JP3596378B2 - Exhaust gas heating device for internal combustion engine - Google Patents

Exhaust gas heating device for internal combustion engine Download PDF

Info

Publication number
JP3596378B2
JP3596378B2 JP29216899A JP29216899A JP3596378B2 JP 3596378 B2 JP3596378 B2 JP 3596378B2 JP 29216899 A JP29216899 A JP 29216899A JP 29216899 A JP29216899 A JP 29216899A JP 3596378 B2 JP3596378 B2 JP 3596378B2
Authority
JP
Japan
Prior art keywords
exhaust
internal combustion
combustion engine
exhaust gas
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29216899A
Other languages
Japanese (ja)
Other versions
JP2001115883A (en
Inventor
伸基 大橋
信也 広田
孝充 浅沼
俊祐 利岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP29216899A priority Critical patent/JP3596378B2/en
Priority to DE10045548A priority patent/DE10045548B4/en
Priority to FR0013020A priority patent/FR2799794B1/en
Publication of JP2001115883A publication Critical patent/JP2001115883A/en
Application granted granted Critical
Publication of JP3596378B2 publication Critical patent/JP3596378B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2825Ceramics
    • F01N3/2828Ceramic multi-channel monoliths, e.g. honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/0245Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus by increasing temperature of the exhaust gas leaving the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車等に搭載される内燃機関から排出される排気の温度を昇温させる技術に関し、特に排気のエミッションを悪化させることなく排気温度を昇温させる技術に関する。
【0002】
【従来の技術】
自動車等に搭載される内燃機関では、該内燃機関から排出される排気に含まれる有害ガス成分を浄化した上で大気中に放出することが要求されている。このような要求に対し、従来では、内燃機関の排気通路に排気浄化触媒を配置し、排気中に含まれる有害ガス成分を排気浄化触媒にて浄化する技術が提案されている。
【0003】
ところで、排気浄化触媒は、一般に所定温度以上のときに活性して排気中の有害ガス成分を浄化することが可能となるため、内燃機関が冷間始動されたときのように排気浄化触媒の温度が所定温度未満であるときは排気中の有害ガス成分を十分に浄化することが不可能となる。
【0004】
このような問題点に対し、従来では、特開平10−212995号公報に記載されたような排気昇温装置が提案されている。この公報に記載された排気昇温装置は、内燃機関が冷間始動後の暖機運転状態にある場合等に、内燃機関の燃焼に供される通常の燃料噴射(主燃料噴射)に加え、各気筒の膨張行程時に副次的な燃料噴射(副燃料噴射)を行うことにより、副噴射された燃料を燃焼させて、排気弁開弁時における筒内ガス温度、言い換えれば排気温度を高め、以て排気浄化触媒の早期活性化を図ろうとするものである。
【0005】
【発明が解決しようとする課題】
ところで、内燃機関が冷間始動後の暖機運転状態にある場合等は、筒内の温度が低く主燃料が完全燃焼し難いため、既燃ガス中に比較的多量の未燃燃料成分が残存することになる。このように未燃燃料成分の残存量が多い状況下で副燃料噴射が実行されると、副燃料を着火源として未燃燃料成分が燃焼するが、筒内の雰囲気温度が低いために副燃料と未燃燃料成分とが完全に燃焼しきれず、煤や未燃燃料成分に代表される粒子状物質(PM:Particulate Matter)が多量に発生する場合がある。
【0006】
本発明は、上記したような問題点に鑑みてなされたものであり、排気エミッションを悪化させることなく、排気の温度を効率的に上昇させる技術を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、上記課題を解決するために以下のような手段を採用した。すなわち、本発明に係る内燃機関の排気昇温装置は、内燃機関の排気通路に設けられて該排気通路を流れる排気の流量を調節する排気絞り弁と、前記内燃機関の気筒内に直接燃料を噴射する燃料噴射弁と、前記内燃機関から排出される未燃燃料成分を低減すべきときに前記排気絞り弁をほぼ全閉に制御する弁制御手段と、前記排気絞り弁がほぼ全閉に制御されたときに前記燃料噴射弁から噴射される主たる燃料量を増加させる主燃料噴射制御手段と、前記主燃料噴射制御手段による主燃料の噴射後に前記燃料噴射弁から副次的に燃料を噴射させる副燃料噴射制御手段と、前記排気通路に設けられて該排気通路を流れる排気に含まれる粒子状物質を除去するPM除去手段と、を備え、前記副燃料噴射制御手段は、前記内燃機関から排出される未燃燃料成分の量が最も少なくなる時期に副燃料の噴射を実行するとともに、前記PM除去手段によって粒子状物質を除去することを特徴とする。
【0008】
このように構成された排気昇温装置では、弁制御手段は、内燃機関から排出される未燃燃料成分量を低減すべき時期に、排気絞り弁の開度をほぼ全閉状態とする。これに応じて、主燃料噴射制御手段が主燃料の噴射量を増加させるべく燃料噴射弁を制御するとともに、副燃料噴射制御手段が主燃料の噴射後に副燃料を噴射させるべく燃料噴射弁を制御する。
【0009】
この場合、ほぼ全閉状態となった排気絞り弁と主燃料の噴射量増加との相乗効果により、排気絞り弁上流の排気通路から内燃機関の気筒内にかけて排気の圧力及び温度が上昇するとともに排気の流速が低下するため、主燃料の燃え残りである未燃燃料成分と副燃料が高温下で長期にわたって燃焼し、未燃燃料成分の残存量が減少する。更に、排気中に含まれる煤などの粒子状物質は、排気通路に配置されたPM除去手段によって排気中から除去され、大気中に放出されることがない。
【0010】
ここで、内燃機関から排出される未燃燃料成分量を低減すべき時期としては、内燃機関が冷間始動後の暖機運転状態にあるとき、外気温度が低い状況下で内燃機関が低負荷運転状態にあるとき、等を例示することができる。
【0011】
本発明に係る内燃機関の排気昇温装置では、副燃料噴射制御手段は、内燃機関から排出される未燃燃料成分の量が最も少なくなる時期に副燃料の噴射を実行するようにすることが好ましい。
【0012】
本発明に係る内燃機関の排気昇温装置では、PM除去手段として、排気中に含まれる粒子状物質を物理的に吸着するPMトラップを例示することが出来る。
この場合、PMトラップの吸着能力が飽和する前にPMトラップを再生する必要が生じるが、そのような場合は、弁制御手段が排気絞り弁をほぼ全閉に制御し、主燃料噴射制御手段が主燃料の噴射量を増加すべく燃料噴射弁を制御し、副燃料噴射制御手段が副燃料の噴射を実行すべく燃料噴射弁を制御することにより、PMトラップを通過する排気の温度を高めるようにすればよい。
【0013】
本発明に係る内燃機関の排気昇温装置では、PM除去手段は、排気絞り弁より上流の排気通路に配置されることが好ましい。
これは、排気絞り弁がほぼ全閉状態となったときに、排気絞り弁上流の排気通路では排気絞り弁下流の排気通路に比して排気の流速が低く、高温状態の排気が滞留するため、PM除去手段が高温の排気に長期間曝されて粒子状物質の再生効率が向上するからである。
【0014】
【発明の実施の形態】
以下、本発明に係る内燃機関の排気昇温装置の具体的な実施態様について図面に基づいて説明する。
【0015】
図1は、本発明に係る排気昇温装置を適用する内燃機関の概略構成を示す図である。図1に示す内燃機関1は、複数の気筒21を備えるとともに、各気筒21内に直接燃料を噴射する燃料噴射弁32を具備した4サイクルの筒内噴射式内燃機関である。
【0016】
前記内燃機関1は、複数の気筒21及び冷却水路1cが形成されたシリンダブロック1bと、このシリンダブロック1bの上部に固定されたシリンダヘッド1aとを備えている。
【0017】
前記シリンダブロック1bには、機関出力軸であるクランクシャフト23が回転自在に支持され、このクランクシャフト23は、各気筒21内に摺動自在に装填されたピストン22と連結されている。
【0018】
前記ピストン22の上方には、ピストン22の頂面とシリンダヘッド1aの壁面とに囲まれた燃焼室24が形成されている。前記シリンダヘッド1aには、燃焼室24に臨むよう点火栓25が取り付けられ、この点火栓25には、該点火栓25に駆動電流を印加するためのイグナイタ25aが接続されている。
【0019】
前記シリンダヘッド1aには、2つの吸気ポート26の開口端と2つの排気ポート27の開口端とが燃焼室24に臨むよう形成されるとともに、その噴孔が燃焼室24に臨むよう燃料噴射弁32が取り付けられている。
【0020】
前記吸気ポート26の各開口端は、シリンダヘッド1aに進退自在に支持された吸気弁28によって開閉されるようになっており、これら吸気弁28は、シリンダヘッド1aに回転自在に支持されたインテーク側カムシャフト30によって進退駆動されるようになっている。
【0021】
前記排気ポート27の各開口端は、シリンダヘッド1aに進退自在に支持された排気弁29により開閉されるようになっており、これら排気弁29は、シリンダヘッド1aに回転自在に支持されたエキゾースト側カムシャフト31により進退駆動されるようになっている。
【0022】
前記インテーク側カムシャフト30及び前記エキゾースト側カムシャフト31は、図示しないタイミングベルトを介してクランクシャフト23と連結され、クランクシャフト23の回転トルクがタイミングベルトを介してインテーク側カムシャフト30及びエキゾースト側カムシャフト31へ伝達されるようになっている。
【0023】
各気筒21に連通する2つの吸気ポート26のうちの一方の吸気ポート26は、シリンダヘッド1a外壁に形成された開口端から燃焼室24に臨む開口端へ向かって直線状に形成された流路を有するストレートポートで構成され、他方の吸気ポート26は、シリンダヘッド1a外壁の開口端から燃焼室24の開口端へ向かって、気筒21の軸方向と垂直な面において旋回するよう形成された流路を有するヘリカルポートで構成されている。
【0024】
前記各吸気ポート26は、シリンダヘッド1aに取り付けられた吸気枝管33の各枝管と連通している。各気筒21に対応した2つの吸気ポート26のうちのストレートポートと連通する枝管には、その枝管内の流量を調節するスワールコントロールバルブ37が設けられている。前記スワールコントロールバルブ37には、ステッパモータ等からなり、印加電流の大きさに応じてスワールコントロールバルブ37を開閉駆動するアクチュエータ37aと、スワールコントロールバルブ37の開度に対応した電気信号を出力するSCVポジションセンサ37bとが取り付けられている。
【0025】
前記吸気枝管33は、サージタンク34に接続され、このサージタンク34は、吸気管35を介してエアクリーナボックス36と接続されている。前記吸気管35には、該吸気管35内を流れる新気の流量を調節するスロットル弁39が設けられている。
【0026】
前記スロットル弁39には、ステッパモータ等からなり、印加電流の大きさに応じて該スロットル弁39を開閉駆動するアクチュエータ40と、該スロットル弁39の開度に対応した電気信号を出力するスロットルポジションセンサ41とが取り付けられている。
【0027】
さらに、前記スロットル弁39には、アクセルペダル42に連動して回転するアクセルレバー(図示せず)が併設され、このアクセルレバーには、アクセルレバーの回転位置(アクセルペダル42の踏み込み量)に対応した電気信号を出力するアクセルポジションセンサ43が取り付けられている。
【0028】
前記スロットル弁39より上流の吸気管35には、吸気管35内を流れる新気の質量(吸入空気質量)に対応した電気信号を出力するエアフローメータ44が取り付けられる。
【0029】
一方、前記内燃機関1の各排気ポート27は、前記シリンダヘッド1aに取り付けられた排気枝管45の各枝管と連通している。前記排気枝管45は、排気浄化触媒46を介して排気管47に接続され、排気管47は、下流にて図示しないマフラーと接続されている。
【0030】
前記排気浄化触媒46は、本発明に係るPM除去手段を実現するものであり、例えば、図2、図3に示すように、上流側の端部が開放され且つ下流側の端部が閉塞された第1流路46aと上流側の端部が閉塞され且つ下流側の端部が開放された第2流路46bとをハニカム状をなすよう配置してなる多孔質の担体と、前記担体の表面に形成された触媒層とからなるウォールスロー型の排気浄化触媒である。
【0031】
前記した担体としては、多孔質のセラミックやゼオライト等を例示することができ、前記した触媒層としては、多孔質のアルミナ(Al)の表面に白金−ロジウム(Pt−Rh)系あるいはパラジウム−ロジウム(Pd−Rh)系の貴金属触媒物質が担持されたもの、または、カリウム(K)、ナトリウム(Na)、リチウム(Li)もしくはセシウム(Cs)等のアルカリ金属と、バリウム(Ba)やカルシウム(Ca)等のアルカリ土類と、ランタン(La)やイットリウム(Y)等の希土類とから選択された少なくとも1つと、白金(Pt)等の貴金属類とからなるもの等を例示することができる。
【0032】
このように構成された排気浄化触媒46では、該排気浄化触媒46に流入した排気は、先ず第1流路46aに導かれ、次いで担体の壁面の細孔を通って第2流路46bへ流れ、第2流路46bから下流の排気管47へ排出される。排気が担体の壁面を通過する際に、排気中に含まれる煤や未燃燃料成分などの粒子状物質が捕集されるとともに、排気中に含まれる有害ガス成分が触媒層にて浄化される。従って、排気浄化触媒46は、排気中の粒子状物質を捕集するフィルタの機能と、排気中の有害ガス成分を浄化する触媒機能とを兼ね備えていることになる。
【0033】
ここで図1に戻り、前記排気枝管45には、該排気枝管45内を流れる排気に含まれる酸素の濃度に対応した電気信号を出力する酸素センサ(O2センサ)48が取り付けられている。
【0034】
前記排気管47の途中には、該排気管47内を流れる排気の流量を調節する排気絞り弁49が設けられている。前記排気絞り弁49には、ステッパモータ等からなり、印加電流の大きさに応じて該排気絞り弁49を開閉駆動するアクチュエータ50が取り付けられている。
【0035】
また、内燃機関1は、クランクシャフト23の端部に取り付けられたタイミングロータ51aとタイミングロータ51a近傍のシリンダブロック1bに取り付けられた電磁ピックアップ51bとからなるクランクポジションセンサ51と、内燃機関1の内部に形成された冷却水路1cを流れる冷却水の温度を検出すべくシリンダブロック1bに取り付けられた水温センサ52とを備えている。
【0036】
このように構成された内燃機関1には、該内燃機関1の運転状態を制御するための電子制御ユニット(Electronic Control Unit:ECU、以下ECUと称する)20が併設されている。
【0037】
前記ECU20には、SCVポジションセンサ37b、スロットルポジションセンサ41、アクセルポジションセンサ43、エアフローメータ44、酸素センサ48、クランクポジションセンサ51、及び水温センサ52等の各種センサが電気配線を介して接続され、各センサの出力信号が前記ECU20に入力されるようになっている。
【0038】
前記ECU20には、イグナイタ25a、燃料噴射弁32、アクチュエータ37a、アクチュエータ40、アクチュエータ50等が電気配線を介して接続され、前記ECU20は、前記した各種センサの出力信号値をパラメータとして、イグナイタ25a、燃料噴射弁32、アクチュエータ37a、アクチュエータ40、アクチュエータ50を制御することが可能になっている。
【0039】
例えば、ECU20は、クランクポジションセンサ51、アクセルポジションセンサ43、あるいはエアフローメータ44等の出力信号値をパラメータとして内燃機関1の運転状態を判別する。前記内燃機関1の運転状態が低負荷運転領域にあると判定された場合は、ECU20は、内燃機関1の成層燃焼を実現すべく、アクチュエータ37aへ制御信号を送信してスワールコントロールバルブ37の開度を小さくし、アクチュエータ40へ制御信号を送信してスロットル弁39を実質的に全開状態とし、さらに各気筒21の圧縮行程時に燃料噴射弁32に駆動電流を印加して圧縮行程噴射を行う。
【0040】
この場合、各気筒21の燃焼室24には、吸気行程時に主としてスワールポート7bからの新気が導入され、強い旋回流(スワール流)が発生する。続く圧縮行程では、燃料噴射弁32から噴射された燃料がスワール流に従って燃焼室24内を旋回し、所定の時期に点火栓25近傍へ移動する。このとき、燃焼室24内は、点火栓25の近傍が可燃混合気層となり、且つその他の領域が空気層となる、いわゆる成層状態となる。そして、ECU20は、上記した所定の時期に、イグナイタ25aを駆動して点火栓25を点火する。この結果、燃焼室24内の混合気(可燃混合気層と空気層とを含む)は、点火栓25近傍の可燃混合気層を着火源として燃焼する。
【0041】
尚、成層燃焼運転時における燃料噴射量は、アクセル開度と機関回転数とをパラメータとして決定される。すなわち、ECU20は、アクセルポジションセンサ43の出力信号値(アクセル開度)と機関回転数と燃料噴射量との関係を示す成層燃焼時燃料噴射制御マップを用いて燃料噴射量(燃料噴射時間)を決定する。
【0042】
また、ECU20は、内燃機関1の運転状態が中負荷運転領域にあると判定した場合は、リーン混合気による均質リーン燃焼を実現すべく、アクチュエータ37aへ制御信号を送信してスワールコントロールバルブ37の開度を小さくし、さらに各気筒21の吸気行程時に燃料噴射弁32に駆動電流を印加して吸気行程噴射を行う。この場合、各気筒21の燃焼室24内の略全域にわたって、新気と燃料とが均質に混じり合ったリーン混合気が形成され、均質リーン燃焼が実現される。
【0043】
また、ECU20は、内燃機関1の運転状態が高負荷運転領域にあると判定した場合は、理論空燃比近傍の混合気による均質燃焼を実現すべく、アクチュエータ37aへ制御信号を送信してスワールコントロールバルブ37を全開状態とし、スロットル弁39がアクセルペダル42の踏み込み量(アクセルポジションセンサ43の出力信号値)に対応した開度となるようアクチュエータ40へ制御信号を送信し、さらに各気筒21の吸気行程時に燃料噴射弁32に駆動電流を印加して吸気行程噴射を行う。この場合、各気筒21の燃焼室24内の略全域にわたって、新気と燃料とが均質に混じり合った理論空燃比の混合気が形成され、均質燃焼が実現される。
【0044】
尚、ECU20は、成層燃焼制御から均質燃焼制御へ移行する際、あるいは均質燃焼制御から成層燃焼制御へ移行する際に、内燃機関1のトルク変動を防止すべく各気筒21の圧縮行程時と吸気行程時との二回に分けて燃料噴射弁32に駆動電流を印加する。この場合、各気筒21の燃焼室24内には、点火栓25の近傍に可燃混合気層が形成されるとともに、その他の領域にリーン混合気層が形成され、いわゆる弱成層燃焼が実現される。
【0045】
