JP4206377B2 - Resin oil body and method for producing the same - Google Patents

Resin oil body and method for producing the same Download PDF

Info

Publication number
JP4206377B2
JP4206377B2 JP2004379104A JP2004379104A JP4206377B2 JP 4206377 B2 JP4206377 B2 JP 4206377B2 JP 2004379104 A JP2004379104 A JP 2004379104A JP 2004379104 A JP2004379104 A JP 2004379104A JP 4206377 B2 JP4206377 B2 JP 4206377B2
Authority
JP
Japan
Prior art keywords
resin
forming material
pore
oil
oil retaining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004379104A
Other languages
Japanese (ja)
Other versions
JP2005336455A (en
Inventor
正和 平田
英之 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2004379104A priority Critical patent/JP4206377B2/en
Priority to PCT/JP2005/007216 priority patent/WO2005103128A1/en
Priority to CN2005800125631A priority patent/CN1946783B/en
Priority to US11/578,167 priority patent/US7910198B2/en
Priority to EP05730458.6A priority patent/EP1746125B1/en
Publication of JP2005336455A publication Critical patent/JP2005336455A/en
Application granted granted Critical
Publication of JP4206377B2 publication Critical patent/JP4206377B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、樹脂製保油体およびその製造方法に関し、特に潤滑油の供給体として使用できる樹脂製保油体およびその製造方法に関する。   The present invention relates to a resin oil retaining body and a method for producing the same, and more particularly to a resin oil retaining body that can be used as a lubricant supply body and a method for producing the same.

樹脂成形体の摩擦摩耗特性改良法の一つとして、樹脂材料に潤滑油を添加した、いわゆる「ガンプラ」が従来より知られている。この方法は樹脂と潤滑油を溶融混練、ペレタイズで成形前原料形状にしたものを射出成形または押出し成形するものであり、射出成形性の低下などを防ぐため、添加できる潤滑油量は最大でも 10 体積%程度である。樹脂と潤滑油とを溶融混練しているため、均一性および保油性が高く、表面への潤滑油の滲み出しは少ない。このため、潤滑油供給体としての機能は十分でなく、また該樹脂材料を滑り軸受などとして用いる場合、荷重(P)とすべり速度(V)を乗じたPV値が高い領域では十分な潤滑特性が得られない。
従来、上記の問題に対処すべく開発された含油樹脂であって、樹脂と潤滑油を予め混合したものを所定の形状に成形するものとして、超高分子量ポリエチレンとグリースを配合した組成物が開示されている(特許文献1)。該組成物は、グリースにより潤滑油の流動を防いでいるため、樹脂中の潤滑油量として 50 体積%以上が可能である。また、表面への潤滑油の滲み出し量はガンプラよりも多い。
また、含油樹脂に繊維状油導通材を添加したもの(特許文献2〜特許文献4)、多孔質シリカに潤滑油を保持させたものを合成樹脂と混合し、含油樹脂としたものが開示されている(特許文献5)。これらは、いずれも潤滑油を樹脂表面に継続的に供給することを目的になされたものであり、導通材や多孔質シリカの補助により樹脂中の潤滑油量は 20 体積%程度まで高められている。
また、焼結成形して所定の形状にした樹脂に潤滑油を含浸する方法が開示されている(特許文献6および7)。最密充填と成形工程での圧縮を考慮すると実質的な空隙の割合である連通孔率は最大でも 30 %であり、この空隙分が含油可能量となる。
特開平6−41569号公報 特開平11−166541号公報 特開2000−71243号公報 特開2000−71244号公報 特開2002−129183号公報 特開昭61−6429号公報 特開平9−76371号公報
As one of methods for improving the friction and wear characteristics of a resin molded body, a so-called “gunpla” in which a lubricating oil is added to a resin material has been conventionally known. This method involves melt-kneading resin and lubricating oil and injection molding or extrusion molding of the raw material shape prior to molding by pelletizing. The maximum amount of lubricating oil that can be added is 10% to prevent deterioration of injection moldability. It is about volume%. Since the resin and the lubricating oil are melt-kneaded, the uniformity and oil retention are high, and the lubricating oil does not ooze out to the surface. For this reason, the function as a lubricating oil supply body is not sufficient, and when the resin material is used as a sliding bearing or the like, sufficient lubrication characteristics are obtained in a region where the PV value obtained by multiplying the load (P) and the sliding speed (V) is high. Cannot be obtained.
Conventionally, a composition containing ultra high molecular weight polyethylene and grease is disclosed as an oil-impregnated resin that has been developed to deal with the above-mentioned problems, and that is obtained by pre-mixing resin and lubricating oil into a predetermined shape. (Patent Document 1). Since the composition prevents the lubricating oil from flowing by the grease, the amount of lubricating oil in the resin can be 50% by volume or more. Further, the amount of lubricating oil oozing out to the surface is larger than that of Gundam.
Also disclosed are oil-impregnated resins in which a fibrous oil conducting material is added (Patent Documents 2 to 4), and those in which lubricating oil is retained in porous silica are mixed with a synthetic resin to obtain an oil-impregnated resin. (Patent Document 5). These are all intended to continuously supply lubricating oil to the resin surface. The amount of lubricating oil in the resin is increased to about 20% by volume with the aid of a conductive material and porous silica. Yes.
In addition, a method of impregnating a resin that has been sintered and molded into a predetermined shape with a lubricating oil is disclosed (Patent Documents 6 and 7). Considering the close-packing and compression in the molding process, the effective porosity is 30% at the maximum, and this void content is the oil content.
JP-A-6-41569 Japanese Patent Laid-Open No. 11-166541 JP 2000-71243 A JP 2000-71244 A JP 2002-129183 A Japanese Patent Laid-Open No. 61-6429 JP-A-9-76371

しかしながら、特許文献1では、十分な油量が確保されるが、予め樹脂と潤滑剤とを混合した練り込みタイプであるため、保油性が高く、添加した潤滑油の利用効率が低い。また、練り込みタイプの場合、潤滑油量が多くなると含油樹脂成形体の機械的強度が低くなるという問題がある。
特許文献2、特許文献3、特許文献4および特許文献5では、上述のように導通材や多孔質シリカにより樹脂中の潤滑油量は 20 体積%程度まで高められ、また強化材の添加により機械的強度の低下も抑制できるが、軸受の保持器などへ適用し、樹脂中の油分のみで潤滑を行なう場合には、潤滑油量不足、表面への滲み出し速度が遅いなどの問題がある。
また、上記特許文献1〜特許文献5は樹脂と潤滑油とが予め混練されたものを所定の形状にする方法であるため、樹脂と潤滑油との組合せに制限があり広範な用途には適用できないという問題がある。
これらに対し、特許文献6および特許文献7は樹脂と潤滑油との組合せの自由度は上がるが、実際に焼結成形できる樹脂は超高分子量ポリエチレン、ポリイミド樹脂などに限定されてしまう。また、上述のように実質的な連通孔率は最大でも 30 %であり、軸受の保持器などへ適用し、樹脂中の油分のみで潤滑をしようとする場合には、潤滑油量不足であり、近年の長寿命化の要求には耐えられないという問題がある。
However, in Patent Document 1, a sufficient amount of oil is secured, but since it is a kneading type in which a resin and a lubricant are mixed in advance, the oil retaining property is high and the utilization efficiency of the added lubricating oil is low. Further, in the case of the kneading type, there is a problem that the mechanical strength of the oil-containing resin molded product is lowered when the amount of lubricating oil is increased.
In Patent Document 2, Patent Document 3, Patent Document 4, and Patent Document 5, as described above, the amount of lubricating oil in the resin is increased to about 20% by volume by the conductive material and porous silica, and the mechanical material is added by adding a reinforcing material. Although it is possible to suppress a decrease in mechanical strength, there are problems such as insufficient lubrication amount and slow oozing speed when applied to bearing cages or the like and lubricated only with oil in the resin.
In addition, the above Patent Documents 1 to 5 are methods in which a resin and lubricating oil previously kneaded are made into a predetermined shape, so there are restrictions on combinations of resin and lubricating oil, and they are applicable to a wide range of applications. There is a problem that you can not.
On the other hand, Patent Document 6 and Patent Document 7 increase the degree of freedom of the combination of the resin and the lubricating oil, but the resins that can actually be sintered and molded are limited to ultrahigh molecular weight polyethylene, polyimide resin, and the like. In addition, as described above, the actual communication porosity is 30% at the maximum, and when it is applied to bearing cages and lubrication is performed only with the oil content in the resin, the amount of lubricating oil is insufficient. However, there is a problem that it cannot withstand the demand for longer life in recent years.

一方、連通孔率の調整が可能で、しかも安価な多孔体の製造方法として脱塩法が知られている。脱塩法は、塩化ナトリウムや硫酸ナトリウムなどの粉末状の気孔形成材を樹脂やゴムなどに添加した成形材料を、気孔形成材を含む充実成形体として成形し、得られた充実成形体を水などで洗浄することにより気孔形成材を溶出して、気孔形成材が存在していた部分に気孔を形成する多孔体の製造方法である。
従来、脱塩法により連通孔率が高い多孔体を製造するものとして、常温では固体であるが、多孔体の骨格を形成する高分子物質の成形温度では溶融して液体状態として存在することができる気孔形成材を用いて多孔体を成形するもの(特許文献8参照)、粒状気孔形成材を高分子物質に分散させてなる成形材料を、該粒気孔形成材の一部が溶融する温度で成形し、該成形体を上記高分子物質は溶解しないが上記気孔形成材は溶解する溶媒で洗浄することにより気孔を形成するもの(特許文献9参照)、特に連続気泡を有するポリオレフィン多孔体を製造するもの(特許文献10参照)などがある。
また、抽出物の分離および被抽出物の再利用を容易にするため、水溶性粉末からなる気孔形成材を用いて、これを温水により抽出するもの(特許文献11参照)がある。
On the other hand, a desalting method is known as a method for producing an inexpensive porous body that can adjust the communication porosity. In the desalting method, a molding material obtained by adding a powdery pore forming material such as sodium chloride or sodium sulfate to a resin or rubber is molded as a solid molded body including the pore forming material, and the resulting solid molded body is washed with water. This is a method for producing a porous body, in which the pore-forming material is eluted by washing, etc., and pores are formed in the portion where the pore-forming material was present.
Conventionally, a porous body having a high communication porosity by a desalting method is solid at room temperature, but is melted and present in a liquid state at a molding temperature of a polymer material forming a skeleton of the porous body. A porous material is molded using a pore-forming material that can be formed (see Patent Document 8), and a molding material in which the particulate pore-forming material is dispersed in a polymer substance at a temperature at which a part of the particulate pore-forming material melts. A molded porous body that does not dissolve the polymer substance but forms the pores by washing the pore-forming material with a solvent that dissolves the molded body (see Patent Document 9), particularly, a polyolefin porous body having open cells. (See Patent Document 10).
Moreover, in order to facilitate the separation of the extract and the reuse of the extract, there is one in which this is extracted with warm water using a pore-forming material made of a water-soluble powder (see Patent Document 11).

上記各特許文献に気孔形成材として開示されている塩化ナトリウム、塩化アンモニウム、硫酸ナトリウム、硝酸ナトリウム、硫酸カリウム、硫酸マグネシウム、塩化カルシウムなどは、比較的水に溶解しやすく、安価で入手しやすいので気孔径の大きな多孔体の製造に用いる気孔形成材として有効である。しかしながら、微細な気孔を形成する場合には、気孔形成材を完全に溶解抽出するのは困難である。このため、鉄鋼と接触することのある用途では、この未抽出分の気孔成形材が使用中に滲み出し、鉄鋼を錆びさせるおそれがある。したがって、このような多孔体に潤滑油を含浸し、樹脂製保油体として使用する場合、周囲に鉄鋼がある転がり軸受、滑り軸受などでの使用は不適であった。
特開2001−2825号公報(段落「0011」) 特開2002−194131号公報(段落「0009」) 特開2002−60534号公報(段落「0004」) 特開2002−322310号公報(段落「0007」、「0008」)
Sodium chloride, ammonium chloride, sodium sulfate, sodium nitrate, potassium sulfate, magnesium sulfate, calcium chloride and the like disclosed as pore forming materials in each of the above patent documents are relatively easy to dissolve in water, and are inexpensive and easily available. It is effective as a pore-forming material used for producing a porous body having a large pore diameter. However, when forming fine pores, it is difficult to completely dissolve and extract the pore-forming material. For this reason, in applications that may come into contact with steel, there is a risk that this non-extracted pore forming material oozes out during use and rusts the steel. Therefore, when such a porous body is impregnated with a lubricating oil and used as a resin oil retaining body, it is unsuitable for use in a rolling bearing or a sliding bearing having steel around it.
JP 2001-2825 A (paragraph “0011”) JP 2002-194131 A (paragraph “0009”) JP 2002-60534 A (paragraph “0004”) JP 2002-322310 A (paragraphs “0007” and “0008”)

本発明はこのような問題に対処するためになされたもので、潤滑油を含有する多孔質樹脂製保油体において、含油量が多く、該潤滑油の使用効率に優れるとともに、用途・仕様に応じた樹脂と潤滑油との組合せが可能な多孔質樹脂製保油体の提供を目的とする。特に金属部分等と接触する用途などに用いられる樹脂製保油体であり、該保油体の未抽出分の気孔形成材が使用中に滲み出しても鉄鋼を錆びさせることがない樹脂製保油体およびその製造方法の提供を目的とする。   The present invention has been made in order to address such problems, and in a porous resin oil retaining body containing lubricating oil, the oil content is large, the use efficiency of the lubricating oil is excellent, and the use and specifications are An object of the present invention is to provide an oil retaining body made of a porous resin that can be combined with a corresponding resin and lubricating oil. It is a resin oil retaining body that is used especially for applications that come into contact with metal parts, etc., and does not rust the steel even if the pore forming material that has not been extracted from the oil retaining body oozes out during use. An object is to provide an oil body and a method for producing the same.

本発明の樹脂製保油体は、連通孔を有する樹脂製多孔体に油が含浸された樹脂製保油体であって、上記連通孔は、アルカリ性の化合物からなる気孔形成材が配合された樹脂を成形して成形体とした後、該気孔形成材を溶解し、かつ上記樹脂を溶解しない溶媒を用いて、上記成形体から気孔形成材を抽出して得られる連通孔であることを特徴とする。
また、樹脂に含浸される油が潤滑油であることを特徴とする。
また、上記気孔形成材は、樹脂の成形温度より高い融点を有する物質であることを特徴とする。特に、その気孔形成材は、水溶性物質であることを特徴とする。
また、樹脂製保油体の連通孔率が 30 %以上であることを特徴とする。
The resin oil retaining body of the present invention is a resin oil retaining body in which a resin porous body having communication holes is impregnated with oil, and the communication holes are blended with a pore forming material made of an alkaline compound . It is a communication hole obtained by molding a resin into a molded body and then extracting the pore-forming material from the molded body using a solvent that dissolves the pore-forming material and does not dissolve the resin. And
Further, the oil impregnated in the resin is a lubricating oil.
The pore forming material is a substance having a melting point higher than the molding temperature of the resin. In particular, the pore forming material is a water-soluble substance.
The resin oil retaining body has a communication pore ratio of 30% or more.

上記気孔形成材は、アルカリ性の化合物であることを特徴とする。また、該アルカリ性の化合物は、有機アルカリ金属塩および有機アルカリ土類金属塩から選ばれた少なくとも1つの金属塩であり、また安息香酸ナトリウム、酢酸ナトリウム、セバシン酸ナトリウム、三リン酸ナトリウム、ピロリン酸ナトリウムまたは炭酸カリウムであることを特徴とする。
本発明の樹脂製保油体の製造方法は、樹脂に気孔形成材を配合する工程と、上記気孔形成材を含む樹脂を成形して成形体とする工程と、上記気孔形成材を溶解し、かつ上記樹脂を溶解しない溶媒を用いて上記成形体から前記気孔形成材を抽出する工程と、得られた樹脂製多孔体に潤滑油を含浸する工程とを備えてなることを特徴とする。
The pore forming material is an alkaline compound. The alkaline compound is at least one metal salt selected from an organic alkali metal salt and an organic alkaline earth metal salt, and also sodium benzoate, sodium acetate, sodium sebacate, sodium triphosphate, pyrophosphate It is characterized by being sodium or potassium carbonate.
The method for producing a resin oil retaining body of the present invention includes a step of blending a pore-forming material with a resin, a step of molding a resin containing the pore-forming material into a molded body, and dissolving the pore-forming material. In addition, the method includes a step of extracting the pore forming material from the molded body using a solvent that does not dissolve the resin, and a step of impregnating the obtained resin porous body with a lubricating oil.

本発明の樹脂製保油体は、含油量およびその利用効率に優れ、長期間潤滑性を付与することができる。また、成形された樹脂多孔体に潤滑油を含浸するのではなく、気孔を形成した後に油を含浸させるので、用途・仕様に応じて樹脂および油を任意に選択できる。
また、樹脂製保油体の製造に用いる気孔形成材として、酸性塩ではなく、アルカリ性塩、特に防錆剤の役割を果たす有機アルカリ金属塩などを用いることにより、周囲に鉄鋼がある軸受などに該樹脂製保油体を使用する場合において、保油体に残存している該気孔形成材が滲み出しても該鉄鋼の錆びを防止できる。
The resin oil retaining body of the present invention is excellent in the oil content and its utilization efficiency, and can impart lubricity for a long period of time. Further, since the molded resin porous body is not impregnated with the lubricating oil but is impregnated with the oil after forming the pores, the resin and the oil can be arbitrarily selected according to the use and specification.
In addition, as a pore-forming material used for the production of a resin oil retaining body, not an acidic salt but an alkaline salt, especially an organic alkali metal salt that plays a role of a rust preventive agent, etc. In the case of using the resin oil retaining body, rusting of the steel can be prevented even if the pore forming material remaining in the oil retaining body oozes out.

本発明の樹脂製保油体は、気孔形成材、特にアルカリ性の気孔形成材が配合された樹脂を成形して成形体とした後、該気孔形成材を溶解し、かつ上記樹脂を溶解しない溶媒を用いて上記成形体から上記気孔形成材を抽出して得られた連通孔を有する樹脂製多孔体に潤滑油などを含浸させることで得られる。アルカリ性の気孔形成材として、有機アルカリ金属塩などを用いることにより、該気孔形成材が完全に溶解・抽出されない場合であっても、該気孔形成材は防錆剤として作用するので、周囲に鉄鋼がある場合などにも好適に利用できる。
以下、本発明の樹脂製保油体を構成する樹脂、気孔形成材、成形方法、抽出方法などについて説明する。
The resin oil retaining body of the present invention is a solvent that does not dissolve the pore-forming material after molding the pore-forming material, particularly a resin containing an alkaline pore-forming material into a molded body. It is obtained by impregnating a resinous porous body having communication holes obtained by extracting the pore forming material from the molded body with a lubricating oil or the like. By using an organic alkali metal salt or the like as the alkaline pore-forming material, even if the pore-forming material is not completely dissolved and extracted, the pore-forming material acts as a rust preventive agent. It can also be suitably used when there is a problem.
Hereinafter, the resin, the pore forming material, the molding method, the extraction method and the like constituting the resin oil retaining body of the present invention will be described.

本発明の樹脂としては、熱可塑性樹脂、熱硬化性樹脂、エラストマーまたはゴムなどの樹脂粉末やペレットを使用できる。樹脂粉末、ペレットの粒径や形状は、溶融成形する場合には、溶融時に気孔形成材と混練されるので、特に限定されるものではない。ドライブレンドしてそのまま圧縮成形する場合には 1〜500μmのものが好ましい。
熱可塑性樹脂または熱硬化性樹脂としては、例えば、低密度ポリエチレン、高密度ポリエチレン、超高分子量ポリエチレンなどのポリエチレン樹脂、変性ポリエチレン樹脂、水架橋ポリオレフィン樹脂、ポリアミド樹脂、芳香族ポリアミド樹脂、ポリスチレン樹脂、ポリプロピレン樹脂、シリコーン樹脂、ウレタン樹脂、ポリテトラフルオロエチレン樹脂、クロロトリフルオロエチレン樹脂、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体樹脂、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体樹脂、フッ化ビニリデン樹脂、エチレン・テトラフルオロエチレン共重合体樹脂、ポリアセタール樹脂、ポリエチレンテレフタラート樹脂、ポリブチレンテレフタラート樹脂、ポリフェニレンエーテル樹脂、ポリカーボネート樹脂、脂肪族ポリケトン樹脂、ポリビニルピロリドン樹脂、ポリオキサゾリン樹脂、ポリフェニレンサルフィド樹脂、ポリエーテルサルフォン樹脂、ポリエーテルイミド樹脂、ポリアミドイミド樹脂、ポリエーテルエーテルケトン樹脂、熱可塑性ポリイミド樹脂、熱硬化性ポリイミド樹脂、エポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂などを例示できる。また、上記合成樹脂から選ばれた2種以上の材料の混合物、すなわちポリマーアロイなどを例示できる。
As the resin of the present invention, resin powder and pellets such as thermoplastic resin, thermosetting resin, elastomer or rubber can be used. The particle size and shape of the resin powder and pellets are not particularly limited when melt molding because they are kneaded with the pore forming material at the time of melting. In the case of dry blending and compression molding as it is, those of 1 to 500 μm are preferable.
Examples of the thermoplastic resin or thermosetting resin include polyethylene resins such as low density polyethylene, high density polyethylene, and ultrahigh molecular weight polyethylene, modified polyethylene resins, water-crosslinked polyolefin resins, polyamide resins, aromatic polyamide resins, polystyrene resins, Polypropylene resin, silicone resin, urethane resin, polytetrafluoroethylene resin, chlorotrifluoroethylene resin, tetrafluoroethylene / hexafluoropropylene copolymer resin, tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer resin, vinylidene fluoride resin , Ethylene / tetrafluoroethylene copolymer resin, polyacetal resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polyphenylene ether resin, Recarbonate resin, aliphatic polyketone resin, polyvinylpyrrolidone resin, polyoxazoline resin, polyphenylene sulfide resin, polyethersulfone resin, polyetherimide resin, polyamideimide resin, polyetheretherketone resin, thermoplastic polyimide resin, thermosetting Examples thereof include a functional polyimide resin, an epoxy resin, a phenol resin, an unsaturated polyester resin, and a vinyl ester resin. Moreover, the mixture of 2 or more types of materials chosen from the said synthetic resin, ie, a polymer alloy, etc. can be illustrated.

上記樹脂の中で、自動車部品、機械部品、電気・電子部品等の工業用途に使用できる樹脂が好ましく、特に、引張り強さが 49 MPa 以上、曲げ弾性率が 1.9 GPa 以上、100℃以上の耐熱性(熱変形温度( 18.6 kg/cm2 ))を有するエンジニアリング樹脂、耐熱性がさらに高く、150℃以上の高温でも長期間使用できる特殊エンジニアリング樹脂またはスーパーエンジニアリング樹脂、および摺動特性などの機械的性質または熱的性質の一部が特に優れているため工業用途に使用できる樹脂が好ましい。
本発明に使用できる好ましい樹脂の具体例としては、ポリエーテルエーテルケトン樹脂、ポリフェニレンサルフィド樹脂、ポリアミドイミド樹脂、熱可塑性ポリイミド樹脂、熱硬化性ポリイミド樹脂、ポリアミド9T樹脂、エポキシ樹脂、ポリテトラフルオロエチレン樹脂、テトラフルオロエチレン−パーフルオロアルキルビニルエーテルコポリマー樹脂、不飽和ポリエステル樹脂、超高分子量ポリエチレンが挙げられる。
Among the resins mentioned above, resins that can be used for industrial applications such as automobile parts, machine parts, electrical / electronic parts, etc. are preferable, and in particular, a tensile strength of 49 MPa or more, a flexural modulus of 1.9 GPa or more, and a heat resistance of 100 ° C. or more. Engineering resin with heat resistance (heat deformation temperature (18.6 kg / cm 2 )), special engineering resin or super engineering resin that has higher heat resistance and can be used for a long time even at high temperatures of 150 ° C or higher, and mechanical properties such as sliding characteristics Resins that can be used in industrial applications are preferred because some of their properties or thermal properties are particularly excellent.
Specific examples of preferred resins that can be used in the present invention include polyetheretherketone resins, polyphenylene sulfide resins, polyamideimide resins, thermoplastic polyimide resins, thermosetting polyimide resins, polyamide 9T resins, epoxy resins, polytetrafluoroethylene. Examples include resins, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer resins, unsaturated polyester resins, and ultrahigh molecular weight polyethylene.

エラストマーまたはゴムとしては、例えば、アクリロニトリルブタジエンゴム、イソプレンゴム、スチレンゴム、ブタジエンゴム、ニトリルゴム、クロロプレンゴム、ブチルゴム、アクリルゴム、シリコーンゴム、フッ素ゴム、エチレンプロピレンゴム、クロロスルフォン化ポリエチレンゴム、塩素化ポリエチレンゴム、エピクロルヒドリンゴム等の加硫ゴム類;ポリウレタンエラストマー、ポリエステルエラストマー、ポリアミドエラストマー、ポリブタジエン系エラストマー、軟質ナイロン系エラストマー等の熱可塑性エラストマー類が例示できる。   Examples of the elastomer or rubber include acrylonitrile butadiene rubber, isoprene rubber, styrene rubber, butadiene rubber, nitrile rubber, chloroprene rubber, butyl rubber, acrylic rubber, silicone rubber, fluorine rubber, ethylene propylene rubber, chlorosulfonated polyethylene rubber, chlorinated Examples thereof include vulcanized rubbers such as polyethylene rubber and epichlorohydrin rubber; and thermoplastic elastomers such as polyurethane elastomer, polyester elastomer, polyamide elastomer, polybutadiene elastomer, and soft nylon elastomer.

本発明に使用できる気孔形成材としては、気孔形成材が配合された樹脂を成形して成形体とした後、該気孔形成材を溶解し、かつ気孔形成材配合樹脂を溶解しない溶媒を用いて、樹脂成形体から抽出できる物質であれば使用できる。
特に、気孔形成材としては、防錆剤として利用できる弱アルカリ塩を好ましく使用できる。弱アルカリ塩としては、有機アルカリ金属塩、有機アルカリ土類金属塩、無機アルカリ金属塩、無機アルカリ土類金属塩などが挙げられる。未抽出分が脱落した時でも、比較的軟らかく、転動面やすべり面を損傷し難いことから、有機アルカリ金属塩、有機アルカリ土類金属塩を用いることが好ましい。なお、これらの金属塩は1種または2種以上混合して用いてもよい。また、洗浄用溶媒として安価な水を使用することができ、気孔形成時における廃液処理などが容易となることから水溶性の弱アルカリ塩を使用することが好ましい。
As the pore-forming material that can be used in the present invention, a resin containing the pore-forming material is molded into a molded body, and then the pore-forming material is dissolved and a solvent that does not dissolve the pore-forming material-containing resin is used. Any substance that can be extracted from the resin molding can be used.
In particular, as the pore forming material, a weak alkali salt that can be used as a rust inhibitor can be preferably used. Examples of the weak alkali salt include organic alkali metal salts, organic alkaline earth metal salts, inorganic alkali metal salts, inorganic alkaline earth metal salts, and the like. Even when an unextracted part falls off, an organic alkali metal salt or an organic alkaline earth metal salt is preferably used because it is relatively soft and hardly damages a rolling surface or a sliding surface. In addition, you may use these metal salts 1 type or in mixture of 2 or more types. In addition, it is preferable to use a water-soluble weak alkali salt because inexpensive water can be used as a cleaning solvent, and waste liquid treatment at the time of pore formation is facilitated.

成形時における気孔形成材の溶解を防止するため、気孔形成材は使用する樹脂の成形温度よりも高い融点の物質を使用することが好ましい。
本発明に好適に用いることができる水溶性有機アルカリ金属塩としては、安息香酸ナトリウム(融点 430℃)、酢酸ナトリウム(融点 320℃)またはセバシン酸ナトリウム(融点 340℃)、コハク酸ナトリウム、ステアリン酸ナトリウムなどが挙げられる。融点が高く、多種の樹脂に対応でき、かつ水溶性が高いという理由から、安息香酸ナトリウム、酢酸ナトリウムまたはセバシン酸ナトリウムが特に好ましい。
無機アルカリ金属塩としては、例えば、モリブデン酸ナトリウム、モリブデン酸カリウム、タングステン酸ナトリウム、三リン酸ナトリウム、ピロリン酸ナトリウム、炭酸カリウムなどが挙げられる。
In order to prevent dissolution of the pore-forming material during molding, it is preferable to use a substance having a melting point higher than the molding temperature of the resin used for the pore-forming material.
Water-soluble organic alkali metal salts that can be suitably used in the present invention include sodium benzoate (melting point 430 ° C.), sodium acetate (melting point 320 ° C.) or sodium sebacate (melting point 340 ° C.), sodium succinate, stearic acid Sodium etc. are mentioned. Sodium benzoate, sodium acetate, or sodium sebacate is particularly preferred because of its high melting point, compatibility with various resins, and high water solubility.
Examples of the inorganic alkali metal salt include sodium molybdate, potassium molybdate, sodium tungstate, sodium triphosphate, sodium pyrophosphate, potassium carbonate, and the like.

また、気孔形成材は上記樹脂の成形温度よりも高い融点の物質と、上記樹脂の成形温度よりも低い融点の物質との混合物として使用することができる。
上記樹脂の成形温度よりも低い融点の物質としては、ペンタエリスリトール、ホウ酸( 171℃)等が挙げられる。
The pore-forming material can be used as a mixture of a substance having a melting point higher than the molding temperature of the resin and a substance having a melting point lower than the molding temperature of the resin.
Examples of the substance having a melting point lower than the molding temperature of the resin include pentaerythritol and boric acid (171 ° C.).

気孔形成材の粒径は、1〜500 μm に管理することが好ましい。
気孔形成材の割合は、樹脂粉末、多孔体形成材料および充填材などの他の材料を含めた全量に対して、30 体積%〜90 体積%、好ましくは 40 体積%〜90 体積%とする。30 体積%以下では多孔体の気孔が連続孔になり難く、90 体積%以上では所望の機械的強度が得られない。
また配合時において、気孔形成材の抽出に使用する溶媒に不溶な充填材を配合してもよい。例えば、該溶媒が水である場合には、多孔体の機械的強度を向上させるなどの目的で、ガラス繊維、炭素繊維などを配合してもよい。
The particle size of the pore forming material is preferably controlled to 1 to 500 μm.
The ratio of the pore forming material is 30% by volume to 90% by volume, preferably 40% by volume to 90% by volume, with respect to the total amount including other materials such as resin powder, porous body forming material and filler. If it is 30% by volume or less, the pores of the porous body are hardly formed into continuous pores, and if it is 90% by volume or more, desired mechanical strength cannot be obtained.
Moreover, you may mix | blend the filler insoluble in the solvent used for extraction of a pore formation material at the time of a mixing | blending. For example, when the solvent is water, glass fiber, carbon fiber, or the like may be blended for the purpose of improving the mechanical strength of the porous body.

樹脂材料と気孔形成材の混合法は特に限定されるものではなくドライブレンド、溶融混練など樹脂の混合に一般に使用する混練法が適用できる。
また、気孔形成材を液体溶媒中に溶解させて透明溶液とした後、この溶液に樹脂粉末を分散混合させて、その後、この溶媒を除去する方法を用いることができる。
分散混合させる方法としては、液中混合できる方法であれば特に限定されるものではなく、ボールミル、超音波分散機、ホモジナイザー、ジューサーミキサー、ヘンシェルミキサーなどが例示できる。また、分散液の分離を抑えるために少量の界面活性剤を添加することも有効である。なお、気孔形成材の透明溶液に樹脂を混合する場合においては、混合により気孔形成材が完全に溶解するよう溶媒量を確保する。この場合、溶媒を除去する方法としては、加熱蒸発、真空蒸発、窒素ガスによるバブリング、透析、凍結乾燥などの方法を用いることができる。手法が容易で、設備が安価であることから加熱蒸発により液体溶媒の除去を行なうことが好ましい。
樹脂に気孔成形材を配合した混合物の成形に関しては、圧縮成形、射出成形、押し出し成形、ブロー成形、真空成形、トランスファ成形などの任意の成形方法を採用できる。また成形前に作業性を向上させるため、ペレットやプリプレグなどに加工してもよい。
The mixing method of the resin material and the pore forming material is not particularly limited, and a kneading method generally used for mixing the resin such as dry blending and melt kneading can be applied.
Alternatively, a method may be used in which the pore-forming material is dissolved in a liquid solvent to form a transparent solution, and then resin powder is dispersed and mixed in the solution, and then the solvent is removed.
The method of dispersing and mixing is not particularly limited as long as it can be mixed in a liquid, and examples thereof include a ball mill, an ultrasonic disperser, a homogenizer, a juicer mixer, and a Henschel mixer. It is also effective to add a small amount of a surfactant in order to suppress separation of the dispersion. In addition, when mixing resin with the transparent solution of a pore formation material, the amount of solvent is ensured so that a pore formation material may melt | dissolve completely by mixing. In this case, as a method for removing the solvent, methods such as heat evaporation, vacuum evaporation, bubbling with nitrogen gas, dialysis, and lyophilization can be used. Since the method is easy and the equipment is inexpensive, it is preferable to remove the liquid solvent by heat evaporation.
For molding a mixture in which a pore molding material is blended with a resin, any molding method such as compression molding, injection molding, extrusion molding, blow molding, vacuum molding, transfer molding or the like can be employed. Moreover, in order to improve workability | operativity before shaping | molding, you may process into a pellet, a prepreg, etc.

得られた成形体からの気孔形成材の抽出は、上記気孔形成材を溶解し、かつ上記樹脂を溶解しない溶媒で成形体を洗浄することにより行なう。
該溶媒としては、例えば、水、および水と相溶しうる溶媒としてアルコール系、エステル系、ケトン系溶媒などを用いることができる。これらの中で、樹脂および気孔形成材の種類によって上記条件に従い適宜選択される。また、これらの溶媒は1種または2種以上を混合し使用してもよい。廃液処理などが容易、安価などの利点から水を用いることが好ましい。
該抽出処理を行なうことにより、気孔形成材が充填されていた部分に気孔が形成された樹脂製多孔体が得られる。
Extraction of the pore-forming material from the obtained molded body is performed by washing the molded body with a solvent that dissolves the pore-forming material and does not dissolve the resin.
As the solvent, for example, water and alcohol solvents, ester solvents, ketone solvents, and the like can be used as solvents compatible with water. Among these, it is appropriately selected according to the above conditions depending on the type of resin and pore forming material. These solvents may be used alone or in combination of two or more. It is preferable to use water because of its advantages such as easy waste liquid treatment and low cost.
By performing the extraction treatment, a resin porous body having pores formed in the portions filled with the pore forming material is obtained.

本発明の樹脂製保油体は、上記樹脂製多孔体に潤滑油を含浸させることで得られる。
含浸する潤滑油は特に限定するものでなく一般に使用されている、鉱油(パラフィン系、ナフテン系)、合成潤滑油(ポリ−α−オレフィン(PAO)、エステル油、シクロペンタン油、フッ素油(PFPE)、シリコーン油、フェニルエーテル油)などが挙げられる。必要に応じて酸化防止剤、極圧剤、摩擦調整剤、防錆剤など、いわゆる潤滑油添加剤を添加してもよい。
含浸方法としては、樹脂製多孔体の内部まで含浸できる方法であればよい。潤滑油が満たされた含浸槽に樹脂製多孔体を浸漬した後、減圧して含浸する減圧含浸が好ましい。また、高粘度のシリコーン油などを用いる場合、加圧含浸することができる。これらを組み合わせた加圧減圧含浸としてもよい。
The resin oil retaining body of the present invention can be obtained by impregnating the resin porous body with a lubricating oil.
The impregnating lubricating oil is not particularly limited and is generally used, mineral oil (paraffinic or naphthenic), synthetic lubricating oil (poly-α-olefin (PAO), ester oil, cyclopentane oil, fluorine oil (PFPE) ), Silicone oil, phenyl ether oil) and the like. If necessary, so-called lubricating oil additives such as antioxidants, extreme pressure agents, friction modifiers, and rust inhibitors may be added.
The impregnation method may be any method that can impregnate the resin porous body. The pressure reduction impregnation in which the resin porous body is immersed in an impregnation tank filled with lubricating oil and then impregnated under reduced pressure is preferable. Further, when a high viscosity silicone oil or the like is used, it can be impregnated under pressure. It is good also as a pressure-reduced-pressure impregnation combining these.

実施例1
体積比 1:1 の超高分子量ポリエチレン粉末(三井化学(株)製ミペロンXM220)と安息香酸ナトリウム粉末(和光純薬(株)製試薬)をミキサーにて 5 分間混合して混合粉末を得た。この混合粉末を用いて、直径φ 30×厚さt 5 mm のディスクを加熱圧縮成形法( 200℃×30 分)にて成形した。この成形体を 80℃の温水で超音波洗浄器にて 10 時間洗浄して安息香酸ナトリウム粉末を溶出させた。その後 100℃で 8 時間乾燥し連通孔率 43 %の多孔体を得た。7 体積%の安息香酸ナトリウムが未溶出であり、多孔体に残存した。該多孔体を合成潤滑油PAO(シンフルード801、新日鉄化学製)を入れたビーカーに静置し、真空槽にて 60 分間含油した。この結果、連通孔率 43 %に対して、93 体積%、樹脂製保油体全体に対して 40 体積%含油された樹脂製保油体を得た。
Example 1
A mixed powder was obtained by mixing ultra-high molecular weight polyethylene powder of 1: 1 volume ratio (Miperon XM220 manufactured by Mitsui Chemicals, Inc.) and sodium benzoate powder (reagent manufactured by Wako Pure Chemical Industries, Ltd.) for 5 minutes with a mixer. . Using this mixed powder, a disk having a diameter of 30 × thickness t 5 mm was molded by a heat compression molding method (200 ° C. × 30 minutes). The molded body was washed with warm water at 80 ° C. for 10 hours with an ultrasonic cleaner to elute the sodium benzoate powder. Thereafter, it was dried at 100 ° C. for 8 hours to obtain a porous body having a communication porosity of 43%. 7% by volume of sodium benzoate was not eluted and remained in the porous body. The porous body was allowed to stand in a beaker containing synthetic lubricating oil PAO (Sinfluid 801, manufactured by Nippon Steel Chemical Co., Ltd.) and impregnated in a vacuum chamber for 60 minutes. As a result, a resin oil retaining body containing 93% by volume with respect to a communication pore ratio of 43% and 40% by volume with respect to the entire resin oil retaining body was obtained.

参考実施例3
体積比 2:1:1 のポリフェニレンサルファイド樹脂粉末(大日本インキ(株)製T4AG。融点 280℃)と安息香酸ナトリウム粉末(和光純薬(株)製試薬。融点 430℃)とペンタエリスリトール(和光純薬(株)製試薬。融点 260℃)をミキサーにて 5 分間混合して混合粉末を得た。この混合粉末を用いて、直径φ 30×厚さt 5 mm のディスクを加熱圧縮成形法( 320℃×30 分)にて成形した。この成形体を 80℃の温水で超音波洗浄器にて 10 時間洗浄して安息香酸ナトリウムとペンタエリスリトールを溶出させた。その後 100℃で 8 時間乾燥し連通孔率 49 %の多孔体を得た。1 体積%の安息香酸ナトリウム粉末が未溶出であり、多孔体に残存した。該多孔体を合成潤滑油PAO(シンフルード801、新日鉄化学製)を入れたビーカーに静置し、真空槽にて 60 分間含油した。この結果、連通孔率 49 %に対して、98 体積%、樹脂製保油体全体に対して 48 体積%含油された樹脂製保油体を得た。
Reference Example 3
Volume ratio 2: 1: 1 polyphenylene sulfide resin powder (T4AG manufactured by Dainippon Ink, Ltd., melting point 280 ° C), sodium benzoate powder (reagent manufactured by Wako Pure Chemical Industries, Ltd., melting point 430 ° C) and pentaerythritol (Japanese A mixed powder was obtained by mixing a reagent (melting point: 260 ° C.) manufactured by Kojunyaku Co., Ltd. with a mixer for 5 minutes. Using this mixed powder, a disk having a diameter of 30 × thickness t 5 mm was molded by a heat compression molding method (320 ° C. × 30 minutes). The molded body was washed with warm water at 80 ° C. for 10 hours with an ultrasonic cleaner to elute sodium benzoate and pentaerythritol. Thereafter, it was dried at 100 ° C. for 8 hours to obtain a porous body having a communication porosity of 49%. 1% by volume of sodium benzoate powder was not eluted and remained in the porous body. The porous body was allowed to stand in a beaker containing synthetic lubricating oil PAO (Sinfluid 801, manufactured by Nippon Steel Chemical Co., Ltd.) and impregnated in a vacuum chamber for 60 minutes. As a result, a resin oil retaining body containing 98% by volume with respect to a communication pore ratio of 49% and 48% by volume with respect to the entire resin oil retaining body was obtained.

参考実施例1
体積比 1:1 の超高分子量ポリエチレン粉末(三井化学(株)製ミペロンXM220)とペンタエリスリトール(融点 260℃。アルコール類)をミキサーにて 5 分間混合して混合粉末を得た。この混合粉末を用いて、直径φ 30×厚さt 5 mm のディスクを加熱圧縮成形法( 200℃×30 分)にて成形した。この成形体を 80℃の温水で超音波洗浄器にて 10 時間洗浄してペンタエリスリトールを溶出させた。その後 100℃で 8 時間乾燥し連通孔率 41 %の多孔体を得た。9 体積%のペンタエリスリトールが未溶出であり、多孔体に残存した。該多孔体を合成潤滑油PAO(シンフルード801、新日鉄化学製)を入れたビーカーに静置し、真空槽にて 60 分間含油した。この結果、連通孔率 41 %に対して、93 体積%、樹脂製保油体全体に対して 38 体積%含油された樹脂製保油体を得た。
Reference Example 1
Ultra-high molecular weight polyethylene powder (Miplon XM220 manufactured by Mitsui Chemicals, Inc.) and pentaerythritol (melting point 260 ° C., alcohols) in a volume ratio of 1: 1 were mixed for 5 minutes with a mixer to obtain a mixed powder. Using this mixed powder, a disk having a diameter of 30 × thickness t 5 mm was molded by a heat compression molding method (200 ° C. × 30 minutes). This molded product was washed with warm water at 80 ° C. for 10 hours with an ultrasonic cleaner to elute pentaerythritol. Thereafter, it was dried at 100 ° C. for 8 hours to obtain a porous body having a communication porosity of 41%. 9% by volume of pentaerythritol was not eluted and remained in the porous body. The porous body was allowed to stand in a beaker containing synthetic lubricating oil PAO (Sinfluid 801, manufactured by Nippon Steel Chemical Co., Ltd.) and impregnated in a vacuum chamber for 60 minutes. As a result, a resin oil retaining body containing 93% by volume with respect to a communication porosity of 41% and 38% by volume with respect to the entire resin oil retaining body was obtained.

参考実施例2
体積比 1:1 の超高分子量ポリエチレン粉末(三井化学(株)製ミペロンXM220)と塩化ナトリウム粉末(和光純薬(株)製試薬)をミキサーにて 5 分間混合して混合粉末を得た。この混合粉末を用いて、直径φ 30×厚さt 5 mm のディスクを加熱圧縮成形法( 200℃×30 分)にて成形した。この成形体を 80℃の温水で超音波洗浄器にて 10 時間洗浄して塩化ナトリウム粉末を溶出させた。その後 100℃で 8 時間乾燥し連通孔率 46 %の多孔体を得た。4 体積%の塩化ナトリウムが未溶出であり、多孔体に残存した。該多孔体を合成潤滑油PAO(シンフルード801、新日鉄化学製)を入れたビーカーに静置し、真空槽にて 60 分間含油した。この結果、連通孔率 46 %に対して、98 体積%、樹脂製保油体全体に対して 45 体積%含油された樹脂製保油体を得た。
Reference Example 2
Ultra-high molecular weight polyethylene powder (Miplon XM220 manufactured by Mitsui Chemicals, Inc.) with a volume ratio of 1: 1 and sodium chloride powder (reagent manufactured by Wako Pure Chemical Industries, Ltd.) were mixed for 5 minutes with a mixer to obtain a mixed powder. Using this mixed powder, a disk having a diameter of 30 × thickness t 5 mm was molded by a heat compression molding method (200 ° C. × 30 minutes). This molded body was washed with warm water at 80 ° C. for 10 hours with an ultrasonic cleaner to elute the sodium chloride powder. Thereafter, it was dried at 100 ° C. for 8 hours to obtain a porous body having a communication porosity of 46%. 4% by volume of sodium chloride was not eluted and remained in the porous body. The porous body was allowed to stand in a beaker containing synthetic lubricating oil PAO (Sinfluid 801, manufactured by Nippon Steel Chemical Co., Ltd.) and impregnated in a vacuum chamber for 60 minutes. As a result, a resin oil retaining body containing 98% by volume with respect to the communication hole ratio of 46% and 45% by volume with respect to the entire resin oil retaining body was obtained.

比較例1
超高分子量ポリエチレン粉末(三井化学(株)製ミペロンXM220)100 重量部に、グリース(昭和シェル石油社製アルバニア No.3) 35 重量部と、油(モービル石油社製DTEヘビーメディアム) 35 重量部とを配合し、150℃で焼成したものを切削加工にて、直径φ30×厚さt5 mm のディスクの試験片を得た。
Comparative Example 1
Ultra high molecular weight polyethylene powder (Miperon XM220 manufactured by Mitsui Chemicals) 100 parts by weight, grease (Showa Shell Sekiyu Albania No. 3) 35 parts by weight, oil (Mobil Sekiyu DTE Heavy Mediam) 35 parts by weight A test piece of a disk having a diameter of φ30 × thickness of t5 mm was obtained by cutting what was fired at 150 ° C.

なお、各実施例において、連通孔率は、樹脂成形体において相互に連続している気孔の総体積が樹脂成形体の体積に占める割合をいう。
具体的には、連通孔率は数1内の式(1)に示す方法で算出した。

Figure 0004206377
上記、数1において、各符号の意味を以下に示す。
V;洗浄前成形体の体積
ρ;洗浄前成形体の密度
W;洗浄前成形体の重量
1;樹脂粉末の体積
ρ1;樹脂粉末の密度
1;樹脂粉末の重量
2;気孔形成材の体積
ρ2;気孔形成材の密度
2;気孔形成材の重量
3;洗浄後の樹脂多孔質体の体積
3;洗浄後の樹脂多孔質体の重量
V'2;洗浄後に樹脂多孔質体に残存する気孔形成材の体積 In addition, in each Example, a communicating porosity means the ratio for which the total volume of the pores which are mutually continuous in a resin molding accounts to the volume of a resin molding.
Specifically, the communication porosity was calculated by the method shown in Equation (1) in Equation 1.
Figure 0004206377
In the above Equation 1, the meaning of each symbol is shown below.
V; volume ρ of molded body before cleaning; density W of molded body before cleaning; weight V 1 of molded body before cleaning; volume ρ 1 of resin powder; density W 1 of resin powder; weight V 2 of resin powder; Volume ρ 2 of material; density W 2 of pore forming material; weight V 3 of pore forming material; volume W 3 of resin porous body after washing; weight V ′ 2 of resin porous body after washing; resin after washing Volume of pore-forming material remaining in the porous body

錆試験
実施例および比較例で作製したディスクをSPCC鋼板( 40×40×t 2 )で挟み、JISK2246「さび止め油」に規定された湿潤試験方法( 49±1℃、相対温度 95 %以上)にて錆試験を行なった。192 時間(h)、384 時間(h)、576 時間(h)後の合わせ面の発錆状況を比較した。結果を表1に示す。
Rust test The disks produced in the examples and comparative examples are sandwiched between SPCC steel plates (40 × 40 × t 2), and the wet test method specified in JISK2246 “rust prevention oil” (49 ± 1 ° C, relative temperature 95% or more) A rust test was conducted. The rusting conditions of the mating surfaces after 192 hours (h), 384 hours (h), and 576 hours (h) were compared. The results are shown in Table 1.

油放出量試験
実施例および比較例で作製したディスクを、ろ紙で挟み、錘を載せることで加圧し、100 時間放置した後、ろ紙に移った油量を測定した。試験片の全体積に対する放出した油の割合を表1に示した。

Figure 0004206377
Oil release amount test The disks produced in the examples and comparative examples were sandwiched between filter papers, pressurized by placing weights and allowed to stand for 100 hours, and then the amount of oil transferred to the filter papers was measured. The ratio of the released oil to the total volume of the test piece is shown in Table 1.
Figure 0004206377

表1に示すように本発明による実施例1では、保油体として十分な吸油能力があることが確かめられた。また、錆試験において、実施例1では 576 時間後も錆が認められなかった。これは気孔形成材として用いた安息香酸ナトリウムが防錆剤として作用していると考えられる。
各実施例および参考実施例の含油多孔質体は、グリースや油を混合した比較例に比べ、油の放出性に優れるため潤滑性は高いといえる。ただし、本含油多孔質体が鉄鋼と接触するような用途に用いられる場合は、鉄鋼を錆びさせる気孔形成材である塩化ナトリウム(参考実施例2)は好ましくない。
As shown in Table 1, in Example 1 according to the present invention, it was confirmed that the oil retaining body has a sufficient oil absorbing ability. In the rust test, no rust was observed in Example 1 even after 576 hours. This is considered that the sodium benzoate used as a pore forming material is acting as a rust preventive agent.
The oil-containing porous bodies of each of the examples and the reference examples are superior in oil-releasing properties as compared to the comparative examples in which grease and oil are mixed, and thus can be said to have high lubricity. However, when this oil-containing porous body is used for applications where it comes into contact with steel, sodium chloride ( Reference Example 2 ), which is a pore-forming material that rusts steel, is not preferred.

本発明の樹脂製保油体は防錆性に優れるため、転がり軸受、滑り軸受の保持器など周囲に鉄鋼がある用途に好適に用いることができる。   Since the resin oil retaining body of the present invention is excellent in rust prevention, it can be suitably used for applications having steel around it, such as rolling bearings and sliding bearing cages.

Claims (8)

連通孔を有する樹脂製多孔体に油が含浸された樹脂製保油体であって、前記連通孔は、アルカリ性の化合物からなる気孔形成材が配合された樹脂を成形して成形体とした後、該気孔形成材を溶解し、かつ前記樹脂を溶解しない溶媒を用いて、前記成形体から前記気孔形成材を抽出して得られる連通孔であることを特徴とする樹脂製保油体。 A resin oil retaining body in which a resin porous body having communication holes is impregnated with oil, and the communication holes are formed by molding a resin in which a pore forming material made of an alkaline compound is blended to form a molded body A resin oil retaining body, which is a communication hole obtained by extracting the pore forming material from the molded body using a solvent that dissolves the pore forming material and does not dissolve the resin. 前記油が潤滑油であることを特徴とする請求項1記載の樹脂製保油体。   The resin oil retaining body according to claim 1, wherein the oil is a lubricating oil. 前記気孔形成材は、前記樹脂の成形温度より高い融点を有する物質であることを特徴とする請求項1または請求項2記載の樹脂製保油体。   The resin oil retaining body according to claim 1 or 2, wherein the pore forming material is a substance having a melting point higher than a molding temperature of the resin. 前記気孔形成材は、水溶性物質であることを特徴とする請求項1、請求項2、または請求項3記載の樹脂製保油体。   4. The resin oil retaining body according to claim 1, wherein the pore forming material is a water-soluble substance. 連通孔率が30%以上であることを特徴とする請求項1ないし請求項4のいずれか1項記載の樹脂製保油体。   The resin oil retaining body according to any one of claims 1 to 4, wherein the communication porosity is 30% or more. 前記アルカリ性の化合物は、有機アルカリ金属塩および有機アルカリ土類金属塩から選ばれた少なくとも1つの金属塩であることを特徴とする請求項1項記載の樹脂製保油体。   The resin oil retaining body according to claim 1, wherein the alkaline compound is at least one metal salt selected from an organic alkali metal salt and an organic alkaline earth metal salt. 前記アルカリ性の化合物は、安息香酸ナトリウム、酢酸ナトリウム、セバシン酸ナトリウム、三リン酸ナトリウム、ピロリン酸ナトリウムまたは炭酸カリウムから選ばれた少なくとも1つの化合物であることを特徴とする請求項記載の樹脂製保油体。 The alkaline compound, sodium benzoate, sodium acetate, sodium sebacate, sodium triphosphate, resin of claim 1, wherein the at least one compound selected from sodium or potassium carbonate pyrophosphate Oil retaining body. 樹脂にアルカリ性の化合物からなる気孔形成材を配合する工程と、前記気孔形成材を含む樹脂を成形して成形体とする工程と、前記気孔形成材を溶解し、かつ前記樹脂を溶解しない溶媒を用いて前記成形体から前記気孔形成材を抽出する工程と、得られた樹脂製多孔体に潤滑油を含浸する工程とを備えてなることを特徴とする樹脂製保油体の製造方法。 A step of blending a resin with a pore-forming material composed of an alkaline compound, a step of molding a resin containing the pore-forming material to form a molded body, and a solvent that dissolves the pore-forming material and does not dissolve the resin. A method for producing a resin oil retaining body, comprising: a step of extracting the pore forming material from the molded body, and a step of impregnating the obtained resin porous body with a lubricating oil.
JP2004379104A 2004-04-23 2004-12-28 Resin oil body and method for producing the same Expired - Fee Related JP4206377B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004379104A JP4206377B2 (en) 2004-04-28 2004-12-28 Resin oil body and method for producing the same
PCT/JP2005/007216 WO2005103128A1 (en) 2004-04-23 2005-04-14 Porous resin article and method for production thereof
CN2005800125631A CN1946783B (en) 2004-04-23 2005-04-14 Porous resin article and method for production thereof
US11/578,167 US7910198B2 (en) 2004-04-23 2005-04-14 Resinous porous article and method for production thereof
EP05730458.6A EP1746125B1 (en) 2004-04-23 2005-04-14 Porous resin article and method for production thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004132454 2004-04-28
JP2004379104A JP4206377B2 (en) 2004-04-28 2004-12-28 Resin oil body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005336455A JP2005336455A (en) 2005-12-08
JP4206377B2 true JP4206377B2 (en) 2009-01-07

Family

ID=35490363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004379104A Expired - Fee Related JP4206377B2 (en) 2004-04-23 2004-12-28 Resin oil body and method for producing the same

Country Status (1)

Country Link
JP (1) JP4206377B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4659415B2 (en) * 2004-09-08 2011-03-30 Ntn株式会社 Sliding member and resin coating composition
JP2007186621A (en) * 2006-01-13 2007-07-26 Ntn Corp Resin porous body
JP5376764B2 (en) * 2007-03-19 2013-12-25 フタムラ化学株式会社 Oil-absorbing continuous porous structure

Also Published As

Publication number Publication date
JP2005336455A (en) 2005-12-08

Similar Documents

Publication Publication Date Title
WO2005103128A1 (en) Porous resin article and method for production thereof
WO2005121288A1 (en) Sliding material and sliding bearing
WO2005121578A1 (en) Retainer for rolling bearing, and rolling bearing
JP4848121B2 (en) Sliding material
WO2004111476A1 (en) Sliding bearing
JP4541765B2 (en) Roller bearing cage and rolling bearing
JP5033311B2 (en) Resin oil body and method
JP4155981B2 (en) Resin porous body and method for producing the same
JP4206377B2 (en) Resin oil body and method for producing the same
JP2007016905A (en) Sliding base isolation device
JP2007186621A (en) Resin porous body
JP2006258158A (en) Lubricant supply construction
JP4851695B2 (en) Sliding material
JP2006125482A (en) Seal member and bearing using the same
JP2006009834A (en) Sliding bearing
JP2006028379A (en) Porous resin oil retainer
JP2006250262A (en) Sliding bearing for precision sliding-component
JP2007046752A (en) Dynamic pressure type bearing device
JP4478085B2 (en) Roller bearing cage and rolling bearing
JP6594009B2 (en) Oil-impregnated sliding member, oil-impregnated bearing, and method for producing oil-impregnated sliding member
JP2006063279A (en) In-liquid sliding material
JP4541769B2 (en) Roller bearing cage and rolling bearing
JP2006342938A (en) Rolling bearing cage and rolling bearing
JP4543742B2 (en) Solid lubricant and sliding member
JP2006123058A (en) Sliding member for machine tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071205

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20080228

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20080317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081020

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4206377

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees