JP3978624B2 - Liquid crystalline (meth) acrylate compound, liquid crystal composition, and optical anisotropic body using the same - Google Patents

Liquid crystalline (meth) acrylate compound, liquid crystal composition, and optical anisotropic body using the same Download PDF

Info

Publication number
JP3978624B2
JP3978624B2 JP17389097A JP17389097A JP3978624B2 JP 3978624 B2 JP3978624 B2 JP 3978624B2 JP 17389097 A JP17389097 A JP 17389097A JP 17389097 A JP17389097 A JP 17389097A JP 3978624 B2 JP3978624 B2 JP 3978624B2
Authority
JP
Japan
Prior art keywords
liquid crystal
group
crystal composition
integer
meth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17389097A
Other languages
Japanese (ja)
Other versions
JPH1121269A (en
Inventor
浩史 長谷部
晴義 高津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP17389097A priority Critical patent/JP3978624B2/en
Publication of JPH1121269A publication Critical patent/JPH1121269A/en
Application granted granted Critical
Publication of JP3978624B2 publication Critical patent/JP3978624B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Liquid Crystal Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光学、表示、記録材料、また液晶ディスプレイの光学補償板や偏光プリズム材料として利用される新規な液晶性(メタ)アクリレート化合物と液晶組成物及びこれを用いた光学異方体に関する。
【0002】
【従来の技術】
先に我々は、液晶ディスプレイ素子の表示品位の向上と軽量化に応える光学補償板等の光学異方体の作製を可能にする技術として、室温において液晶性を示す重合性液晶組成物とその組成物を配向させた状態において光重合して得られる内部の配向構造が制御された光学異方体を提案した(特開平8−3111号公報)。該発明の重合性液晶組成物は低分子化合物であり、粘度が低く所望の配向状態を迅速に達成することができるという長所を有している。しかしながら、該重合性液晶組成物をガラスやプラスチック等の基板に塗布する場合には、均一な厚みをもって塗布するのが困難という問題があった。
【0003】
【本発明が解決しようとする課題】
本発明が解決しようとする課題は、重合性低分子化合物を含有する液晶組成物において所望の配向状態の迅速な達成を犠牲にすることなく、ガラスやプラスチック基板への良好な塗布性を付与することであり、これを可能にする液晶性化合物及び液晶組成物、更には、この液晶組成物の重合体からなる光学異方体を提供することにある。
【0004】
【課題を解決するための手段】
本発明者等は上記課題を解決するため、液晶性(メタ)アクリレート化合物の化学構造とガラスやプラスチック基板へ塗布性との相関について鋭意検討した結果、かかる課題が、特定の化学構造を有する液晶性(メタ)アクリレート化合物の利用により解決されることを見いだし本発明を提供するに至った。即ち、
1.一般式(I)
【0005】
【化9】

Figure 0003978624
【0006】
(式中、Rは2価の有機基を表し、X1及びX2は水素原子又はメチル基を表し、X3及びX4は水素原子又は少なくとも2つの6員環を含む液晶骨格を表す。但し、X3及びX4が共に水素原子を表すことはない。)で表されることを特徴とする液晶性(メタ)アクリレート化合物。
2.一般式(I)において、Rが炭素原子数2〜24の直鎖状もしくは分枝状炭化水素基、−OCr2rO−、−OCr2r-2O−、−OCr2r-4O−、−O(CH2CH2O)p−、−O(CH2CH2CH2O)q−を表し、rは2から24、pは1から12、qは1から8で表されることを特徴とする上記1記載の液晶性(メタ)アクリレート化合物。
3.X3及びX4における少なくとも2つの6員環を含む液晶骨格が、一般式(II)
【0007】
【化10】
Figure 0003978624
【0008】
(式中、Y1は単結合、−OC−、−OC−(CH2i−(O)j−、−OC−(CH2i−COO−、−(CH2i−(O)j−、−(CH2i−COO−、
−OC−(CH2i−CO−を表し、iは1〜12の整数を表し、jは0または1の整数を表し、nは0又は1の整数を表し、6員環A、B及びCはそれぞれ独立的に、
【0009】
【化11】
Figure 0003978624
【0010】
を表し、mは1〜4の整数を表し、Y2及びY3はそれぞれ独立的に、単結合、−CH2CH2−、−CH2O−、−OCH2−、−COO−、−OCO−、−C≡C−、−CH=CH−、−CF=CF−、−(CH24−、−CH2CH2CH2O−、−OCH2CH2CH2−、−CH=CH−CH2CH2−、−CH2CH2CH2O−を表し、Y4は水素原子、ハロゲン原子、シアノ基、炭素原子1〜20のアルキル基、アルコキシ基、アルケニル基、アルケニルオキシ基を表す。)で表されることを特徴とする上記1又は2記載の液晶性(メタ)アクリレート化合物。4.一般式(I)において、X1及びX2は共に水素原子を表し、X3及びX4は水素原子又は一般式(II)においてY1は−OC−を表し、nは0または1の整数を表し、6員環Aは
【0011】
【化12】
Figure 0003978624
【0012】
を表し、6員環Bは
【0013】
【化13】
Figure 0003978624
【0014】
を表し、6員環Cは
【0015】
【化14】
Figure 0003978624
【0016】
を表し、Y2及びY3は単結合を表し、Y4は炭素原子1〜20のアルキル基を表すが、X3及びX4が共に水素原子を表すことはないことを特徴とする上記1、2又は3記載の液晶性(メタ)アクリレート化合物。
5.上記1、2、3又は4記載の液晶性(メタ)アクリレート化合物を含有し、且つ液晶相を示すことを特徴とする液晶組成物。
6.上記1、2、3又は4記載の液晶性(メタ)アクリレート化合物を2重量%以上、及び少なくとも2つの6員環を有する液晶骨格を部分構造として有する、環状アルコール、フェノール又は芳香族ヒドロキシ化合物のアクリル酸又はメタクリル酸エステルである単官能アクリレート又は単官能メタクリレートを含有し、且つ液晶相を示すことを特徴とする液晶組成物。
7.単官能アクリレート又は単官能メタクリレートが一般式(III)
【0017】
【化15】
Figure 0003978624
【0018】
(式中、X5は水素原子又はメチル基を表し、rは0または1の整数を表し、6員環D、E及びFはそれぞれ独立的に、
【0019】
【化16】
Figure 0003978624
【0020】
を表し、mは1〜4の整数を表し、Y5及びY6はそれぞれ独立的に、単結合、−CH2CH2−、−CH2O−、−OCH2−、−COO−、−OCO−、−C≡C−、−CH=CH−、−CF=CF−、−(CH24−、−CH2CH2CH2O−、−OCH2CH2CH2−、−CH=CH−CH2CH2−、−CH2CH2CH2O−を表し、Y7は水素原子、ハロゲン原子、シアノ基、炭素原子1〜20のアルキル基、アルコキシ基、アルケニル基、アルケニルオキシ基を表す。)で表されることを特徴とする上記6記載の液晶組成物。
8.液晶相が少なくとも20℃〜30℃の温度範囲で発現することを特徴とする上記5、6又は7記載の液晶組成物。
9.上記5、6、7又は8記載の液晶組成物の重合体からなることを特徴とする光学異方体。
を前記課題の解決手段として見出した。
【0021】
【発明の実施の形態】
以下、本発明の一例について、更に詳細に説明する。
一般式(I)において、X3が水素原子であり且つX4が一般式(II)
【0022】
【化17】
Figure 0003978624
【0023】
(式中、Y1は単結合、−OC−、−OC−(CH2i−(O)j−、−OC−(CH2i−COO−、−(CH2i−(O)j−、−(CH2i−COO−、
−OC−(CH2i−CO−を表し、iは1〜12の整数を表し、jは0または1の整数を表し、nは0または1の整数を表し、6員環A、B及びCはそれぞれ独立的に、
【0024】
【化18】
Figure 0003978624
【0025】
を表し、mは1〜4の整数を表し、Y2及びY3はそれぞれ独立的に、単結合、−CH2CH2−、−CH2O−、−OCH2−、−COO−、−OCO−、−C≡C−、−CH=CH−、−CF=CF−、−(CH24−、−CH2CH2CH2O−、−OCH2CH2CH2−、−CH=CH−CH2CH2−、−CH2CH2CH2O−を表し、Y4は水素原子、ハロゲン原子、シアノ基、炭素原子1〜20のアルキル基、アルコキシ基、アルケニル基、アルケニルオキシ基を表す。)を表し、もしくはX3とX4が共に一般式(II)で表される化合物であることが好ましい。また、本発明は、上記の化合物を含有する液晶組成物をも提供するものであるが、液晶相が少なくとも20℃〜30℃の温度範囲で発現することを特徴とする液晶組成物が好ましい。
【0026】
更に、一般式(I)において、Rが炭素原子数2〜24の直鎖状もしくは分枝状炭化水素基、−OCr2rO−、−OCr2r-2O−、−OCr2r-4O−、−O(CH2CH2O)p−、−O(CH2CH2CH2O)q−を表し、rは2から24の整数を表し、pは1から12の整数を表し、qは1から8の整数を表し、このとき、X3が水素原子であり且つX4が一般式(II)
【0027】
【化19】
Figure 0003978624
【0028】
(式中、Y1は単結合、−OC−、−OC−(CH2i−(O)j−、−OC−(CH2i−COO−、−(CH2i−(O)j−、−(CH2i−COO−、
−OC−(CH2i−CO−を表し、iは1〜12の整数を表し、jは0または1の整数を表し、nは0または1の整数を表し、6員環A、B及びCはそれぞれ独立的に、
【0029】
【化20】
Figure 0003978624
【0030】
を表し、mは1〜4の整数を表し、Y2及びY3はそれぞれ独立的に、単結合、−CH2CH2−、−CH2O−、−OCH2−、−COO−、−OCO−、−C≡C−、−CH=CH−、−CF=CF−、−(CH24−、−CH2CH2CH2O−、−OCH2CH2CH2−、−CH=CH−CH2CH2−、−CH2CH2CH2O−を表し、Y4は水素原子、ハロゲン原子、シアノ基、炭素原子1〜20のアルキル基、アルコキシ基、アルケニル基、アルケニルオキシ基を表す。)を表し、もしくはX3とX4が共に一般式(II)で表される化合物であることが好ましい。また、本発明は、上記の化合物を含有する液晶組成物をも提供するものであるが、液晶相が少なくとも20℃〜30℃の温度範囲で発現することを特徴とする液晶組成物が好ましい。上記の化合物を2重量%以上、及び少なくとも2つの6員環を有する液晶骨格を部分構造として有する、環状アルコール、フェノール又は芳香族ヒドロキシ化合物の(メタ)アクリル酸モノエステルを含有し、且つ液晶相を示すことを特徴とする液晶組成物が好ましく、(メタ)アクリル酸モノエステルが一般式(III)
【0031】
【化21】
Figure 0003978624
【0032】
(式中、X5は水素原子又はメチル基を表し、rは0または1の整数を表し、6員環D、E及びFはそれぞれ独立的に、
【0033】
【化22】
Figure 0003978624
【0034】
を表し、mは1〜4の整数を表し、Y5及びY6はそれぞれ独立的に、単結合、−CH2CH2−、−CH2O−、−OCH2−、−COO−、−OCO−、−C≡C−、−CH=CH−、−CF=CF−、−(CH24−、−CH2CH2CH2O−、−OCH2CH2CH2−、−CH=CH−CH2CH2−、−CH2CH2CH2O−を表し、Y7は水素原子、ハロゲン原子、シアノ基、炭素原子1〜20のアルキル基、アルコキシ基、アルケニル基、アルケニルオキシ基を表す。)を表すことがより好ましい。
【0035】
また、一般式(I)において、Rが炭素原子数2〜24の直鎖状もしくは分枝状炭化水素基を表し、このとき、X1及びX2が共に水素原子を表し、X3が水素原子を表し且つX4が一般式(II)
【0036】
【化23】
Figure 0003978624
【0037】
(式中、Y1は−OC−を表し、nは0または1の整数を表し、6員環Aは
【0038】
【化24】
Figure 0003978624
【0039】
を表し、6員環Bは
【0040】
【化25】
Figure 0003978624
【0041】
を表し、6員環Cは
【0042】
【化26】
Figure 0003978624
【0043】
を表し、Y2及びY3は単結合を表し、Y4は炭素原子1〜20のアルキル基を表す。)を表し、あるいはX3とX4が共に一般式(II)で表される化合物も同様に好ましい。また、本発明は、上記の化合物を含有する液晶組成物をも提供するものであるが、液晶相が少なくとも20℃〜30℃の温度範囲で発現することを特徴とする液晶組成物が好ましい。
【0044】
一般式(I)のような化合物の利用によって良好な塗布性が得られる理由は必ずしも明らかではないが、粘度の増大や1分子あたりの酸素原子の数の増大によりガラス表面等への親和性が増すためによるものと考えられる。
【0045】
本発明の液晶性(メタ)アクリレート化合物(以下、本発明の化合物という)を製造するには、通常、まずジエポキシ化合物にアクリル酸もしくはメタクリル酸を作用させて、ジ(2−ヒドロキシエチル(メタ)アクリレート)誘導体を得る。次にこの誘導体と、少なくとも2つの6員環を含む液晶骨格を有するカルボン酸誘導体とのエステル化反応、もしくは少なくとも2つの6員環を含むフェノール誘導体、芳香族ヒドロキシ誘導体、アルコール誘導体とのエーテル化反応を行うことにより本発明の化合物を製造することができる。このように製造される本発明の化合物のうち、エステル化反応で得られる化合物は、基板への密着性に優れるため特に好ましい。エステル化反応もしくはエーテル化反応の際に、ジ(2−ヒドロキシエチル(メタ)アクリレート)誘導体に2つあるヒドロキシ基のうち一つのみがエステル化またはエーテル化されたもの、及び2つともエステル化またはエーテル化したものが得られることがある。このような場合には、ジ(2−ヒドロキシエチル(メタ)アクリレート)誘導体の2つのヒドロキシル基のうち一つのみがエステル化またはエーテル化された化合物のみを単離して用いても良いし、2つともエステル化またはエーテル化された化合物のみを単離して用いても良いし、単離せずに混合したまま用いても良い。一般的に、液晶の相転移温度の正確な制御が必要なときには、単離して用いるのが好ましい。ジ(2−ヒドロキシエチル(メタ)アクリレート)誘導体の2つのヒドロキシル基のうち一つのみがエステル化またはエーテル化された化合物は、ガラス基板等の親水性の高い基板への塗布性が良好であり、2つのヒドロキシル基がエステル化またはエーテル化された化合物は、一つのみがエステルまたはエーテル化された化合物と比較してより広い温度領域で液晶相を発現する傾向があり、プラスチック基板等への塗布性が良好であるので、塗布しようとする基板の性質や所望の液晶温度範囲を考慮して、これらの化合物を適宜使用するのが好ましい。
【0046】
また、本発明の化合物は単体として液晶相、特にネマチック相、スメクチックA相、スメクチックC相を示すことが好ましい。
少なくとも2つの6員環を含む液晶骨格としては、一般式(II)
【0047】
【化27】
Figure 0003978624
【0048】
(式中、Y1は単結合、−OC−、−OC−(CH2i−(O)j−、−OC−(CH2i−COO−、−(CH2i−(O)j−、−(CH2i−COO−、
−OC−(CH2i−CO−を表し、iは1〜12の整数を表し、jは0または1の整数を表し、nは0又は1の整数を表し、6員環A、B及びCはそれぞれ独立的に、
【0049】
【化28】
Figure 0003978624
【0050】
を表し、mは1〜4の整数を表し、Y2及びY3はそれぞれ独立的に、単結合、−CH2CH2−、−CH2O−、−OCH2−、−COO−、−OCO−、−C≡C−、−CH=CH−、−CF=CF−、−(CH24−、−CH2CH2CH2O−、−OCH2CH2CH2−、−CH=CH−CH2CH2−、−CH2CH2CH2O−を表し、Y4は水素原子、ハロゲン原子、シアノ基、炭素原子1〜20のアルキル基、アルコキシ基、アルケニル基、アルケニルオキシ基を表される骨格を用いるのが好ましい。このような液晶骨格の具体的な例としては、式(1)〜(67)に挙げた骨格が望ましいが、本発明で使用することができる液晶骨格はこれらに限定されるものではない。
【0051】
【化29】
Figure 0003978624
【0052】
【化30】
Figure 0003978624
【0053】
【化31】
Figure 0003978624
【0054】
【化32】
Figure 0003978624
【0055】
【化33】
Figure 0003978624
【0056】
【化34】
Figure 0003978624
【0057】
【化35】
Figure 0003978624
【0058】
【化36】
Figure 0003978624
【0059】
(式中、シクロヘキサン環はトランスシクロヘキサン環を表し、R1は水素原子、ハロゲン原子、シアノ基、炭素原子1〜20のアルキル基、アルコキシ基、アルケニル基、アルケニルオキシ基を表し、sは0から12を表し、sが0の時t及びuは0であり、sが1〜12の時t及びuはそれぞれ独立に0または1を表す)。特に、この中でも6員環を3つ有する骨格は液晶相を発現しやすいので好ましい。また、電気的な駆動を行いたい場合には、R1としてシアノ基やハロゲン原子、特にフッ素原子を有する骨格を用いるのが特に好ましい。
【0060】
一般式(I)における2価の有機基Rとしては、アルキレン基は勿論、シロキサン骨格等のケイ素原子、エーテル結合及び不飽和結合等が導入された直鎖状もしくは分枝状炭化水素基を用いることができる。この2価の有機基Rに含まれる炭素原子数の総和は、2〜24の範囲にあるのが好ましい。2より小さい場合には、得られる化合物の結晶から液晶相への転移温度が高くなってしまう傾向があり、また24より大きい場合には液晶相から等方性液体への転移温度が低くなってしまう傾向があり、安定な液晶相が得にくくなってしまう。このような有機基Rの具体的な例としては、式(68)〜(76)に挙げた骨格が望ましいが、本発明で使用することができる骨格はこれらに限定されるものではない。
【0061】
【化37】
Figure 0003978624
【0062】
(式中、vは2〜24の整数、wは1〜12の整数、xは1〜8の整数を表し、シクロヘキサン環はトランスシクロヘキサン環を表す。)
本発明は更に、本発明の化合物を含有する液晶組成物をも提供する。本発明の液晶組成物の液晶相としては、通常この技術分野で液晶相と認識される相であれば特に制限なく用いることができるが、その中でもネマチック相、スメクチックA相、(カイラル)スメクチックC相、コレステリック相を発現するものが特に好ましい。また、(カイラル)スメクチックC相を示す場合には、該(カイラル)スメクチックC相の上の温度領域でスメクチックA相を、スメクチックA相を示す場合には、該スメクチックA相の上の温度領域でネマチック相を発現するようにすると、良好な一軸の配向特性が得られるため好ましい。実際に紫外線を照射して本発明の液晶組成物中の(メタ)アクリレート化合物を重合させる液晶相の温度領域もしくは実際に使用する液晶相の温度領域としては、室温付近、即ち少なくとも20〜30℃の温度範囲で液晶相を発現するものが特に好ましい。例えば(カイラル)スメクチックC相で実際に本発明の液晶組成物を重合させる場合には、(カイラル)スメクチックC相が室温付近で、即ち少なくとも20から30℃の温度範囲で(カイラル)スメクチックC相が発現するものが好ましい。
【0063】
本発明の液晶組成物には、ガラスやプラスチック基板への良好な塗布性能を確保するため、本発明の化合物を2重量%以上含有させることが好ましい。本発明の化合物が2重量%以下である場合には、良好な塗布性能が確保されない傾向がある。
【0064】
また、本発明の液晶組成物には、分子内に通常この技術分野で液晶骨格と認められる骨格と重合性官能基を同時に有する重合性の液晶化合物を98重量%以下の濃度で特に制限なく添加することができる。液晶骨格としては、少なくとも2つ又は3つの6員環を有するものが特に好ましい。重合性官能基としては、(メタ)アクリロイルオキシ基、エポキシ基、ビニルエーテル基、シンナモイル基、ビニル基等を挙げることができるが、良好な光重合特性が得られることから、アクリロイルオキシ基が特に好ましい。複数以上の重合性官能基を有する化合物の場合には、重合性官能基の種類が異なっていても良い。例えば、2つの重合性官能基を有する液晶化合物の場合、一つがアクリロイルオキシ基、もう一つがメタアクリロイルオキシ基または、ビニルエーテル基であっても良い。重合性官能基を2つ有する液晶化合物は多くの種類が知られており、一般的にこれらを重合させた場合には良好な耐熱性及び強度特性を得られることから、好適に用いることができる。このような重合性官能基を2つ有する液晶化合物の具体的な例としては、式(77)〜(86)に挙げた化合物が好ましいが、本発明の液晶組成物において使用することができる化合物はこれらに限定されるものではない。
【0065】
【化38】
Figure 0003978624
【0066】
(式中、シクロヘキサン環はトランスシクロヘキサン環を表し、Xはハロゲン原子、シアノ基、メチル基を表し、aは2〜12の整数を表す)。さらに本発明の液晶組成物には、分子内に一つの重合性官能基を有する液晶化合物を添加しても良い。このような重合性官能基を一つ有する液晶化合物の具体的な例としては、式(87)〜(132)に挙げた化合物が好ましいが、本発明の液晶組成物において使用することができる化合物はこれらに限定されるものではない。
【0067】
【化39】
Figure 0003978624
【0068】
【化40】
Figure 0003978624
【0069】
【化41】
Figure 0003978624
【0070】
【化42】
Figure 0003978624
【0071】
(式中、シクロヘキサン環はトランスシクロヘキサン環を表し、Yは水素原子、ハロゲン原子、シアノ基、炭素原子1〜20のアルキル基、アルコキシ基、アルケニル基、アルケニルオキシ基を表し、bは2から12の整数を表す)。
【0072】
さらに本発明の液晶組成物には、室温付近、即ち少なくとも20〜30℃の温度範囲での液晶相の発現を容易にし、かつ液晶組成物の光重合物の耐熱性及び強度特性の確保を図ることを目的として、少なくとも2つの6員環を有する液晶骨格を部分構造として有する、環状アルコール、フェノール又は芳香族ヒドロキシ化合物のアクリル酸又はメタクリル酸エステルである単官能(メタ)アクリレートを含有させても良い。なぜなら、このような単官能(メタ)アクリレートは、(メタ)アクリロイルオキシ基と液晶骨格との間に、アルキレン基又はオキシアルキレン基等の液晶の技術分野でスペーサーと呼ばれる柔軟性の連結基が無い。そのため、このような単官能(メタ)アクリレートを重合させて得られる重合体の主鎖には、スペーサーを介さず直接剛直な液晶骨格が結合し、液晶骨格の熱運動は高分子主鎖により制限されることが予想され、優れた耐熱性及び強度特性が期待できるためである。また、分子形状的に液晶性を低下させてしまう(メタ)アクリロイルオキシ基を分子内に一つ有しているだけなので、液晶を発現させる温度範囲の制御も分子内に複数の(メタ)アクリロイルオキシ基を有する化合物より容易になる。このよう単官能(メタ)アクリレートとしては一般式(III)
【0073】
【化43】
Figure 0003978624
【0074】
(式中、X5は水素原子又はメチル基を表し、rは0または1の整数を表し、6員環D、E及びFはそれぞれ独立的に、
【0075】
【化44】
Figure 0003978624
【0076】
を表し、mは1〜4の整数を表し、Y5及びY6はそれぞれ独立的に、単結合、−CH2CH2−、−CH2O−、−OCH2−、−COO−、−OCO−、−C≡C−、−CH=CH−、−CF=CF−、−(CH24−、−CH2CH2CH2O−、−OCH2CH2CH2−、−CH=CH−CH2CH2−、−CH2CH2CH2O−を表し、Y7は水素原子、ハロゲン原子、シアノ基、炭素原子1〜20のアルキル基、アルコキシ基、アルケニル基、アルケニルオキシ基を表す。)で表される化合物が好ましい。このような単官能(メタ)アクリレートの具体的な例としては、式(133)〜(143)に挙げた化合物が好ましいが、本発明の液晶組成物において使用することができる単官能(メタ)アクリレートはこれらに限定されるものではない。
【0077】
【化45】
Figure 0003978624
【0078】
【化46】
Figure 0003978624
【0079】
(上記中、シクロヘキサン環はトランスシクロヘキサン環を表し、またCは結晶相、Nはネマチック相、Sはスメクチック相、Iは等方性液体相を表し、数字は相転移温度を表す。)
また、本発明の液晶組成物には、重合性官能基を有していない液晶化合物を用途に応じて添加しても良い。使用用途として本発明の液晶組成物の重合体を、表示素子と用いる場合や、温度によって屈折率を変化させたい場合には、重合性官能基を有していない液晶化合物の総量は30〜98重量%の範囲に設定するのが好ましい。また、温度によって屈折率が変化するのが好ましくない場合や、耐熱性や機械的特性を重視する場合には、重合性官能基を有していない液晶化合物の総量は0〜30重量%の範囲に設定するのが好ましい。
【0080】
また、本発明の液晶組成物には重合性官能基を有しており、かつ液晶性を示さない化合物も添加することができる。このような化合物としては、通常この技術分野で高分子形成性モノマーあるいは高分子形成性オリゴマーとして認識されるものであれば特に制限なく使用することができるが、アクリレート化合物、メタクリレート化合物、ビニルエーテル化合物が特に好ましい。
【0081】
以上のような重合性官能基を有する液晶化合物、重合性官能基を有さない液晶化合物、液晶性を示さない重合性化合物は適宜組み合わせて添加してもよいが、少なくとも得られる液晶組成物の液晶性が失われないように各成分の添加量を調整することが必要である。
【0082】
更に本発明の液晶組成物には、その重合反応性を向上させることを目的として、熱重合開始剤、光重合開始剤の重合開始剤を添加しても良い。ここで使用できる熱重合開始剤としては、過酸化ベンゾイル、ビスアゾブチロニトリル等から選択することができ、光重合開始剤としてはベンゾインエーテル類、ベンゾフェノン類、アセトフェノン類、ベンジルケタール類等から選択して使用することができる。その添加量は、液晶組成物に対して10重量%以下であることが好ましく、5重量%以下であることがさらに好ましく、0.5〜1.5重量%の範囲であることが特に好ましい。
【0083】
また、本発明の液晶組成物には、その保存安定性を向上させるために安定剤を添加しても良い。ここで使用することができる安定剤としては、例えばヒドロキノン、ヒドロキノンモノアルキルエーテル類、第三ブチルカテコール等から選択して使用することができる。その添加量は、液晶組成物に対して1重量%以下が好ましく、0.5重量%以下がさらに好ましい。
【0084】
また、本発明の液晶組成物には、液晶骨格の螺旋構造を内部に有する重合体を得ることを目的としてカイラル(光学活性)化合物を添加しても良い。ここで使用することができるカイラル化合物は、それ自体が液晶性を示す必要は無く、また重合性官能基を有していても、有していなくても良い。またその螺旋の向きは重合体の使用用途によって適宜選択することができる。そのようなカイラル化合物としては光学活性基としてコレステリル基を有するペラルゴン酸コレステロール、ステアリン酸コレステロール、光学活性基として2−メチルブチル基を有する「CB−15」、「C−15」(以上BDH社製)、「S−1082」(メルク社製)、「CM−19」、「CM−20」、「CM」(以上チッソ社製)、光学活性基として1−メチルヘプチル基を有する「S−811」(メルク社製)、「CM−21」、「CM−22」(以上チッソ社製)を挙げることができる。このカイラル化合物の好ましい添加量は液晶組成物の用途によるが、重合して得られる重合体の厚み(d)を重合体中での螺旋ピッチ(P)で除した値(d/P)が0.1〜20の範囲になるよう調整するのが好ましい。
【0085】
また、本発明の液晶組成物を偏光フィルムや配向膜の原料、または印刷インキ及び塗料等として利用する場合には、その目的に応じて金属、金属錯体、染料、顔料、色素、界面活性剤、ゲル化剤、紫外線吸収剤、抗酸化剤、イオン交換樹脂、酸化チタンの金属酸化物等を添加することもできる。
【0086】
本発明は更に、本発明の液晶組成物の重合体からなる光学異方体をも提供する。本発明の光学異方体は、本発明の液晶組成物を配向させた状態において、重合させることにより製造することができる。例えば、基板表面を布等でラビング、もしくは有機薄膜を形成した基板表面を布等でラビング、あるいはSiO2を斜方蒸着した配向膜を有する基板上に担持させるか、基板間に挟持させた後、本発明の液晶を重合させる方法を挙げることができる。その他の配向処理方法としては、液晶組成物の流動配向の利用や、電場又は磁場の利用を挙げることができる。これらの配向手段は単独で用いても、また組み合わせて用いても良い。その中でも基板表面を布等でラビング処理した基板を用いる方法は、その簡便性から特に好ましい。
【0087】
この時使用することができる基板は、有機材料、無機材料を問わずに用いることができる。具体的な例を挙げると有機材料としては、ポリエチレンテレフタレート、ポリカーボネート、ポリイミド、ポリアミド、ポリメタクリル酸メチル、ポリスチレン、ポリ塩化ビニル、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリアリレート、ポリスルホン、トリアセチルセルロース、セルロース、ポリエーテルエーテルケトン、無機材料としてはシリコン、ガラス、方解石等を挙げることができる。
【0088】
これらの基板を布等でラビングすることをによって適当な配向性を得られないときには、公知の方法に従ってポリイミド薄膜又はポリビニルアルコール薄膜等の有機薄膜を基板表面に形成し、これを布等でラビングしても良い。また通常のTN又はSTN素子で使用されているようなプレチルト角を与えるポリイミド薄膜を利用すると、光学異方体内部の分子配向構造を更に精密に制御できることから、特に好ましく利用することができる。また、電場によって配向状態を制御する場合には、電極層を有する基板を使用することができ、この場合には電極上に前述のポリイミド薄膜等の有機薄膜を形成するのが好ましい。
【0089】
また、ラビングに代わる配向処理方法として、光配向法も用いることができる。これはポリビニルシンナメート等の分子内に光二量化反応する官能基を有する有機薄膜や光で異性化する官能基を有する有機薄膜又はポリイミド等の有機薄膜に、偏光した光、このましくは偏光した紫外線を照射することによって、配向膜とするものである。この光配向法に光マスクを適用することにより配向のパターン化が容易に達成できるので、光学異方体内部の分子配向も精密に制御することが可能となる。
【0090】
重合の方法としては、迅速な重合の進行が望ましいので、紫外線又は電子線等のエネルギーを照射することによって光重合させる方法が好ましい。この光重合させる際の光源としては偏光光源を用いても良いし、非偏光光源を用いても良い。また、液晶組成物を2枚の基板間に挟持させた状態で光重合を行う場合には、少なくとも照射面側の基板は適当な透明性が与えられていなければならない。また、照射時の温度は、本発明の液晶組成物の液晶状態が保持される温度範囲内であることが好ましい。特に、光重合によって光学異方体を製造しようとする場合には、意図しない熱重合の誘起を避ける意味からもできるだけ室温に近い温度で、即ち20〜30℃の温度で重合させることが好ましい。重合によって得られた本発明の光学異方体は、初期の特性変化を軽減し、安定的な特性発現を図ることを目的として熱処理をしても良い。熱処理の温度としては50〜250℃の温度範囲で、また熱処理時間としては30秒〜12時間の範囲にあるのが好ましい。
【0091】
このような方法によって製造される本発明の光学異方体は、基板から剥離して用いても、剥離せずに用いても良い。
【0092】
【実施例】
以下、本発明の実施例を示し、本発明を更に詳細に説明する。しかしながら、本発明はこれらの実施例に限定されるものではない。
(実施例1) 液晶性アクリレート化合物の合成
日本化薬社製「R−167」
【0093】
【化47】
Figure 0003978624
【0094】
5.0gとトリエチルアミン3.0gをテトラヒドロフラン50ml中に溶解させ、撹拌しながら液温を5℃にした。これに、テトラヒドロフラン40ml中に溶解させた化合物(a)
【0095】
【化48】
Figure 0003978624
【0096】
10.8gを液温が15℃を超えないように30分間かけて滴下し、その後室温で2時間撹拌した。さらに50℃で10時間撹拌をつづけてから、室温に冷却した。冷却後、反応液に飽和食塩水1000mlを加えた。この反応液の水層が弱酸性になるように希塩酸水溶液を加えた後、酢酸エチル300mlを加えて抽出を行った。有機層を水洗後、酢酸エチルを減圧留去して17.0gの粗精製物を得た。これを展開溶媒として酢酸エチルとn−ヘキサンの混合溶媒(容量比で酢酸エチル:n−ヘキサン=1:3)としたシリカゲルカラムクロマトグラフィーにより精製し、液晶性アクリレート化合物(b)
【0097】
【化49】
Figure 0003978624
【0098】
を1.2g(Rf=0.42)、液晶性アクリレート化合物(c)
【0099】
【化50】
Figure 0003978624
【0100】
を1.9g(Rf=0.33)を得た。化合物(b)と(c)は3倍量のエタノールにより再結晶を行い、それぞれ0.9g(収率11.0%)と1.5g(収率6.5%)の精製品として得た。
【0101】
化合物(b)の相転移温度は、
【0102】
【化51】
Figure 0003978624
【0103】
(SXは詳細な相を断定できないスメクチック相を表し、SAはスメクチックA相を表し、Nはネマチック相を表し、Iは等方性液体相を表す。)
であり、化合物(c)の相転移温度は、
【0104】
【化52】
Figure 0003978624
【0105】
(SAはスメクチックA相を表し、Nはネマチック相を表し、Iは等方性液体相を表す。)
であった。
(実施例2) 液晶性アクリレート化合物の合成
日本化薬社製「R−167」3.2gとトリエチルアミン4.2gをテトラヒドロフラン50ml中に溶解させ、撹拌しながら液温を5℃にした。これに、テトラヒドロフラン15ml中に溶解させた化合物(d)
【0106】
【化53】
Figure 0003978624
【0107】
5.0gを液温が15℃を超えないように30分間かけて滴下し、その後室温で2時間撹拌した。さらに20時間加熱環流をつづけてから、室温に冷却した。冷却後、反応液に飽和食塩水500mlを加えた。この反応液の水層が弱酸性になるように希塩酸水溶液を加えた後、酢酸エチル100mlを加えて抽出を行った。有機層を水洗後、酢酸エチルを減圧留去して7.4gの粗精製物を得た。これを展開溶媒として酢酸エチルとn−ヘキサンの混合溶媒(容量比で酢酸エチル:n−ヘキサン=1:3)としたシリカゲルカラムクロマトグラフィーにより精製し、液晶性アクリレート化合物(e)
【0108】
【化54】
Figure 0003978624
【0109】
を0.5g(Rf=0.47、収率6.3%)、液晶性アクリレート化合物(f)
【0110】
【化55】
Figure 0003978624
【0111】
を1.7g(Rf=0.40、収率14.9%)を得た。化合物(e)と化合物(f)は共に室温で等方性液体であった。
(実施例3) 液晶組成物の調製
式(133)
【0112】
【化56】
Figure 0003978624
【0113】
の化合物50重量部及び式(136)
【0114】
【化57】
Figure 0003978624
【0115】
の化合物50重量部からなる液晶組成物(A)を調製した。この液晶組成物(A)は本発明の化合物を含有しないものであり、室温で液晶相を示し、ネマチック−等方性液体相の相転移温度は46℃であった。液晶組成物(A)90重量部に実施例1で合成した液晶性アクリレート化合物(b)10重量部からなる液晶組成物(B)を調製した。得られた液晶組成物(B)は18℃〜56℃の温度範囲でネマチック相を示した。
(実施例4) 液晶組成物の調製
実施例3で調製した液晶組成物(A)90重量部に実施例1で合成した化合物(c)10重量部からなる液晶組成物(C)を調製した。得られた液晶組成物(C)は19℃〜50℃の温度範囲でネマチック相を示した。
(実施例5) 液晶組成物の調製
実施例3で調製した液晶組成物(A)98重量部に実施例2で合成した化合物(e)2重量部からなる液晶組成物(D)を調製した。得られた液晶組成物(D)は15℃〜42℃の温度範囲でネマチック相を示した。
(実施例6) 液晶組成物の調製
実施例3で調製した液晶組成物(A)98重量部に実施例2で合成した化合物(f)2重量部からなる液晶組成物(E)を調製した。得られた液晶組成物(E)は15℃〜41℃の温度範囲でネマチック相を示した。
(実施例7) 光学異方体の作製
実施例3で調製した液晶組成物(B)99重量部に光重合開始剤「IRG−651」(チバガイギー社製)1重量部を溶解させた。次にこれをセルギャップ10ミクロンの透明ガラス製TN(ツイステッドネマチック)セルに注入したところ、良好なTN配向が得られていることが偏光顕微鏡観察により確認できた。このセルに、25℃において高圧水銀ランプを用いて500mJ/cm2の紫外線を照射し、液晶組成物を光重合させた。セルを偏光顕微鏡で観察したところ、TN配向が均一に固定化された光学異方体が得られているのが確認できた。次にセルのガラスを取り外すことにより、1枚のガラスの上に担持された厚さ10ミクロンのTN配向構造を有する光学異方体を得た。この光学異方体は150℃で100時間加熱しても、TN配向構造が保持されることがわかった。
(実施例8) 光学異方体の作製
実施例4で調製した液晶組成物(C)99重量部に光重合開始剤「IRG−651」(チバガイギー社製)1重量部を溶解させた。次にこれをセルギャップ10ミクロンの透明ガラス製TN(ツイステッドネマチック)セルに注入したところ、良好なTN配向が得られていることが偏光顕微鏡観察により確認できた。このセルに、25℃において高圧水銀ランプを用いて500mJ/cm2の紫外線を照射し、液晶組成物を光重合させた。セルを偏光顕微鏡で観察したところ、TN配向が均一に固定化された光学異方体が得られているのが確認できた。次にセルのガラスを取り外すことにより、1枚のガラスの上に担持された厚さ10ミクロンのTN配向構造を有する光学異方体を得た。この光学異方体は150℃で100時間加熱しても、TN配向構造が保持されることがわかった。
(実施例9) 光学異方体の作製
実施例5で調製した液晶組成物(D)99重量部に光重合開始剤「IRG−651」(チバガイギー社製)1重量部を溶解させた。次にこれをセルギャップ10ミクロンの透明ガラス製TN(ツイステッドネマチック)セルに注入したところ、良好なTN配向が得られていることが偏光顕微鏡観察により確認できた。このセルに、25℃において高圧水銀ランプを用いて500mJ/cm2の紫外線を照射し、液晶組成物を光重合させた。セルを偏光顕微鏡で観察したところ、TN配向が均一に固定化された光学異方体が得られているのが確認できた。次にセルのガラスを取り外すことにより、1枚のガラスの上に担持された厚さ10ミクロンのTN配向構造を有する光学異方体を得た。この光学異方体は150℃で100時間加熱しても、TN配向構造が保持されることがわかった。
(実施例10) 光学異方体の作製
実施例6で調製した液晶組成物(E)99重量部に光重合開始剤「IRG−651」(チバガイギー社製)1重量部を溶解させた。次にこれをセルギャップ10ミクロンの透明ガラス製TN(ツイステッドネマチック)セルに注入したところ、良好なTN配向が得られていることが偏光顕微鏡観察により確認できた。このセルに、25℃において高圧水銀ランプを用いて500mJ/cm2の紫外線を照射し、液晶組成物を光重合させた。セルを偏光顕微鏡で観察したところ、TN配向が均一に固定化された光学異方体が得られているのが確認できた。次にセルのガラスを取り外すことにより、1枚のガラスの上に担持された厚さ10ミクロンのTN配向構造を有する光学異方体を得た。この光学異方体は150℃で100時間加熱しても、TN配向構造が保持されることがわかった。
(実施例11) 光学異方体の作製
実施例1で合成した液晶性アクリレート化合物(C)99重量部に光重合開始剤「IRG−651」(チバガイギー社製)1重量部を溶解させた。次にこれを80℃に熱したセルギャップ10ミクロンの透明ガラス製アンチパラレル配向ルに注入した。25℃まで冷却後、セルを偏光顕微鏡で観察したところ、スメクチックA相の均一なホモジニアス(一軸)配向状態が得られていることが確認できた。このセルに25℃において高圧水銀ランプを用いて500mJ/cm2の紫外線を照射し、液晶組成物を光重合させた。セルを偏光顕微鏡で観察したところ、ホモジニアス配向が均一に固定化された光学異方体が得られているのが確認できた。
(実施例12) 光学異方体の作製
厚さ1mmで20mm角の透明ガラス基板に、ポリイミド配向剤「AL−1254」(日本合成ゴム製)を2000回転/分でスピンコートした後、150℃で1時間乾燥させることにより、ガラス基板上にポリイミド薄膜を形成した。このポリイミド薄膜をラビングマシーン「RM−50」(EHC社製)でラビングすることにより、ポリイミド配向膜とした。このポリイミド配向膜付きガラス基板に、実施例3で調製した液晶組成物(B)99重量部に光重合開始剤「IRG−651」(チバガイギー社製)1重量部を添加し、これを1000回転/分でスピンコートした。このスピンコートした基板に、窒素気流下25℃において高圧水銀ランプを用いて500mJ/cm2の紫外線を照射し、液晶組成物を光重合させた。この基板を偏光顕微鏡で観察したところ、均一な一軸配向が固定化された光学異方体が得られているのが確認できた。また、この基板を2枚の偏光板の間に挟んでところ、基板の全面にわたって均一な干渉色が観察され、均一な厚みをもった光学異方体が得られたことを確認できた。また、この基板を150℃で加熱しても、固定化された均一な配向状態はそのまま保持されていた。
(実施例13) 光学異方体の作製
実施例12における液晶組成物(B)を、実施例3で調製した液晶組成物(C)に代えた以外は同様にして光学異方体を作製した。得られた光学異方体を偏光顕微鏡で観察したところ、均一な一軸配向が固定化された光学異方体が得られているのが確認できた。また、これを2枚の偏光板の間に挟んでところ、基板の全面にわたって均一な干渉色が観察され、均一な厚みをもった光学異方体が得られたことを確認できた。また、得られた光学異方体を150℃で加熱しても、固定化された均一な配向状態はそのまま保持されていた。
(比較例1)
実施例12における液晶組成物(B)を、実施例3で調製した本発明の化合物を含有しない液晶組成物(A)に代えた以外は同様にして光学異方体を作製した。得られた光学異方体を偏光顕微鏡で観察したところ、均一な一軸配向が固定化された光学異方体が得られているのが確認できた。しかしながら、これを2枚の偏光板の間に挟んでところ、基板の全面にわたる均一な干渉色が観察されず、光学異方体の膜厚が均一でないことが確認された。
(実施例14) 光学異方体の作製
厚さ2.0mmで20mm角のポリカーボネート基板を用意し、ポリカーボネート基板の光軸方向と同一方向にラビングマシーン「RM−50」(EHC社製)を用いてラビングした。このポリカーボネート基板に、実施例3で調製した液晶組成物(B)99重量部に光重合開始剤「IRG−651」(チバガイギー社製)1重量部を添加し、これを1000回転/分でスピンコートした。このスピンコートした基板に、窒素気流下25℃において高圧水銀ランプを用いて500mJ/cm2の紫外線を照射し、液晶組成物を光重合させた。この基板を偏光顕微鏡で観察したところ、均一な一軸配向が固定化された光学異方体が得られているのが確認できた。また、この基板を2枚の偏光板の間に挟んでところ、基板の全面にわたって均一な干渉色が観察され、均一な厚みをもった光学異方体が得られたことを確認できた。また、この基板を100℃で加熱しても、固定化された均一な配向状態はそのまま保持されていた。
(実施例15) 光学異方体の作製
実施例14における液晶組成物(B)を、実施例3で調製した液晶組成物(C)に代えた以外は同様にして光学異方体を作製した。得られた光学異方体を偏光顕微鏡で観察したところ、均一な一軸配向が固定化された光学異方体が得られているのが確認できた。また、これを2枚の偏光板の間に挟んでところ、基板の全面にわたって均一な干渉色が観察され、均一な厚みをもった光学異方体が得られたことを確認できた。また、得られた光学異方体を150℃で加熱しても、固定化された均一な配向状態はそのまま保持されていた。
(比較例2)
実施例14における液晶組成物(B)を、実施例3で調製した本発明の化合物を含有しない液晶組成物(A)に代えた以外は同様にして光学異方体を作製した。得られた光学異方体を偏光顕微鏡で観察したところ、均一な一軸配向が固定化された光学異方体が得られているのが確認できた。しかしながら、これを2枚の偏光板の間に挟んでところ、基板の全面にわたる均一な干渉色が観察されず、光学異方体の膜厚が均一でないことが確認された。
【0116】
【発明の効果】
本発明の液晶性(メタ)アクリレート化合物と液晶組成物は、プラスチックやガラス基板への塗布性に優れている。従って、塗布等の手段によって位相差フィルム等の光学異方体を作製するのに有用な材料である。また本発明の液晶性(メタ)アクリレート化合物と液晶組成物を用いて作製した光学異方体は、配向の均一性及び膜厚の均一性に優れており、位相差フィルム等への応用に適している。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel liquid crystalline (meth) acrylate compound and a liquid crystal composition used as an optical compensator and a polarizing prism material for optical, display and recording materials, and liquid crystal displays, and an optical anisotropic body using the same.
[0002]
[Prior art]
First, we have developed a polymerizable liquid crystal composition that exhibits liquid crystallinity at room temperature and its composition as a technology that enables the production of optically anisotropic bodies such as optical compensators that meet the demands for improving the display quality and weight of liquid crystal display elements. An optically anisotropic body having a controlled internal orientation structure obtained by photopolymerization in a state in which the product is oriented has been proposed (Japanese Patent Laid-Open No. 8-3111). The polymerizable liquid crystal composition of the present invention is a low-molecular compound and has an advantage that a desired alignment state can be rapidly achieved with a low viscosity. However, when the polymerizable liquid crystal composition is applied to a substrate such as glass or plastic, there is a problem that it is difficult to apply the polymerizable liquid crystal composition with a uniform thickness.
[0003]
[Problems to be solved by the present invention]
The problem to be solved by the present invention is that liquid crystal compositions containing a polymerizable low-molecular compound impart good coatability to glass or plastic substrates without sacrificing rapid achievement of the desired alignment state. Therefore, it is an object of the present invention to provide a liquid crystal compound and a liquid crystal composition that enable this, and an optical anisotropic body made of a polymer of the liquid crystal composition.
[0004]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have intensively studied the correlation between the chemical structure of the liquid crystalline (meth) acrylate compound and the applicability to a glass or plastic substrate. It has been found that this problem can be solved by the use of a sex (meth) acrylate compound, and the present invention has been provided. That is,
1. Formula (I)
[0005]
[Chemical 9]
Figure 0003978624
[0006]
(Wherein R represents a divalent organic group, X 1 and X 2 represent a hydrogen atom or a methyl group, and X 3 and X 4 represent a hydrogen atom or a liquid crystal skeleton containing at least two 6-membered rings. However, X 3 and X 4 do not both represent a hydrogen atom.) A liquid crystalline (meth) acrylate compound characterized by
2. In the general formula (I), R is a linear or branched hydrocarbon group having 2 to 24 carbon atoms, —OC r H 2r O—, —OC r H 2r-2 O—, —OC r H 2r -4 O -, - O (CH 2 CH 2 O) p -, - O (CH 2 CH 2 CH 2 O) q - represents, r is from 2 to 24, p is from 1 12, q is from 1 8 2. The liquid crystalline (meth) acrylate compound as described in 1 above, which is represented by:
3. A liquid crystal skeleton containing at least two 6-membered rings in X 3 and X 4 has the general formula (II)
[0007]
[Chemical Formula 10]
Figure 0003978624
[0008]
Wherein Y 1 is a single bond, —OC—, —OC— (CH 2 ) i — (O) j —, —OC— (CH 2 ) i —COO—, — (CH 2 ) i — (O ) j -, - (CH 2 ) i -COO-,
—OC— (CH 2 ) i —CO—, i represents an integer of 1 to 12, j represents an integer of 0 or 1, n represents an integer of 0 or 1, and 6-membered rings A and B And C are each independently
[0009]
Embedded image
Figure 0003978624
[0010]
M represents an integer of 1 to 4, Y 2 and Y 3 are each independently a single bond, —CH 2 CH 2 —, —CH 2 O—, —OCH 2 —, —COO—, — OCO—, —C≡C—, —CH═CH—, —CF═CF—, — (CH 2 ) 4 —, —CH 2 CH 2 CH 2 O—, —OCH 2 CH 2 CH 2 —, —CH ═CH—CH 2 CH 2 —, —CH 2 CH 2 CH 2 O—, wherein Y 4 is a hydrogen atom, a halogen atom, a cyano group, an alkyl group having 1 to 20 carbon atoms, an alkoxy group, an alkenyl group, alkenyloxy. Represents a group. 3. The liquid crystalline (meth) acrylate compound as described in 1 or 2 above, wherein 4). In general formula (I), X 1 and X 2 both represent a hydrogen atom, X 3 and X 4 represent a hydrogen atom or in general formula (II) Y 1 represents —OC—, and n is an integer of 0 or 1 The six-membered ring A is
Embedded image
Figure 0003978624
[0012]
The six-membered ring B is
Embedded image
Figure 0003978624
[0014]
And the 6-membered ring C is
Embedded image
Figure 0003978624
[0016]
The stands, Y 2 and Y 3 represents a single bond, the 1 is Y 4 represents an alkyl group having 1 to 20 carbon atoms, characterized in that X 3 and X 4 are never both represent hydrogen atoms 2. The liquid crystalline (meth) acrylate compound according to 2 or 3.
5). A liquid crystal composition comprising the liquid crystalline (meth) acrylate compound according to the above 1, 2, 3 or 4, and exhibiting a liquid crystal phase.
6). A cyclic alcohol, phenol, or aromatic hydroxy compound having a partial structure of a liquid crystal skeleton having 2% by weight or more of the liquid crystalline (meth) acrylate compound described in the above 1, 2, 3 or 4 and at least two 6-membered rings A liquid crystal composition comprising a monofunctional acrylate or a monofunctional methacrylate which is acrylic acid or methacrylic acid ester and exhibiting a liquid crystal phase.
7). Monofunctional acrylate or monofunctional methacrylate is represented by the general formula (III)
[0017]
Embedded image
Figure 0003978624
[0018]
(In the formula, X 5 represents a hydrogen atom or a methyl group, r represents an integer of 0 or 1, and the 6-membered rings D, E, and F are each independently,
[0019]
Embedded image
Figure 0003978624
[0020]
M represents an integer of 1 to 4, Y 5 and Y 6 are each independently a single bond, —CH 2 CH 2 —, —CH 2 O—, —OCH 2 —, —COO—, — OCO—, —C≡C—, —CH═CH—, —CF═CF—, — (CH 2 ) 4 —, —CH 2 CH 2 CH 2 O—, —OCH 2 CH 2 CH 2 —, —CH ═CH—CH 2 CH 2 —, —CH 2 CH 2 CH 2 O—, Y 7 represents a hydrogen atom, a halogen atom, a cyano group, an alkyl group having 1 to 20 carbon atoms, an alkoxy group, an alkenyl group, alkenyloxy Represents a group. 7. The liquid crystal composition as described in 6 above, wherein
8). 8. The liquid crystal composition according to 5, 6, or 7, wherein the liquid crystal phase is expressed in a temperature range of at least 20 ° C. to 30 ° C.
9. An optically anisotropic body comprising a polymer of the liquid crystal composition according to the above-mentioned 5, 6, 7 or 8.
Has been found as means for solving the above problems.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an example of the present invention will be described in more detail.
In the general formula (I), X 3 is a hydrogen atom and X 4 is the general formula (II)
[0022]
Embedded image
Figure 0003978624
[0023]
Wherein Y 1 is a single bond, —OC—, —OC— (CH 2 ) i — (O) j —, —OC— (CH 2 ) i —COO—, — (CH 2 ) i — (O ) j -, - (CH 2 ) i -COO-,
—OC— (CH 2 ) i —CO—, i represents an integer of 1 to 12, j represents an integer of 0 or 1, n represents an integer of 0 or 1, and 6-membered rings A and B And C are each independently
[0024]
Embedded image
Figure 0003978624
[0025]
M represents an integer of 1 to 4, Y 2 and Y 3 are each independently a single bond, —CH 2 CH 2 —, —CH 2 O—, —OCH 2 —, —COO—, — OCO—, —C≡C—, —CH═CH—, —CF═CF—, — (CH 2 ) 4 —, —CH 2 CH 2 CH 2 O—, —OCH 2 CH 2 CH 2 —, —CH ═CH—CH 2 CH 2 —, —CH 2 CH 2 CH 2 O—, wherein Y 4 is a hydrogen atom, a halogen atom, a cyano group, an alkyl group having 1 to 20 carbon atoms, an alkoxy group, an alkenyl group, alkenyloxy. Represents a group. Or X 3 and X 4 are preferably compounds represented by the general formula (II). Moreover, although this invention also provides the liquid crystal composition containing said compound, the liquid crystal composition characterized by a liquid crystal phase expressing at a temperature range of at least 20 to 30 degreeC is preferable.
[0026]
Further, in the general formula (I), R is a linear or branched hydrocarbon group having 2 to 24 carbon atoms, —OC r H 2r O—, —OC r H 2r-2 O—, —OC r H 2r-4 O -, - O (CH 2 CH 2 O) p -, - O (CH 2 CH 2 CH 2 O) q - represents, r is an integer of from 2 to 24, p is from 1 12 Q represents an integer of 1 to 8, wherein X 3 is a hydrogen atom and X 4 is represented by the general formula (II)
[0027]
Embedded image
Figure 0003978624
[0028]
Wherein Y 1 is a single bond, —OC—, —OC— (CH 2 ) i — (O) j —, —OC— (CH 2 ) i —COO—, — (CH 2 ) i — (O ) j -, - (CH 2 ) i -COO-,
—OC— (CH 2 ) i —CO—, i represents an integer of 1 to 12, j represents an integer of 0 or 1, n represents an integer of 0 or 1, and 6-membered rings A and B And C are each independently
[0029]
Embedded image
Figure 0003978624
[0030]
M represents an integer of 1 to 4, Y 2 and Y 3 are each independently a single bond, —CH 2 CH 2 —, —CH 2 O—, —OCH 2 —, —COO—, — OCO—, —C≡C—, —CH═CH—, —CF═CF—, — (CH 2 ) 4 —, —CH 2 CH 2 CH 2 O—, —OCH 2 CH 2 CH 2 —, —CH ═CH—CH 2 CH 2 —, —CH 2 CH 2 CH 2 O—, wherein Y 4 is a hydrogen atom, a halogen atom, a cyano group, an alkyl group having 1 to 20 carbon atoms, an alkoxy group, an alkenyl group, alkenyloxy. Represents a group. Or X 3 and X 4 are preferably compounds represented by the general formula (II). Moreover, although this invention also provides the liquid crystal composition containing said compound, the liquid crystal composition characterized by a liquid crystal phase expressing at a temperature range of at least 20 to 30 degreeC is preferable. Containing a (meth) acrylic acid monoester of a cyclic alcohol, phenol or aromatic hydroxy compound, having a liquid crystal skeleton having a partial structure of 2% by weight or more of the above compound and at least two 6-membered rings; Preferred is a liquid crystal composition characterized in that the (meth) acrylic acid monoester has the general formula (III)
[0031]
Embedded image
Figure 0003978624
[0032]
(In the formula, X 5 represents a hydrogen atom or a methyl group, r represents an integer of 0 or 1, and the 6-membered rings D, E, and F are each independently,
[0033]
Embedded image
Figure 0003978624
[0034]
M represents an integer of 1 to 4, Y 5 and Y 6 are each independently a single bond, —CH 2 CH 2 —, —CH 2 O—, —OCH 2 —, —COO—, — OCO—, —C≡C—, —CH═CH—, —CF═CF—, — (CH 2 ) 4 —, —CH 2 CH 2 CH 2 O—, —OCH 2 CH 2 CH 2 —, —CH ═CH—CH 2 CH 2 —, —CH 2 CH 2 CH 2 O—, Y 7 represents a hydrogen atom, a halogen atom, a cyano group, an alkyl group having 1 to 20 carbon atoms, an alkoxy group, an alkenyl group, alkenyloxy Represents a group. ) Is more preferable.
[0035]
In the general formula (I), R represents a linear or branched hydrocarbon group having 2 to 24 carbon atoms, wherein X 1 and X 2 both represent a hydrogen atom, and X 3 represents a hydrogen atom. Represents an atom and X 4 represents the general formula (II)
[0036]
Embedded image
Figure 0003978624
[0037]
Wherein Y 1 represents —OC—, n represents an integer of 0 or 1, and the 6-membered ring A represents
Embedded image
Figure 0003978624
[0039]
The six-membered ring B is
Embedded image
Figure 0003978624
[0041]
And the six-membered ring C is [0042]
Embedded image
Figure 0003978624
[0043]
Y 2 and Y 3 represent a single bond, and Y 4 represents an alkyl group having 1 to 20 carbon atoms. ) Represents, or a compound represented by X 3 and X 4 are both formula (II) is likewise preferred. Moreover, although this invention also provides the liquid crystal composition containing said compound, the liquid crystal composition characterized by a liquid crystal phase expressing at a temperature range of at least 20 to 30 degreeC is preferable.
[0044]
The reason why good coatability can be obtained by using a compound such as the general formula (I) is not necessarily clear, but the affinity to the glass surface and the like is increased by increasing the viscosity and increasing the number of oxygen atoms per molecule. This is thought to be due to the increase.
[0045]
In order to produce the liquid crystalline (meth) acrylate compound of the present invention (hereinafter referred to as the compound of the present invention), usually, first, acrylic acid or methacrylic acid is allowed to act on the diepoxy compound to produce di (2-hydroxyethyl (meth)). Acrylate) derivatives are obtained. Next, an esterification reaction between this derivative and a carboxylic acid derivative having a liquid crystal skeleton containing at least two 6-membered rings, or etherification with a phenol derivative, aromatic hydroxy derivative, or alcohol derivative containing at least two 6-membered rings By carrying out the reaction, the compound of the present invention can be produced. Of the compounds of the present invention thus produced, compounds obtained by esterification are particularly preferred because of their excellent adhesion to the substrate. In the esterification reaction or etherification reaction, only one of the two hydroxy groups in the di (2-hydroxyethyl (meth) acrylate) derivative is esterified or etherified, and both are esterified Or an etherified product may be obtained. In such a case, only a compound in which only one of two hydroxyl groups of the di (2-hydroxyethyl (meth) acrylate) derivative is esterified or etherified may be isolated and used. Only the esterified or etherified compound may be isolated and used, or may be used without being isolated. In general, when precise control of the phase transition temperature of the liquid crystal is required, it is preferably isolated and used. A compound in which only one of two hydroxyl groups of a di (2-hydroxyethyl (meth) acrylate) derivative is esterified or etherified has good coating properties on a highly hydrophilic substrate such as a glass substrate. A compound in which two hydroxyl groups are esterified or etherified has a tendency to develop a liquid crystal phase in a wider temperature range than a compound in which only one ester is esterified or etherified. Since the applicability is good, it is preferable to appropriately use these compounds in consideration of the properties of the substrate to be applied and the desired liquid crystal temperature range.
[0046]
The compound of the present invention preferably exhibits a liquid crystal phase as a simple substance, particularly a nematic phase, a smectic A phase, and a smectic C phase.
The liquid crystal skeleton containing at least two 6-membered rings may be represented by the general formula (II)
[0047]
Embedded image
Figure 0003978624
[0048]
Wherein Y 1 is a single bond, —OC—, —OC— (CH 2 ) i — (O) j —, —OC— (CH 2 ) i —COO—, — (CH 2 ) i — (O ) j -, - (CH 2 ) i -COO-,
—OC— (CH 2 ) i —CO—, i represents an integer of 1 to 12, j represents an integer of 0 or 1, n represents an integer of 0 or 1, and 6-membered rings A and B And C are each independently
[0049]
Embedded image
Figure 0003978624
[0050]
M represents an integer of 1 to 4, Y 2 and Y 3 are each independently a single bond, —CH 2 CH 2 —, —CH 2 O—, —OCH 2 —, —COO—, — OCO—, —C≡C—, —CH═CH—, —CF═CF—, — (CH 2 ) 4 —, —CH 2 CH 2 CH 2 O—, —OCH 2 CH 2 CH 2 —, —CH ═CH—CH 2 CH 2 —, —CH 2 CH 2 CH 2 O—, wherein Y 4 is a hydrogen atom, a halogen atom, a cyano group, an alkyl group having 1 to 20 carbon atoms, an alkoxy group, an alkenyl group, alkenyloxy. It is preferable to use a skeleton represented by a group. As specific examples of such a liquid crystal skeleton, the skeletons listed in formulas (1) to (67) are desirable, but the liquid crystal skeleton that can be used in the present invention is not limited to these.
[0051]
Embedded image
Figure 0003978624
[0052]
Embedded image
Figure 0003978624
[0053]
Embedded image
Figure 0003978624
[0054]
Embedded image
Figure 0003978624
[0055]
Embedded image
Figure 0003978624
[0056]
Embedded image
Figure 0003978624
[0057]
Embedded image
Figure 0003978624
[0058]
Embedded image
Figure 0003978624
[0059]
(Wherein the cyclohexane ring represents a transcyclohexane ring, R 1 represents a hydrogen atom, a halogen atom, a cyano group, an alkyl group having 1 to 20 carbon atoms, an alkoxy group, an alkenyl group, or an alkenyloxy group, and s is from 0 to 12 and t and u are 0 when s is 0, and t and u each independently represents 0 or 1 when s is 1 to 12. In particular, a skeleton having three 6-membered rings is preferable because it easily develops a liquid crystal phase. When electrical driving is desired, it is particularly preferable to use a skeleton having a cyano group or a halogen atom, particularly a fluorine atom, as R 1 .
[0060]
As the divalent organic group R in the general formula (I), not only an alkylene group but also a linear or branched hydrocarbon group having a silicon atom such as a siloxane skeleton, an ether bond, an unsaturated bond, or the like is used. be able to. The total number of carbon atoms contained in the divalent organic group R is preferably in the range of 2-24. If it is smaller than 2, the transition temperature from the crystal of the resulting compound to the liquid crystal phase tends to be high, and if it is larger than 24, the transition temperature from the liquid crystal phase to the isotropic liquid is low. It becomes difficult to obtain a stable liquid crystal phase. As specific examples of such an organic group R, the skeletons listed in the formulas (68) to (76) are desirable, but the skeleton that can be used in the present invention is not limited to these.
[0061]
Embedded image
Figure 0003978624
[0062]
(In the formula, v represents an integer of 2 to 24, w represents an integer of 1 to 12, x represents an integer of 1 to 8, and the cyclohexane ring represents a transcyclohexane ring.)
The present invention further provides a liquid crystal composition containing the compound of the present invention. The liquid crystal phase of the liquid crystal composition of the present invention can be used without particular limitation as long as it is normally recognized as a liquid crystal phase in this technical field, and among them, nematic phase, smectic A phase, (chiral) smectic C. Those exhibiting a cholesteric phase are particularly preferred. Further, when the (chiral) smectic C phase is shown, the smectic A phase is shown in the temperature range above the (chiral) smectic C phase, and when the smectic A phase is shown, the temperature range above the smectic A phase. It is preferable to develop a nematic phase in order to obtain good uniaxial orientation characteristics. The temperature range of the liquid crystal phase for actually irradiating ultraviolet rays to polymerize the (meth) acrylate compound in the liquid crystal composition of the present invention or the temperature range of the liquid crystal phase actually used is around room temperature, that is, at least 20 to 30 ° C. Those exhibiting a liquid crystal phase in the temperature range of are particularly preferred. For example, when the liquid crystal composition of the present invention is actually polymerized in the (chiral) smectic C phase, the (chiral) smectic C phase is near room temperature, that is, at a temperature range of at least 20 to 30 ° C. Is preferred.
[0063]
The liquid crystal composition of the present invention preferably contains 2% by weight or more of the compound of the present invention in order to ensure good coating performance on a glass or plastic substrate. When the compound of this invention is 2 weight% or less, there exists a tendency for favorable application | coating performance not to be ensured.
[0064]
In addition, a polymerizable liquid crystal compound having a skeleton generally recognized as a liquid crystal skeleton in this technical field and a polymerizable functional group in the molecule is added to the liquid crystal composition of the present invention at a concentration of 98% by weight or less without any particular limitation. can do. As the liquid crystal skeleton, those having at least two or three six-membered rings are particularly preferable. Examples of the polymerizable functional group include a (meth) acryloyloxy group, an epoxy group, a vinyl ether group, a cinnamoyl group, and a vinyl group, and an acryloyloxy group is particularly preferable because good photopolymerization characteristics can be obtained. . In the case of a compound having a plurality of polymerizable functional groups, the types of polymerizable functional groups may be different. For example, in the case of a liquid crystal compound having two polymerizable functional groups, one may be an acryloyloxy group, and the other may be a methacryloyloxy group or a vinyl ether group. Many kinds of liquid crystal compounds having two polymerizable functional groups are known. Generally, when these are polymerized, good heat resistance and strength characteristics can be obtained, and therefore, they can be suitably used. . As specific examples of the liquid crystal compound having two polymerizable functional groups, the compounds listed in the formulas (77) to (86) are preferable, but the compounds that can be used in the liquid crystal composition of the present invention. Is not limited to these.
[0065]
Embedded image
Figure 0003978624
[0066]
(Wherein the cyclohexane ring represents a transcyclohexane ring, X represents a halogen atom, a cyano group, or a methyl group, and a represents an integer of 2 to 12). Furthermore, a liquid crystal compound having one polymerizable functional group in the molecule may be added to the liquid crystal composition of the present invention. As specific examples of the liquid crystal compound having one polymerizable functional group, the compounds listed in the formulas (87) to (132) are preferable, but the compounds that can be used in the liquid crystal composition of the present invention. Is not limited to these.
[0067]
Embedded image
Figure 0003978624
[0068]
Embedded image
Figure 0003978624
[0069]
Embedded image
Figure 0003978624
[0070]
Embedded image
Figure 0003978624
[0071]
(Wherein the cyclohexane ring represents a transcyclohexane ring, Y represents a hydrogen atom, a halogen atom, a cyano group, an alkyl group having 1 to 20 carbon atoms, an alkoxy group, an alkenyl group, or an alkenyloxy group, and b represents 2 to 12) Represents an integer).
[0072]
Furthermore, the liquid crystal composition of the present invention facilitates the development of a liquid crystal phase near room temperature, that is, at a temperature range of at least 20 to 30 ° C., and ensures the heat resistance and strength characteristics of the photopolymer of the liquid crystal composition. For this purpose, a monofunctional (meth) acrylate which is a cyclic alcohol, a phenol, or an acrylic acid or methacrylic ester of an aromatic hydroxy compound having a liquid crystal skeleton having at least two 6-membered rings as a partial structure may be contained. good. This is because such a monofunctional (meth) acrylate has no flexible linking group called a spacer in the technical field of liquid crystal such as an alkylene group or an oxyalkylene group between the (meth) acryloyloxy group and the liquid crystal skeleton. . For this reason, a rigid liquid crystal skeleton is bonded directly to the polymer main chain obtained by polymerizing such a monofunctional (meth) acrylate without a spacer, and the thermal motion of the liquid crystal skeleton is limited by the polymer main chain. This is because excellent heat resistance and strength characteristics can be expected. In addition, since there is only one (meth) acryloyloxy group in the molecule that reduces the liquid crystallinity due to the molecular shape, the temperature range for developing the liquid crystal can be controlled by multiple (meth) acryloyl groups. It becomes easier than a compound having an oxy group. Such monofunctional (meth) acrylates have the general formula (III)
[0073]
Embedded image
Figure 0003978624
[0074]
(In the formula, X 5 represents a hydrogen atom or a methyl group, r represents an integer of 0 or 1, and the 6-membered rings D, E, and F are each independently,
[0075]
Embedded image
Figure 0003978624
[0076]
M represents an integer of 1 to 4, Y 5 and Y 6 are each independently a single bond, —CH 2 CH 2 —, —CH 2 O—, —OCH 2 —, —COO—, — OCO—, —C≡C—, —CH═CH—, —CF═CF—, — (CH 2 ) 4 —, —CH 2 CH 2 CH 2 O—, —OCH 2 CH 2 CH 2 —, —CH ═CH—CH 2 CH 2 —, —CH 2 CH 2 CH 2 O—, Y 7 represents a hydrogen atom, a halogen atom, a cyano group, an alkyl group having 1 to 20 carbon atoms, an alkoxy group, an alkenyl group, alkenyloxy Represents a group. ) Is preferred. As specific examples of such monofunctional (meth) acrylates, the compounds listed in formulas (133) to (143) are preferable, but monofunctional (meth) that can be used in the liquid crystal composition of the present invention. The acrylate is not limited to these.
[0077]
Embedded image
Figure 0003978624
[0078]
Embedded image
Figure 0003978624
[0079]
(In the above, the cyclohexane ring represents a transcyclohexane ring, C represents a crystalline phase, N represents a nematic phase, S represents a smectic phase, I represents an isotropic liquid phase, and the number represents a phase transition temperature.)
Moreover, you may add to the liquid-crystal composition of this invention the liquid crystal compound which does not have a polymerizable functional group according to a use. When the polymer of the liquid crystal composition of the present invention is used as a display device for use, or when the refractive index is to be changed depending on the temperature, the total amount of liquid crystal compounds having no polymerizable functional group is 30 to 98. It is preferable to set in the range of wt%. Further, when it is not preferable that the refractive index changes with temperature, or when importance is attached to heat resistance and mechanical properties, the total amount of liquid crystal compounds having no polymerizable functional group is in the range of 0 to 30% by weight. It is preferable to set to.
[0080]
Moreover, the compound which has a polymerizable functional group and does not show liquid crystallinity can also be added to the liquid-crystal composition of this invention. Such a compound can be used without particular limitation as long as it is generally recognized as a polymer-forming monomer or polymer-forming oligomer in this technical field, and acrylate compounds, methacrylate compounds, and vinyl ether compounds can be used. Particularly preferred.
[0081]
A liquid crystal compound having a polymerizable functional group as described above, a liquid crystal compound having no polymerizable functional group, and a polymerizable compound not exhibiting liquid crystallinity may be added in appropriate combination, but at least the liquid crystal composition obtained It is necessary to adjust the addition amount of each component so that liquid crystallinity is not lost.
[0082]
Furthermore, for the purpose of improving the polymerization reactivity, a polymerization initiator such as a thermal polymerization initiator or a photopolymerization initiator may be added to the liquid crystal composition of the present invention. The thermal polymerization initiator that can be used here can be selected from benzoyl peroxide, bisazobutyronitrile, etc., and the photopolymerization initiator can be selected from benzoin ethers, benzophenones, acetophenones, benzyl ketals, etc. Can be used. The addition amount is preferably 10% by weight or less, more preferably 5% by weight or less, and particularly preferably in the range of 0.5 to 1.5% by weight with respect to the liquid crystal composition.
[0083]
In addition, a stabilizer may be added to the liquid crystal composition of the present invention in order to improve its storage stability. As the stabilizer that can be used here, for example, hydroquinone, hydroquinone monoalkyl ethers, tert-butylcatechol and the like can be selected and used. The amount added is preferably 1% by weight or less, more preferably 0.5% by weight or less, based on the liquid crystal composition.
[0084]
In addition, a chiral (optically active) compound may be added to the liquid crystal composition of the present invention for the purpose of obtaining a polymer having a helical structure of a liquid crystal skeleton inside. The chiral compound that can be used here does not need to exhibit liquid crystal properties per se, and may or may not have a polymerizable functional group. The direction of the spiral can be appropriately selected depending on the intended use of the polymer. As such a chiral compound, cholesterol pelargonate having a cholesteryl group as an optically active group, cholesterol stearate, and “CB-15” and “C-15” having a 2-methylbutyl group as an optically active group (manufactured by BDH) , “S-1082” (manufactured by Merck), “CM-19”, “CM-20”, “CM” (manufactured by Chisso), “S-811” having a 1-methylheptyl group as an optically active group (Manufactured by Merck), "CM-21", "CM-22" (manufactured by Chisso Corporation). The preferred addition amount of this chiral compound depends on the use of the liquid crystal composition, but the value (d / P) obtained by dividing the thickness (d) of the polymer obtained by polymerization by the helical pitch (P) in the polymer is 0. It is preferable to adjust so that it may become the range of .1-20.
[0085]
In addition, when the liquid crystal composition of the present invention is used as a raw material for a polarizing film or an alignment film, or a printing ink and paint, a metal, a metal complex, a dye, a pigment, a pigment, a surfactant, Gelling agents, ultraviolet absorbers, antioxidants, ion exchange resins, titanium oxide metal oxides, and the like can also be added.
[0086]
The present invention further provides an optical anisotropic body comprising the polymer of the liquid crystal composition of the present invention. The optical anisotropic body of the present invention can be produced by polymerizing the liquid crystal composition of the present invention in an aligned state. For example, after the substrate surface is rubbed with a cloth or the like, or the substrate surface on which an organic thin film is formed is rubbed with a cloth or the like, or is supported on a substrate having an alignment film on which SiO 2 is obliquely deposited, or sandwiched between the substrates. And a method for polymerizing the liquid crystal of the present invention. Examples of other alignment treatment methods include use of fluid alignment of a liquid crystal composition and use of an electric field or a magnetic field. These orientation means may be used alone or in combination. Among these methods, a method using a substrate whose substrate surface is rubbed with a cloth or the like is particularly preferable because of its simplicity.
[0087]
The substrate that can be used at this time can be used regardless of an organic material or an inorganic material. Specific examples include polyethylene terephthalate, polycarbonate, polyimide, polyamide, polymethyl methacrylate, polystyrene, polyvinyl chloride, polytetrafluoroethylene, polychlorotrifluoroethylene, polyarylate, polysulfone, triacetyl. Examples of cellulose, cellulose, polyetheretherketone, and inorganic materials include silicon, glass, and calcite.
[0088]
When appropriate orientation cannot be obtained by rubbing these substrates with a cloth or the like, an organic thin film such as a polyimide thin film or a polyvinyl alcohol thin film is formed on the substrate surface according to a known method, and this is rubbed with a cloth or the like. May be. Further, when a polyimide thin film that gives a pretilt angle as used in a normal TN or STN element is used, the molecular orientation structure inside the optical anisotropic body can be controlled more precisely, so that it can be particularly preferably used. When the orientation state is controlled by an electric field, a substrate having an electrode layer can be used. In this case, it is preferable to form an organic thin film such as the aforementioned polyimide thin film on the electrode.
[0089]
In addition, a photo-alignment method can also be used as an alignment treatment method instead of rubbing. This is because polarized light, preferably polarized light, is applied to organic thin films having functional groups that undergo photodimerization reaction in the molecule such as polyvinyl cinnamate, organic thin films having functional groups that are isomerized by light, or organic thin films such as polyimide. An alignment film is formed by irradiating ultraviolet rays. By applying an optical mask to this photo-alignment method, patterning of the alignment can be easily achieved, so that the molecular orientation inside the optical anisotropic body can be precisely controlled.
[0090]
As a polymerization method, since rapid progress of polymerization is desirable, a method of photopolymerization by irradiating energy such as ultraviolet rays or electron beams is preferable. As a light source for the photopolymerization, a polarized light source or a non-polarized light source may be used. Further, when photopolymerization is performed in a state where the liquid crystal composition is sandwiched between two substrates, at least the substrate on the irradiation surface side must be provided with appropriate transparency. Moreover, it is preferable that the temperature at the time of irradiation is in the temperature range in which the liquid crystal state of the liquid crystal composition of the present invention is maintained. In particular, when an optically anisotropic substance is to be produced by photopolymerization, it is preferable to carry out the polymerization at a temperature as close to room temperature as possible, that is, at a temperature of 20 to 30 ° C. from the viewpoint of avoiding unintended thermal polymerization. The optical anisotropic body of the present invention obtained by polymerization may be subjected to heat treatment for the purpose of reducing initial characteristic changes and achieving stable characteristic expression. The heat treatment temperature is preferably in the range of 50 to 250 ° C., and the heat treatment time is preferably in the range of 30 seconds to 12 hours.
[0091]
The optical anisotropic body of the present invention produced by such a method may be used after being peeled off from the substrate or without being peeled off.
[0092]
【Example】
Hereinafter, the present invention will be described in further detail with reference to examples. However, the present invention is not limited to these examples.
Example 1 Synthesis of Liquid Crystalline Acrylate Compound “R-167” manufactured by Nippon Kayaku Co., Ltd.
[0093]
Embedded image
Figure 0003978624
[0094]
5.0 g and 3.0 g of triethylamine were dissolved in 50 ml of tetrahydrofuran, and the liquid temperature was adjusted to 5 ° C. while stirring. To this, compound (a) dissolved in 40 ml of tetrahydrofuran
[0095]
Embedded image
Figure 0003978624
[0096]
10.8 g was added dropwise over 30 minutes so that the liquid temperature did not exceed 15 ° C., and then stirred at room temperature for 2 hours. The mixture was further stirred at 50 ° C. for 10 hours and then cooled to room temperature. After cooling, 1000 ml of saturated saline was added to the reaction solution. A dilute hydrochloric acid aqueous solution was added so that the aqueous layer of the reaction solution was weakly acidic, followed by extraction with 300 ml of ethyl acetate. After washing the organic layer with water, ethyl acetate was distilled off under reduced pressure to obtain 17.0 g of a crude product. This was purified by silica gel column chromatography using a mixed solvent of ethyl acetate and n-hexane (volume ratio of ethyl acetate: n-hexane = 1: 3) as a developing solvent, and a liquid crystalline acrylate compound (b)
[0097]
Embedded image
Figure 0003978624
[0098]
1.2 g (Rf = 0.42), liquid crystal acrylate compound (c)
[0099]
Embedded image
Figure 0003978624
[0100]
1.9 g (Rf = 0.33) was obtained. Compounds (b) and (c) were recrystallized with 3 times the amount of ethanol, and obtained as purified products of 0.9 g (yield 11.0%) and 1.5 g (yield 6.5%), respectively. .
[0101]
The phase transition temperature of compound (b) is
[0102]
Embedded image
Figure 0003978624
[0103]
(SX represents a smectic phase in which a detailed phase cannot be determined, SA represents a smectic A phase, N represents a nematic phase, and I represents an isotropic liquid phase.)
And the phase transition temperature of compound (c) is
[0104]
Embedded image
Figure 0003978624
[0105]
(SA represents a smectic A phase, N represents a nematic phase, and I represents an isotropic liquid phase.)
Met.
Example 2 Synthesis of Liquid Crystalline Acrylate Compound 3.2 g of “R-167” manufactured by Nippon Kayaku Co., Ltd. and 4.2 g of triethylamine were dissolved in 50 ml of tetrahydrofuran, and the liquid temperature was adjusted to 5 ° C. while stirring. To this, compound (d) dissolved in 15 ml of tetrahydrofuran
[0106]
Embedded image
Figure 0003978624
[0107]
5.0 g was added dropwise over 30 minutes so that the liquid temperature did not exceed 15 ° C., and then stirred at room temperature for 2 hours. The mixture was further heated to reflux for 20 hours and then cooled to room temperature. After cooling, 500 ml of saturated saline was added to the reaction solution. A diluted hydrochloric acid aqueous solution was added so that the aqueous layer of the reaction solution was weakly acidic, and then extraction was performed by adding 100 ml of ethyl acetate. After the organic layer was washed with water, ethyl acetate was distilled off under reduced pressure to obtain 7.4 g of a crude product. This was purified by silica gel column chromatography using a mixed solvent of ethyl acetate and n-hexane (volume ratio of ethyl acetate: n-hexane = 1: 3) as a developing solvent, and a liquid crystalline acrylate compound (e)
[0108]
Embedded image
Figure 0003978624
[0109]
0.5 g (Rf = 0.47, yield 6.3%), liquid crystal acrylate compound (f)
[0110]
Embedded image
Figure 0003978624
[0111]
1.7 g (Rf = 0.40, yield 14.9%) was obtained. Both compound (e) and compound (f) were isotropic liquids at room temperature.
Example 3 Liquid Crystal Composition Preparation Formula (133)
[0112]
Embedded image
Figure 0003978624
[0113]
50 parts by weight of the compound of formula (136)
[0114]
Embedded image
Figure 0003978624
[0115]
A liquid crystal composition (A) comprising 50 parts by weight of the above compound was prepared. This liquid crystal composition (A) did not contain the compound of the present invention and exhibited a liquid crystal phase at room temperature, and the phase transition temperature of the nematic-isotropic liquid phase was 46 ° C. A liquid crystal composition (B) comprising 10 parts by weight of the liquid crystalline acrylate compound (b) synthesized in Example 1 was prepared in 90 parts by weight of the liquid crystal composition (A). The obtained liquid crystal composition (B) exhibited a nematic phase in the temperature range of 18 ° C to 56 ° C.
(Example 4) Preparation of liquid crystal composition A liquid crystal composition (C) comprising 10 parts by weight of the compound (c) synthesized in Example 1 was prepared in 90 parts by weight of the liquid crystal composition (A) prepared in Example 3. . The obtained liquid crystal composition (C) exhibited a nematic phase in a temperature range of 19 ° C to 50 ° C.
Example 5 Preparation of Liquid Crystal Composition A liquid crystal composition (D) comprising 98 parts by weight of the liquid crystal composition (A) prepared in Example 3 and 2 parts by weight of the compound (e) synthesized in Example 2 was prepared. . The obtained liquid crystal composition (D) exhibited a nematic phase in the temperature range of 15 ° C to 42 ° C.
(Example 6) Preparation of liquid crystal composition A liquid crystal composition (E) comprising 98 parts by weight of the liquid crystal composition (A) prepared in Example 3 and 2 parts by weight of the compound (f) synthesized in Example 2 was prepared. . The obtained liquid crystal composition (E) exhibited a nematic phase in the temperature range of 15 ° C to 41 ° C.
(Example 7) Production of optical anisotropic body 1 part by weight of a photopolymerization initiator “IRG-651” (manufactured by Ciba Geigy) was dissolved in 99 parts by weight of the liquid crystal composition (B) prepared in Example 3. Next, when this was injected into a transparent glass TN (twisted nematic) cell having a cell gap of 10 microns, it was confirmed by observation with a polarizing microscope that a good TN orientation was obtained. This cell was irradiated with ultraviolet rays of 500 mJ / cm 2 using a high-pressure mercury lamp at 25 ° C. to photopolymerize the liquid crystal composition. When the cell was observed with a polarizing microscope, it was confirmed that an optical anisotropic body in which the TN alignment was uniformly fixed was obtained. Next, by removing the glass of the cell, an optical anisotropic body having a TN alignment structure having a thickness of 10 microns supported on one glass was obtained. This optical anisotropic body was found to retain the TN alignment structure even when heated at 150 ° C. for 100 hours.
(Example 8) Production of optical anisotropic body 1 part by weight of a photopolymerization initiator “IRG-651” (manufactured by Ciba Geigy) was dissolved in 99 parts by weight of the liquid crystal composition (C) prepared in Example 4. Next, when this was injected into a transparent glass TN (twisted nematic) cell having a cell gap of 10 microns, it was confirmed by observation with a polarizing microscope that a good TN orientation was obtained. This cell was irradiated with ultraviolet rays at 500 mJ / cm 2 using a high pressure mercury lamp at 25 ° C., and the liquid crystal composition is photopolymerized. When the cell was observed with a polarizing microscope, it was confirmed that an optical anisotropic body in which the TN alignment was uniformly fixed was obtained. Next, by removing the glass of the cell, an optical anisotropic body having a TN alignment structure having a thickness of 10 microns supported on one glass was obtained. This optical anisotropic body was found to retain the TN alignment structure even when heated at 150 ° C. for 100 hours.
(Example 9) Production of optical anisotropic body 1 part by weight of a photopolymerization initiator “IRG-651” (manufactured by Ciba Geigy) was dissolved in 99 parts by weight of the liquid crystal composition (D) prepared in Example 5. Next, when this was injected into a transparent glass TN (twisted nematic) cell having a cell gap of 10 microns, it was confirmed by observation with a polarizing microscope that a good TN orientation was obtained. This cell was irradiated with ultraviolet rays of 500 mJ / cm 2 using a high-pressure mercury lamp at 25 ° C. to photopolymerize the liquid crystal composition. When the cell was observed with a polarizing microscope, it was confirmed that an optical anisotropic body in which the TN alignment was uniformly fixed was obtained. Next, by removing the glass of the cell, an optical anisotropic body having a TN alignment structure having a thickness of 10 microns supported on one glass was obtained. This optical anisotropic body was found to retain the TN alignment structure even when heated at 150 ° C. for 100 hours.
(Example 10) Production of optical anisotropic body 1 part by weight of a photopolymerization initiator “IRG-651” (manufactured by Ciba Geigy) was dissolved in 99 parts by weight of the liquid crystal composition (E) prepared in Example 6. Next, when this was injected into a transparent glass TN (twisted nematic) cell having a cell gap of 10 microns, it was confirmed by observation with a polarizing microscope that a good TN orientation was obtained. This cell was irradiated with ultraviolet rays of 500 mJ / cm 2 using a high-pressure mercury lamp at 25 ° C. to photopolymerize the liquid crystal composition. When the cell was observed with a polarizing microscope, it was confirmed that an optical anisotropic body in which the TN alignment was uniformly fixed was obtained. Next, by removing the glass of the cell, an optical anisotropic body having a TN alignment structure having a thickness of 10 microns supported on one glass was obtained. This optical anisotropic body was found to retain the TN alignment structure even when heated at 150 ° C. for 100 hours.
(Example 11) Production of optical anisotropic body 1 part by weight of a photopolymerization initiator “IRG-651” (manufactured by Ciba Geigy) was dissolved in 99 parts by weight of the liquid crystalline acrylate compound (C) synthesized in Example 1. This was then injected into a transparent glass antiparallel alignment rod having a cell gap of 10 microns heated to 80 ° C. When the cell was observed with a polarizing microscope after cooling to 25 ° C., it was confirmed that a homogeneous (uniaxial) orientation state of the smectic A phase was obtained. This cell was irradiated with ultraviolet rays of 500 mJ / cm 2 using a high-pressure mercury lamp at 25 ° C. to photopolymerize the liquid crystal composition. When the cell was observed with a polarizing microscope, it was confirmed that an optical anisotropic body in which the homogeneous orientation was fixed uniformly was obtained.
(Example 12) Production of optical anisotropic body A 20 mm square transparent glass substrate having a thickness of 1 mm was spin-coated with a polyimide alignment agent “AL-1254” (manufactured by Nippon Synthetic Rubber) at 2000 rpm, and then 150 ° C. The polyimide thin film was formed on the glass substrate by making it dry for 1 hour. This polyimide thin film was rubbed with a rubbing machine “RM-50” (manufactured by EHC) to obtain a polyimide alignment film. 1 part by weight of a photopolymerization initiator “IRG-651” (manufactured by Ciba Geigy) was added to 99 parts by weight of the liquid crystal composition (B) prepared in Example 3 on this glass substrate with a polyimide alignment film, and this was rotated 1000 times. Spin coated at / min. The spin-coated substrate was irradiated with ultraviolet rays of 500 mJ / cm 2 using a high pressure mercury lamp at 25 ° C. under a nitrogen stream to photopolymerize the liquid crystal composition. When this substrate was observed with a polarizing microscope, it was confirmed that an optical anisotropic body in which uniform uniaxial orientation was fixed was obtained. Further, when this substrate was sandwiched between two polarizing plates, a uniform interference color was observed over the entire surface of the substrate, and it was confirmed that an optical anisotropic body having a uniform thickness was obtained. Further, even when this substrate was heated at 150 ° C., the fixed and uniform alignment state was maintained as it was.
(Example 13) Production of optical anisotropic body An optical anisotropic body was produced in the same manner except that the liquid crystal composition (B) in Example 12 was replaced with the liquid crystal composition (C) prepared in Example 3. . When the obtained optical anisotropic body was observed with a polarizing microscope, it was confirmed that an optical anisotropic body in which uniform uniaxial orientation was fixed was obtained. Further, when this was sandwiched between two polarizing plates, a uniform interference color was observed over the entire surface of the substrate, and it was confirmed that an optical anisotropic body having a uniform thickness was obtained. Further, even when the obtained optical anisotropic body was heated at 150 ° C., the fixed and uniform alignment state was maintained as it was.
(Comparative Example 1)
An optical anisotropic body was produced in the same manner except that the liquid crystal composition (B) in Example 12 was replaced with the liquid crystal composition (A) not containing the compound of the present invention prepared in Example 3. When the obtained optical anisotropic body was observed with a polarizing microscope, it was confirmed that an optical anisotropic body in which uniform uniaxial orientation was fixed was obtained. However, when this was sandwiched between two polarizing plates, a uniform interference color over the entire surface of the substrate was not observed, and it was confirmed that the film thickness of the optical anisotropic body was not uniform.
(Example 14) Preparation of optical anisotropic body A 20 mm square polycarbonate substrate having a thickness of 2.0 mm was prepared, and a rubbing machine “RM-50” (manufactured by EHC) was used in the same direction as the optical axis direction of the polycarbonate substrate. And rubbed. To this polycarbonate substrate, 1 part by weight of a photopolymerization initiator “IRG-651” (manufactured by Ciba Geigy) was added to 99 parts by weight of the liquid crystal composition (B) prepared in Example 3, and this was spun at 1000 rpm. Coated. The spin-coated substrate was irradiated with ultraviolet rays of 500 mJ / cm 2 using a high pressure mercury lamp at 25 ° C. under a nitrogen stream to photopolymerize the liquid crystal composition. When this substrate was observed with a polarizing microscope, it was confirmed that an optical anisotropic body in which uniform uniaxial orientation was fixed was obtained. Further, when this substrate was sandwiched between two polarizing plates, a uniform interference color was observed over the entire surface of the substrate, and it was confirmed that an optical anisotropic body having a uniform thickness was obtained. Further, even when this substrate was heated at 100 ° C., the fixed and uniform alignment state was maintained as it was.
(Example 15) Production of optical anisotropic body An optical anisotropic body was produced in the same manner except that the liquid crystal composition (B) in Example 14 was replaced with the liquid crystal composition (C) prepared in Example 3. . When the obtained optical anisotropic body was observed with a polarizing microscope, it was confirmed that an optical anisotropic body in which uniform uniaxial orientation was fixed was obtained. Further, when this was sandwiched between two polarizing plates, a uniform interference color was observed over the entire surface of the substrate, and it was confirmed that an optical anisotropic body having a uniform thickness was obtained. Further, even when the obtained optical anisotropic body was heated at 150 ° C., the fixed and uniform alignment state was maintained as it was.
(Comparative Example 2)
An optical anisotropic body was produced in the same manner except that the liquid crystal composition (B) in Example 14 was replaced with the liquid crystal composition (A) not containing the compound of the present invention prepared in Example 3. When the obtained optical anisotropic body was observed with a polarizing microscope, it was confirmed that an optical anisotropic body in which uniform uniaxial orientation was fixed was obtained. However, when this was sandwiched between two polarizing plates, a uniform interference color over the entire surface of the substrate was not observed, and it was confirmed that the film thickness of the optical anisotropic body was not uniform.
[0116]
【The invention's effect】
The liquid crystalline (meth) acrylate compound and the liquid crystal composition of the present invention are excellent in applicability to plastics and glass substrates. Therefore, it is a material useful for producing an optical anisotropic body such as a retardation film by means such as coating. In addition, the optical anisotropic body produced using the liquid crystalline (meth) acrylate compound of the present invention and the liquid crystal composition is excellent in alignment uniformity and film thickness uniformity, and is suitable for application to retardation films and the like. ing.

Claims (7)

一般式(I)
Figure 0003978624
(式中、Rは2価の有機基であって、炭素原子数2〜24の直鎖状もしくは分枝状炭化水素基、−OC r 2r O−、−OC r 2r-2 O−、−OC r 2r-4 O−、−O(CH 2 CH 2 O) p −、−O(CH 2 CH 2 CH 2 O) q −を表し、rは2から24、pは1から12、qは1から8を表し、X1及びX2は水素原子又はメチル基を表し、X3 は少なくとも2つの6員環を含む液晶骨格であって、一般式(II)
Figure 0003978624
(式中、Y 1 は単結合、−OC−、−OC−(CH 2 i −(O) j −、−OC−(CH 2 i −COO−、−(CH 2 i −(O) j −、−(CH 2 i −COO−、−OC−(CH 2 i −CO−を表し、iは1〜12の整数を表し、jは0または1の整数を表し、nは0又は1の整数を表し、6員環A、B及びCはそれぞれ独立的に、
Figure 0003978624
を表し、mは1〜4の整数を表し、Y 2 及びY 3 はそれぞれ独立的に、単結合、−CH 2 CH 2 −、−CH 2 O−、−OCH 2 −、−COO−、−OCO−、−C≡C−、−CH=CH−、−CF=CF−、−(CH 2 4 −、−CH 2 CH 2 CH 2 O−、−OCH 2 CH 2 CH 2 −、−CH=CH−CH 2 CH 2 −、−CH 2 CH 2 CH 2 O−を表し、Y 4 は水素原子、ハロゲン原子、シアノ基、炭素原子1〜20のアルキル基、アルコキシ基、アルケニル基、アルケニルオキシ基を表す。)を表し、 4 は水素原子を表す。)で表されることを特徴とする液晶性(メタ)アクリレート化合物。
Formula (I)
Figure 0003978624
(In the formula, R is a divalent organic group , and is a linear or branched hydrocarbon group having 2 to 24 carbon atoms, —OC r H 2r O— , —OC r H 2r-2 O— , -OC r H 2r-4 O -, - O (CH 2 CH 2 O) p -, - O (CH 2 CH 2 CH 2 O) q - and represents, r is from 2 to 24, p is from 1 12 , Q represents 1 to 8 , X 1 and X 2 represent a hydrogen atom or a methyl group, and X 3 represents a liquid crystal skeleton containing at least two 6-membered rings,
Figure 0003978624
Wherein Y 1 is a single bond, —OC—, —OC— (CH 2 ) i — (O) j —, —OC— (CH 2 ) i —COO—, — (CH 2 ) i — (O ) J -,-(CH 2 ) i -COO-, -OC- (CH 2 ) i -CO-, i represents an integer of 1 to 12, j represents an integer of 0 or 1, and n represents Represents an integer of 0 or 1, and the 6-membered rings A, B and C are each independently
Figure 0003978624
M represents an integer of 1 to 4, Y 2 and Y 3 are each independently a single bond, —CH 2 CH 2 —, —CH 2 O—, —OCH 2 —, —COO—, — OCO—, —C≡C—, —CH═CH—, —CF═CF—, — (CH 2 ) 4 —, —CH 2 CH 2 CH 2 O—, —OCH 2 CH 2 CH 2 —, —CH ═CH—CH 2 CH 2 —, —CH 2 CH 2 CH 2 O—, wherein Y 4 is a hydrogen atom, a halogen atom, a cyano group, an alkyl group having 1 to 20 carbon atoms, an alkoxy group, an alkenyl group, alkenyloxy. Represents a group. ) Represents, X 4 represents a hydrogen atom. A liquid crystalline (meth) acrylate compound characterized by being represented by:
一般式(I)において、X1及びX2は共に水素原子を表し、X3は一般式(II)においてY1は−OC−を表し、nは0または1の整数を表し、6員環Aは
Figure 0003978624
を表し、6員環Bは
Figure 0003978624
を表し、6員環Cは
Figure 0003978624
を表し、Y2及びY3は単結合を表し、Y4は炭素原子1〜20のアルキル基を表すことを特徴とする請求項1記載の液晶性(メタ)アクリレート化合物。
In general formula (I), X 1 and X 2 both represent a hydrogen atom, X 3 represents general formula (II), Y 1 represents —OC—, n represents an integer of 0 or 1, and a 6-membered ring. A is
Figure 0003978624
6-membered ring B is
Figure 0003978624
And the six-membered ring C is
Figure 0003978624
Y 2 and Y 3 represent a single bond, Y 4 represents an alkyl group having 1 to 20 carbon atoms, The liquid crystalline (meth) acrylate compound according to claim 1, wherein
請求項1、又は2記載の液晶性(メタ)アクリレート化合物を含有し、且つ液晶相を示すことを特徴とする液晶組成物。A liquid crystal composition comprising the liquid crystalline (meth) acrylate compound according to claim 1 or 2 and exhibiting a liquid crystal phase. 請求項1、2、又は3記載の液晶性(メタ)アクリレート化合物を2重量%以上、及び少なくとも2つの6員環を有する液晶骨格を部分構造として有する、環状アルコール、フェノール又は芳香族ヒドロキシ化合物のアクリル酸又はメタクリル酸エステルである単官能アクリレート又は単官能メタクリレートを含有し、且つ液晶相を示すことを特徴とする液晶組成物。 A cyclic alcohol, a phenol or an aromatic hydroxy compound having a partial structure of a liquid crystal skeleton having 2% by weight or more of the liquid crystalline (meth) acrylate compound according to claim 1, 2 or 3 , and at least two 6-membered rings. A liquid crystal composition comprising a monofunctional acrylate or a monofunctional methacrylate which is acrylic acid or methacrylic acid ester and exhibiting a liquid crystal phase. 単官能アクリレート又は単官能メタクリレートが一般式(III)
Figure 0003978624
(式中、X5は水素原子又はメチル基を表し、rは0または1の整数を表し、6員環D、E及びFはそれぞれ独立的に、
Figure 0003978624
を表し、mは1〜4の整数を表し、Y5及びY6はそれぞれ独立的に、単結合、−CH2CH2−、−CH2O−、−OCH2−、−COO−、−OCO−、−C≡C−、−CH=CH−、−CF=CF−、−(CH24−、−CH2CH2CH2O−、−OCH2CH2CH2−、−CH=CH−CH2CH2−、−CH2CH2CH2O−を表し、Y7は水素原子、ハロゲン原子、シアノ基、炭素原子1〜20のアルキル基、アルコキシ基、アルケニル基、アルケニルオキシ基を表す。)で表されることを特徴とする請求項4記載の液晶組成物。
Monofunctional acrylate or monofunctional methacrylate is represented by the general formula (III)
Figure 0003978624
(In the formula, X 5 represents a hydrogen atom or a methyl group, r represents an integer of 0 or 1, and the 6-membered rings D, E, and F are each independently,
Figure 0003978624
M represents an integer of 1 to 4, Y 5 and Y 6 are each independently a single bond, —CH 2 CH 2 —, —CH 2 O—, —OCH 2 —, —COO—, — OCO—, —C≡C—, —CH═CH—, —CF═CF—, — (CH 2 ) 4 —, —CH 2 CH 2 CH 2 O—, —OCH 2 CH 2 CH 2 —, —CH ═CH—CH 2 CH 2 —, —CH 2 CH 2 CH 2 O—, Y 7 represents a hydrogen atom, a halogen atom, a cyano group, an alkyl group having 1 to 20 carbon atoms, an alkoxy group, an alkenyl group, alkenyloxy Represents a group. The liquid crystal composition according to claim 4 , which is represented by:
液晶相が少なくとも20℃〜30℃の温度範囲で発現することを特徴とする請求項3、4又は5記載の液晶組成物。6. The liquid crystal composition according to claim 3, wherein the liquid crystal phase is expressed in a temperature range of at least 20 ° C. to 30 ° C. 請求項3、4、5又は6記載の液晶組成物の重合体からなることを特徴とする光学異方体。An optical anisotropic body comprising the polymer of the liquid crystal composition according to claim 3, 4, 5 or 6 .
JP17389097A 1997-06-30 1997-06-30 Liquid crystalline (meth) acrylate compound, liquid crystal composition, and optical anisotropic body using the same Expired - Fee Related JP3978624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17389097A JP3978624B2 (en) 1997-06-30 1997-06-30 Liquid crystalline (meth) acrylate compound, liquid crystal composition, and optical anisotropic body using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17389097A JP3978624B2 (en) 1997-06-30 1997-06-30 Liquid crystalline (meth) acrylate compound, liquid crystal composition, and optical anisotropic body using the same

Publications (2)

Publication Number Publication Date
JPH1121269A JPH1121269A (en) 1999-01-26
JP3978624B2 true JP3978624B2 (en) 2007-09-19

Family

ID=15969010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17389097A Expired - Fee Related JP3978624B2 (en) 1997-06-30 1997-06-30 Liquid crystalline (meth) acrylate compound, liquid crystal composition, and optical anisotropic body using the same

Country Status (1)

Country Link
JP (1) JP3978624B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1195205A (en) * 1997-09-18 1999-04-09 Dainippon Ink & Chem Inc Optically anisotropic film and its production as well as liquid crystal display device
JP5546093B2 (en) * 2006-12-26 2014-07-09 株式会社Adeka Polymerizable compound and polymerizable composition
JP5408841B2 (en) 2006-12-29 2014-02-05 株式会社Adeka Polymerizable compound and polymerizable composition
JP2010175931A (en) * 2009-01-30 2010-08-12 Dic Corp Composition for optical alignment film, optical alignment film, and optically anisotropic body

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3622206B2 (en) * 1992-05-21 2005-02-23 大日本インキ化学工業株式会社 Side chain polymerizable compound and liquid crystal device using the same
US5998499A (en) * 1994-03-25 1999-12-07 Dentsply G.M.B.H. Liquid crystalline (meth)acrylate compounds, composition and method
JP3783787B2 (en) * 1995-02-27 2006-06-07 大日本インキ化学工業株式会社 Polymerizable liquid crystal composition and method for producing optical anisotropic body

Also Published As

Publication number Publication date
JPH1121269A (en) 1999-01-26

Similar Documents

Publication Publication Date Title
JP3963035B2 (en) Liquid crystalline (meth) acrylate compound and composition, and optical anisotropic body using the same
JP4006608B2 (en) Liquid crystalline (meth) acrylate compound, composition containing the compound, and optical anisotropic body using the same
JP4200195B2 (en) Liquid crystalline (meth) acrylate compound, liquid crystal composition containing the compound, and optical anisotropic body using the same
JP4207233B2 (en) Liquid crystal composition and optical anisotropic body using the same
EP1754768B1 (en) Polymerizable liquid crystal composition and optically anisotropic body
JP5834489B2 (en) Polymerizable naphthalene compound
JP5545519B2 (en) Polymerizable compound
JP2007269640A (en) Polymerizable chiral compound
JPH08231958A (en) Polymerizable liquid crystal composition and production of optically anisotropic material
JPH083111A (en) Polymerizable liquid crystal composition and optically antisotropic substance using the same
JP2011184417A (en) Polymerizable acetylene compound
JP4929546B2 (en) Polymerizable liquid crystal composition and optical anisotropic body using the same
WO2017188001A1 (en) Polymerizable compound and liquid crystal composition using same
JP5545516B2 (en) Polymerizable compound
KR101136495B1 (en) Polymerizable liquid crystal composition and optically anisotropic body
JP4904622B2 (en) Polymerizable composition exhibiting liquid crystal phase and optical anisotropic body using the same
JP4208058B2 (en) Liquid crystalline (meth) acrylate compound and liquid crystal composition containing the compound
JP5787466B2 (en) Polyfunctional polymerizable compound
JP3978624B2 (en) Liquid crystalline (meth) acrylate compound, liquid crystal composition, and optical anisotropic body using the same
JP4461692B2 (en) Polymerizable liquid crystal composition and optical anisotropic body
JP4766291B2 (en) Polymerizable liquid crystal compound, composition, and optical anisotropic body
JP4013090B2 (en) Liquid crystalline (meth) acrylate compound, composition containing the compound, and optical anisotropic body using the same
JP3972430B2 (en) Liquid crystalline (meth) acrylate compound, composition containing the compound, and optical anisotropic body using the same
JP4182452B2 (en) Liquid crystal composition and optical anisotropic body using the same
KR101649178B1 (en) Polymerizable naphthalene compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040608

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070613

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees