JP2006125482A - Seal member and bearing using the same - Google Patents

Seal member and bearing using the same Download PDF

Info

Publication number
JP2006125482A
JP2006125482A JP2004313318A JP2004313318A JP2006125482A JP 2006125482 A JP2006125482 A JP 2006125482A JP 2004313318 A JP2004313318 A JP 2004313318A JP 2004313318 A JP2004313318 A JP 2004313318A JP 2006125482 A JP2006125482 A JP 2006125482A
Authority
JP
Japan
Prior art keywords
resin
resin composition
forming material
bearing
seal member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004313318A
Other languages
Japanese (ja)
Inventor
Hideyuki Tsutsui
英之 筒井
Masakazu Hirata
正和 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2004313318A priority Critical patent/JP2006125482A/en
Publication of JP2006125482A publication Critical patent/JP2006125482A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • F16C33/7816Details of the sealing or parts thereof, e.g. geometry, material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2202/00Solid materials defined by their properties
    • F16C2202/02Mechanical properties
    • F16C2202/10Porosity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/664Retaining the liquid in or near the bearing
    • F16C33/6648Retaining the liquid in or near the bearing in a porous or resinous body, e.g. a cage impregnated with the liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • F16C33/784Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted to a groove in the inner surface of the outer race and extending toward the inner race
    • F16C33/7843Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted to a groove in the inner surface of the outer race and extending toward the inner race with a single annular sealing disc
    • F16C33/7853Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted to a groove in the inner surface of the outer race and extending toward the inner race with a single annular sealing disc with one or more sealing lips to contact the inner race

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Sealing With Elastic Sealing Lips (AREA)
  • Sealing Of Bearings (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a seal member having improved sealing performance and sliding property in environment where no lubricating oil exists or at a high friction speed, and to provide a bearing using the same. <P>SOLUTION: The seal member to be used for a sliding seal portion has a surface communication hole rate of 30-90%. It comprises a resin porous body formed of a resin or a resin composition having the resin blended with a blend material, and impregnated with lubricating oil. The resin composition has a continuous working temperature of 100°C or higher, specified by UL-746B. The resin porous body has communication holes which are formed by molding the resin composition blended with a pore forming material into a molding and then dissolving the pore forming material and extracting the pore forming material from the molding using solvent which does not dissolve the resin composition. The bearing uses the seal material for a contact seal structure part. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、摺動しつつ塵埃の侵入を防止するようなシール部に使用されるシール部材および該シール部材を用いた軸受、特に転がり軸受に関する。   The present invention relates to a seal member used for a seal portion that prevents intrusion of dust while sliding, and a bearing using the seal member, in particular, a rolling bearing.

事務用機器、音響機器、情報機器、測定機器などの電気製品、または自動車用電装品などに用いられる転がり軸受は、外部から軌道面に塵埃などが侵入するのを防止すると共に、内部に充填された潤滑油やグリースが漏洩するのを防止する目的から、接触シール構造を有するのが一般的である。
この接触シール部材には、ゴムやポリアミドなどの軟質樹脂および含油フェルトが一般的に多用される。
シール部材としてアクリロニトリルブタジエンゴムにポリテトラフルオロエチレン樹脂粉末と熱硬化性樹脂粉末を配合することで、シール性を確保しつつ、従来のゴムシールより優れた摺動特性を示すことが知られている(特許文献1)。
転がり軸受のシール部材として羊毛フェルトなどの多孔体に超高分子量ポリエチレンと潤滑油を含浸させ焼成した材料を用いることにより、ゴムの対摩耗性不足や含油フェルトの周囲汚染性を改善する例が知られている(特許文献2)。
また、リニア軸受のシール部材として潤滑油を 30〜80%含油した発泡ウレタンゴムを用いることにより、軸受内部への塵埃の侵入を防止すると共に、軸受への潤滑油供給を果たし耐久性を向上させた例が知られている(特許文献3)。
Rolling bearings used in electrical equipment such as office equipment, acoustic equipment, information equipment, measuring equipment, or automotive electrical equipment prevent dust from entering the raceway from the outside and are filled inside. In order to prevent leakage of lubricating oil or grease, it is common to have a contact seal structure.
Generally, a soft resin such as rubber or polyamide and an oil-impregnated felt are frequently used for the contact seal member.
It is known that by blending acrylonitrile butadiene rubber with polytetrafluoroethylene resin powder and thermosetting resin powder as a seal member, it exhibits sliding properties superior to conventional rubber seals while ensuring sealing performance ( Patent Document 1).
An example of improving the wear resistance of rubber and surrounding contamination of oil-impregnated felt by using a material made by impregnating ultra-high molecular weight polyethylene and lubricating oil into a porous body such as wool felt as a seal member for rolling bearings is known. (Patent Document 2).
In addition, by using foamed urethane rubber containing 30 to 80% lubricating oil as a seal member for linear bearings, dust can be prevented from entering the bearings, while supplying lubricating oil to the bearings and improving durability. An example is known (Patent Document 3).

しかしながら、従来のゴムシールやポリアミドなどの樹脂シールは、潤滑油で潤滑する環境では優れたシール性と摺動特性を示すが、潤滑油が存在しない環境や、摩擦速度が速い場合、または振動が大きいなどの十分な油膜が形成できない環境では、シール部での摩耗が大きく長期間シール性を維持することはできないという問題がある。
また、特許文献1記載のシール部材は、潤滑油が存在しなくとも、配合されている固体潤滑材により自己潤滑性を発揮し、比較的長期間のシール性を維持することができるが、固体潤滑であるために摩擦速度が速い場合には摩耗の進行は加速するという問題がある。
また、特許文献2記載の超高分子量ポリエチレンおよび特許文献3記載の発泡ウレタンゴムは、共に高速回転や高温雰囲気などの過酷な条件で使用される軸受のシール部材としては、熱劣化や溶融摩耗が問題となることから採用できないという問題がある。
特開2001−17110号公報 特開2001−98289号公報 特開平11−351252号公報
However, conventional rubber seals and resin seals such as polyamide show excellent sealing performance and sliding characteristics in an environment lubricated with lubricating oil, but there is no lubricating oil, high friction speed, or large vibration. In such an environment where a sufficient oil film cannot be formed, there is a problem that the seal portion is greatly worn and the sealing performance cannot be maintained for a long time.
In addition, the sealing member described in Patent Document 1 can exhibit self-lubricating properties and maintain a relatively long-term sealing property even when no lubricating oil is present. Because of lubrication, there is a problem that the progress of wear is accelerated when the friction speed is high.
In addition, the ultrahigh molecular weight polyethylene described in Patent Document 2 and the urethane foam rubber described in Patent Document 3 are both subject to thermal degradation and melt wear as bearing seal members used under severe conditions such as high-speed rotation and high-temperature atmosphere. There is a problem that it cannot be adopted because it becomes a problem.
JP 2001-17110 A JP 2001-98289 A JP-A-11-351252

本発明はこのような問題に対処するためになされたものであり、潤滑油が存在しない環境や摩擦速度が速い場合でも、優れたシール性と摺動特性を発揮するシール部材を提供するとともに、高速回転や高温雰囲気などの過酷な条件で使用される軸受に最適なシール部材および該シール部材を用いた軸受を提供することを目的とする。   The present invention has been made to address such problems, and provides a seal member that exhibits excellent sealing properties and sliding characteristics even in environments where there is no lubricating oil and when the friction speed is high, It is an object of the present invention to provide a seal member optimum for a bearing used under severe conditions such as high-speed rotation and high-temperature atmosphere, and a bearing using the seal member.

本発明のシール部材は、摺動を伴なうシール部に使用するシール部材であって、該シール部材は 30%〜90%の表面連通孔率を有し、かつ樹脂または該樹脂に配合材を配合してなる樹脂組成物(以下、「樹脂または該樹脂に配合材を配合してなる樹脂組成物」を「樹脂組成物」と略称する。)を成形した樹脂多孔質体に潤滑油を含浸してなることを特徴とする。
上記樹脂組成物は、UL−746Bにて規定される連続使用温度が 100℃以上であることを特徴とする。
上記樹脂多孔質体は、気孔形成材が配合された上記樹脂組成物を成形して成形体とした後、該気孔形成材を溶解し、かつ上記樹脂組成物を溶解しない溶媒を用いて上記成形体から上記気孔形成材を抽出して得られる連通孔を有することを特徴とする。
ここで、UL−746Bにて規定される連続使用温度とは、プラスチックス材料の長期的物性評価の規格で、プラスチックス材料を 10 万時間、一定の温度で大気中で使用した場合、機械的特性などの初期の物性値が 50%に低下するときの温度をいう。すなわちプラスチックス材料の連続使用温度以下の温度でそのプラスチックス材料を使用すれば、使用時間が 10 万時間経過しても、初期の物性値の 50%を上回る物性値を維持することができることを表わす。
また、シール部材とは、ガスケットなどの静的なシールおよびパッキンなどの動的なシールに分類される密封装置(シール)のすべてを含む。本発明のシール部材は、特に、転がり軸受のシール部材に用いられる。
The seal member of the present invention is a seal member used for a seal part accompanied by sliding, the seal member having a surface communication porosity of 30% to 90%, and a resin or a compounded material in the resin Lubricating oil is applied to a resin porous body formed by molding a resin composition (hereinafter, “resin or a resin composition obtained by blending a compound with the resin”) is abbreviated as “resin composition”. It is characterized by being impregnated.
The resin composition is characterized in that the continuous use temperature specified in UL-746B is 100 ° C. or higher.
The resin porous body is molded by using the solvent that dissolves the pore forming material and does not dissolve the resin composition after the resin composition containing the pore forming material is molded into a molded body. It has the communicating hole obtained by extracting the said pore formation material from a body, It is characterized by the above-mentioned.
Here, the continuous use temperature specified in UL-746B is a standard for long-term physical property evaluation of plastics materials. When plastics materials are used in the atmosphere at a constant temperature for 100,000 hours, they are mechanical. This is the temperature at which the initial physical properties such as characteristics drop to 50%. In other words, if the plastics material is used at a temperature lower than the continuous use temperature of the plastics material, the physical property value exceeding 50% of the initial physical property value can be maintained even after a usage time of 100,000 hours. Represent.
The sealing member includes all sealing devices (seal) classified into a static seal such as a gasket and a dynamic seal such as a packing. The seal member of the present invention is particularly used for a seal member of a rolling bearing.

本発明の軸受は、摺動を伴なうとともに、潤滑剤の漏洩を防止するための接触シール構造部を有する軸受であって、上記接触シール構造部に用いられるシール部材が上記シール部材であることを特徴とする。
上記軸受が転がり軸受であることを特徴とする。
The bearing of the present invention is a bearing having a contact seal structure part for sliding and preventing leakage of the lubricant, and the seal member used for the contact seal structure part is the seal member. It is characterized by that.
The bearing is a rolling bearing.

本発明のシール部材は、30%〜90%の表面連通孔を有する樹脂多孔質体に潤滑油を含浸してなるので、潤滑油が存在しない環境および摩擦速度が速い場合でも、優れたシール性と摺動特性を発揮する。高速回転や高温雰囲気などの過酷な条件で使用される軸受にも好適に使用することができ、塵埃の侵入を防止しかつ軸受内の潤滑剤を外部に飛散させることもない。   Since the sealing member of the present invention is formed by impregnating a resin porous body having 30% to 90% surface communication holes with a lubricating oil, it has excellent sealing properties even in an environment where the lubricating oil is not present and when the friction speed is high. Exhibits sliding characteristics. It can also be suitably used for bearings used under severe conditions such as high-speed rotation and high-temperature atmosphere, prevents dust from entering, and prevents the lubricant in the bearings from being scattered outside.

本発明に係るシール部材を転がり軸受に適用した一例を図1に示す。図1はシール部材を用いた深溝玉軸受の断面図である。
深溝玉軸受1は、外周面に内輪転走面2aを有する内輪2と、内周面に外輪転走面3aを有する外輪3とが同心に配置され、内輪転走面2aと外輪転走面3aとの間に複数個の転動体4が配置される。この複数個の転動体4を保持する保持器5および外輪3等に固定されるシール部材6が内輪2および外輪3の軸方向両端開口部8a、8bにそれぞれ設けられている。少なくとも転動体4の周囲にグリース7が封入される。
深溝玉軸受1は、内輪2と、外輪3と、シール部材6と、グリース7とを備える接触シール構造部を有する。シール部材6は連通孔を有する樹脂多孔質体であり、内輪2と摺動すると共に、封入されたグリース7が内輪2の軸方向両端開口部8a、8bから軸受外に漏れないようにシールする。
An example in which the seal member according to the present invention is applied to a rolling bearing is shown in FIG. FIG. 1 is a cross-sectional view of a deep groove ball bearing using a seal member.
In the deep groove ball bearing 1, an inner ring 2 having an inner ring rolling surface 2a on an outer peripheral surface and an outer ring 3 having an outer ring rolling surface 3a on an inner peripheral surface are arranged concentrically, and the inner ring rolling surface 2a and the outer ring rolling surface are arranged. Several rolling elements 4 are arrange | positioned between 3a. Sealers 6 that are fixed to the cage 5, the outer ring 3, and the like that hold the plurality of rolling elements 4 are provided in the axially opposite end openings 8a, 8b of the inner ring 2 and the outer ring 3, respectively. Grease 7 is sealed at least around the rolling element 4.
The deep groove ball bearing 1 has a contact seal structure including an inner ring 2, an outer ring 3, a seal member 6, and grease 7. The seal member 6 is a resin porous body having a communication hole, and slides with the inner ring 2 and seals the sealed grease 7 so as not to leak out of the bearing from the axial end openings 8a and 8b of the inner ring 2. .

本発明のシール部材は、連通孔を有する樹脂多孔質体であるので、該樹脂多孔質体が、連通孔を介して潤滑油の含浸と、シール面への潤滑油の供給とを可能にするため、シール部材表面の潤滑性を長期間保持できる。
潤滑油は、シール部材に練り込まれるのではなく、上記連通孔に含浸されることにより、該連通孔を介してシール面への該潤滑油の流動性が確保されるため、シール面で潤滑油が消費されると、含浸された潤滑油が連通孔を経て常にシール面に供給されるので、含浸されている潤滑油全量の 60 %以上が潤滑油として利用可能となる。
なお、潤滑油として利用可能とは、該潤滑油が上記樹脂多孔質体表面に滲み出し可能であり、各用途および使用条件においてシール面へ潤滑性を付与できることをいう。
Since the sealing member of the present invention is a resin porous body having communication holes, the resin porous body enables impregnation of the lubricating oil and supply of the lubricating oil to the sealing surface through the communication holes. Therefore, the lubricity of the seal member surface can be maintained for a long time.
Lubricating oil is not kneaded into the sealing member, but is impregnated in the communication hole, so that fluidity of the lubricating oil to the sealing surface is ensured through the communication hole. When the oil is consumed, the impregnated lubricating oil is always supplied to the sealing surface through the communication hole, so that 60% or more of the total amount of the impregnated lubricating oil can be used as the lubricating oil.
In addition, that it can utilize as lubricating oil means that this lubricating oil can ooze out to the said resin porous body surface, and can provide lubricity to a sealing surface in each use and use conditions.

内部に気孔を有する多孔質体材料の連通孔率について考える場合、多孔質体材料が1個の球体が集まった複数個の球体の集合体と、個々の球体間の間隙に存在する空間である気孔とからなると考えると、球体を点接触により最も密に充填する形態として面心立方格子、六方最密充填があり、それらの充填率は、(球の体積÷外接立方体の体積)÷(正三角形の高さ÷底辺)÷(正四面体の高さ÷一辺)で計算され、共に 74%である。(100−充填率)として定義される連通孔率としては 26%になる。
以上の計算は、同一サイズの球体を考えた場合であるが、複数のサイズの球体を充填した場合は、六方最密充填よりも充填率は大きくなり、連通孔率は小さくなる。
また、粉末状の球体樹脂組成物粒子を圧縮成形した後に焼結する場合、点接触はあり得ず、球体樹脂組成物粒子は変形して面接触する。このため、六方最密充填よりも充填率はより大きくなり、連通孔率はより小さくなる。このため従来の焼結樹脂組成物成形体の連通孔率は 20%程度が限界となっている。
When considering the porosity of the porous material having pores inside, the porous material is an aggregate of a plurality of spheres in which one sphere is gathered, and a space existing in the gap between the individual spheres. Considering that it consists of pores, face-centered cubic lattice and hexagonal close-packed packing are the most densely packed spheres by point contact, and their filling rate is (volume of sphere ÷ volume of circumscribed cube) ÷ (positive Calculated by the height of the triangle divided by the base) divided by the height of the regular tetrahedron divided by one side, both are 74%. The communication porosity defined as (100-filling rate) is 26%.
The above calculation is a case where spheres of the same size are considered. However, when spheres of a plurality of sizes are filled, the filling rate becomes larger than the hexagonal close-packed filling, and the communication porosity becomes smaller.
Further, when the powdered spherical resin composition particles are sintered after compression molding, there is no point contact, and the spherical resin composition particles are deformed and brought into surface contact. For this reason, a filling rate becomes larger than hexagonal close-packed filling, and a communicating porosity becomes smaller. For this reason, the communication pore ratio of the conventional sintered resin composition molded body is limited to about 20%.

本発明における連通孔率は、樹脂組成物成形体において相互に連続している気孔の総体積が樹脂組成物成形体の体積に占める割合をいう。
具体的には、連通孔率は数1内の式(1)に示す方法で算出した。

Figure 2006125482
上記、数1において、各符号の意味を以下に示す。
V;洗浄前成形体の体積
ρ;洗浄前成形体の密度
W;洗浄前成形体の重量
1;樹脂組成物の体積
ρ1;樹脂組成物の密度
1;樹脂組成物の重量
2;気孔形成材の体積
ρ2;気孔形成材の密度
2;気孔形成材の重量
3;洗浄後の樹脂多孔質体の体積
3;洗浄後の樹脂多孔質体の重量
V'2;洗浄後に樹脂多孔質体に残存する気孔形成材の体積 The communication pore ratio in the present invention refers to the ratio of the total volume of pores continuous with each other in the resin composition molded body to the volume of the resin composition molded body.
Specifically, the communication porosity was calculated by the method shown in Equation (1) in Equation 1.
Figure 2006125482
In the above Equation 1, the meaning of each symbol is shown below.
V; Volume ρ of molded body before cleaning; Density W of molded body before cleaning; Weight V 1 of molded body before cleaning; Volume ρ 1 of resin composition; Density W 1 of resin composition; Weight V 2 of resin composition. ; Volume of pore forming material ρ 2 ; Density of pore forming material
W 2 ; Weight of pore forming material V 3 ; Volume of resin porous body after washing W 3 ; Weight of resin porous body after washing V ′ 2 ; Volume of pore forming material remaining in resin porous body after washing

本発明においては、以下に述べる製造方法により、好ましくは 30%〜90%の、より好ましくは 40%〜70%の連通孔率を有する樹脂多孔質体が得られる。30%未満では油潤滑による特徴的な優れた摺動特性を示すことができない。 90 %をこえると所望の機械的強度が得られない。
本発明において樹脂組成物に用いる樹脂としては、熱可塑性樹脂、熱硬化性樹脂、エラストマーまたはゴムなどの樹脂粉末やペレットを使用できる。樹脂粉末、ペレットの粒径や形状は、溶融成形する場合には、溶融時に気孔形成材と混練されるので、特に限定されるものではない。ドライブレンドしてそのまま圧縮成形する場合には 1〜500 μmのものが好ましい。
熱可塑性樹脂または熱硬化性樹脂としては、例えば、低密度ポリエチレン、高密度ポリエチレン、超高分子量ポリエチレンなどのポリエチレン樹脂、変性ポリエチレン樹脂、水架橋ポリオレフィン樹脂、ポリアミド樹脂、芳香族ポリアミド樹脂、ポリスチレン樹脂、ポリプロピレン樹脂、シリコーン樹脂、ウレタン樹脂、ポリテトラフルオロエチレン樹脂、クロロトリフルオロエチレン樹脂、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体樹脂、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体樹脂、フッ化ビニリデン樹脂、エチレン・テトラフルオロエチレン共重合体樹脂、ポリアセタール樹脂、ポリエチレンテレフタラート樹脂、ポリブチレンテレフタラート樹脂、ポリフェニレンエーテル樹脂、ポリカーボネート樹脂、脂肪族ポリケトン樹脂、ポリビニルピロリドン樹脂、ポリオキサゾリン樹脂、ポリフェニレンサルフィド樹脂、ポリエーテルサルフォン樹脂、ポリエーテルイミド樹脂、ポリアミドイミド樹脂、ポリエーテルエーテルケトン樹脂、熱可塑性ポリイミド樹脂、熱硬化性ポリイミド樹脂、エポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂などを例示できる。また、上記合成樹脂から選ばれた2種以上の材料の混合物、すなわちポリマーアロイなどを例示できる。
In the present invention, a resin porous body having a communicating porosity of preferably 30% to 90%, more preferably 40% to 70% is obtained by the production method described below. If it is less than 30%, the characteristic excellent sliding characteristics by oil lubrication cannot be shown. If it exceeds 90%, the desired mechanical strength cannot be obtained.
As the resin used for the resin composition in the present invention, resin powder and pellets such as thermoplastic resin, thermosetting resin, elastomer or rubber can be used. The particle size and shape of the resin powder and pellets are not particularly limited when melt molding because they are kneaded with the pore forming material at the time of melting. In the case of dry blending and compression molding as it is, those of 1 to 500 μm are preferable.
Examples of the thermoplastic resin or thermosetting resin include polyethylene resins such as low density polyethylene, high density polyethylene, and ultrahigh molecular weight polyethylene, modified polyethylene resins, water-crosslinked polyolefin resins, polyamide resins, aromatic polyamide resins, polystyrene resins, Polypropylene resin, silicone resin, urethane resin, polytetrafluoroethylene resin, chlorotrifluoroethylene resin, tetrafluoroethylene / hexafluoropropylene copolymer resin, tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer resin, vinylidene fluoride resin , Ethylene / tetrafluoroethylene copolymer resin, polyacetal resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polyphenylene ether resin, Recarbonate resin, aliphatic polyketone resin, polyvinylpyrrolidone resin, polyoxazoline resin, polyphenylene sulfide resin, polyethersulfone resin, polyetherimide resin, polyamideimide resin, polyetheretherketone resin, thermoplastic polyimide resin, thermosetting Examples thereof include a functional polyimide resin, an epoxy resin, a phenol resin, an unsaturated polyester resin, and a vinyl ester resin. Moreover, the mixture of 2 or more types of materials chosen from the said synthetic resin, ie, a polymer alloy, etc. can be illustrated.

エラストマーまたはゴムとしては、例えば、アクリロニトリルブタジエンゴム、イソプレンゴム、スチレンゴム、ブタジエンゴム、ニトリルゴム、クロロプレンゴム、ブチルゴム、アクリルゴム、シリコーンゴム、フッ素ゴム、エチレンプロピレンゴム、クロロスルフォン化ポリエチレンゴム、塩素化ポリエチレンゴム、エピクロルヒドリンゴム等の加硫ゴム類;ポリウレタンエラストマー、ポリエステルエラストマー、ポリアミドエラストマー、ポリブタジエン系エラストマー、軟質ナイロン系エラストマー等の熱可塑性エラストマー類が例示できる。   Examples of the elastomer or rubber include acrylonitrile butadiene rubber, isoprene rubber, styrene rubber, butadiene rubber, nitrile rubber, chloroprene rubber, butyl rubber, acrylic rubber, silicone rubber, fluorine rubber, ethylene propylene rubber, chlorosulfonated polyethylene rubber, chlorinated Examples thereof include vulcanized rubbers such as polyethylene rubber and epichlorohydrin rubber; and thermoplastic elastomers such as polyurethane elastomer, polyester elastomer, polyamide elastomer, polybutadiene elastomer, and soft nylon elastomer.

本発明のシール部材に用いる樹脂組成物は、樹脂に配合材を配合してなり、UL−746Bにて規定される連続使用温度が 100℃以上である樹脂組成物である。
本発明のシール部材は、連続使用温度が 100℃以上の樹脂組成物で作製された 30%〜90%の連通孔率を有する樹脂多孔質体に潤滑油を含浸させたシール部材とすることで、高速回転や高温雰囲気などの過酷な条件で使用される軸受のシール部材としても優れたシール性と高い耐摩耗性を発揮する。
The resin composition used for the seal member of the present invention is a resin composition in which a compounding material is blended with a resin, and the continuous use temperature defined by UL-746B is 100 ° C. or higher.
The sealing member of the present invention is a sealing member obtained by impregnating a resin porous body having a continuous porosity of 30% to 90% made of a resin composition having a continuous use temperature of 100 ° C. or higher with a lubricating oil. As a seal member for bearings used under severe conditions such as high-speed rotation and high-temperature atmosphere, it exhibits excellent sealing performance and high wear resistance.

本発明において連続使用温度が 100℃以上の樹脂組成物が得られる樹脂としては、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルエーテルケトン樹脂、ポリテトラフルオロエチレン樹脂、ポリフェニレンサルファイド樹脂、ポリアミド66樹脂、ポリアミド46樹脂、ポリアミド12樹脂、ポリアミド6T樹脂、ポリアミド9T樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンテレフタレート樹脂、ポリエーテルスルフォ樹脂ン、ポリカーボネート樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、エポキシ樹脂などが例示できる。   In the present invention, the resin from which the resin composition having a continuous use temperature of 100 ° C. or more is obtained includes polyimide resin, polyamideimide resin, polyether ether ketone resin, polytetrafluoroethylene resin, polyphenylene sulfide resin, polyamide 66 resin, polyamide 46. Resin, polyamide 12 resin, polyamide 6T resin, polyamide 9T resin, polybutylene terephthalate resin, polyethylene terephthalate resin, polyether sulfone resin, polycarbonate resin, phenol resin, unsaturated polyester resin, vinyl ester resin, epoxy resin, etc. it can.

本発明において樹脂組成物に使用することができる樹脂は、上記樹脂に限定されるものではなく、連続使用温度が 100℃未満の樹脂であっても、配合材を配合することにより、連続使用温度が 100℃以上となる樹脂組成物となる樹脂であれば使用することができる。
連続使用温度を向上させることができる配合材としては、炭素繊維(CF)やガラス繊維などの繊維状配合材、球状シリカや球状炭素などの球状配合材、マイカやタルクなどの鱗状配合材、チタン酸カリウムウィスカなどの微小繊維配合材が挙げられる。これらは単独で配合することも、組み合せて配合することもできる。
本発明において使用できる配合材の添加量は、樹脂組成物、気孔形成材を含めた全量に対して、1〜60 体積%が好ましく、望ましくは 3〜30 体積%である。1 体積%未満では連続使用温度を向上させる効果はなく、60 体積%をこえると機械的強度が低下する。また、リン酸カルシウム、硫酸カルシウムなどの摺動補強材も配合できる。
The resin that can be used in the resin composition in the present invention is not limited to the above-mentioned resin. Even if the continuous use temperature is less than 100 ° C., the continuous use temperature can be obtained by blending the compounding material. Any resin can be used as long as it becomes a resin composition having a temperature of 100 ° C. or higher.
Compounding materials that can improve the continuous use temperature include fibrous compounding materials such as carbon fiber (CF) and glass fiber, spherical compounding materials such as spherical silica and spherical carbon, scaly compounding materials such as mica and talc, titanium Examples thereof include fine fiber compounding materials such as potassium acid whisker. These can be blended alone or in combination.
The addition amount of the compounding material that can be used in the present invention is preferably 1 to 60% by volume, desirably 3 to 30% by volume, based on the total amount including the resin composition and the pore-forming material. If it is less than 1% by volume, there is no effect of improving the continuous use temperature, and if it exceeds 60% by volume, the mechanical strength decreases. In addition, sliding reinforcing materials such as calcium phosphate and calcium sulfate can be blended.

本発明に使用できる樹脂多孔質体は、気孔形成材が配合された樹脂組成物を成形して成形体とした後、該気孔形成材を溶解し、かつ上記樹脂組成物を溶解しない溶媒を用いて成形体から気孔形成材を抽出して得られる。例えば、成形温度X℃の樹脂組成物Aに、このX℃より高い融点Y℃を有する水溶性粉末Bを配合して、X℃で成形して成形体とした後、該成形体より水溶性粉末Bを水で抽出して多孔質体が得られる。また、樹脂組成物Aの成形性を向上させる目的で、常温で固体である気孔形成材を樹脂組成物Aに分散させ、該気孔形成材が溶融する温度で成形して成形体を作製し、該気孔形成材を溶解する溶媒で洗浄することにより気孔を形成して樹脂多孔質体を得ることもできる。
なお、樹脂多孔質体の製造方法は、これに限られるものでなく、30%〜90%の連通孔率となる任意の方法を採用できる。
The resin porous body that can be used in the present invention uses a solvent that dissolves the pore-forming material and does not dissolve the resin composition after molding the resin composition containing the pore-forming material into a molded body. The pore-forming material is extracted from the molded body. For example, a water-soluble powder B having a melting point Y ° C. higher than X ° C. is blended with the resin composition A having a molding temperature X ° C., and molded at X ° C. to form a molded body, and then water-soluble than the molded body. Powder B is extracted with water to obtain a porous body. Further, for the purpose of improving the moldability of the resin composition A, a pore-forming material that is solid at normal temperature is dispersed in the resin composition A, and molded at a temperature at which the pore-forming material melts to produce a molded body, A porous resin body can be obtained by forming pores by washing with a solvent that dissolves the pore-forming material.
In addition, the manufacturing method of a resin porous body is not restricted to this, The arbitrary methods used as the communicating porosity of 30%-90% are employable.

本発明において気孔形成材は、樹脂組成物の成形温度よりも高い融点の物質を使用するが、これに限定されるものではなく、樹脂組成物の成形温度よりも高い融点の物質と、樹脂組成物の成形温度よりも低い融点の物質とを併用することもできる。
気孔形成材としては、樹脂組成物に配合されて成形体とされた後、その樹脂組成物を溶解しない溶媒を用いて成形体から溶解されて抽出できる物質であれば使用できる。
気孔形成材は、無機塩化合物、有機塩化合物、またはこれらの混合物であることが好ましく、特に洗浄抽出工程が容易となる水溶性物質であることが好ましい。また、アルカリ性物質、好ましくは防錆剤として利用できる弱アルカリ塩を使用できる。弱アルカリ塩としては、有機アルカリ金属塩、有機アルカリ土類金属塩、無機アルカリ金属塩、無機アルカリ土類金属塩などが挙げられる。未抽出分が脱落したときも、比較的軟らかく、転動面やすべり面を損傷し難いことから、有機アルカリ金属塩、有機アルカリ土類金属塩を用いることが好ましい。なお、これらの金属塩は1種または2種以上混合して用いてもよい。また、洗浄用溶媒として安価な水を使用することができ、気孔形成時における廃液処理などが容易となることから水溶性の弱アルカリ塩を使用することが好ましい。
本発明に好適に用いることができる水溶性有機アルカリ金属塩としては、安息香酸ナトリウム(融点 430℃)、酢酸ナトリウム(融点 320℃)またはセバシン酸ナトリウム(融点 340℃)、コハク酸ナトリウム、ステアリン酸ナトリウムなどが挙げられる。融点が高く、多種の樹脂組成物に対応でき、かつ水溶性が高いという理由から、安息香酸ナトリウム、酢酸ナトリウムまたはセバシン酸ナトリウムが特に好ましい。
無機アルカリ金属塩としては、例えば、炭酸カリウム、炭酸ナトリウム、珪酸ナトリウム、三リン酸ナトリウム、ピロリン酸ナトリウム、モリブデン酸ナトリウム、モリブデン酸カリウム、タングステン酸ナトリウムなどが挙げられる。
In the present invention, the pore-forming material uses a substance having a melting point higher than the molding temperature of the resin composition, but is not limited thereto, and a substance having a melting point higher than the molding temperature of the resin composition and the resin composition A substance having a melting point lower than the molding temperature of the product can be used in combination.
As the pore-forming material, any substance that can be extracted from a molded body by using a solvent that does not dissolve the resin composition after being blended into the resin composition to form a molded body can be used.
The pore-forming material is preferably an inorganic salt compound, an organic salt compound, or a mixture thereof, and particularly preferably a water-soluble substance that facilitates the washing and extraction process. Further, an alkaline substance, preferably a weak alkali salt that can be used as a rust preventive agent can be used. Examples of the weak alkali salt include organic alkali metal salts, organic alkaline earth metal salts, inorganic alkali metal salts, inorganic alkaline earth metal salts, and the like. It is preferable to use an organic alkali metal salt or an organic alkaline earth metal salt because even when the unextracted component falls off, it is relatively soft and hardly damages the rolling surface and the sliding surface. In addition, you may use these metal salts 1 type or in mixture of 2 or more types. In addition, it is preferable to use a water-soluble weak alkali salt because inexpensive water can be used as a cleaning solvent, and waste liquid treatment at the time of pore formation is facilitated.
Water-soluble organic alkali metal salts that can be suitably used in the present invention include sodium benzoate (melting point 430 ° C.), sodium acetate (melting point 320 ° C.) or sodium sebacate (melting point 340 ° C.), sodium succinate, stearic acid Sodium etc. are mentioned. Sodium benzoate, sodium acetate, or sodium sebacate is particularly preferred because of its high melting point, compatibility with various resin compositions, and high water solubility.
Examples of the inorganic alkali metal salt include potassium carbonate, sodium carbonate, sodium silicate, sodium triphosphate, sodium pyrophosphate, sodium molybdate, potassium molybdate, and sodium tungstate.

本発明において気孔形成材の割合は、樹脂組成物および気孔形成材を含めた全量に対して、30 体積%〜90 体積%、好ましくは 40 体積%〜70 体積%(段落番号[0012]の連通孔率 40%〜70% との整合性を採り 40 体積%〜70 体積%としました。なお貴社出願申請番号2004−838も 40 体積%〜70 体積%となっています。)とする。30 体積%未満では樹脂多孔質体の気孔が連続孔になり難く、90 体積%をこえると所望の機械的強度が得られない。   In the present invention, the ratio of the pore-forming material is 30% by volume to 90% by volume, preferably 40% by volume to 70% by volume with respect to the total amount including the resin composition and the pore-forming material. The consistency with the porosity of 40% to 70% was adopted and the volume was set to 40 vol% to 70 vol%, and your application number 2004-838 was also 40 vol% to 70 vol%. If it is less than 30% by volume, the pores of the resin porous body are difficult to become continuous pores, and if it exceeds 90% by volume, the desired mechanical strength cannot be obtained.

本発明において樹脂組成物と気孔形成材の混合法は特に限定されるものではなくドライブレンド、溶融混練など樹脂組成物の混合に一般に使用する混練法が適用できる。
また、気孔形成材を液体溶媒中に溶解させて透明溶液とした後、この溶液に樹脂組成物粉末を分散混合させて、その後、この溶媒を除去する方法を用いることができる。
分散混合させる方法としては、液中混合できる方法であれば特に限定されるものではなく、ボールミル、超音波分散機、ホモジナイザー、ジューサーミキサー、ヘンシェルミキサーなどが例示できる。また、分散液の分離を抑えるために少量の界面活性剤を添加することも有効である。なお、混合時においては、混合により気孔形成材が完全に溶解するよう溶媒量を確保する。
また、溶媒を除去する方法としては、加熱蒸発、真空蒸発、窒素ガスによるバブリング、透析、凍結乾燥などの方法を用いることができる。手法が容易で、設備が安価であることから加熱蒸発により液体溶媒の除去を行なうことが好ましい。
樹脂組成物に気孔成形材を配合した混合物の成形に関しては、圧縮成形、射出成形、押し出し成形、ブロー成形、真空成形、トランスファ成形などの任意の成形方法を採用できる。また成形前に作業性を向上させるため、ペレットやプリプレグなどに加工してもよい。
In the present invention, the mixing method of the resin composition and the pore forming material is not particularly limited, and a kneading method generally used for mixing the resin composition such as dry blending and melt kneading can be applied.
In addition, it is possible to use a method in which the pore-forming material is dissolved in a liquid solvent to form a transparent solution, and then the resin composition powder is dispersed and mixed in this solution, and then the solvent is removed.
The method of dispersing and mixing is not particularly limited as long as it can be mixed in a liquid, and examples thereof include a ball mill, an ultrasonic disperser, a homogenizer, a juicer mixer, and a Henschel mixer. It is also effective to add a small amount of a surfactant in order to suppress separation of the dispersion. At the time of mixing, the amount of solvent is secured so that the pore forming material is completely dissolved by mixing.
As a method for removing the solvent, methods such as heat evaporation, vacuum evaporation, bubbling with nitrogen gas, dialysis, and freeze-drying can be used. Since the method is easy and the equipment is inexpensive, it is preferable to remove the liquid solvent by heat evaporation.
Regarding molding of a mixture in which a pore molding material is blended with a resin composition, any molding method such as compression molding, injection molding, extrusion molding, blow molding, vacuum molding, transfer molding or the like can be adopted. Moreover, in order to improve workability | operativity before shaping | molding, you may process into a pellet, a prepreg, etc.

得られた成形体からの気孔形成材の抽出は、上記気孔形成材を溶解し、かつ上記樹脂組成物を溶解しない溶媒で成形体を洗浄することにより行なう。
該溶媒としては、例えば、水、および水と相溶しうる溶媒としてアルコール系、エステル系、ケトン系溶媒などを用いることができる。これらの中で、樹脂組成物および気孔形成材の種類によって上記条件に従い適宜選択される。また、これらの溶媒は1種または2種以上を混合し使用してもよい。廃液処理などが容易、安価などの利点から水を用いることが好ましい。
該抽出処理を行なうことにより、気孔形成材が充填されていた部分が溶解され、該溶解部分に気孔が形成された樹脂多孔質体が得られる。
Extraction of the pore-forming material from the obtained molded body is carried out by washing the molded body with a solvent that dissolves the pore-forming material and does not dissolve the resin composition.
As the solvent, for example, water and alcohol solvents, ester solvents, ketone solvents, and the like can be used as solvents compatible with water. Among these, the resin composition and the pore forming material are appropriately selected according to the above conditions. These solvents may be used alone or in combination of two or more. It is preferable to use water because of its advantages such as easy waste liquid treatment and low cost.
By performing the extraction treatment, the portion filled with the pore forming material is dissolved, and a porous resin body having pores formed in the dissolved portion is obtained.

実施例1:
体積比 50 : 50 で超高分子ポリエチレン樹脂粉末(三井化学(株)製ミペロンXM220)と気孔形成材である安息香酸ナトリウム粉末(和光純薬(株)製試薬)とをミキサーにて 5 分間混合した後、加熱圧縮成形( 360℃×30 分)し、切削加工にて所定の試験片を得た。その後試験片を 80℃の温水で超音波洗浄器にて洗浄し、気孔形成材を溶出させ、乾燥し、連通孔率 48%の樹脂多孔質体を得た。これに潤滑油(タービン油、ISO VG68)を真空含浸させて、樹脂多孔質体試験片を得た。含油率は樹脂多孔質体試験片の全体積に対し 45%である。
Example 1:
Mixing ultra high molecular weight polyethylene resin powder (Miperon XM220 manufactured by Mitsui Chemicals, Inc.) and sodium benzoate powder (reagent manufactured by Wako Pure Chemical Industries, Ltd.), which is a pore forming material, in a mixer at a volume ratio of 50:50 for 5 minutes. Then, heat compression molding (360 ° C. × 30 minutes) was performed, and a predetermined test piece was obtained by cutting. Thereafter, the test piece was washed with warm water at 80 ° C. with an ultrasonic cleaner to elute the pore-forming material and dried to obtain a porous resin body having a communication porosity of 48%. This was impregnated with a lubricating oil (turbine oil, ISO VG68) in vacuum to obtain a resin porous body test piece. The oil content is 45% of the total volume of the porous resin specimen.

実施例2:
体積比 50 : 50 でPEEK樹脂粉末(ビクトレックス社製150PF)、気孔形成材である安息香酸ナトリウム粉末(和光純薬(株)製試薬)をミキサーにて 5 分間混合した後、加熱圧縮成形( 360℃×30 分)し、切削加工にて所定の試験片を得た。その後試験片を 80℃の温水で超音波洗浄器にて洗浄し、気孔形成材を溶出させ、乾燥し、連通孔率 48%の樹脂多孔質体を得た。これに潤滑油(タービン油、ISO VG68)を真空含浸させて、樹脂多孔質体試験片を得た。含油率は樹脂多孔質体試験片の全体積に対し 45%である。
Example 2:
After mixing PEEK resin powder (150 PF manufactured by Victrex) and sodium benzoate powder (reagent manufactured by Wako Pure Chemical Industries, Ltd.), which is a pore-forming material, in a mixer at a volume ratio of 50:50 for 5 minutes, heat compression molding ( 360 ° C. × 30 minutes), and a predetermined test piece was obtained by cutting. Thereafter, the test piece was washed with warm water at 80 ° C. with an ultrasonic cleaner to elute the pore-forming material and dried to obtain a porous resin body having a communication porosity of 48%. This was impregnated with a lubricating oil (turbine oil, ISO VG68) in vacuum to obtain a resin porous body test piece. The oil content is 45% of the total volume of the porous resin specimen.

実施例3:
体積比 40 : 10 : 50 でPEEK樹脂粉末(ビクトレックス社製150PF)、炭素繊維(東レ(株)製MLD100)、気孔形成材である安息香酸ナトリウム粉末(和光純薬(株)製試薬)をミキサーにて 5 分間混合した後、加熱圧縮成形( 360℃×30 分)し、切削加工にて所定の試験片を得た。その後試験片を 80℃の温水で超音波洗浄器にて洗浄し、気孔形成材を溶出させ、乾燥し、連通孔率 48%の樹脂多孔質体を得た。これに潤滑油(タービン油、ISO VG68)を真空含浸させて、樹脂多孔質体試験片を得た。含油率は樹脂多孔質体試験片の全体積に対し 45%である。
Example 3:
In a volume ratio of 40:10:50, PEEK resin powder (150 PF manufactured by Victrex), carbon fiber (MLD100 manufactured by Toray Industries, Inc.), sodium benzoate powder (reagent manufactured by Wako Pure Chemical Industries, Ltd.) which is a pore forming material After mixing for 5 minutes with a mixer, heat compression molding (360 ° C. × 30 minutes) was performed, and a predetermined test piece was obtained by cutting. Thereafter, the test piece was washed with warm water at 80 ° C. with an ultrasonic cleaner to elute the pore-forming material and dried to obtain a porous resin body having a communication porosity of 48%. This was impregnated with a lubricating oil (turbine oil, ISO VG68) in vacuum to obtain a resin porous body test piece. The oil content is 45% of the total volume of the porous resin specimen.

比較例1:
アクリロニトリルブタジエンゴムのシート(厚み 2 mm )をパンチ抜き加工にて所定の形状の樹脂成形体試験片を得た。
Comparative Example 1:
A sheet of acrylonitrile butadiene rubber (thickness 2 mm) was punched to obtain a resin molded body test piece having a predetermined shape.

比較例2:
ロール間隔 5〜10 mm に調整したロール混合機を用いて、アクリロニトリルブタジエンゴムと適度な配合量の基礎添加剤(無機充填剤、老化防止剤、カーボンイオウ加硫促進剤)を混合し、これらの混合物 100 重量部に対し、熱可塑性樹脂粉末(カネボウ(株)製ベルパールR600)を 30 重量部、ポリテトラフルオロエチレン樹脂粉末(喜多村(株)製KT300M)を 50 重量部混合した、その後ロール間隔を 1 mm に調整して混合(薄通し)しコンパウンドを得た。また得られたコンパウンドを 170℃で加熱圧縮成形し、厚み 2 mm のシートとした後、パンチ抜き加工にて所定の形状の樹脂成形体試験片を得た。
比較例3:
羊毛フェルトをパンチ抜き加工にて所定の形状とし、潤滑油(タービン油、ISO VG68)を含浸させ、羊毛フェルト試験片を得た。
Comparative Example 2:
Using a roll mixer adjusted to a roll interval of 5 to 10 mm, mix acrylonitrile butadiene rubber and a basic additive (inorganic filler, anti-aging agent, carbon sulfur vulcanization accelerator) in an appropriate amount. 30 parts by weight of thermoplastic resin powder (Bellepar R600 manufactured by Kanebo Co., Ltd.) and 50 parts by weight of polytetrafluoroethylene resin powder (KT300M manufactured by Kitamura Co., Ltd.) were mixed with 100 parts by weight of the mixture. The mixture was adjusted to 1 mm and mixed (thinned) to obtain a compound. Further, the obtained compound was heat compression molded at 170 ° C. to obtain a sheet having a thickness of 2 mm, and then a molded resin test piece having a predetermined shape was obtained by punching.
Comparative Example 3:
The wool felt was made into a predetermined shape by punching and impregnated with lubricating oil (turbine oil, ISO VG68) to obtain a wool felt test piece.

比較例4:
体積比90 : 10 で潤滑油(タービン油、ISO VG68)と超高分子量ポリエチレン樹脂粉末(三井化学(株)製ミペロンXM220)を混合し、パンチ抜き加工にて所定の形状とした羊毛フェルトに含浸させ、150℃で焼成して、羊毛フェルト試験片を得た。
Comparative Example 4:
Lubricating oil (turbine oil, ISO VG68) and ultrahigh molecular weight polyethylene resin powder (Miperon XM220 manufactured by Mitsui Chemicals, Inc.) are mixed at a volume ratio of 90:10 and impregnated into a wool felt that has a predetermined shape by punching. And calcined at 150 ° C. to obtain a wool felt test piece.

比較例5:
体積比 70 : 30 で超高分子ポリエチレン樹脂粉末(三井化学(株)製ミペロンXM220)と気孔形成材である安息香酸ナトリウム粉末(和光純薬(株)製試薬)とをミキサーにて 5 分間混合した後、加熱圧縮成形( 360℃×30 分)し、切削加工にて所定の試験片を得た。その後試験片を 80℃の温水で超音波洗浄器にて洗浄し、気孔形成材を溶出させ、乾燥し、連通孔率 12%の樹脂多孔質体を得た。これに潤滑油(タービン油、ISO VG68)を真空含浸させて、樹脂多孔質体試験片を得た。含油率は樹脂多孔質体試験片の全体積に対し 11%である。
Comparative Example 5:
Ultra high molecular weight polyethylene resin powder (Miplon XM220 manufactured by Mitsui Chemicals, Inc.) and sodium benzoate powder (reagent manufactured by Wako Pure Chemical Industries, Ltd.), which is a pore-forming material, are mixed in a mixer at a volume ratio of 70:30 for 5 minutes. Then, heat compression molding (360 ° C. × 30 minutes) was performed, and a predetermined test piece was obtained by cutting. Thereafter, the test piece was washed with warm water at 80 ° C. with an ultrasonic cleaner to elute the pore-forming material and dried to obtain a porous resin body having a communication porosity of 12%. This was impregnated with a lubricating oil (turbine oil, ISO VG68) in vacuum to obtain a resin porous body test piece. The oil content is 11% of the total volume of the porous resin specimen.

摺動試験:
実施例1〜実施例3および比較例5で得た樹脂多孔質体試験片、比較例1、比較例2で得た樹脂成形体試験片および比較例3、比較例4で得た羊毛フェルト試験片の摩擦摩耗特性を調べるために、以下の試験条件にてリングオンディスク試験を行ない、摺動特性を評価した。結果を表1に示す。
面圧:1 MPa、速度:64 m/分、時間:20 時間
試験片:φ17 mm×φ21 mm×厚さ2 mm
相手材:φ33 mm×厚さ6 mm、SUJ2(表面粗さRa 0.5μm)
測定項目:比摩耗量(×10-8 mm3/(N・m))
:相手材の損傷ありは「○」、相手材の損傷なしは「×」
Sliding test:
Resin porous body specimens obtained in Examples 1 to 3 and Comparative Example 5, resin molded article specimens obtained in Comparative Example 1 and Comparative Example 2, and wool felt test obtained in Comparative Examples 3 and 4 In order to investigate the friction and wear characteristics of the piece, a ring-on-disk test was conducted under the following test conditions to evaluate the sliding characteristics. The results are shown in Table 1.
Contact pressure: 1 MPa, speed: 64 m / min, time: 20 hours Test piece: φ17 mm × φ21 mm × thickness 2 mm
Opposite material: φ33 mm × thickness 6 mm, SUJ2 (surface roughness Ra 0.5μm)
Measurement item: Specific wear (× 10 -8 mm 3 / (N · m))
: “○” when the other material is damaged, “×” when the other material is not damaged

Figure 2006125482
表1において、比較例1のアクリロニトリルブタジエンゴムは試験開始数分後には異常摩耗のため停止した。比較例2は、ゴムでありながら固体潤滑剤の自己潤滑性により異常摩耗することはなかったが、摩耗は大きく、また摩擦係数も高い。
また、羊毛フェルトが基材となっている比較例3および比較例4の場合、摺動によりフェルトがほぐれて解体するので耐摩耗性が低く、また、羊毛の繊維が相手材を損傷させる。
また、比較例5は連通孔率 12%と低いので含油率が低いため、同じ超高分子ポリエチレン樹脂系の実施例1よりも摩耗が大きく、また摩擦係数も高い。
Figure 2006125482
In Table 1, the acrylonitrile butadiene rubber of Comparative Example 1 was stopped due to abnormal wear after several minutes from the start of the test. Although Comparative Example 2 was rubber, it did not wear abnormally due to the self-lubricating property of the solid lubricant, but the wear was large and the friction coefficient was high.
Further, in Comparative Examples 3 and 4 in which the wool felt is the base material, the felt is loosened and disassembled by sliding, so that the wear resistance is low, and the wool fiber damages the counterpart material.
Further, Comparative Example 5 has a low oil content because it has a low communication pore ratio of 12%, and therefore wear is larger and the friction coefficient is higher than Example 1 of the same ultra-high molecular weight polyethylene resin system.

本発明のシール部材は、30%〜90%の連通孔率を有する樹脂多孔質体に潤滑油を含浸させたシール部材であるので、潤滑油が存在しない環境や摩擦速度が速い場合でも、優れたシール性と高い耐摩耗性を発揮して、高速回転や高温雰囲気などの過酷な条件で使用される軸受のシール部材として好適に利用できる。   Since the seal member of the present invention is a seal member obtained by impregnating a resin porous body having a communication porosity of 30% to 90% with a lubricating oil, it is excellent even in an environment where the lubricating oil is not present or when the friction speed is high. It exhibits excellent sealing properties and high wear resistance, and can be suitably used as a seal member for bearings used under severe conditions such as high-speed rotation and high-temperature atmosphere.

シール部材を示す深溝玉軸受の断面図である。It is sectional drawing of the deep groove ball bearing which shows a sealing member.

符号の説明Explanation of symbols

1 深溝玉軸受
2 内輪
3 外輪
4 転動体
5 保持器
6 シール部材
7 グリース
DESCRIPTION OF SYMBOLS 1 Deep groove ball bearing 2 Inner ring 3 Outer ring 4 Rolling element 5 Cage 6 Seal member 7 Grease

Claims (5)

摺動を伴なうシール部に使用するシール部材であって、該シール部材は 30%〜90%の表面連通孔率を有し、かつ樹脂または該樹脂に配合材を配合してなる樹脂組成物を成形した樹脂多孔質体に潤滑油を含浸してなることを特徴とするシール部材。   A sealing member for use in a sealing part with sliding, the sealing member having a surface communication porosity of 30% to 90%, and a resin composition comprising a resin or a compounding material mixed with the resin A sealing member formed by impregnating a porous resin body formed by molding a lubricating oil. 前記樹脂組成物は、UL−746Bにて規定される連続使用温度が 100℃以上であることを特徴とする請求項1記載のシール部材。   The sealing member according to claim 1, wherein the resin composition has a continuous use temperature defined by UL-746B of 100 ° C or higher. 前記樹脂多孔質体は、気孔形成材が配合された前記樹脂組成物を成形して成形体とした後、該気孔形成材を溶解し、かつ前記樹脂組成物を溶解しない溶媒を用いて前記成形体から前記気孔形成材を抽出して得られる連通孔を有することを特徴とする請求項1記載のシール部材。   The resin porous body is molded by using the solvent that dissolves the pore forming material and does not dissolve the resin composition after the resin composition containing the pore forming material is molded into a molded body. The sealing member according to claim 1, further comprising a communication hole obtained by extracting the pore forming material from a body. 摺動を伴なうとともに、潤滑剤の漏洩を防止するための接触シール構造部を有する軸受であって、前記接触シール構造部に用いられるシール部材が請求項1、請求項2または請求項3記載のシール部材であることを特徴とする軸受。   A bearing having a contact seal structure for sliding and preventing leakage of a lubricant, wherein the seal member used in the contact seal structure is claim 1, claim 2 or claim 3. A bearing comprising the sealing member described above. 前記軸受が転がり軸受であることを特徴とする請求項4記載の軸受。   The bearing according to claim 4, wherein the bearing is a rolling bearing.
JP2004313318A 2004-10-28 2004-10-28 Seal member and bearing using the same Pending JP2006125482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004313318A JP2006125482A (en) 2004-10-28 2004-10-28 Seal member and bearing using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004313318A JP2006125482A (en) 2004-10-28 2004-10-28 Seal member and bearing using the same

Publications (1)

Publication Number Publication Date
JP2006125482A true JP2006125482A (en) 2006-05-18

Family

ID=36720418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004313318A Pending JP2006125482A (en) 2004-10-28 2004-10-28 Seal member and bearing using the same

Country Status (1)

Country Link
JP (1) JP2006125482A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074480A (en) * 2007-09-21 2009-04-09 Jtekt Corp Water pump
JP2016044220A (en) * 2014-08-21 2016-04-04 ニチアス株式会社 Sliding member and method for producing the same
CN113833852A (en) * 2021-08-25 2021-12-24 中国华能集团清洁能源技术研究院有限公司 Seal assembly
IT202100011102A1 (en) * 2021-05-03 2022-11-03 Skf Ab SEALING DEVICE IN PLASTIC MATERIAL FOR BEARING UNIT
EP3628882B1 (en) * 2018-09-26 2022-11-09 Aktiebolaget SKF Motor vehicle wheel or motorcycle oscillation roller bearing
WO2023233652A1 (en) * 2022-06-03 2023-12-07 株式会社ジェイテクト Sliding member and rolling bearing

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074480A (en) * 2007-09-21 2009-04-09 Jtekt Corp Water pump
JP2016044220A (en) * 2014-08-21 2016-04-04 ニチアス株式会社 Sliding member and method for producing the same
EP3628882B1 (en) * 2018-09-26 2022-11-09 Aktiebolaget SKF Motor vehicle wheel or motorcycle oscillation roller bearing
IT202100011102A1 (en) * 2021-05-03 2022-11-03 Skf Ab SEALING DEVICE IN PLASTIC MATERIAL FOR BEARING UNIT
US12025184B2 (en) 2021-05-03 2024-07-02 Aktiebolaget Skf Sealing device made of plastics material for a bearing unit
CN113833852A (en) * 2021-08-25 2021-12-24 中国华能集团清洁能源技术研究院有限公司 Seal assembly
CN113833852B (en) * 2021-08-25 2024-02-06 中国华能集团清洁能源技术研究院有限公司 Seal assembly
WO2023233652A1 (en) * 2022-06-03 2023-12-07 株式会社ジェイテクト Sliding member and rolling bearing

Similar Documents

Publication Publication Date Title
US7771125B2 (en) Retainer for rolling bearing, and rolling bearing
US7703983B2 (en) Sliding material and sliding bearing
JP2005024094A (en) Sliding bearing
JP4848121B2 (en) Sliding material
US7910198B2 (en) Resinous porous article and method for production thereof
CN1965171A (en) Retainer for rolling bearing, and rolling bearing
JP4866411B2 (en) Oil-impregnated sliding material and slide bearing
JP2006125482A (en) Seal member and bearing using the same
JP2006258158A (en) Lubricant supply construction
JP2007016905A (en) Sliding base isolation device
JP5170856B2 (en) Conductive sliding material composition
JP4155981B2 (en) Resin porous body and method for producing the same
JP4851695B2 (en) Sliding material
JP5033311B2 (en) Resin oil body and method
JP2007186621A (en) Resin porous body
JP2006009834A (en) Sliding bearing
JP4541769B2 (en) Roller bearing cage and rolling bearing
JP2006250262A (en) Sliding bearing for precision sliding-component
JP4206377B2 (en) Resin oil body and method for producing the same
JP2006063279A (en) In-liquid sliding material
JP2006123058A (en) Sliding member for machine tool
JP4478085B2 (en) Roller bearing cage and rolling bearing
JP2006028379A (en) Porous resin oil retainer
JP2007046752A (en) Dynamic pressure type bearing device
JP2008169926A (en) Capsule containing synthetic resin composition, and cage and rolling device