JP4206593B2 - In-cylinder injection internal combustion engine control device - Google Patents

In-cylinder injection internal combustion engine control device Download PDF

Info

Publication number
JP4206593B2
JP4206593B2 JP2000008571A JP2000008571A JP4206593B2 JP 4206593 B2 JP4206593 B2 JP 4206593B2 JP 2000008571 A JP2000008571 A JP 2000008571A JP 2000008571 A JP2000008571 A JP 2000008571A JP 4206593 B2 JP4206593 B2 JP 4206593B2
Authority
JP
Japan
Prior art keywords
catalyst
internal combustion
combustion engine
exhaust
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000008571A
Other languages
Japanese (ja)
Other versions
JP2001200719A (en
Inventor
英夫 中井
浩 棚田
修 中山
公二郎 岡田
勝幸 前田
聖二 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Mitsubishi Automotive Engineering Co Ltd
Original Assignee
Mitsubishi Motors Corp
Mitsubishi Automotive Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp, Mitsubishi Automotive Engineering Co Ltd filed Critical Mitsubishi Motors Corp
Priority to JP2000008571A priority Critical patent/JP4206593B2/en
Publication of JP2001200719A publication Critical patent/JP2001200719A/en
Application granted granted Critical
Publication of JP4206593B2 publication Critical patent/JP4206593B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、排気通路にHC吸着触媒と三元触媒または酸化触媒を有する筒内噴射式内燃機関の制御装置に関する。
【0002】
【従来の技術】
一般的に、内燃機関の排気通路には、排気ガス中の有害物質である炭化水素(HC)と一酸化炭素(CO)と窒素酸化物(NO3 )を同時に浄化する三元触媒や、炭化水素(HC)と一酸化炭素(CO)などの未燃焼成分を酸化して処理する酸化触媒が設けられている。しかし、内燃機関の冷態始動時にこの三元触媒や酸化触媒は低温状態であり、活性化が遅れてHC等の有害物質を効率よく浄化することができない。そこで、HC吸着触媒を併設し、冷態始動時にこのHC吸着触媒で排気ガス中に含まれるHCを効率よく吸着すると同時に排気ガス熱で三元触媒や酸化触媒で昇温し、HC吸着触媒が所定温度以上になってHCを脱離すると、活性化した三元触媒や酸化触媒がこの脱離HCを浄化しようとする技術が各種提案されている。
【0003】
ところが、このHC吸着触媒がHCを脱離する温度よりも、三元触媒が活性化してHCを浄化できる温度の方が高く、この期間はHCを確実に浄化処理することができない。図5に内燃機関の冷態始動時におけるHCの発生処理状況及び温度変化を表すタイムチャートを示すが、実線は触媒入口側でのHC濃度及び排気系温度、点線は触媒出口側でのHC濃度、二点鎖線は触媒中央部での排気系温度である。この図5のタイムチャートからもわかるように、冷態始動時に内燃機関からの排気ガス、つまり、触媒入口側の温度は低くてHC濃度は高いが、触媒出口側のHC濃度は低いため、排気ガス中のHCをHC吸着触媒が吸着していることがわかる(吸着期間)。ところが、時間の経過に伴って触媒入口側のHC濃度が減少していくものの、触媒出口側のHC濃度は微増している。これは触媒入口側の温度が上昇してHC吸着触媒がHC脱離温度に達してHCを脱離したが、三元触媒はまだ活性化温度に達していないことがわかる(脱離期間)。その後、所定時間経過して触媒入口側の温度が上昇して三元触媒が活性化すると、排気ガス中のHC及びHC吸着触媒からの脱離したHCを浄化することで、触媒出口側のHC濃度が減少することとなる(浄化期間)。
【0004】
このように内燃機関の冷態始動時は、HC吸着触媒が排気ガス中のHCを吸着するが、HC吸着触媒がHC脱離温度に達してから三元触媒が活性化するまでの期間はHCを確実に浄化することができていない。そこで、排気通路に三元触媒を加熱する加熱手段を設けて早期に活性化することで、HC吸着触媒から脱離されたHCを三元触媒で直ちに浄化処理できるようにした技術が、例えば、特開平9−256840号公報や特開平11−82003号公報等に開示されている。この特開平9−256840号公報に開示された「エンジンの排気浄化装置」は、HC吸着触媒の上流側に加熱手段としての電気触媒を設けており、また、特開平11−82003号公報に開示された「内燃機関の制御装置」は、アイドル運転領域で点火時期を所定量リタードさせている。
【0005】
【発明が解決しようとする課題】
ところが、特開平9−256840号公報の「エンジンの排気浄化装置」のように、排気通路に別途電気触媒を設けて昇温すると、排気系の部品点数が増加すると共に電気触媒を制御するための制御システムを変更しなければならず、装置が複雑化してコスト高となってしまう。また、特開平11−82003号公報の「内燃機関の制御装置」のように、アイドル運転領域で点火時期を所定量リタードさせて昇温すると、燃焼が不安定となりって機関ばかりか、点火時期リタードによる昇温効果は遅いために十分に三元触媒でHCを浄化処理できない。
【0006】
本発明はこのような問題を解決するものであって、別途触媒の昇温装置を設けたり機関の制御システムを大きく変更することなく炭化水素の排出を確実に抑制して浄化処理効率の向上を図った筒内噴射式内燃機関の制御装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上述の目的を達成するための請求項1の発明の筒内噴射式内燃機関の制御装置では、内燃機関の排気通路に排気ガス中の炭化水素を吸着するHC吸着触媒を設けると共に、前記内燃機関の排気通路における前記HC吸着触媒の下流側に排気ガス中の有害物質を浄化する三元または酸化触媒を設け、冷態始動検出手段により内燃機関の冷態始動が判定されると、燃料噴射制御手段が主燃焼のための燃料噴射後に膨張行程または排気行程で燃料噴射を行う2段燃焼モードを選択し、その後アイドル運転状態から走行状態に移行したら前記2段燃焼モードから圧縮スライトリーン制御に切り換えるようにしている。
【0008】
従って、内燃機関の冷態始動時、排気ガス中のHCはHC吸着触媒が効率よく吸着すると同時に、膨張行程でも燃料噴射を行うことで、排気ガスが高温となって三元触媒が直ちに昇温されて活性化することとなり、また、排気行程でも燃料噴射を行うことで、COやHCが三元触媒に供給されて直ちに昇温されて活性化することとなり、HC吸着触媒から脱離されているHCは脱離初期からすでに活性化した三元または酸化触媒で浄化処理されることとなり、HCの排出を確実に抑制して浄化効率の向上が図れる。
【0011】
【発明の実施の形態】
以下、図面に基づいて本発明の実施形態を詳細に説明する。
【0012】
図1に本発明の一実施形態に係る筒内噴射式内燃機関の制御装置の概略構成、図2に本実施形態の筒内噴射式内燃機関の制御装置を適用した内燃機関の冷態始動時におけるHCの発生処理状況及び温度変化を表すタイムチャート、図3に触媒温度に対するHC脱離量を表すグラフ、図4にHC吸着触媒の断面拡大を示す。
【0013】
本実施形態の筒内噴射式内燃機関の制御装置において、図1に示すように、内燃機関(以下、エンジンと称する。)10は、燃料を直接燃焼室に噴射する筒内噴射型直列4気筒ガソリンエンジンであると共に、燃料噴射モード(運転モード)を切換えることで、吸気行程での燃料噴射(吸気行程噴射モード)または圧縮行程での燃料噴射(圧縮行程噴射モード)を実施可能な筒内噴射型火花点火式直列4気筒ガソリンエンジンである。そして、この筒内噴射型のエンジン10は、容易にして理論空燃比(ストイキ)での運転やリッチ空燃比での運転(リッチ空燃比運転)の他、リーン空燃比での運転(リーン空燃比運転)が実現可能となっており、特に圧縮行程噴射モードでは、吸気行程でのリーン空燃比運転より大きな空燃比となる超リーン空燃比での運転が可能となっている。
【0014】
このエンジン10のシリンダヘッド11には各気筒毎に点火プラグ12が取付けられると共に、燃焼室14内に噴射口が開口したインジェクタ13が取付けられている。このインジェクタ13には図示しない燃料パイプを介して燃料タンク擁した燃料供給装置(燃料ポンプ)が接続されており、燃料タンク内の燃料が高燃圧で供給され、この燃料をインジェクタ13から燃焼室14内に向けて所望の燃圧で噴射する。この際、燃料噴射量は燃料ポンプの燃料吐出圧とインジェクタ13の開弁時間(燃料噴射時間)とから決定され、ドライバ15が制御してる。また、エンジン10のシリンダ16にはピストン17が上下に摺動自在に支持され、ピストン17の頂面には半球状に窪んだキャビティ18が形成され、キャビティ18によって吸気流に通常のタンブル流とは逆の逆タンブル流を発生させることができる。
【0015】
シリンダヘッド11には燃焼室14を臨む略直立方向に吸気ポート19及び排気ポート20が形成され、吸気ポート19は吸気弁21の駆動によって開閉され、排気ポート20は排気弁22の駆動によって開閉される。シリンダヘッド11の上部には吸気側のカムシャフト23及び排気側のカムシャフト24が回転自在に支持され、吸気側のカムシャフト23の回転により吸気弁21が駆動され、排気側のカムシャフト24の回転により排気弁22が駆動される。
【0016】
各気筒の所定のクランク位置でクランク角信号SGT を出力するベーン型のクランク角センサ25が設けられ、クランク角センサ25はエンジン回転速度を検出可能としている。また、クランクシャフトの半分の回転数で回転するカムシャフト23,24には気筒識別信号SGC を出力する識別センサ26が設けられ、気筒識別信号SGC によりクランク角信号SGT がどの気筒のものか識別可能とされている。
【0017】
吸気ポート19には吸気マニホールド27を介して吸気管28が接続され、吸気管28の空気取入口にはエアクリーナ29が取付けられている。また、吸気管28にはスロットルボデー30が設けられ、スロットルボデー30には流路を開閉するバタフライ式のスロットル弁31が設けられると共に、スロットル弁31の開度を検出するスロットルポジションセンサ32が取付けられている。このスロットルポジションセンサ32からは、スロットル弁31の開度に応じたスロットル電圧が出力され、スロットル電圧に基づいてスロットル弁31の開度が認識されるようになっている。更に、スロットルボデー30にはアイドル時に吸気通路をバイパスして吸気するパイパス通路33が形成され、このパイパス通路33を開閉するアイドルスピードコントロールバルブ34が設けられている。
【0018】
一方、排気ポート20には排気マニホールド35を介して排気管36が接続され、この排気管36にはO2センサ37が取付けられている。また、排気管36の下流側には排気浄化触媒装置38が設けられており、この排気浄化触媒装置38はHC吸着触媒39と三元触媒(酸化触媒でもよい)40とから構成されている。更に、この排気管36には排気浄化触媒装置38の上流側に位置して高温センサ41が取付けられ、下流側には図示しないマフラーが取付けられている。
【0019】
この排気浄化触媒装置38を構成するHC吸着触媒39は、図4に示すように、多孔質体からなる担体431に、HCを吸着するゼオライト等としてのHCを吸着層391を下層として、その上層にHCを浄化する三元触媒層401としての白金(Pt)、パラジウム(Pd)、ロジウム(Rh)等を担持して構成されており、排気ガス中のHCを吸着して浄化可能となっている。なお、下層に三元触媒層として白金等を担持して上層にHC吸着層としてゼオライト等を担持してもよい。また、三元触媒40は、排気ガス中の有害物質(HC,CO,NOx)を浄化する還元機能とを有しており、この三元触媒40の方がHC吸着触媒39よりも下流側に配設されていることで、HC吸着触媒39が浄化処理できずに脱離されたHCを浄化する役目も行っている。但し、三元触媒層401のみで脱離されたHCを十分に浄化できる場合は三元触媒40を省略してもよい。
【0020】
また、車両には入出力装置、記憶装置(ROM、RAM、不揮発性RAM等)、中央処理装置(CPU)、タイマカウンタ等を有するECU(電子コントロールユニット)42が設けられており、このECU42によりエンジン10を含めた総合的な制御が行われる。即ち、ECU42の入力側には、前述した各種センサ類25,26,32,37,41が接続されており、これらセンサ類からの検出情報が入力する。一方、ECU42の出力側には、点火コイルを介して上述した点火プラグ12やインジェクタ13のドライバ15等が接続されており、これら点火プラグ12、インジェクタ13のドライバ15等には、各種センサ類からの検出情報に基づき演算された燃料噴射量や点火時期等の最適値がそれぞれ出力される。これにより、インジェクタ13から適正量の燃料が適正なタイミングで噴射され、点火プラグ12によって適正なタイミングで点火が実施される。
【0021】
実際にECU42では、スロットルポジションセンサ32からのスロットル開度情報θthとクランク角センサ25からのエンジン回転速度情報Neとに基づいてエンジン負荷に対応する目標筒内圧、即ち目標平均有効圧Peを求めるようにされており、更に、この目標平均有効圧Peとエンジン回転速度情報Neとに応じてマップ(図示せず)より燃料噴射モードを設定するようにされている。例えば、目標平均有効圧Peとエンジン回転速度Neとが共に小さいときには、燃料噴射モードは圧縮行程噴射モードとされて燃料が圧縮行程で噴射される一方、目標平均有効圧Peが大きくなり、あるいはエンジン回転速度Neが大きくなると燃料噴射モードは吸気行程噴射モードとされ、燃料が吸気行程で噴射される。そして、目標平均有効圧Peとエンジン回転速度Neとから制御目標となる目標空燃比(目標A/F)が設定され、適正量の燃料噴射量がこの目標A/Fに基づいて決定される。
【0022】
ところで、本実施形態では、エンジン10の冷態始動が判定(冷態始動検出手段)されると、主燃焼のための圧縮行程での燃料噴射後に膨張行程または排気行程で燃料噴射を行う2段燃焼モードを選択(燃料噴射制御手段)することにより、HC吸着触媒39に吸着したHCが浄化されるように三元触媒40を活性化するようにしており、つまり、圧縮行程での目標空燃比を冷態始動時以外で選択される目標空燃比よりも濃化側に変更(燃料噴射制御手段)するようにしている。
【0023】
即ち、エンジン10の冷態始動をイグニッションキースイッチのON信号とエンジン水温とから判定すると、ECU42は、圧縮行程と膨張行程とで燃料噴射を行う2段燃焼モードを選択し、目標空燃比(目標A/F)が設定され、前述したように、目標A/Fに基づいて設定された適正量の燃料噴射量が圧縮行程と膨張行程とで噴射される。すると、圧縮行程で噴射された主燃焼のための燃料に対して点火されて燃焼した後、更に膨張行程で噴射された燃料が燃焼することで排気ガスが高温となり、この高温の排気ガスによって三元触媒40が昇温され、直ちに活性化させる。一方、HC吸着触媒39では排気ガス中のHCが吸着される。
【0024】
このHC吸着触媒39からのHCの脱離温度は約150℃で、三元触媒40におけるHCを処理できる活性化温度は250℃であるが、所定時間の経過を伴って高温の排気ガスによりHC吸着触媒39及び三元触媒40が早期に昇温されることとなるため、HC吸着触媒39から脱離するHCは脱離初期からHC吸着触媒39が有する三元機能により、また、下流の三元触媒40により浄化処理される。
【0025】
なお、この冷態始動が判定されたときに、膨張行程噴射の後に排気行程で燃料を噴射したり、あるいは、膨張行程噴射に代えて排気行程で燃料噴射を行い、COやHCを三元触媒40に供給して昇温することで、この三元触媒40を早期に活性化させるようにしてもよい。この場合であっても、HC吸着触媒39が所定温度となって脱離したHCは三元触媒40で浄化される。
【0026】
また、冷態始動が判定されて圧縮行程噴射と膨張行程噴射が実行された後、アイドル運転状態から走行状態に移行したら、2段燃焼モードから圧縮スライトリーン制御、つまり、目標空燃比を理論空燃比よりややリーン空燃比で、圧縮行程噴射が実行される通常のリーン空燃比より濃化側に変更することで、COやHCを三元触媒40に供給して昇温することで、三元触媒40の早期活性化が継続されるようにしている。これは、アイドル運転状態から走行状態に移行すると、2段燃焼モードでは三元触媒40の昇温が進行しすぎて熱劣化の虞があり、三元触媒40の耐久性を考慮している。
【0027】
このように本実施形態の筒内噴射式内燃機関の制御装置では、エンジン10の冷態始動時に圧縮行程噴射及び膨張行程を実行して排気ガスを高温化し、この高温の排気ガスによって三元触媒40を昇温して早期に活性化させることで、HC吸着触媒39が吸着したHCの脱離の時期と、三元触媒40がHCを処理できる活性化の時期がほぼ同時となり、HC吸着触媒39からのHCの脱離前後でHC吸着触媒39が有する三元機能あるいは三元触媒40によりHCを確実に浄化処理することで、浄化処理効率を向上できる。また、本実施形態では、膨張行程噴射の後に排気行程で燃料を噴射したり、あるいは、膨張行程噴射に代えて排気行程で燃料噴射を行ったり、2段燃焼モードから圧縮スライトリーン制御に切り換えることで、COやHCを三元触媒40に供給して昇温することで、三元触媒40を早期に活性することができる。
【0028】
ここで、本実施形態の筒内噴射式内燃機関の制御装置による三元触媒40を早期活性化によるHC抑制効果を説明する。図2に示すタイムチャートは、冷態始動時におけるHCの発生処理状況及び温度変化を表すものであり、実線は排気浄化触媒装置38の入口側でのHC濃度及び排気系温度、点線は出口側でのHC濃度、二点鎖線は中央部での排気系温度である。
【0029】
この図2のタイムチャートからもわかるように、冷態始動時にエンジン10から排出される排気ガス、つまり、触媒入口側のHC濃度は高いが、触媒出口側のHC濃度は低いことから、HC吸着触媒39が排気ガス中のHCを吸着していることがわかる(吸着期間)。冷態始動直後に2段燃焼モードの期間になるため、触媒入口側の排気ガスが上昇して触媒出口側のHC濃度が減少していくことから、三元触媒40が活性化して排気ガス中のHCを浄化処理しているのがわかる(浄化期間)。このようにHC吸着触媒39によるHCの吸着期間から、直ちに三元触媒40の活性化によるHCの浄化期間に移行することとなり、HC吸着触媒39からの脱離されたHCがそのまま大気に放出される期間がほとんどなく、この期間におけるHCの放出を抑制することができる。
【0030】
ところで、上述の実施形態にて、HC吸着触媒39を、多孔質体からなる担体にHCを物理吸着するゼオライトを担持して構成したが、遷移金属を添加してHCを化学吸着させるようにしてもよい。この場合、図3に示すように、遷移金属を添加することでHC吸着触媒に吸着したHCの脱離温度を高くして三元触媒の活性化温度に近づけることができ、これによってHCの脱離時期を遅くして三元触媒によるHCの浄化処理効率を向上できる。
【0031】
なお、上述した実施形態では、HC吸着触媒39にHC吸着機能を有するゼオライト層とHCを浄化する白金層等を設けたが、HC吸着触媒39の下流側に三元触媒40を設けることでゼオライト層のみとしてもよく、図4に示すように、HC吸着触媒39の担体31にHC吸着層391と三元触媒層401等を設けた場合、下流側の三元触媒40を省略してもよい。更に、HC吸着触媒39にHC吸着機能を設けると共に、空燃比がリーン空燃比のときに排気ガス中のNOxを吸蔵するNOx吸蔵機能を一体に設けてもよく、また、HC吸着触媒39の下流にNOx吸蔵機能を別体に設けてもよい。この場合、HC吸着+NOx吸蔵触媒、または、HC吸着触媒+NOx吸蔵触媒の上流または下流に三元触媒を設けることが望ましい。つまり、HCが先に吸着され、その後に脱離されたHCが浄化されるものであれば、三元触媒ではなく酸化触媒でもよく、車両の搭載性等を考慮してどのような形態を用いてもよい。
【0032】
【発明の効果】
以上、実施形態において詳細に説明したように請求項1の発明の筒内噴射式内燃機関の制御装置によれば、内燃機関の排気通路にHC吸着触媒と三元または酸化触媒を設け、内燃機関の冷態始動時に主燃焼のための燃料噴射後に膨張行程または排気行程で燃料噴射を行う2段燃焼モードを選択するようにしたので、内燃機関の冷態始動時に排気ガス中のHCはHC吸着触媒が効率よく吸着すると同時に、膨張行程噴射により排気ガスが高温となって三元触媒が昇温して早期に活性化することとなり、また、排気行程噴射によりCOやHCが三元触媒に供給されて昇温して早期に活性化することとなり、HC吸着触媒に吸着されたHCは三元または酸化触媒で確実に浄化処理されることとなり、HCの排出を確実に抑制して浄化効率を向上することができる。
【0033】
また、請求項2の発明の筒内噴射式内燃機関の制御装置によれば、内燃機関の排気通路にHC吸着触媒と三元または酸化触媒を設け、内燃機関の冷態始動時に圧縮行程と膨張行程または排気行程で燃料噴射を行う2段燃焼モードを選択すると共に圧縮行程での目標空燃比を冷態始動時以外で選択される目標空燃比よりも濃化側に変更するようにしたので、内燃機関の冷態始動時に排気ガス中のHCはHC吸着触媒が効率よく浄化すると同時に、目標空燃比を濃化側に変更してCOやHCが三元触媒に供給されて昇温して早期に活性化することとなり、HC吸着触媒に吸着されたHCは三元または酸化触媒で確実に浄化処理されることとなり、HCの排出を確実に抑制して浄化効率を向上することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る筒内噴射式内燃機関の制御装置の概略構成図である。
【図2】本実施形態の筒内噴射式内燃機関の制御装置を適用した内燃機関の冷態始動時におけるHCの発生処理状況及び温度変化を表すタイムチャートである。
【図3】触媒温度に対するHC脱離量を表すグラフである。
【図4】HC吸着触媒の断面拡大図である。
【図5】内燃機関の冷態始動時におけるHCの発生処理状況及び温度変化を表すタイムチャートである。
【符号の説明】
10 エンジン(内燃機関)
12 点火プラグ
13 インジェクタ
14 燃焼室
36 排気管(排気通路)
23 排気浄化触媒装置
38 排気浄化触媒装置
39 HC吸着触媒
40 三元触媒
41 高温センサ
42 電子コントロールユニット,ECU(冷態始動検出手段、燃料噴射制御手段、燃料噴射制御手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control device for a direct injection internal combustion engine having an HC adsorption catalyst and a three-way catalyst or an oxidation catalyst in an exhaust passage.
[0002]
[Prior art]
Generally, the exhaust passage of an internal combustion engine has a three-way catalyst that simultaneously purifies hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NO 3 ), which are harmful substances in the exhaust gas, and carbonization. An oxidation catalyst is provided for oxidizing and treating unburned components such as hydrogen (HC) and carbon monoxide (CO). However, at the time of cold start of the internal combustion engine, the three-way catalyst and the oxidation catalyst are in a low temperature state, and activation is delayed, so that harmful substances such as HC cannot be efficiently purified. Therefore, an HC adsorption catalyst is also provided, and at the time of cold start, HC contained in the exhaust gas is efficiently adsorbed by this HC adsorption catalyst, and at the same time, the temperature of the exhaust gas heats up with a three-way catalyst or an oxidation catalyst, Various techniques have been proposed in which, when HC is desorbed at a predetermined temperature or more, an activated three-way catalyst or oxidation catalyst purifies the desorbed HC.
[0003]
However, the temperature at which the three-way catalyst is activated to purify HC is higher than the temperature at which the HC adsorption catalyst desorbs HC, and HC cannot be reliably purified during this period. FIG. 5 is a time chart showing the HC generation processing status and temperature change at the time of cold start of the internal combustion engine. The solid line indicates the HC concentration and the exhaust system temperature on the catalyst inlet side, and the dotted line indicates the HC concentration on the catalyst outlet side. The two-dot chain line is the exhaust system temperature at the center of the catalyst. As can be seen from the time chart of FIG. 5, the exhaust gas from the internal combustion engine at the cold start, that is, the temperature on the catalyst inlet side is low and the HC concentration is high, but the HC concentration on the catalyst outlet side is low. It can be seen that the HC adsorption catalyst adsorbs HC in the gas (adsorption period). However, although the HC concentration on the catalyst inlet side decreases with the passage of time, the HC concentration on the catalyst outlet side slightly increases. It can be seen that the temperature on the catalyst inlet side rises and the HC adsorption catalyst reaches the HC desorption temperature and desorbs HC, but the three-way catalyst has not yet reached the activation temperature (desorption period). After that, when a predetermined time elapses and the temperature on the catalyst inlet side rises and the three-way catalyst is activated, HC in the exhaust gas and HC desorbed from the HC adsorption catalyst are purified, and HC on the catalyst outlet side is purified. The concentration will decrease (purification period).
[0004]
Thus, at the time of cold start of the internal combustion engine, the HC adsorption catalyst adsorbs HC in the exhaust gas, but the period from when the HC adsorption catalyst reaches the HC desorption temperature until the three-way catalyst is activated is HC. Can not be purified reliably. Therefore, by providing a heating means for heating the three-way catalyst in the exhaust passage and activating early, HC released from the HC adsorption catalyst can be immediately purified with the three-way catalyst, for example, It is disclosed in JP-A-9-256840 and JP-A-11-82003. This "engine exhaust purification device" disclosed in Japanese Patent Laid-Open No. 9-256840 is provided with an electrocatalyst as a heating means upstream of the HC adsorption catalyst, and is disclosed in Japanese Patent Laid-Open No. 11-82003. The "control device for an internal combustion engine" thus retarded the ignition timing by a predetermined amount in the idle operation region.
[0005]
[Problems to be solved by the invention]
However, as in the “exhaust gas purification device” of Japanese Patent Application Laid-Open No. 9-256840, if an electrocatalyst is separately provided in the exhaust passage and the temperature rises, the number of parts of the exhaust system increases and the electrocatalyst is controlled. The control system must be changed, and the apparatus becomes complicated and expensive. Further, as in the “Control Device for Internal Combustion Engine” of Japanese Patent Application Laid-Open No. 11-82003, when the ignition timing is retarded by a predetermined amount in the idle operation region and the temperature rises, the combustion becomes unstable and not only the engine but also the ignition timing Since the temperature rise effect due to the retard is slow, HC cannot be sufficiently purified with a three-way catalyst.
[0006]
The present invention solves such a problem, and it is possible to improve the purification processing efficiency by reliably suppressing the discharge of hydrocarbons without separately providing a catalyst temperature raising device or making a major change to the engine control system. It is an object of the present invention to provide a control device for an in-cylinder injection internal combustion engine.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a control apparatus for a cylinder injection internal combustion engine according to claim 1 of the present invention is provided with an HC adsorption catalyst for adsorbing hydrocarbons in exhaust gas in an exhaust passage of the internal combustion engine, and the internal combustion engine. A three-way or oxidation catalyst for purifying harmful substances in the exhaust gas is provided downstream of the HC adsorption catalyst in the exhaust passage of the engine. When the means selects the two-stage combustion mode in which the fuel is injected in the expansion stroke or the exhaust stroke after the fuel injection for the main combustion , and then shifts from the idling operation state to the running state, the two-stage combustion mode is switched to the compression slight lean control. I am doing so.
[0008]
Therefore, at the time of cold start of the internal combustion engine, HC in the exhaust gas is adsorbed efficiently by the HC adsorption catalyst, and at the same time, fuel injection is performed even in the expansion stroke, so that the exhaust gas becomes hot and the three-way catalyst immediately rises in temperature. In addition, by injecting fuel even in the exhaust stroke, CO and HC are supplied to the three-way catalyst and immediately heated to be activated and desorbed from the HC adsorption catalyst. The HC that has been removed is purified by the ternary or oxidation catalyst that has already been activated from the beginning of desorption, and the emission of HC can be reliably suppressed to improve the purification efficiency.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0012]
FIG. 1 shows a schematic configuration of a control apparatus for a direct injection internal combustion engine according to an embodiment of the present invention, and FIG. 2 shows a control apparatus for a direct injection internal combustion engine according to the present embodiment applied during cold start of the internal combustion engine. FIG. 3 is a graph showing the amount of HC desorbed with respect to the catalyst temperature, and FIG. 4 is an enlarged cross-sectional view of the HC adsorption catalyst.
[0013]
In the control apparatus for a direct injection internal combustion engine of the present embodiment, as shown in FIG. 1, an internal combustion engine (hereinafter referred to as an engine) 10 is an in-cylinder injection type in-line four cylinder that directly injects fuel into a combustion chamber. In-cylinder injection that is a gasoline engine and can perform fuel injection in the intake stroke (intake stroke injection mode) or fuel injection in the compression stroke (compression stroke injection mode) by switching the fuel injection mode (operation mode) This is a spark-ignition type in-line 4-cylinder gasoline engine. This in-cylinder injection type engine 10 can be easily operated at a stoichiometric air-fuel ratio (stoichiometric), an operation at a rich air-fuel ratio (rich air-fuel ratio operation), or an operation at a lean air-fuel ratio (lean air-fuel ratio). In particular, in the compression stroke injection mode, it is possible to operate at a super lean air / fuel ratio that is larger than the lean air / fuel ratio operation in the intake stroke.
[0014]
A spark plug 12 is attached to the cylinder head 11 of the engine 10 for each cylinder, and an injector 13 having an injection port opened in the combustion chamber 14. A fuel supply device (fuel pump) having a fuel tank is connected to the injector 13 via a fuel pipe (not shown). The fuel in the fuel tank is supplied at a high fuel pressure, and this fuel is supplied from the injector 13 to the combustion chamber 14. Inject at the desired fuel pressure. At this time, the fuel injection amount is determined from the fuel discharge pressure of the fuel pump and the valve opening time (fuel injection time) of the injector 13, and is controlled by the driver 15. Further, a piston 17 is supported on the cylinder 16 of the engine 10 so as to be slidable up and down, and a cavity 18 that is hemispherically recessed is formed on the top surface of the piston 17. Can generate a reverse tumble flow.
[0015]
An intake port 19 and an exhaust port 20 are formed in the cylinder head 11 in a substantially upright direction facing the combustion chamber 14. The intake port 19 is opened and closed by driving an intake valve 21, and the exhaust port 20 is opened and closed by driving an exhaust valve 22. The An intake side camshaft 23 and an exhaust side camshaft 24 are rotatably supported on an upper portion of the cylinder head 11. The intake valve 21 is driven by the rotation of the intake side camshaft 23. The exhaust valve 22 is driven by the rotation.
[0016]
A vane-type crank angle sensor 25 that outputs a crank angle signal SGT at a predetermined crank position of each cylinder is provided, and the crank angle sensor 25 can detect the engine speed. The camshafts 23 and 24 that rotate at half the number of revolutions of the crankshaft are provided with an identification sensor 26 that outputs a cylinder identification signal SGC, and the cylinder identification signal SGC can identify which cylinder the crank angle signal SGT belongs to. It is said that.
[0017]
An intake pipe 28 is connected to the intake port 19 via an intake manifold 27, and an air cleaner 29 is attached to an air intake port of the intake pipe 28. The intake pipe 28 is provided with a throttle body 30. The throttle body 30 is provided with a butterfly throttle valve 31 for opening and closing the flow path, and a throttle position sensor 32 for detecting the opening degree of the throttle valve 31 is attached. It has been. The throttle position sensor 32 outputs a throttle voltage corresponding to the opening degree of the throttle valve 31, and the opening degree of the throttle valve 31 is recognized based on the throttle voltage. Further, a bypass passage 33 is formed in the throttle body 30 for bypassing the intake passage during idling, and an idle speed control valve 34 for opening and closing the bypass passage 33 is provided.
[0018]
On the other hand, an exhaust pipe 36 is connected to the exhaust port 20 via an exhaust manifold 35, and an O 2 sensor 37 is attached to the exhaust pipe 36. An exhaust purification catalyst device 38 is provided on the downstream side of the exhaust pipe 36, and the exhaust purification catalyst device 38 includes an HC adsorption catalyst 39 and a three-way catalyst (or an oxidation catalyst) 40. Further, a high temperature sensor 41 is attached to the exhaust pipe 36 on the upstream side of the exhaust purification catalyst device 38, and a muffler (not shown) is attached on the downstream side.
[0019]
As shown in FIG. 4, the HC adsorption catalyst 39 constituting the exhaust purification catalyst device 38 is composed of a porous carrier 431, HC as zeolite adsorbing HC, etc., with an adsorption layer 391 as a lower layer and an upper layer thereof. It is configured to carry platinum (Pt), palladium (Pd), rhodium (Rh), etc. as a three-way catalyst layer 401 for purifying HC, and can adsorb and purify HC in the exhaust gas. Yes. Note that platinum or the like may be supported on the lower layer as a three-way catalyst layer, and zeolite or the like may be supported on the upper layer as an HC adsorption layer. The three-way catalyst 40 has a reduction function for purifying harmful substances (HC, CO, NOx) in the exhaust gas. The three-way catalyst 40 is located downstream of the HC adsorption catalyst 39. By being disposed, the HC adsorption catalyst 39 also serves to purify HC that has been desorbed without being purified. However, the three-way catalyst 40 may be omitted when the HC desorbed by only the three-way catalyst layer 401 can be sufficiently purified.
[0020]
The vehicle is provided with an ECU (electronic control unit) 42 having an input / output device, a storage device (ROM, RAM, nonvolatile RAM, etc.), a central processing unit (CPU), a timer counter, and the like. Comprehensive control including the engine 10 is performed. That is, the various sensors 25, 26, 32, 37, and 41 described above are connected to the input side of the ECU 42, and detection information from these sensors is input. On the other hand, the ignition plug 12 and the driver 15 of the injector 13 described above are connected to the output side of the ECU 42 via an ignition coil. The ignition plug 12 and the driver 15 of the injector 13 are connected to various sensors. Optimal values such as the fuel injection amount and ignition timing calculated based on the detected information are respectively output. Thus, an appropriate amount of fuel is injected from the injector 13 at an appropriate timing, and ignition is performed at an appropriate timing by the spark plug 12.
[0021]
Actually, the ECU 42 determines the target in-cylinder pressure corresponding to the engine load, that is, the target average effective pressure Pe, based on the throttle opening information θth from the throttle position sensor 32 and the engine rotational speed information Ne from the crank angle sensor 25. Further, the fuel injection mode is set from a map (not shown) according to the target average effective pressure Pe and the engine rotational speed information Ne. For example, when the target average effective pressure Pe and the engine rotational speed Ne are both small, the fuel injection mode is set to the compression stroke injection mode, and fuel is injected in the compression stroke, while the target average effective pressure Pe increases, or the engine When the rotational speed Ne increases, the fuel injection mode is changed to the intake stroke injection mode, and fuel is injected in the intake stroke. Then, a target air-fuel ratio (target A / F) as a control target is set from the target average effective pressure Pe and the engine speed Ne, and an appropriate amount of fuel injection is determined based on the target A / F.
[0022]
By the way, in this embodiment, when the cold start of the engine 10 is determined (cold start detection means), the fuel injection is performed in the expansion stroke or the exhaust stroke after the fuel injection in the compression stroke for main combustion. By selecting the combustion mode (fuel injection control means), the three-way catalyst 40 is activated so that the HC adsorbed on the HC adsorption catalyst 39 is purified, that is, the target air-fuel ratio in the compression stroke. Is changed to a richer side than the target air-fuel ratio selected at a time other than during cold start (fuel injection control means).
[0023]
That is, when the cold start of the engine 10 is determined from the ON signal of the ignition key switch and the engine water temperature, the ECU 42 selects the two-stage combustion mode in which fuel injection is performed in the compression stroke and the expansion stroke, and the target air-fuel ratio (target A / F) is set, and as described above, an appropriate amount of fuel injection set based on the target A / F is injected in the compression stroke and the expansion stroke. Then, after the fuel for main combustion injected in the compression stroke is ignited and burned, the fuel injected in the expansion stroke further burns, and the exhaust gas becomes high temperature. The original catalyst 40 is heated and activated immediately. On the other hand, the HC adsorption catalyst 39 adsorbs HC in the exhaust gas.
[0024]
The HC desorption temperature from the HC adsorption catalyst 39 is about 150 ° C., and the activation temperature at which the HC can be treated in the three-way catalyst 40 is 250 ° C., but the HC is exhausted by high-temperature exhaust gas over a predetermined time. Since the temperature of the adsorption catalyst 39 and the three-way catalyst 40 is raised quickly, the HC desorbed from the HC adsorption catalyst 39 has a three-way function that the HC adsorption catalyst 39 has from the beginning of the desorption, and the downstream three-way catalyst. Purification is performed by the original catalyst 40.
[0025]
When this cold start is determined, fuel is injected in the exhaust stroke after the expansion stroke injection, or fuel is injected in the exhaust stroke instead of the expansion stroke injection, and CO or HC is converted into a three-way catalyst. The three-way catalyst 40 may be activated at an early stage by supplying it to 40 and raising the temperature. Even in this case, the HC desorbed when the HC adsorption catalyst 39 reaches a predetermined temperature is purified by the three-way catalyst 40.
[0026]
Further, after the cold start is determined and the compression stroke injection and the expansion stroke injection are executed, when the transition from the idling operation state to the running state is performed, the compression light lean control from the two-stage combustion mode, that is, the target air-fuel ratio is set to the theoretical air-fuel ratio. By changing the lean air-fuel ratio from the normal lean air-fuel ratio at which the compression stroke injection is performed to a richer side, the CO and HC are supplied to the three-way catalyst 40 and the temperature is raised. Early activation of the catalyst 40 is continued. This is because the temperature of the three-way catalyst 40 is excessively increased in the two-stage combustion mode when the idling operation state is shifted to the running state, and there is a risk of thermal deterioration, and the durability of the three-way catalyst 40 is taken into consideration.
[0027]
As described above, in the control device for a cylinder injection internal combustion engine of the present embodiment, the compression stroke injection and the expansion stroke are executed at the time of cold start of the engine 10 to increase the temperature of the exhaust gas, and the high temperature exhaust gas causes the three-way catalyst. By activating 40 by raising the temperature, the timing of desorption of HC adsorbed by the HC adsorption catalyst 39 and the activation timing at which the three-way catalyst 40 can treat HC are almost simultaneous, and the HC adsorption catalyst The purification efficiency can be improved by reliably purifying HC by the three-way function or the three-way catalyst 40 of the HC adsorption catalyst 39 before and after HC desorption from 39. Further, in the present embodiment, fuel is injected in the exhaust stroke after the expansion stroke injection, or fuel injection is performed in the exhaust stroke instead of the expansion stroke injection, or the two-stage combustion mode is switched to the compression sludge lean control. Thus, by supplying CO or HC to the three-way catalyst 40 and raising the temperature, the three-way catalyst 40 can be activated early.
[0028]
Here, the HC suppression effect by early activation of the three-way catalyst 40 by the control device for the direct injection internal combustion engine of the present embodiment will be described. The time chart shown in FIG. 2 represents the HC generation processing status and temperature change at the time of cold start, the solid line is the HC concentration and exhaust system temperature on the inlet side of the exhaust purification catalyst device 38, and the dotted line is the outlet side. The HC concentration at 2 and the two-dot chain line are the exhaust system temperature at the center.
[0029]
As can be seen from the time chart of FIG. 2, the exhaust gas discharged from the engine 10 at the time of cold start, that is, the HC concentration on the catalyst inlet side is high, but the HC concentration on the catalyst outlet side is low. It can be seen that the catalyst 39 adsorbs HC in the exhaust gas (adsorption period). Since the period of the two-stage combustion mode immediately after the cold start, the exhaust gas on the catalyst inlet side rises and the HC concentration on the catalyst outlet side decreases, so that the three-way catalyst 40 is activated and is in the exhaust gas It can be seen that the HC is being purified (purification period). Thus, the HC adsorption period by the HC adsorption catalyst 39 immediately shifts to the HC purification period by the activation of the three-way catalyst 40, and the HC desorbed from the HC adsorption catalyst 39 is released to the atmosphere as it is. There is almost no period during which HC can be released during this period.
[0030]
By the way, in the above-described embodiment, the HC adsorption catalyst 39 is configured by supporting zeolite that physically adsorbs HC on a support made of a porous material. However, a transition metal is added to chemically adsorb HC. Also good. In this case, as shown in FIG. 3, by adding a transition metal, the desorption temperature of HC adsorbed on the HC adsorption catalyst can be increased to approach the activation temperature of the three-way catalyst, thereby desorbing HC. The separation timing can be delayed to improve the HC purification efficiency by the three-way catalyst.
[0031]
In the above-described embodiment, the HC adsorption catalyst 39 is provided with a zeolite layer having an HC adsorption function and a platinum layer for purifying HC. However, by providing a three-way catalyst 40 on the downstream side of the HC adsorption catalyst 39, the zeolite As shown in FIG. 4, when the HC adsorption layer 391 and the three-way catalyst layer 401 are provided on the carrier 31 of the HC adsorption catalyst 39, the three-way catalyst 40 on the downstream side may be omitted. . Further, the HC adsorption catalyst 39 may be provided with an HC adsorption function, and an NOx occlusion function that occludes NOx in the exhaust gas when the air-fuel ratio is a lean air-fuel ratio may be integrally provided. In addition, the NOx occlusion function may be provided separately. In this case, it is desirable to provide a three-way catalyst upstream or downstream of the HC adsorption + NOx storage catalyst or the HC adsorption catalyst + NOx storage catalyst. That is, as long as HC is adsorbed first and then desorbed HC is purified, an oxidation catalyst may be used instead of a three-way catalyst, and any form is used in consideration of vehicle mounting characteristics and the like. May be.
[0032]
【The invention's effect】
As described above in detail in the embodiment, according to the control apparatus for a cylinder injection internal combustion engine of the invention of claim 1, the HC adsorption catalyst and the three-way or oxidation catalyst are provided in the exhaust passage of the internal combustion engine, and the internal combustion engine Since the two-stage combustion mode in which the fuel is injected in the expansion stroke or the exhaust stroke after the fuel injection for the main combustion at the cold start of the internal combustion engine is selected, the HC in the exhaust gas is adsorbed by the HC at the cold start of the internal combustion engine. At the same time as the catalyst is adsorbed efficiently, the exhaust gas becomes hot due to the expansion stroke injection, and the three-way catalyst rises in temperature and is activated early, and the exhaust stroke injection supplies CO and HC to the three-way catalyst. As a result, the temperature is raised and activated early, and the HC adsorbed by the HC adsorption catalyst is surely purified by the three-way or oxidation catalyst, and the emission efficiency is improved by reliably suppressing the discharge of HC. improves Door can be.
[0033]
According to the control device for a cylinder injection internal combustion engine of the second aspect of the present invention, the HC adsorption catalyst and the three-way or oxidation catalyst are provided in the exhaust passage of the internal combustion engine, and the compression stroke and expansion are performed when the internal combustion engine is cold-started. Since the two-stage combustion mode in which fuel injection is performed in the stroke or the exhaust stroke is selected and the target air-fuel ratio in the compression stroke is changed to the richer side than the target air-fuel ratio selected outside the cold start, At the time of cold start of the internal combustion engine, the HC in the exhaust gas is efficiently purified by the HC adsorption catalyst, and at the same time, the target air-fuel ratio is changed to the concentrating side, and CO and HC are supplied to the three-way catalyst to raise the temperature early. Thus, the HC adsorbed on the HC adsorption catalyst is surely purified by the three-way or oxidation catalyst, and the purification efficiency can be improved by reliably suppressing the discharge of HC.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a control device for a direct injection internal combustion engine according to an embodiment of the present invention.
FIG. 2 is a time chart showing HC generation processing status and temperature change at the time of cold start of the internal combustion engine to which the control device for a direct injection internal combustion engine of the present embodiment is applied.
FIG. 3 is a graph showing the amount of HC desorption with respect to the catalyst temperature.
FIG. 4 is an enlarged cross-sectional view of an HC adsorption catalyst.
FIG. 5 is a time chart showing the HC generation processing status and temperature change at the time of cold start of the internal combustion engine.
[Explanation of symbols]
10 Engine (Internal combustion engine)
12 Spark plug 13 Injector 14 Combustion chamber 36 Exhaust pipe (exhaust passage)
23 Exhaust purification catalyst device 38 Exhaust purification catalyst device 39 HC adsorption catalyst 40 Three-way catalyst 41 High temperature sensor 42 Electronic control unit, ECU (cold start detection means, fuel injection control means, fuel injection control means)

Claims (1)

燃焼室内に直接燃料を噴射する筒内噴射式内燃機関において、
前記内燃機関の排気通路に設けられて排気ガス中の炭化水素を吸着するHC吸着触媒と、
前記内燃機関の排気通路における前記HC吸着触媒の下流側に設けられて排気ガス中の有害物質を浄化する三元または酸化触媒と、
前記内燃機関の冷態始動を判定する冷態始動検出手段と、
該冷態始動検出手段により前記内燃機関の冷態始動が判定されると膨張行程または排気行程で燃料噴射を行う2段燃焼モードを選択し、その後アイドル運転状態から走行状態に移行したら前記2段燃焼モードから圧縮スライトリーン制御に切り換える燃料噴射制御手段とを具えた
ことを特徴とする筒内噴射式内燃機関の制御装置。
In a cylinder injection internal combustion engine that directly injects fuel into a combustion chamber,
An HC adsorption catalyst provided in the exhaust passage of the internal combustion engine and adsorbing hydrocarbons in the exhaust gas;
A three-way or oxidation catalyst that is provided downstream of the HC adsorption catalyst in the exhaust passage of the internal combustion engine and purifies harmful substances in the exhaust gas;
Cold start detection means for determining the cold start of the internal combustion engine;
When the cold start detection means determines that the internal combustion engine is cold started, the two-stage combustion mode in which fuel injection is performed in the expansion stroke or the exhaust stroke is selected , and then when the transition from the idle operation state to the traveling state is made, the two-stage combustion mode is selected. A control device for a direct injection internal combustion engine, comprising: fuel injection control means for switching from a combustion mode to a compression-slight lean control.
JP2000008571A 2000-01-18 2000-01-18 In-cylinder injection internal combustion engine control device Expired - Lifetime JP4206593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000008571A JP4206593B2 (en) 2000-01-18 2000-01-18 In-cylinder injection internal combustion engine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000008571A JP4206593B2 (en) 2000-01-18 2000-01-18 In-cylinder injection internal combustion engine control device

Publications (2)

Publication Number Publication Date
JP2001200719A JP2001200719A (en) 2001-07-27
JP4206593B2 true JP4206593B2 (en) 2009-01-14

Family

ID=18536822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000008571A Expired - Lifetime JP4206593B2 (en) 2000-01-18 2000-01-18 In-cylinder injection internal combustion engine control device

Country Status (1)

Country Link
JP (1) JP4206593B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3800324B2 (en) * 2001-11-13 2006-07-26 三菱自動車工業株式会社 In-cylinder injection type spark ignition internal combustion engine exhaust purification device
JP5006776B2 (en) * 2007-12-10 2012-08-22 本田技研工業株式会社 Fuel reformer

Also Published As

Publication number Publication date
JP2001200719A (en) 2001-07-27

Similar Documents

Publication Publication Date Title
JP3951422B2 (en) Exhaust purification device for multi-cylinder internal combustion engine
JP3799758B2 (en) Catalyst regeneration device for internal combustion engine
JPH10299463A (en) Exhaust emission control device for internal combustion engine
JP2000230416A (en) Failure detecting device for exhaust changeover valve in internal combustion engine
JPH10317946A (en) Exhaust emission control device
WO2002061244A1 (en) Exhaust emission control device of internal combustion engine
US20080236144A1 (en) Control system of internal combustion engine and method for controlling the same
US6170260B1 (en) Exhaust emission control apparatus for combustion engine
JP3779828B2 (en) Exhaust gas purification device for internal combustion engine
JP3901593B2 (en) Exhaust gas purification device for internal combustion engine
JP4292671B2 (en) Hydrocarbon emission reduction device for internal combustion engine
JP4206593B2 (en) In-cylinder injection internal combustion engine control device
JP4114322B2 (en) Exhaust gas purification device for internal combustion engine
JP2000087736A (en) Internal combustion engine
JP3931244B2 (en) Internal combustion engine
JP3596378B2 (en) Exhaust gas heating device for internal combustion engine
JP4556345B2 (en) Exhaust gas purification device for internal combustion engine
JP3642194B2 (en) In-cylinder internal combustion engine
JP3952109B2 (en) Exhaust gas purification device for internal combustion engine
JP2001115829A (en) Exhaust emission control device for internal combustion engine
JP2000120483A (en) Lean-burn internal combustion engine
JP2626333B2 (en) Engine exhaust purification device and exhaust purification method
JP2001164930A (en) Exhaust emission control device for internal combustion engine
JP3386008B2 (en) Exhaust gas purification device for internal combustion engine
JP4586629B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071129

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081007

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4206593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

EXPY Cancellation because of completion of term