また、ECU20は、内燃機関1の運転状態がアイドル運転領域にあると判定した場合は、実際の機関回転数を目標アイドル回転数に収束させるために必要な吸入空気量を確保すべくスロットル弁39の開度を制御する、いわゆるアイドルスピードコントロール(ISC)のフィードバック制御を行う。
【0046】
次に、ECU20は、未燃燃料成分(未燃HC)の大気中への排出量を低減すべきときに、排気昇温制御を実行する。
排気昇温制御では、ECU20は、図4に示すような排気昇温制御ルーチンを実行する。この排気昇温制御ルーチンは、ECU20に内蔵されたROMなどに予め記憶されているルーチンであり、所定時間毎(例えば、クランクポジションセンサ51がパルス信号を出力する毎)に繰り返し実行されるルーチンである。
【0047】
排気昇温制御ルーチンでは、ECU20は、先ず、S401において、内燃機関1から排出される未燃燃料成分(未燃HC)を低減すべき時期であるか否かを判別する。
【0048】
内燃機関1から排出される未燃HCを低減すべき時期としては、例えば、内燃機関1が冷間始動後の暖機運転状態にある場合や、内燃機関1が低負荷運転状態にある場合のように、内燃機関1の燃焼室24の温度が低く、排気浄化触媒46が未活性状態にある場合である。
【0049】
これは、内燃機関1の燃焼室24内の温度が低いときは、燃焼室24内において混合気の燃焼状態が不安定となり易く混合気が完全燃焼し難いため、燃焼室24から多量の未燃HCが排出されることになり、その際に排気浄化触媒46が未活性状態にあると排気中に含まれる未燃HCが排気浄化触媒46にて十分に浄化されずに大気中に放出されることになるからである。
【0050】
前記S401において、内燃機関1から排出される未燃HCを低減すべき時期ではないと判定した場合は、ECU20は、本ルーチンの実行を一旦終了する。
一方、前記S401において、内燃機関1から排出される未燃HCを低減すべき時期であると判定した場合は、ECU20は、S402へ進み、排気昇温処理の実行を開始する。
【0051】
排気昇温処理では、ECU20は、排気絞り弁49をほぼ全閉状態とすべくアクチュエータ50を制御する。この場合、排気ポート27内、排気枝管45内、及び排気絞り弁49より上流の排気管47内において、排気の圧力が高くなる。このように排気圧力が高くなると、燃焼室24から排気ポート27へ排出された排気の圧力が低下せず、それに応じて排気の温度低下が抑制されることになる。更に、排気絞り弁49がほぼ全閉状態にされると、排気ポート27から排気絞り弁49に至る排気通路内における排気の流速が低下することになる。
【0052】
この結果、燃焼室24から排出された排気は、排気絞り弁49より上流の排気通路内において高温の状態で長期間滞留することになり、その間に、排気中に残存していた未燃HCが酸化されることになる。
【0053】
ところで、排気絞り弁49がほぼ全閉状態とされても、燃焼室24から排気ポート27へ排出された時点における排気の温度が過剰に低い場合や、燃焼室24から排出される排気に含まれる未燃HC量が過剰に多い場合は、未燃HCの酸化反応が十分に行われなくなる虞がある。
【0054】
そこで、本実施の形態に係る排気昇温処理では、ECU20は、排気絞り弁49をほぼ全閉状態に制御するとともに、機関出力に寄与する主たる燃料の噴射に加えて主燃料噴射後の所定の時期に副次的に燃料を噴射する副噴射を行うべく燃料噴射弁32を制御するようにした。
【0055】
この場合、燃焼室24内では、主燃料の燃え残りである未燃HCが副燃料を着火源として燃焼せしめられることになる。その際、副燃料の噴射は、主燃料が燃焼した直後の高温下で行われるため、副燃料がほぼ完全燃焼することとなり、副燃料の噴射に起因した未燃HCの発生量は極わずかとなる。
【0056】
更に、上記したように副燃料が燃焼室24内で燃焼せしめられると、主燃料の燃焼熱に加えて、副燃料の燃焼熱と未燃HCの燃焼熱とが発生することになり、燃焼室24内の既燃ガスの温度が一層高くなる。
【0057】
この結果、燃焼室24から排気ポート27へ排出される排気の温度が十分に高くなるとともに、排気中に残存する未燃HC量が低減されることになり、排気絞り弁49より上流の排気通路において排気中に残存する未燃HCのほぼすべてが酸化されるようになる。更に、本実施の形態では、排気浄化触媒46が排気絞り弁49より上流の排気通路に配置されるため、上記したように排気温度が高められると、排気浄化触媒46が高温の排気に長期間曝され、排気浄化触媒46の活性化が促進される。
【0058】
尚、副燃料の噴射時期については、燃焼室24から排気ポート27へ排出された排気の温度が十分に高く、且つ排気中に残存する未燃HCが最も少なくなる時期を予め実験的に求めておくことが好ましい。
【0059】
例えば、本実施の形態で例示した内燃機関1が冷間始動後の暖機運転状態にある場合は、図5に示すように、クランクシャフト23が各気筒21の膨張行程における上死点後60°近傍にあるときに副燃料の噴射が実行されると、燃焼室24から排気ポート27へ排出される未燃HC量が最も少なくなり、且つ、燃焼室24から排気ポート27へ排出される排気の温度が十分に高くなるため、ECU20は、クランクシャフト23が各気筒21の膨張行程における上死点後60°付近で副燃料の噴射制御を実行すればよい。
【0060】
また、排気絞り弁49がほぼ全閉状態とされて排気圧力が上昇すると、その排気圧力が背圧として内燃機関1に作用するため、内燃機関1の出力が低下してしまう。これに対し、本実施の形態では、ECU20は、排気絞り弁49をほぼ全閉状態に制御する際に、内燃機関1の出力を、排気絞り弁49が全開状態にあるときの出力と一致させるべく主燃料噴射量を増量するようにした。
【0061】
また、図5に示した例では、燃焼室24から排出される未燃HC量が最も少なくなる時期に副燃料の噴射が実行されると、煤などの粒子状物質が多量に発生することになるが、本実施の形態に係る排気昇温装置では、内燃機関1の排気通路にウォールスルー型の排気浄化触媒46が設けられているため、排気中に含まれる粒子状物質は、排気浄化触媒46にて除去されることとなり、大気中に放出されることがない。
【0062】
ここで、図4の排気昇温制御ルーチンに戻り、ECU20は、上記したようなS402の処理を実行した後、S403へ進み、排気浄化触媒46が活性したか否かを判別する。
【0063】
排気浄化触媒46が活性したか否かを判別する方法としては、排気昇温処理の実行時間から推定するようにしてもよく、あるいは排気浄化触媒46に温度センサを取り付け、その温度センサの出力信号値に基づいて判定するようにしてもよい。
【0064】
前記S402において排気浄化触媒46が未だ活性していないと判定した場合は、ECU20は、S402へ戻り、排気昇温処理の実行を継続する。一方、前記S402において排気浄化触媒46が活性したと判定した場合は、ECU20は、S404へ進み、排気昇温処理の実行を終了して、本ルーチンの実行を一旦終了する。
【0065】
このように、ECU20が排気昇温制御ルーチンを実行することにより、本発明に係る弁制御手段、主燃料噴射制御手段、副燃料噴射制御手段が実現される。従って、本実施の形態に係る内燃機関の排気昇温装置によれば、内燃機関1が冷間始動後の暖機運転状態にある場合や、内燃機関1が低負荷運転状態にある場合のように、内燃機関1から排出される未燃HC量を低減すべき必要があるときに、大気中に放出される未燃HC及び粒子状物質の量を低減することが可能になるとともに、排気浄化触媒46の早期活性化を図ることが可能となる。
【0066】
尚、本実施の形態では、排気昇温制御において比較的多量に発生する粒子状物質を排気浄化触媒46によって除去しているため、排気浄化触媒46の粒子状物質吸着能力が飽和する前に、排気浄化触媒46を再生する必要がある。
【0067】
そこで、本実施の形態では、ECU20は、図6に示すような排気浄化触媒再生制御ルーチンに従って排気浄化触媒46の吸着能力を再生するようにした。排気浄化触媒再生制御ルーチンは、ECU20のROMに予め記憶されたルーチンであり、ECU20によって所定時間毎(例えば、クランクポジションセンサ51がパルス信号を出力する毎)に繰り返し実行されるルーチンである。
【0068】
排気浄化触媒再生制御ルーチンでは、ECU20は、先ずS601において、排気浄化触媒46の吸着能力を再生すべき時期であるか否かを判定する。この判定方法としては、例えば、内燃機関1の運転履歴をパラメータとして排気浄化触媒46に吸着された粒子状物質量を推定し、その推定値と排気浄化触媒46が吸着可能な粒子状物質量の最大値(最大吸着量)とを比較して、推定値が最大吸着量以上であるときは排気浄化触媒46の吸着能力を再生すべき時期であると判定する方法を例示することができる。
【0069】
前記S601において排気浄化触媒46の吸着能力を再生すべき時期ではないと判定した場合は、ECU20は、本ルーチンの実行を一旦終了する。一方、前記S601において排気浄化触媒46の吸着能力を再生すべき時期であると判定した場合は、ECU20は、S602へ進み、排気浄化触媒再生処理を実行する。
【0070】
ここで、排気浄化触媒46に吸着された粒子状物質を除去するには、排気浄化触媒46内の雰囲気温度をおよそ500℃以上まで上昇させるとともに、酸素過剰雰囲気にすることにより、粒子状物質を酸化(燃焼)させればよい。
【0071】
従って、ECU20は、排気浄化触媒再生処理において、前述した排気昇温制御における排気昇温処理と同様の処理を所定時間実行することにより、排気浄化触媒46に流入する排気の温度を上昇させ、排気浄化触媒46に吸着されている粒子状物質を酸化させる。
【0072】
前記S602の処理を実行し終えると、ECU20は、本ルーチンの実行を一旦終了する。
このようにECU20が排気浄化触媒再生制御ルーチンを実行することにより、
内燃機関1から排出される排気の温度を高めることが可能となる。その際、排気浄化触媒46が排気絞り弁49より上流の排気通路に配置されているため、排気浄化触媒46に吸着された粒子状物質は、排気絞り弁49より上流の排気通路に滞留する高温の排気に長期間曝され、効率的に酸化されることになる。
【0073】
尚、内燃機関1がディーゼルエンジンや希薄燃焼式内燃機関である場合のように、排気浄化触媒が主にリーン雰囲気下で使用される場合は、排気浄化触媒が酸素によって被毒されて活性能力が低下する傾向があるため、このような場合には、排気浄化触媒を再生する際に、排気浄化触媒を一旦理論空燃比もしくはリッチ雰囲気の排気に曝して酸素被毒を解消させた後に上記したような排気昇温処理を行うようにすることが好ましい。
【0074】
【発明の効果】
本発明に係る内燃機関の排気昇温装置では、内燃機関から排出される未燃燃料成分を低減すべき時期に、排気絞り弁の開度がほぼ全閉状態にされるとともに、主燃料の噴射後に副燃料の噴射が行われるため、排気絞り弁上流の排気通路から内燃機関の気筒内にかけて排気の圧力及び温度が上昇するとともに排気の流速が低下する。この結果、主燃料の燃え残りである未燃燃料成分と副燃料とが高温下で長期にわたって燃焼し、排気中に残存する未燃燃料成分量が低減されることになる。その際、排気中に含まれる煤などの粒子状物質は、排気通路に設けられたPM除去手段によって除去されるため、大気中に放出されることがない。
【0075】
従って、本発明に係る内燃機関の排気昇温装置によれば、内燃機関から排出される未燃燃料成分を低減すべき時期に、未燃燃料成分を確実に低減させるとともに、粒子状物質の大気中への放出も防止することが可能となる。
【0076】
また、本発明に係る内燃機関の排気昇温装置では、PM除去手段としてPMトラップを用いた場合は、PMトラップの吸着能力を再生する際に、排気絞り弁の開度がほぼ全閉状態にされるとともに、主燃料の噴射後に副燃料の噴射が行われるため、PMトラップに流入する排気の温度が高くなり、その結果、PMトラップに吸着されている粒子状物質が燃焼及び除去される。
【0077】
その際、PMトラップを排気絞り弁より上流の排気通路に配置すれば、PMトラップは、排気絞り弁より上流の排気通路に滞留する高温の排気に長期間曝されることになるため、PMトラップの再生効率を向上させることが可能となる。
【図面の簡単な説明】
【図1】本発明に係る内燃機関の排気昇温装置を適用する内燃機関の概略構成を示す図
【図2】排気浄化触媒の内部構成を示す図(1)
【図3】排気浄化触媒の内部構成を示す図(2)
【図4】排気昇温制御ルーチンを示すフローチャート図
【図5】副燃料噴射の時期と粒子状物質及び未燃HCの排出量との関係を示す図
【図6】排気浄化触媒再生制御ルーチンを示すフローチャート図
【符号の説明】
1・・・・内燃機関
21・・・気筒
24・・・燃焼室
27・・・排気ポート
29・・・排気弁
32・・・燃料噴射弁
45・・・排気枝管
46・・・排気浄化触媒
47・・・排気管
49・・・排気絞り弁
50・・・アクチュエータ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a technique for increasing the temperature of exhaust gas discharged from an internal combustion engine mounted on an automobile or the like, and more particularly to a technique for increasing the temperature of exhaust gas without deteriorating exhaust emission.
[0002]
[Prior art]
2. Description of the Related Art In an internal combustion engine mounted on an automobile or the like, it is required that a harmful gas component contained in exhaust gas discharged from the internal combustion engine be purified and then released into the atmosphere. In response to such demands, there has been proposed a technique in which an exhaust purification catalyst is disposed in an exhaust passage of an internal combustion engine, and a harmful gas component contained in exhaust gas is purified by the exhaust purification catalyst.
[0003]
By the way, since the exhaust gas purifying catalyst is generally activated when the temperature is equal to or higher than a predetermined temperature and can purify harmful gas components in the exhaust gas, the temperature of the exhaust gas purifying catalyst is low as when the internal combustion engine is cold started. When the temperature is lower than the predetermined temperature, it becomes impossible to sufficiently purify the harmful gas components in the exhaust gas.
[0004]
In order to solve such a problem, an exhaust gas heating device as described in Japanese Patent Application Laid-Open No. H10-212995 has been proposed. When the internal combustion engine is in a warm-up operation state after a cold start, the exhaust gas temperature raising device described in this publication adds to the normal fuel injection (main fuel injection) used for combustion of the internal combustion engine, By performing secondary fuel injection (auxiliary fuel injection) during the expansion stroke of each cylinder, the sub-injected fuel is burned, and the in-cylinder gas temperature when the exhaust valve is opened, in other words, the exhaust temperature is increased. Thus, early activation of the exhaust purification catalyst is intended.
[0005]
[Problems to be solved by the invention]
By the way, when the internal combustion engine is in a warm-up operation state after a cold start, a relatively large amount of unburned fuel components remain in the burned gas because the temperature in the cylinder is low and the main fuel is difficult to completely burn. Will do. When the sub-fuel injection is performed in such a situation where the remaining amount of the unburned fuel component is large, the unburned fuel component burns using the sub-fuel as an ignition source, but the sub-fuel temperature is low due to the low ambient temperature in the cylinder. The fuel and the unburned fuel component may not completely burn, and a large amount of particulate matter (PM: Particulate Matter) typified by soot and unburned fuel component may be generated.
[0006]
The present invention has been made in view of the above problems, and has as its object to provide a technique for efficiently increasing the temperature of exhaust gas without deteriorating exhaust emission.
[0007]
[Means for Solving the Problems]
The present invention employs the following means in order to solve the above problems. That is, an exhaust gas heating device for an internal combustion engine according to the present invention includes an exhaust throttle valve provided in an exhaust passage of the internal combustion engine for adjusting a flow rate of exhaust gas flowing through the exhaust passage, and directing fuel directly into a cylinder of the internal combustion engine. A fuel injection valve for injecting, valve control means for controlling the exhaust throttle valve to be almost fully closed when an unburned fuel component discharged from the internal combustion engine is to be reduced, and controlling the exhaust throttle valve to be almost fully closed. Main fuel injection control means for increasing the amount of main fuel injected from the fuel injection valve when the fuel injection is performed, and secondary fuel injection from the fuel injection valve after main fuel injection by the main fuel injection control means Auxiliary fuel injection control means, and PM removal means provided in the exhaust passage and removing particulate matter contained in exhaust flowing through the exhaust passage, The auxiliary fuel injection control means executes the injection of the auxiliary fuel at a time when the amount of the unburned fuel component discharged from the internal combustion engine is minimized, and removes the particulate matter by the PM removal means. It is characterized by the following.
[0008]
In the exhaust gas temperature increasing device configured as described above, the valve control unit sets the opening of the exhaust throttle valve to a substantially fully closed state at a time when the amount of the unburned fuel component discharged from the internal combustion engine should be reduced. In response, the main fuel injection control means controls the fuel injection valve to increase the injection amount of the main fuel, and the sub fuel injection control means controls the fuel injection valve to inject the sub fuel after the main fuel is injected. I do.
[0009]
In this case, due to the synergistic effect of the exhaust throttle valve that is almost fully closed and the increase in the injection amount of the main fuel, the pressure and temperature of the exhaust rise from the exhaust passage upstream of the exhaust throttle valve into the cylinder of the internal combustion engine, and the exhaust gas increases. As a result, the unburned fuel component and the auxiliary fuel, which are unburned main fuel, burn over a long period of time at a high temperature, and the remaining amount of the unburned fuel component decreases. Further, particulate matter such as soot contained in the exhaust gas is removed from the exhaust gas by the PM removing means disposed in the exhaust passage, and is not released into the atmosphere.
[0010]
Here, when the amount of the unburned fuel component discharged from the internal combustion engine should be reduced, when the internal combustion engine is in a warm-up operation state after a cold start, the internal combustion engine has a low load when the outside air temperature is low. For example, when the vehicle is in the driving state.
[0011]
In the exhaust gas temperature raising apparatus for an internal combustion engine according to the present invention, the auxiliary fuel injection control means may execute the injection of the auxiliary fuel at a time when the amount of the unburned fuel component discharged from the internal combustion engine is minimized. preferable.
[0012]
In the exhaust gas temperature raising apparatus for an internal combustion engine according to the present invention, a PM trap which physically adsorbs particulate matter contained in exhaust gas can be exemplified as the PM removing means.
In this case, it is necessary to regenerate the PM trap before the adsorption capacity of the PM trap is saturated. In such a case, the valve control means controls the exhaust throttle valve to be almost fully closed, and the main fuel injection control means performs the operation. The fuel injection valve is controlled to increase the injection amount of the main fuel, and the auxiliary fuel injection control means controls the fuel injection valve to execute the injection of the auxiliary fuel, so that the temperature of the exhaust gas passing through the PM trap is increased. What should I do?
[0013]
In the exhaust gas temperature raising apparatus for an internal combustion engine according to the present invention, it is preferable that the PM removing unit is disposed in the exhaust passage upstream of the exhaust throttle valve.
This is because when the exhaust throttle valve is almost fully closed, the exhaust flow velocity is lower in the exhaust passage upstream of the exhaust throttle valve than in the exhaust passage downstream of the exhaust throttle valve, and the high-temperature exhaust gas stays. This is because the PM removing means is exposed to high-temperature exhaust gas for a long period of time to improve the particulate matter regeneration efficiency.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a specific embodiment of an exhaust gas heating device for an internal combustion engine according to the present invention will be described with reference to the drawings.
[0015]
FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine to which an exhaust gas heating device according to the present invention is applied. The internal combustion engine 1 shown in FIG. 1 is a four-cycle in-cylinder internal combustion engine having a plurality of cylinders 21 and a fuel injection valve 32 for directly injecting fuel into each cylinder 21.
[0016]
The internal combustion engine 1 includes a cylinder block 1b in which a plurality of cylinders 21 and a cooling water passage 1c are formed, and a cylinder head 1a fixed above the cylinder block 1b.
[0017]
A crankshaft 23, which is an engine output shaft, is rotatably supported by the cylinder block 1b. The crankshaft 23 is connected to a piston 22 slidably mounted in each cylinder 21.
[0018]
Above the piston 22, a combustion chamber 24 surrounded by the top surface of the piston 22 and the wall surface of the cylinder head 1a is formed. An ignition plug 25 is attached to the cylinder head 1a so as to face the combustion chamber 24. The ignition plug 25 is connected to an igniter 25a for applying a drive current to the ignition plug 25.
[0019]
In the cylinder head 1a, an open end of two intake ports 26 and an open end of two exhaust ports 27 are formed so as to face the combustion chamber 24, and the fuel injection valve is formed such that its injection hole faces the combustion chamber 24. 32 are attached.
[0020]
Each open end of the intake port 26 is opened and closed by an intake valve 28 supported on the cylinder head 1a so as to be movable forward and backward. The intake valve 28 is rotatably supported on the cylinder head 1a. It is configured to be driven forward and backward by the side camshaft 30.
[0021]
Each open end of the exhaust port 27 is opened and closed by an exhaust valve 29 supported on the cylinder head 1a so as to be able to advance and retreat, and these exhaust valves 29 are rotatably supported on the cylinder head 1a. It is configured to be driven forward and backward by the side camshaft 31.
[0022]
The intake camshaft 30 and the exhaust camshaft 31 are connected to the crankshaft 23 via a timing belt (not shown), and the rotational torque of the crankshaft 23 is applied to the intake camshaft 30 and the exhaust cam via the timing belt. The power is transmitted to the shaft 31.
[0023]
One of the two intake ports 26 communicating with each cylinder 21 has a flow path formed linearly from an open end formed on the outer wall of the cylinder head 1 a to an open end facing the combustion chamber 24. The other intake port 26 has a flow port formed to swirl in a plane perpendicular to the axial direction of the cylinder 21 from the open end of the outer wall of the cylinder head 1a to the open end of the combustion chamber 24. It consists of a helical port with a road.
[0024]
Each intake port 26 communicates with each branch pipe of the intake branch pipe 33 attached to the cylinder head 1a. A branch pipe communicating with a straight port of the two intake ports 26 corresponding to each cylinder 21 is provided with a swirl control valve 37 for adjusting a flow rate in the branch pipe. The swirl control valve 37 includes a stepper motor or the like, an actuator 37a for opening and closing the swirl control valve 37 in accordance with the magnitude of the applied current, and an SCV for outputting an electric signal corresponding to the opening of the swirl control valve 37. The position sensor 37b is attached.
[0025]
The intake branch pipe 33 is connected to a surge tank 34, and the surge tank 34 is connected to an air cleaner box 36 via an intake pipe 35. The intake pipe 35 is provided with a throttle valve 39 for adjusting the flow rate of fresh air flowing through the intake pipe 35.
[0026]
The throttle valve 39 includes a stepper motor or the like, and an actuator 40 that opens and closes the throttle valve 39 according to the magnitude of the applied current, and a throttle position that outputs an electric signal corresponding to the opening of the throttle valve 39. The sensor 41 is attached.
[0027]
Further, the throttle valve 39 is provided with an accelerator lever (not shown) which rotates in conjunction with an accelerator pedal 42. The accelerator lever corresponds to the rotational position of the accelerator lever (the amount of depression of the accelerator pedal 42). An accelerator position sensor 43 for outputting the generated electric signal is attached.
[0028]
An air flow meter 44 that outputs an electric signal corresponding to a mass of fresh air flowing through the intake pipe 35 (a mass of intake air) is attached to the intake pipe 35 upstream of the throttle valve 39.
[0029]
On the other hand, each exhaust port 27 of the internal combustion engine 1 communicates with each branch pipe of the exhaust branch pipe 45 attached to the cylinder head 1a. The exhaust branch pipe 45 is connected to an exhaust pipe 47 via an exhaust purification catalyst 46, and the exhaust pipe 47 is connected downstream to a muffler (not shown).
[0030]
The exhaust gas purifying catalyst 46 realizes the PM removing means according to the present invention. For example, as shown in FIGS. 2 and 3, the upstream end is opened and the downstream end is closed. A porous carrier in which the first flow path 46a and the second flow path 46b whose upstream end is closed and whose downstream end is open are formed in a honeycomb shape; This is a wall-throw type exhaust purification catalyst comprising a catalyst layer formed on the surface.
[0031]
Examples of the support include porous ceramics and zeolites, and examples of the catalyst layer include porous alumina (Al). 2 O 3 ) On which platinum-rhodium (Pt-Rh) -based or palladium-rhodium (Pd-Rh) -based noble metal catalyst material is supported, or potassium (K), sodium (Na), lithium (Li) or At least one selected from an alkali metal such as cesium (Cs), an alkaline earth such as barium (Ba) and calcium (Ca), and a rare earth such as lanthanum (La) and yttrium (Y); and platinum (Pt) ) Can be exemplified.
[0032]
In the exhaust gas purifying catalyst 46 configured as described above, the exhaust gas flowing into the exhaust gas purifying catalyst 46 is first guided to the first flow path 46a, and then flows to the second flow path 46b through the pores on the wall surface of the carrier. Are discharged from the second flow passage 46b to the exhaust pipe 47 downstream. When the exhaust gas passes through the wall surface of the carrier, particulate matter such as soot and unburned fuel components contained in the exhaust gas are collected, and the harmful gas components contained in the exhaust gas are purified by the catalyst layer. . Therefore, the exhaust gas purifying catalyst 46 has both a function of a filter for trapping particulate matter in the exhaust gas and a catalytic function of purifying a harmful gas component in the exhaust gas.
[0033]
Returning to FIG. 1, an oxygen sensor (O2 sensor) 48 for outputting an electric signal corresponding to the concentration of oxygen contained in exhaust gas flowing through the exhaust branch pipe 45 is attached to the exhaust branch pipe 45. .
[0034]
An exhaust throttle valve 49 for adjusting the flow rate of exhaust flowing through the exhaust pipe 47 is provided in the exhaust pipe 47. The exhaust throttle valve 49 is provided with an actuator 50 comprising a stepper motor or the like and driving the opening and closing of the exhaust throttle valve 49 according to the magnitude of the applied current.
[0035]
Further, the internal combustion engine 1 includes a crank position sensor 51 including a timing rotor 51a attached to an end of the crankshaft 23 and an electromagnetic pickup 51b attached to a cylinder block 1b near the timing rotor 51a. And a water temperature sensor 52 attached to the cylinder block 1b to detect the temperature of the cooling water flowing through the cooling water passage 1c formed in the cylinder block 1b.
[0036]
The thus configured internal combustion engine 1 is provided with an electronic control unit (Electronic Control Unit: ECU, hereinafter referred to as ECU) 20 for controlling the operating state of the internal combustion engine 1.
[0037]
Various sensors such as an SCV position sensor 37b, a throttle position sensor 41, an accelerator position sensor 43, an air flow meter 44, an oxygen sensor 48, a crank position sensor 51, and a water temperature sensor 52 are connected to the ECU 20 via electric wiring. The output signal of each sensor is input to the ECU 20.
[0038]
An igniter 25a, a fuel injection valve 32, an actuator 37a, an actuator 40, an actuator 50, and the like are connected to the ECU 20 via electrical wiring. The ECU 20 uses the igniter 25a, The fuel injection valve 32, the actuator 37a, the actuator 40, and the actuator 50 can be controlled.
[0039]
For example, the ECU 20 determines the operating state of the internal combustion engine 1 using output signal values of the crank position sensor 51, the accelerator position sensor 43, the air flow meter 44, and the like as parameters. When it is determined that the operation state of the internal combustion engine 1 is in the low load operation region, the ECU 20 transmits a control signal to the actuator 37a to open the swirl control valve 37 in order to realize the stratified combustion of the internal combustion engine 1. The throttle valve 39 is substantially fully opened by transmitting a control signal to the actuator 40 and the drive current is applied to the fuel injection valve 32 during the compression stroke of each cylinder 21 to perform the compression stroke injection.
[0040]
In this case, fresh air mainly from the swirl port 7b is introduced into the combustion chamber 24 of each cylinder 21 during the intake stroke, and a strong swirl flow (swirl flow) is generated. In the subsequent compression stroke, the fuel injected from the fuel injection valve 32 swirls in the combustion chamber 24 according to the swirl flow, and moves to the vicinity of the spark plug 25 at a predetermined timing. At this time, the combustion chamber 24 is in a so-called stratified state in which the vicinity of the ignition plug 25 is a combustible air-fuel mixture layer and the other areas are air layers. Then, the ECU 20 drives the igniter 25a to ignite the spark plug 25 at the above-mentioned predetermined time. As a result, the mixture in the combustion chamber 24 (including the combustible mixture layer and the air layer) burns using the combustible mixture layer near the ignition plug 25 as an ignition source.
[0041]
The fuel injection amount during the stratified charge combustion operation is determined using the accelerator opening and the engine speed as parameters. That is, the ECU 20 determines the fuel injection amount (fuel injection time) using a stratified combustion fuel injection control map indicating the relationship between the output signal value of the accelerator position sensor 43 (accelerator opening), the engine speed, and the fuel injection amount. decide.
[0042]
When the ECU 20 determines that the operation state of the internal combustion engine 1 is in the medium load operation range, the ECU 20 transmits a control signal to the actuator 37a to realize the homogeneous lean combustion by the lean air-fuel mixture. The opening is reduced, and a drive current is applied to the fuel injection valve 32 during the intake stroke of each cylinder 21 to perform the intake stroke injection. In this case, a lean mixture in which fresh air and fuel are homogeneously mixed is formed over substantially the entire region in the combustion chamber 24 of each cylinder 21, and homogeneous lean combustion is realized.
[0043]
When the ECU 20 determines that the operation state of the internal combustion engine 1 is in the high-load operation range, the ECU 20 transmits a control signal to the actuator 37a to realize the homogeneous combustion with the air-fuel mixture near the stoichiometric air-fuel ratio. The valve 37 is fully opened, a control signal is transmitted to the actuator 40 so that the throttle valve 39 has an opening degree corresponding to the depression amount of the accelerator pedal 42 (the output signal value of the accelerator position sensor 43), and further, the intake of each cylinder 21 is performed. During a stroke, a drive current is applied to the fuel injection valve 32 to perform an intake stroke injection. In this case, a mixture with a stoichiometric air-fuel ratio in which fresh air and fuel are homogeneously mixed is formed over substantially the entire region in the combustion chamber 24 of each cylinder 21, and homogeneous combustion is realized.
[0044]
Note that the ECU 20 performs the compression stroke and the intake stroke of each cylinder 21 in order to prevent the torque fluctuation of the internal combustion engine 1 when shifting from the stratified combustion control to the homogeneous combustion control or when shifting from the homogeneous combustion control to the stratified combustion control. A drive current is applied to the fuel injection valve 32 in two stages, that is, during the stroke. In this case, in the combustion chamber 24 of each cylinder 21, a combustible mixture layer is formed in the vicinity of the spark plug 25, and a lean mixture layer is formed in other regions, so-called weak stratified combustion is realized. .
[0045]
When the ECU 20 determines that the operation state of the internal combustion engine 1 is in the idling operation range, the ECU 20 controls the throttle valve 39 to secure an intake air amount necessary for converging the actual engine speed to the target idle speed. In this case, feedback control of so-called idle speed control (ISC) for controlling the opening of the motor is performed.
[0046]
Next, the ECU 20 executes the exhaust gas temperature raising control when the amount of discharge of the unburned fuel component (unburned HC) into the atmosphere should be reduced.
In the exhaust gas temperature raising control, the ECU 20 executes an exhaust gas temperature raising control routine as shown in FIG. This exhaust gas temperature raising control routine is a routine stored in advance in a ROM or the like built in the ECU 20, and is a routine that is repeatedly executed at predetermined time intervals (for example, every time the crank position sensor 51 outputs a pulse signal). is there.
[0047]
In the exhaust gas temperature raising control routine, the ECU 20 first determines in S401 whether it is time to reduce the unburned fuel component (unburned HC) discharged from the internal combustion engine 1 or not.
[0048]
The timing to reduce the unburned HC discharged from the internal combustion engine 1 is, for example, when the internal combustion engine 1 is in a warm-up operation state after a cold start or when the internal combustion engine 1 is in a low load operation state. Thus, the case where the temperature of the combustion chamber 24 of the internal combustion engine 1 is low and the exhaust purification catalyst 46 is in an inactive state.
[0049]
This is because when the temperature in the combustion chamber 24 of the internal combustion engine 1 is low, the combustion state of the air-fuel mixture tends to be unstable in the combustion chamber 24 and the air-fuel mixture is difficult to completely burn, so that a large amount of unburned HC is exhausted. At this time, if the exhaust purification catalyst 46 is in an inactive state, the unburned HC contained in the exhaust is released to the atmosphere without being sufficiently purified by the exhaust purification catalyst 46. Because it will be.
[0050]
If it is determined in S401 that it is not time to reduce the unburned HC discharged from the internal combustion engine 1, the ECU 20 once ends the execution of this routine.
On the other hand, if it is determined in S401 that it is time to reduce the unburned HC discharged from the internal combustion engine 1, the ECU 20 proceeds to S402 and starts execution of the exhaust gas temperature raising process.
[0051]
In the exhaust gas temperature raising process, the ECU 20 controls the actuator 50 so that the exhaust throttle valve 49 is almost fully closed. In this case, the exhaust pressure increases in the exhaust port 27, the exhaust branch pipe 45, and the exhaust pipe 47 upstream of the exhaust throttle valve 49. When the exhaust pressure increases in this manner, the pressure of the exhaust gas discharged from the combustion chamber 24 to the exhaust port 27 does not decrease, and accordingly, the temperature of the exhaust gas is suppressed from decreasing. Further, when the exhaust throttle valve 49 is almost fully closed, the flow velocity of exhaust gas in the exhaust passage from the exhaust port 27 to the exhaust throttle valve 49 decreases.
[0052]
As a result, the exhaust gas discharged from the combustion chamber 24 stays at a high temperature for a long time in the exhaust passage upstream of the exhaust throttle valve 49, during which time the unburned HC remaining in the exhaust gas is removed. It will be oxidized.
[0053]
By the way, even if the exhaust throttle valve 49 is almost fully closed, the temperature of the exhaust gas at the time when the exhaust gas is discharged from the combustion chamber 24 to the exhaust port 27 is excessively low or is included in the exhaust gas discharged from the combustion chamber 24. If the unburned HC amount is excessively large, there is a possibility that the oxidation reaction of the unburned HC may not be sufficiently performed.
[0054]
Therefore, in the exhaust gas temperature raising process according to the present embodiment, the ECU 20 controls the exhaust throttle valve 49 to a substantially fully closed state, and in addition to the injection of the main fuel contributing to the engine output, a predetermined amount after the main fuel injection. The fuel injection valve 32 is controlled so as to perform the sub-injection for injecting the fuel at the timing.
[0055]
In this case, in the combustion chamber 24, unburned HC, which is the unburned main fuel, is burned using the auxiliary fuel as an ignition source. At that time, since the injection of the auxiliary fuel is performed at a high temperature immediately after the main fuel is burned, the auxiliary fuel is almost completely burned, and the amount of unburned HC generated by the injection of the auxiliary fuel is extremely small. Become.
[0056]
Further, when the auxiliary fuel is burned in the combustion chamber 24 as described above, the combustion heat of the auxiliary fuel and the combustion heat of the unburned HC are generated in addition to the combustion heat of the main fuel, and the combustion chamber The temperature of the burned gas in 24 becomes higher.
[0057]
As a result, the temperature of the exhaust gas discharged from the combustion chamber 24 to the exhaust port 27 becomes sufficiently high, and the amount of unburned HC remaining in the exhaust gas is reduced. , Almost all of the unburned HC remaining in the exhaust gas is oxidized. Further, in this embodiment, since the exhaust purification catalyst 46 is disposed in the exhaust passage upstream of the exhaust throttle valve 49, when the exhaust temperature is increased as described above, the exhaust purification catalyst 46 is As a result, the activation of the exhaust purification catalyst 46 is promoted.
[0058]
As for the injection timing of the auxiliary fuel, the timing at which the temperature of the exhaust gas discharged from the combustion chamber 24 to the exhaust port 27 is sufficiently high and the amount of unburned HC remaining in the exhaust gas is minimized is experimentally obtained in advance. Preferably.
[0059]
For example, when the internal combustion engine 1 exemplified in the present embodiment is in a warm-up operation state after a cold start, as shown in FIG. °, when the injection of the auxiliary fuel is executed, the amount of unburned HC discharged from the combustion chamber 24 to the exhaust port 27 becomes the smallest and the exhaust gas discharged from the combustion chamber 24 to the exhaust port 27 Is sufficiently high, the ECU 20 may execute the auxiliary fuel injection control at around 60 ° after the top dead center of the crankshaft 23 in the expansion stroke of each cylinder 21.
[0060]
Further, when the exhaust throttle valve 49 is almost fully closed and the exhaust pressure rises, the exhaust pressure acts on the internal combustion engine 1 as a back pressure, so that the output of the internal combustion engine 1 decreases. On the other hand, in the present embodiment, when controlling the exhaust throttle valve 49 to be almost fully closed, the ECU 20 matches the output of the internal combustion engine 1 with the output when the exhaust throttle valve 49 is fully opened. The main fuel injection amount was increased as much as possible.
[0061]
Further, in the example shown in FIG. 5, if the injection of the auxiliary fuel is performed at a time when the amount of unburned HC discharged from the combustion chamber 24 is minimized, a large amount of particulate matter such as soot is generated. However, in the exhaust gas temperature raising apparatus according to the present embodiment, since the wall-through type exhaust gas purification catalyst 46 is provided in the exhaust passage of the internal combustion engine 1, the particulate matter contained in the exhaust gas is It will be removed at 46 and will not be released into the atmosphere.
[0062]
Here, returning to the exhaust gas temperature raising control routine of FIG. 4, the ECU 20 executes the above-described process of S402, and then proceeds to S403 to determine whether or not the exhaust purification catalyst 46 has been activated.
[0063]
As a method for determining whether or not the exhaust gas purification catalyst 46 has been activated, it may be estimated from the execution time of the exhaust gas temperature raising process, or a temperature sensor may be attached to the exhaust gas purification catalyst 46 and the output signal of the temperature sensor may be estimated. The determination may be made based on the value.
[0064]
If it is determined in S402 that the exhaust purification catalyst 46 has not been activated yet, the ECU 20 returns to S402 and continues the execution of the exhaust gas temperature raising process. On the other hand, if it is determined in S402 that the exhaust purification catalyst 46 has been activated, the ECU 20 proceeds to S404, ends the execution of the exhaust gas temperature raising process, and once ends the execution of this routine.
[0065]
As described above, the valve control unit, the main fuel injection control unit, and the auxiliary fuel injection control unit according to the present invention are realized by the ECU 20 executing the exhaust gas temperature increase control routine. Therefore, according to the exhaust gas temperature raising apparatus for an internal combustion engine according to the present embodiment, the internal combustion engine 1 is in a warm-up operation state after a cold start, or when the internal combustion engine 1 is in a low load operation state. In addition, when it is necessary to reduce the amount of unburned HC discharged from the internal combustion engine 1, it becomes possible to reduce the amount of unburned HC and particulate matter released into the atmosphere, and to purify exhaust gas. This enables early activation of the catalyst 46.
[0066]
In the present embodiment, since the particulate matter generated in a relatively large amount in the exhaust gas temperature rise control is removed by the exhaust purification catalyst 46, the particulate matter adsorption capacity of the exhaust purification catalyst 46 is not saturated before the exhaust purification catalyst 46 becomes saturated. It is necessary to regenerate the exhaust purification catalyst 46.
[0067]
Therefore, in the present embodiment, the ECU 20 regenerates the adsorption capacity of the exhaust purification catalyst 46 according to an exhaust purification catalyst regeneration control routine as shown in FIG. The exhaust purification catalyst regeneration control routine is a routine stored in the ROM of the ECU 20 in advance, and is a routine that is repeatedly executed by the ECU 20 at predetermined time intervals (for example, every time the crank position sensor 51 outputs a pulse signal).
[0068]
In the exhaust purification catalyst regeneration control routine, the ECU 20 first determines in S601 whether it is time to regenerate the adsorption capacity of the exhaust purification catalyst 46. As this determination method, for example, the amount of particulate matter adsorbed on the exhaust gas purification catalyst 46 is estimated using the operation history of the internal combustion engine 1 as a parameter, and the estimated value and the amount of particulate matter that the exhaust gas purification catalyst 46 can adsorb are used. A method of comparing with a maximum value (maximum adsorption amount) and judging that it is time to regenerate the adsorption capacity of the exhaust purification catalyst 46 when the estimated value is equal to or larger than the maximum adsorption amount can be exemplified.
[0069]
If it is determined in S601 that it is not time to regenerate the adsorption capacity of the exhaust purification catalyst 46, the ECU 20 once ends the execution of this routine. On the other hand, if it is determined in S601 that it is time to regenerate the adsorption capacity of the exhaust purification catalyst 46, the ECU 20 proceeds to S602 and executes an exhaust purification catalyst regeneration process.
[0070]
Here, in order to remove the particulate matter adsorbed on the exhaust purification catalyst 46, the temperature of the atmosphere in the exhaust purification catalyst 46 is raised to about 500 ° C. or more, and the particulate matter is reduced by making the atmosphere excessive in oxygen. It may be oxidized (burned).
[0071]
Therefore, in the exhaust purification catalyst regeneration process, the ECU 20 executes the same process as the exhaust gas temperature increase process in the exhaust gas temperature increase control described above for a predetermined time, thereby increasing the temperature of the exhaust gas flowing into the exhaust gas purification catalyst 46, and The particulate matter adsorbed on the purification catalyst 46 is oxidized.
[0072]
After the execution of the process of S602, the ECU 20 once ends the execution of this routine.
As described above, by the ECU 20 executing the exhaust gas purification catalyst regeneration control routine,
The temperature of the exhaust gas discharged from the internal combustion engine 1 can be increased. At that time, since the exhaust purification catalyst 46 is disposed in the exhaust passage upstream of the exhaust throttle valve 49, the particulate matter adsorbed by the exhaust purification catalyst 46 stays in the exhaust passage upstream of the exhaust throttle valve 49. For a long period of time, it is oxidized efficiently.
[0073]
When the exhaust purification catalyst is used mainly in a lean atmosphere, such as when the internal combustion engine 1 is a diesel engine or a lean burn type internal combustion engine, the exhaust purification catalyst is poisoned by oxygen and the activation capacity is reduced. In such a case, when the exhaust gas purifying catalyst is regenerated, the exhaust gas purifying catalyst is once exposed to a stoichiometric air-fuel ratio or exhaust gas in a rich atmosphere to eliminate oxygen poisoning. It is preferable to perform an exhaust temperature raising process.
[0074]
【The invention's effect】
In the exhaust gas temperature raising apparatus for an internal combustion engine according to the present invention, at the time when the unburned fuel component discharged from the internal combustion engine is to be reduced, the opening degree of the exhaust throttle valve is almost fully closed and the main fuel is injected. Since the injection of the auxiliary fuel is performed later, the pressure and temperature of the exhaust gas increase from the exhaust passage upstream of the exhaust throttle valve into the cylinder of the internal combustion engine, and the flow velocity of the exhaust gas decreases. As a result, the unburned fuel component, which is the unburned main fuel, and the auxiliary fuel are burned at a high temperature for a long time, and the amount of the unburned fuel component remaining in the exhaust gas is reduced. At that time, since particulate matter such as soot contained in the exhaust gas is removed by the PM removing means provided in the exhaust passage, it is not released into the atmosphere.
[0075]
Therefore, according to the exhaust gas temperature raising apparatus for an internal combustion engine according to the present invention, the unburned fuel component is reliably reduced at the time when the unburned fuel component discharged from the internal combustion engine should be reduced, and the particulate matter air It is also possible to prevent release into the inside.
[0076]
Further, in the exhaust gas temperature raising apparatus for an internal combustion engine according to the present invention, when the PM trap is used as the PM removing means, when the adsorption capacity of the PM trap is regenerated, the opening degree of the exhaust throttle valve is set to a substantially fully closed state. At the same time, since the auxiliary fuel is injected after the injection of the main fuel, the temperature of the exhaust gas flowing into the PM trap increases, and as a result, the particulate matter adsorbed in the PM trap is burned and removed.
[0077]
At this time, if the PM trap is disposed in the exhaust passage upstream of the exhaust throttle valve, the PM trap is exposed to high-temperature exhaust gas remaining in the exhaust passage upstream of the exhaust throttle valve for a long time. It is possible to improve the regeneration efficiency.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine to which an exhaust gas heating device for an internal combustion engine according to the present invention is applied;
FIG. 2 is a diagram (1) showing an internal configuration of an exhaust purification catalyst.
FIG. 3 is a diagram (2) showing an internal configuration of an exhaust purification catalyst.
FIG. 4 is a flowchart showing an exhaust gas temperature rise control routine.
FIG. 5 is a diagram showing the relationship between the timing of auxiliary fuel injection and the emission amounts of particulate matter and unburned HC.
FIG. 6 is a flowchart illustrating an exhaust purification catalyst regeneration control routine.
[Explanation of symbols]
1 ... Internal combustion engine
21 ... cylinder
24 ... combustion chamber
27 ・ ・ ・ Exhaust port
29 ・ ・ ・ Exhaust valve
32 ... fuel injection valve
45 ・ ・ ・ Exhaust branch pipe
46 ・ ・ ・ Exhaust purification catalyst
47 ・ ・ ・ Exhaust pipe
49 ・ ・ ・ Exhaust throttle valve
50 Actuator

Claims (3)

内燃機関の排気通路に設けられ、前記排気通路を流れる排気の流量を調節する排気絞り弁と、
前記内燃機関の気筒内に直接燃料を噴射する燃料噴射弁と、
前記内燃機関から排出される未燃燃料成分を低減すべきときに、前記排気絞り弁をほぼ全閉に制御する弁制御手段と、
前記排気絞り弁がほぼ全閉に制御されたときに、前記燃料噴射弁から噴射される主たる燃料量を増加させる主燃料噴射制御手段と、
前記主燃料噴射制御手段による主燃料の噴射後に、前記燃料噴射弁から副次的に燃料を噴射させる副燃料噴射制御手段と、
前記排気通路に設けられ、前記排気通路を流れる排気に含まれる粒子状物質を除去するPM除去手段と、を備え、
前記副燃料噴射制御手段は、前記内燃機関から排出される未燃燃料成分の量が最も少なくなる時期に副燃料の噴射を実行するとともに、前記PM除去手段によって粒子状物質を除去することを特徴とする内燃機関の排気昇温装置。
An exhaust throttle valve provided in an exhaust passage of the internal combustion engine, for adjusting a flow rate of exhaust flowing through the exhaust passage;
A fuel injection valve that injects fuel directly into a cylinder of the internal combustion engine,
Valve control means for controlling the exhaust throttle valve to be almost fully closed when an unburned fuel component discharged from the internal combustion engine is to be reduced;
Main fuel injection control means for increasing a main fuel amount injected from the fuel injection valve when the exhaust throttle valve is controlled to be almost fully closed;
After injection of the main fuel by the main fuel injection control means, sub fuel injection control means for injecting fuel secondary from the fuel injection valve,
PM removal means provided in the exhaust passage, for removing particulate matter contained in exhaust flowing through the exhaust passage ,
The auxiliary fuel injection control means executes the injection of the auxiliary fuel at a time when the amount of the unburned fuel component discharged from the internal combustion engine is minimized, and removes particulate matter by the PM removal means. An exhaust gas heating device for an internal combustion engine.
前記PM除去手段は、排気中に含まれる粒子状物質を物理的に吸着するPMトラップであり、前記PMトラップを再生する場合は、前記弁制御手段が前記排気絞り弁をほぼ全閉に制御し、前記主燃料噴射制御手段が主燃料の噴射量を増加すべく前記燃料噴射弁を制御し、前記副燃料噴射制御手段が副燃料の噴射を実行すべく前記燃料噴射弁を制御することを特徴とする請求項1に記載の内燃機関の排気昇温装置。The PM removal unit is a PM trap that physically adsorbs particulate matter contained in exhaust gas.When regenerating the PM trap, the valve control unit controls the exhaust throttle valve to be almost fully closed. The main fuel injection control means controls the fuel injection valve to increase the injection amount of the main fuel, and the auxiliary fuel injection control means controls the fuel injection valve to execute the injection of the auxiliary fuel. The exhaust gas temperature raising device for an internal combustion engine according to claim 1, wherein 前記PM除去手段は、前記排気絞り弁より上流の排気通路に設けられることを特徴とする請求項1に記載の内燃機関の排気昇温装置。The exhaust temperature raising device for an internal combustion engine according to claim 1, wherein the PM removing means is provided in an exhaust passage upstream of the exhaust throttle valve.
JP29216899A 1999-10-14 1999-10-14 Exhaust gas heating device for internal combustion engine Expired - Fee Related JP3596378B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP29216899A JP3596378B2 (en) 1999-10-14 1999-10-14 Exhaust gas heating device for internal combustion engine
DE10045548A DE10045548B4 (en) 1999-10-14 2000-09-14 Exhaust gas temperature raising device and method for an internal combustion engine
FR0013020A FR2799794B1 (en) 1999-10-14 2000-10-11 METHOD AND APPARATUS FOR RAISING EXHAUST TEMPERATURE FOR AN INTERNAL COMBUSTION ENGINE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29216899A JP3596378B2 (en) 1999-10-14 1999-10-14 Exhaust gas heating device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2001115883A JP2001115883A (en) 2001-04-24
JP3596378B2 true JP3596378B2 (en) 2004-12-02

Family

ID=17778446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29216899A Expired - Fee Related JP3596378B2 (en) 1999-10-14 1999-10-14 Exhaust gas heating device for internal combustion engine

Country Status (3)

Country Link
JP (1) JP3596378B2 (en)
DE (1) DE10045548B4 (en)
FR (1) FR2799794B1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10323245A1 (en) * 2003-05-22 2004-12-09 Umicore Ag & Co.Kg Process for cleaning the exhaust gas of a diesel engine using a diesel oxidation catalytic converter
JP4337715B2 (en) * 2004-11-26 2009-09-30 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
DE102007060142B4 (en) * 2007-12-13 2010-09-09 Ford Global Technologies, LLC, Dearborn Control method for increasing the exhaust gas temperature over time
US8631642B2 (en) 2009-12-22 2014-01-21 Perkins Engines Company Limited Regeneration assist calibration
CN102022214B (en) * 2010-11-23 2013-09-18 天津大学 Method and device for achieving low emission of heavy-duty diesel engine through controlling exhaust temperature
CN109209569B (en) * 2017-07-07 2022-01-25 卡明斯公司 Diesel engine thermal management control strategy

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3513948B2 (en) * 1994-12-07 2004-03-31 マツダ株式会社 Engine exhaust purification device
DE19644407C2 (en) * 1996-10-25 1999-09-23 Daimler Chrysler Ag Process for reducing the emissions of an internal combustion engine
JP3257430B2 (en) 1997-01-29 2002-02-18 三菱自動車工業株式会社 Exhaust heating device
DE19716275C1 (en) * 1997-04-18 1998-09-24 Volkswagen Ag Process for reducing nitrogen oxide in the exhaust gas of an internal combustion engine
JP3799758B2 (en) * 1997-08-05 2006-07-19 トヨタ自動車株式会社 Catalyst regeneration device for internal combustion engine
AT2410U1 (en) * 1997-09-16 1998-10-27 Avl List Gmbh METHOD FOR REGENERATING A PARTICLE FILTER
DE19957715C2 (en) * 1998-12-01 2002-01-17 Toyota Motor Co Ltd Exhaust emission control device for an internal combustion engine

Also Published As

Publication number Publication date
JP2001115883A (en) 2001-04-24
DE10045548A1 (en) 2001-04-19
FR2799794A1 (en) 2001-04-20
DE10045548B4 (en) 2010-08-26
FR2799794B1 (en) 2004-11-26

Similar Documents

Publication Publication Date Title
US6233925B1 (en) Exhaust discharge control device for internal combustion engine
JP3835241B2 (en) Exhaust gas purification device for internal combustion engine
JPH10299463A (en) Exhaust emission control device for internal combustion engine
US6634167B1 (en) Exhaust temperature raising apparatus and method for internal combustion engine
US6594991B2 (en) Exhaust purifying method and apparatus of an internal combustion engine
JP3757860B2 (en) Exhaust gas purification device for internal combustion engine
JP3596378B2 (en) Exhaust gas heating device for internal combustion engine
JP2004052611A (en) Exhaust emission control device for internal combustion engine
JP2004028030A (en) Exhaust emission control device for internal combustion engine
JP3747778B2 (en) Exhaust gas purification device for internal combustion engine
JP3570318B2 (en) Exhaust gas purification device for internal combustion engine
JP3536739B2 (en) Exhaust gas purification device for internal combustion engine
JP3557930B2 (en) Exhaust gas purification device for internal combustion engine
JP4345202B2 (en) Exhaust gas purification device for internal combustion engine
JP3633312B2 (en) Exhaust gas purification device for internal combustion engine
JP3558015B2 (en) Exhaust gas purification method for internal combustion engine
JP4244490B2 (en) Internal combustion engine having variable valve mechanism
JP3496572B2 (en) Exhaust gas purification device for internal combustion engine
JP3620446B2 (en) Exhaust gas purification device for internal combustion engine
JP4032760B2 (en) Exhaust gas purification device for internal combustion engine
JP4325078B2 (en) Internal combustion engine having variable valve mechanism
JP4206593B2 (en) In-cylinder injection internal combustion engine control device
JP2004360569A (en) Exhaust gas purification control system of internal combustion engine
JP2001059428A (en) Exhaust emission control device for internal combustion engine
JP4052100B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040830

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070917

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees