is used. In this case, it is preferable to form an organic thin film such as the aforementioned polyimide thin film on the electrode.
Furthermore, a photo-alignment method can be used as an alignment treatment method instead of rubbing. In this method, polarized light, preferably polarized light is applied to an organic thin film having a functional group that undergoes photodimerization reaction in a molecule such as polyvinyl cinnamate, an organic thin film having a functional group that is isomerized by light, or an organic thin film such as polyimide. An alignment film is formed by irradiating with ultraviolet rays. By applying an optical mask to this photo-alignment method, patterning of the alignment can be easily achieved, so that the molecular orientation inside the optical anisotropic body can be precisely controlled.
[0077]
As a method for polymerizing the liquid crystal composition of the present invention, since rapid polymerization is desirable, a method of photopolymerization by irradiating light energy such as ultraviolet rays or electron beams is preferable. As a light source for photopolymerization, a polarized light source or a non-polarized light source may be used. In addition, when photopolymerization is performed in a state where the liquid crystal composition is sandwiched between two substrates, at least the substrate on the irradiation surface side must be provided with appropriate transparency. Moreover, it is preferable that the temperature at the time of irradiation is in the temperature range in which the liquid crystal state of the liquid crystal composition of the present invention is maintained. In particular, in the case where an optical anisotropic body is to be produced by photopolymerization, the temperature as close to room temperature or as close to room temperature as possible from the viewpoint of avoiding unintentional thermal polymerization, that is, typically a temperature at 25 ° C. It is preferable to polymerize with.
[0078]
The optical anisotropic body of the present invention obtained by polymerization can be subjected to heat treatment for the purpose of reducing initial characteristic changes and achieving stable characteristic expression. The heat treatment temperature is preferably in the range of 50 to 250 ° C., and the heat treatment time is preferably in the range of 30 seconds to 12 hours.
The optical anisotropic body of the present invention produced by such a method may be used after being peeled off from the substrate or without being peeled off.
[0079]
【Example】
Hereinafter, the present invention will be described in further detail with reference to examples. However, the present invention is not limited to these examples.
[0080]
Example 1 Synthesis of Liquid Crystalline Acrylate Compound (Part 1)
While stirring a mixture consisting of 120.0 g of 4,4′-biphenol, 88.0 g of 6-chloro-1-hexanol, 25.7 g of sodium hydroxide, 25.0 g of potassium iodide, 480 ml of ethanol and 440 ml of water, For 4 hours. The obtained reaction solution was cooled to room temperature, and diluted hydrochloric acid was added until the aqueous layer of the reaction solution became weakly acidic. The precipitated crystals were filtered using a glass filter, and the crystals were washed with 2000 ml of water to obtain 900 g of a crude product. The crude product was purified by recrystallization from 900 ml of methanol once and recrystallization from 300 ml of methanol twice to obtain 50.0 g of a compound represented by the following formula (a).
[0081]
Embedded image
Figure 0004208058
[0082]
A mixture comprising 48.0 g of the compound of formula (a), 48.3 g of acrylic acid, 15.0 g of p-toluenesulfonic acid, 2.5 g of hydroquinone, 220 ml of toluene, 90 ml of tetrahydrofuran, and 130 ml of n-hexane is formed by heating and stirring. The mixture was refluxed for 4 hours while distilling off the incoming water. The reaction solution was cooled to room temperature, and extracted by adding 1000 ml of saturated brine and 700 ml of ethyl acetate to the reaction solution. After the organic layer was washed with water, ethyl acetate was distilled off under reduced pressure to obtain 60.9 g of a crude product. The obtained crude product was recrystallized from a mixed solvent of 60 ml of toluene and 120 ml of hexane to obtain 41.8 g of a crude product from which most of acrylic acid as an impurity was removed. 31.8 g of this was purified using silica gel column chromatography using a mixed solvent consisting of ethyl acetate and toluene (volume ratio of ethyl acetate: toluene = 1: 4, Rf = 0.52) as a developing solvent, 19.0 g of a compound represented by the following formula (b) was obtained.
[0083]
Embedded image
Figure 0004208058
[0084]
While stirring a mixture consisting of 15.0 g of 3-hydroxybenzoic acid, 14.8 g of 6-chloro-1-hexanol, 9.1 g of sodium hydroxide, 0.5 g of potassium iodide, 45 ml of ethanol and 45 ml of water at 80 ° C. Heated for 16 hours. After cooling the resulting reaction solution to room temperature, 500 ml of saturated brine was added to the reaction solution, and dilute hydrochloric acid was added until the aqueous layer of the reaction solution became weakly acidic. The reaction solution was extracted by adding 300 ml of ethyl acetate. After the organic layer was washed with water, ethyl acetate was distilled off under reduced pressure to obtain 25.4 g of a crude product of the following formula (c).
[0085]
Embedded image
Figure 0004208058
[0086]
A mixture consisting of 20.0 g of the crude product of the formula (c), 24.3 g of acrylic acid, 4.0 g of p-toluenesulfonic acid, 0.5 g of hydroquinone, 100 ml of toluene and 100 ml of n-hexane was formed by heating and stirring. The mixture was refluxed for 4 hours while the coming water was distilled off. After cooling the reaction solution to room temperature, 500 ml of saturated brine and 300 ml of ethyl acetate were added to the reaction solution for extraction. After the organic layer was washed with water, the organic solvent was distilled off under reduced pressure to obtain 25.2 g of a crude product. The obtained crude product was recrystallized from a mixture of 100 ml of hexane and 20 ml of ethyl acetate, recrystallized from a mixture of 50 ml of hexane and 20 ml of ethyl acetate, and recrystallized from a mixture of 100 ml of hexane and 20 ml of ethyl acetate. Purification by recrystallization gave 9.5 g of the compound represented by formula (d).
[0087]
Embedded image
Figure 0004208058
[0088]
A mixture of 1.00 g of the compound of formula (b), 0.86 g of the compound of formula (d), 0.12 g of N, N-dimethylaminopyridine, and 20 ml of tetrahydrofuran was dissolved in 10 ml of tetrahydrofuran while stirring. 0.64 g of dicyclohexylcarbodiimide was added dropwise over 10 minutes. After completion of the dropwise addition, the mixture was stirred at room temperature for 5 hours. To this was added 100 ml of toluene, and the precipitated dicyclohexylurea was filtered off. After washing the obtained organic layer with water, toluene was distilled off under reduced pressure to obtain 2.7 g of a crude product. This was purified by silica gel column chromatography using a mixed solvent consisting of ethyl acetate and toluene (volume ratio of ethyl acetate: toluene = 1: 10, Rf = 0.69) as a developing solvent and recrystallization from 12 ml of methanol. 0.9 g of a liquid crystal acrylate compound represented by the formula (e) (hereinafter referred to as a liquid crystal acrylate compound (e)) was obtained.
[0089]
Embedded image
Figure 0004208058
[0090]
As for the phase transition temperature of the liquid crystalline acrylate compound (e), the C phase (crystalline phase) -Sx phase (unknown smectic phase) transition temperature is 54 ° C., and the Sx phase-I phase (isotropic liquid phase) transition temperature is It was 61 ° C. Also, 1H-NMR (300 MHz, CDClThree ) Data are δ1.23 to 1.93 (m, 16H), 4.02 (t, 2H), 4.04 (t, 2H), 4.17 (t, 4H), 5.80 (d 2H), 6.12 (dd, 2H), 6.40 (d, 2H), 6.95 to 7.82 (m, 12H).
[0091]
Example 2 Synthesis of Liquid Crystalline Acrylate Compound (Part 2)
A mixture of 18.4 g of isovanillic acid, 14.8 g of 6-chloro-1-hexanol, 9.1 g of sodium hydroxide, 0.2 g of potassium iodide, 45 ml of ethanol and 45 ml of water was heated at 80 ° C. for 16 hours with stirring. did. After cooling the resulting reaction solution to room temperature, 500 ml of saturated brine was added to the reaction solution, and dilute hydrochloric acid was added until the aqueous layer of the reaction solution became weakly acidic. The reaction solution was extracted by adding 300 ml of ethyl acetate. After washing the organic layer with water, ethyl acetate was distilled off under reduced pressure to obtain 27.0 g of a crude product of the following formula (f).
[0092]
Embedded image
Figure 0004208058
[0093]
A mixture consisting of 25.0 g of the crude product of the formula (f), 26.9 g of acrylic acid, 4.0 g of p-toluenesulfonic acid, 0.5 g of hydroquinone, 100 ml of toluene and 100 ml of n-hexane was formed by heating and stirring. The mixture was refluxed for 3 hours while the coming water was distilled off. After cooling the reaction solution to room temperature, 500 ml of saturated brine and 300 ml of ethyl acetate were added to the reaction solution for extraction. After the organic layer was washed with water, the organic solvent was distilled off under reduced pressure to obtain 31.8 g of a crude product. The resulting crude product was purified by recrystallization from a mixture of 80 ml of hexane and 20 ml of ethyl acetate to obtain 15.8 g of a compound represented by the formula (g).
[0094]
Embedded image
Figure 0004208058
[0095]
While stirring, a mixture of 0.95 g of the compound of formula (g), 0.12 g of N, N-dimethylaminopyridine, 0.62 g of 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride and 20 ml of tetrahydrofuran was stirred. Then, 1.00 g of the compound of the above formula (b) dissolved in 10 ml of tetrahydrofuran was added dropwise over 10 minutes. After completion of dropping, the mixture was stirred at room temperature for 9 hours. The reaction solution was extracted by adding 200 ml of saturated brine and 100 ml of ethyl acetate. After washing the organic layer with water, the organic solvent was distilled off under reduced pressure to obtain 1.80 g of a crude product. This is subjected to silica gel column chromatography using a mixed solvent composed of ethyl acetate and toluene (volume ratio of ethyl acetate: toluene = 1: 7, Rf = 0.52) as a developing solvent, and recrystallization from methanol 15 ml twice. To obtain 0.88 g of a liquid crystal acrylate compound represented by the following formula (h) (hereinafter referred to as liquid crystal acrylate compound (h)).
[0096]
Embedded image
Figure 0004208058
[0097]
As for the phase transition temperature of the liquid crystalline acrylate compound (h), the C phase (crystal phase) -I phase (equal liquid phase) transition temperature was 102 ° C.
[0098]
Example 3 Preparation of Liquid Crystal Composition (Part 1)
A liquid crystal composition (A) comprising 50 parts by weight of a liquid crystal acrylate compound of the following formula (i) and 50 parts by weight of a liquid crystal acrylate of the following formula (j) was prepared.
[0099]
Embedded image
Figure 0004208058
Embedded image
Figure 0004208058
[0100]
The liquid crystal composition (A) exhibited a nematic liquid crystal phase at room temperature (25 ° C.). The N (nematic phase) -I (isotropic liquid phase) transition temperature was 46 ° C. N measured at 589 nme(Refractive index of extraordinary light) is 1.661, noThe refractive index of ordinary light was 1.510, and the birefringence was 0.152. The average molecular weight was 293.6.
[0101]
A liquid crystal composition (B) comprising 10 parts by weight of the liquid crystal acrylate compound (e) synthesized in Example 1 and 90 parts by weight of the liquid crystal composition (A) was prepared. The liquid crystal composition (B) exhibited a nematic liquid crystal phase at room temperature (25 ° C.). The N (nematic phase) -I (isotropic liquid phase) transition temperature was 40 ° C. N measured at 589 nme (Refractive index of extraordinary light) is 1.6541, no The refractive index of ordinary light was 1.5153, and the birefringence was 0.1388. The average molecular weight was 309.8.
[0102]
Example 4 Preparation of Liquid Crystal Composition (Part 2)
A liquid crystal composition (C) comprising 20 parts by weight of the liquid crystalline acrylate compound (e) synthesized in Example 1 and 80 parts by weight of the liquid crystal composition (A) was prepared. The liquid crystal composition (C) exhibited a nematic liquid crystal phase at room temperature (25 ° C.). The N (nematic phase) -I (isotropic liquid phase) transition temperature was 36 ° C. N measured at 589 nme (Refractive index of extraordinary light) is 1.6460, no The refractive index of ordinary light was 1.5207, and the birefringence was 0.1253. The average molecular weight was 327.9.
[0103]
(Example 5) Production of optical anisotropic body
A liquid crystal composition (D) comprising 99 parts by weight of the liquid crystal composition (C) prepared in Example 4 and 1 part by weight of a photopolymerization initiator “Irgacure 651” (manufactured by Ciba Geigy) was prepared. A liquid crystal composition (D) was injected at room temperature into an anti-parallel alignment liquid crystal glass cell having a cell gap of 50 microns (a glass cell that had been subjected to alignment treatment so that the liquid crystal was uniaxially aligned). It was confirmed that the orientation was stable within 1 minute after the injection, and uniform uniaxial orientation was obtained. Next, 1 mW / cm at room temperature using UVGL-25 of UVP2Was irradiated for 10 minutes to polymerize the liquid crystal composition (D) to obtain an optically anisotropic body. The parallel light transmittance of the optical anisotropic body as it was placed in the glass cell was 85.4%, and the haze was 3.9%.
[0104]
(Comparative example)
A liquid crystal composition (E) prepared in Example 3 comprising 99 parts by weight of the liquid crystal composition (A) containing no liquid crystalline acrylate compound of the present invention and 1 part by weight of a polymerization initiator “Irgacure 651” (manufactured by Ciba Geigy) (E ) Was prepared. A liquid crystal composition (E) was injected at room temperature into an anti-parallel alignment liquid crystal glass cell having a cell gap of 50 microns (a glass cell subjected to alignment treatment so that the liquid crystal was uniaxially aligned). It was confirmed that the orientation was stable within 1 minute after the injection, and uniform uniaxial orientation was obtained. Next, 1 mW / cm using UVGL-25 of UVP at room temperature2 Was irradiated for 10 minutes to polymerize the liquid crystal composition (E) to obtain an optically anisotropic body. The parallel light transmittance of the optical anisotropic body as it was placed in the glass cell was 75.9%, and the haze was 11.0%.
[0105]
From the results of Example 4 and Comparative Example 1, when the liquid crystal composition containing the liquid crystalline acrylate compound of the present invention is used, a uniform alignment state can be quickly obtained and the optically anisotropic material produced by polymerization is transparent. It can be seen that the performance is improved.
[0106]
【The invention's effect】
As described above, since the liquid crystalline (meth) acrylate compound of the present invention has the structural characteristics represented by the general formula (I), the liquid crystal composition containing the compound is polymerized. Thus, the transparency of the optical isomer obtained can be improved.
In the general formula (I), L1 , L2 Is a hydrogen atom, 6-membered rings A and B are 1,4-phenylene groups, 6-membered ring C is 1,3-phenylene groups, Sp1 , Sp2 Is an alkylene group having 2 to 12 carbon atoms, and Y1 Is a single bond, Y2 Are —COO—, —OCO—, and X1 , X2 When-is -O-, it becomes easy to suppress the liquid crystal temperature range of the compound alone to 100 ° C. or less, and the production becomes easy.
[0107]
Moreover, since the liquid crystal composition of the present invention contains the liquid crystal (meth) acrylate compound, the transparency of the optical isomer obtained by polymerizing the liquid crystal composition can be improved.
When the liquid crystal compound of the present invention further contains a liquid crystalline (meth) acrylate compound represented by the general formula (II), the (average) molecular weight is as low as about 250 to 450 and is uniform. Alignment state can be quickly obtained, and since it exhibits a liquid crystal phase at room temperature, an optical anisotropic body excellent in heat resistance can be obtained after polymerization, and an optical anisotropic body excellent in uniformity and transparency. Can be obtained.
[0108]
And since the optical anisotropic body of this invention is comprised from the polymer of the said liquid-crystal composition, it will be excellent in the uniformity, heat resistance, and transparency.
As described above, the optical anisotropic body using the liquid crystalline (meth) acrylate compound of the present invention has improved transparency, and is used for optical functional films such as retardation plates, polarizing plates, polarizing prisms, and various optical filters. As a material, it is very useful.

Claims (5)

下記一般式(I)で表されることを特徴とする液晶性(メタ)アクリレート化合物。
Figure 0004208058
(式中、L1 、L2 はそれぞれ独立的に水素原子またはメチル基を表し、6員環A、Bはそれぞれ独立的に、1,4−フェニレン基、1つ又は隣接しない2つのCH基が窒素で置換された1,4−フェニレン基、1,4−シクロヘキシレン基、1つ又は隣接しない2つのCH2 基が酸素原子又は硫黄原子で置換された1,4−シクロヘキシレン基、又はシクロヘキセン−1,4−ジイル基を表し、これらの6員環AとBは、さらに炭素原子数1〜7のアルキル基、アルコキシ基、アルカノイル基、シアノ基、又はハロゲン原子で1つ以上置換されていても良く、6員環Cは1,3−フェニレン基、1つ又は隣接しない2つのCH基が窒素で置換された1,3−フェニレン基、1,3−シクロヘキシレン基、1つ又は隣接しない2つのCH2 基が酸素原子又は硫黄原子で置換された1,3−シクロヘキシレン基、又はシクロヘキセン−1,3−ジイル基を表し、6員環Cは、さらに炭素原子数1〜7のアルキル基、アルコキシ基、アルカノイル基、シアノ基、又はハロゲン原子で置換されていても良く、Y1 、Y2 はそれぞれ独立的に単結合、−CH2CH2−、−CH2O− 、−OCH2− 、−COO−、−OCO−、−C≡C−、−CH=CH−、−CF=CF−、−(CH24−、−CH2CH2CH2O−、−OCH2CH2CH2−、−CH=CH−CH2CH2−、−CH2CH2−CH=CH−、−CH=CH−COO−、−OCO−CH=CH−、−OCO−COO−を表し、X1 、X2 はそれぞれ独立的に単結合、−O−、−COO−、−OCO−を表し、Sp1 、Sp2 はそれぞれ独立的に炭素原子数1から20の水素原子がハロゲン原子に置換されていても良い、直鎖アルキレン基、分岐アルキレン基、隣接しない炭素原子が酸素原子、カルボニル基、エステル基で置換された直鎖アルキレン基、分岐アルキレン基を表す。)
A liquid crystalline (meth) acrylate compound represented by the following general formula (I):
Figure 0004208058
Wherein L 1 and L 2 each independently represent a hydrogen atom or a methyl group, and the 6-membered rings A and B are each independently a 1,4-phenylene group, one or two non-adjacent CH groups. 1,4-phenylene group substituted with nitrogen, 1,4-cyclohexylene group, 1,4-cyclohexylene group in which one or two non-adjacent CH 2 groups are substituted with oxygen atom or sulfur atom, or Represents a cyclohexene-1,4-diyl group, and these 6-membered rings A and B are further substituted with one or more alkyl groups, alkoxy groups, alkanoyl groups, cyano groups, or halogen atoms having 1 to 7 carbon atoms. The 6-membered ring C may be a 1,3-phenylene group, a 1,3-phenylene group in which one or two non-adjacent CH groups are substituted with nitrogen, a 1,3-cyclohexylene group, one or two non-adjacent CH 2 groups are Represents a 1,3-cyclohexylene group or a cyclohexene-1,3-diyl group substituted with an elemental atom or sulfur atom, and the 6-membered ring C is further an alkyl group having 1 to 7 carbon atoms, an alkoxy group, an alkanoyl group Group, cyano group, or halogen atom may be substituted, Y 1 and Y 2 are each independently a single bond, —CH 2 CH 2 —, —CH 2 O—, —OCH 2 —, —COO—. , —OCO—, —C≡C—, —CH═CH—, —CF═CF—, — (CH 2 ) 4 —, —CH 2 CH 2 CH 2 O—, —OCH 2 CH 2 CH 2 —, —CH═CH—CH 2 CH 2 —, —CH 2 CH 2 —CH═CH—, —CH═CH—COO—, —OCO—CH═CH—, —OCO—COO— are represented by X 1 , X 2 each independently represents a single bond, -O -, - COO -, - OCO- represents, Sp 1 Sp 2 is each independently a hydrogen atom having 1 to 20 carbon atoms may be substituted by a halogen atom, a straight-chain alkylene group, a branched alkylene group, a carbon atom which is not adjacent the oxygen atom, a carbonyl group, an ester group Represents a substituted linear alkylene group or branched alkylene group.)
上記一般式(I)において、L1 、L2 が水素原子であり、6員環A、Bが1,4−フェニレン基であり、6員環Cが1,3−フェニレン基であり、Sp1 、Sp2 が炭素原子数2から12を有するアルキレン基であり、Y1 が単結合であり、Y2 が−COO−、−OCO−であり、X1 、X2 が−O−であることを特徴とする請求項1記載の液晶性(メタ)アクリレート化合物。In the above general formula (I), L 1 and L 2 are hydrogen atoms, 6-membered rings A and B are 1,4-phenylene groups, 6-membered ring C is 1,3-phenylene groups, Sp 1 , Sp 2 is an alkylene group having 2 to 12 carbon atoms, Y 1 is a single bond, Y 2 is —COO— or —OCO—, and X 1 or X 2 is —O—. The liquid crystalline (meth) acrylate compound according to claim 1. 請求項1または請求項2記載の液晶性(メタ)アクリレート化合物を含有し、液晶相を呈することを特徴とする液晶組成物。  A liquid crystal composition comprising the liquid crystalline (meth) acrylate compound according to claim 1 or 2 and exhibiting a liquid crystal phase. 下記一般式(II)で表される液晶性(メタ)アクリレート化合物を含有することを特徴とする請求項3記載の液晶組成物。
Figure 0004208058
(式中、L3 は水素原子又はメチル基を表し、nは0又は1の整数を表し、6員環D、E、Fはそれぞれ独立的に、1,4−フェニレン基、1つ又は隣接しない2つのCH基が窒素で置換された1,4−フェニレン基、1,4−シクロヘキシレン基、1つ又は隣接しない2つのCH2 基が酸素原子又は硫黄原子で置換された1,4−シクロヘキシル基、又はシクロヘキセン−1,4−ジイル基を表し、これらの6員環D、E、Fは、さらに炭素原子数1〜7のアルキル基、アルコキシ基、アルカノイル基、シアノ基、又はハロゲン原子で一つ以上置換されていても良く、Y3 、Y4 はそれぞれ独立的に単結合、−CH2CH2−、−CH2O−、−OCH2− 、−COO−、−OCO−、−C≡C−、−CH=CH−、−CF=CF−、−(CH24−、−CH2CH2CH2O−、−OCH2CH2CH2−、−CH=CH−CH2CH2−、−CH2CH2−CH=CH−、−CH=CH−COO−、−OCO−CH=CH−を表し、Y5 は単結合、−O−、−OCO−、−COO−、−CH=CH−COO−を表し、Z1 は水素原子、ハロゲン原子、シアノ基、炭素原子1〜20の炭化水素基を表す。)
The liquid crystal composition according to claim 3, comprising a liquid crystalline (meth) acrylate compound represented by the following general formula (II).
Figure 0004208058
(In the formula, L 3 represents a hydrogen atom or a methyl group, n represents an integer of 0 or 1, 6-membered rings D, E, and F are each independently a 1,4-phenylene group, one or adjacent groups. 1,4-phenylene group, 1,4-cyclohexylene group in which two CH groups are substituted with nitrogen, or 1,4-in which two or two CH 2 groups not adjacent to each other are substituted with oxygen atoms or sulfur atoms Represents a cyclohexyl group or a cyclohexene-1,4-diyl group, and these 6-membered rings D, E, and F are further an alkyl group having 1 to 7 carbon atoms, an alkoxy group, an alkanoyl group, a cyano group, or a halogen atom. And Y 3 and Y 4 are each independently a single bond, —CH 2 CH 2 —, —CH 2 O—, —OCH 2 —, —COO—, —OCO—, -C≡C-, -CH = CH-, -CF = CF-,-(C H 2) 4 -, - CH 2 CH 2 CH 2 O -, - OCH 2 CH 2 CH 2 -, - CH = CH-CH 2 CH 2 -, - CH 2 CH 2 -CH = CH -, - CH = CH—COO—, —OCO—CH═CH—, Y 5 represents a single bond, —O—, —OCO—, —COO—, —CH═CH—COO—, Z 1 represents a hydrogen atom, halogen Represents an atom, a cyano group, or a hydrocarbon group of 1 to 20 carbon atoms.)
摂氏25度において液晶相を呈することを特徴とする請求項4記載の液晶組成物。  The liquid crystal composition according to claim 4, which exhibits a liquid crystal phase at 25 degrees Celsius.
JP28854498A 1998-10-09 1998-10-09 Liquid crystalline (meth) acrylate compound and liquid crystal composition containing the compound Expired - Lifetime JP4208058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28854498A JP4208058B2 (en) 1998-10-09 1998-10-09 Liquid crystalline (meth) acrylate compound and liquid crystal composition containing the compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28854498A JP4208058B2 (en) 1998-10-09 1998-10-09 Liquid crystalline (meth) acrylate compound and liquid crystal composition containing the compound

Publications (2)

Publication Number Publication Date
JP2000119222A JP2000119222A (en) 2000-04-25
JP4208058B2 true JP4208058B2 (en) 2009-01-14

Family

ID=17731624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28854498A Expired - Lifetime JP4208058B2 (en) 1998-10-09 1998-10-09 Liquid crystalline (meth) acrylate compound and liquid crystal composition containing the compound

Country Status (1)

Country Link
JP (1) JP4208058B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5295471B2 (en) * 2000-11-13 2013-09-18 Dic株式会社 Polymerizable liquid crystal compound, polymerizable liquid crystal composition containing the compound, and polymer thereof
JP4810750B2 (en) * 2001-04-11 2011-11-09 Dic株式会社 Polymerizable liquid crystal compound, polymerizable liquid crystal composition containing the compound, and polymer thereof
US7449223B2 (en) 2004-05-31 2008-11-11 Dainippon Ink And Chemicals, Inc. Polymerizable liquid crystal composition and optically anisotropic medium
JP4999574B2 (en) * 2007-04-06 2012-08-15 株式会社Adeka Polymerizable composition and polymer
KR20100070337A (en) * 2007-08-30 2010-06-25 메르크 파텐트 게엠베하 Liquid crystal display
JP5505686B2 (en) * 2009-01-23 2014-05-28 Dic株式会社 Polymerizable biphenyl compound
KR101563574B1 (en) 2009-01-23 2015-10-27 디아이씨 가부시끼가이샤 Polymerizable biphenyl compound
CN102585838B (en) * 2012-01-12 2014-01-08 上海天问化学有限公司 4-[(4-R alkoxy 2,3,5,6-tetrafluorophenyl)ethyl]benzoic acid(4-R1 alkoxy) phenyl ester fluoride liquid crystal compound
JP6634692B2 (en) * 2015-04-01 2020-01-22 Dic株式会社 Polymerizable compound and optically anisotropic substance
JP6183575B2 (en) * 2015-06-25 2017-08-23 Dic株式会社 Polymerizable compound and liquid crystal display device using the same

Also Published As

Publication number Publication date
JP2000119222A (en) 2000-04-25

Similar Documents

Publication Publication Date Title
JP4200195B2 (en) Liquid crystalline (meth) acrylate compound, liquid crystal composition containing the compound, and optical anisotropic body using the same
JP3963035B2 (en) Liquid crystalline (meth) acrylate compound and composition, and optical anisotropic body using the same
US6582626B2 (en) Polymerizable compound, polymerizable liquid crystal composition containing the same, and optically anisotropic medium made from the composition
JP4006608B2 (en) Liquid crystalline (meth) acrylate compound, composition containing the compound, and optical anisotropic body using the same
JP4207233B2 (en) Liquid crystal composition and optical anisotropic body using the same
JPWO2014148471A1 (en) Polymerizable compound and liquid crystal composition using the same
KR100737963B1 (en) Polymerizable composition showing liquid-crystal phase and optically anisotropic object made with the same
JP5545519B2 (en) Polymerizable compound
JP4352117B2 (en) Liquid crystalline (meth) acrylate compound, liquid crystal composition containing the compound, and optical anisotropic body using the same
JP6308415B2 (en) Polymerizable compound and liquid crystal composition using the same
JP4929546B2 (en) Polymerizable liquid crystal composition and optical anisotropic body using the same
JP4208058B2 (en) Liquid crystalline (meth) acrylate compound and liquid crystal composition containing the compound
JP5545516B2 (en) Polymerizable compound
JP4904622B2 (en) Polymerizable composition exhibiting liquid crystal phase and optical anisotropic body using the same
JP5787466B2 (en) Polyfunctional polymerizable compound
JP4461692B2 (en) Polymerizable liquid crystal composition and optical anisotropic body
JP4766291B2 (en) Polymerizable liquid crystal compound, composition, and optical anisotropic body
JP4717282B2 (en) Manufacturing method of optical anisotropic body
JP4182452B2 (en) Liquid crystal composition and optical anisotropic body using the same
JP2003313250A (en) Polymerizable liquid crystal composition and optical anisotropic body
KR20110040666A (en) Polymerizable naphthalene compound
JP3972430B2 (en) Liquid crystalline (meth) acrylate compound, composition containing the compound, and optical anisotropic body using the same
JP3978624B2 (en) Liquid crystalline (meth) acrylate compound, liquid crystal composition, and optical anisotropic body using the same
JP4013090B2 (en) Liquid crystalline (meth) acrylate compound, composition containing the compound, and optical anisotropic body using the same
JP4186134B2 (en) Liquid crystal composition and optical anisotropic body using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050711

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080530

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081015

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term