JP4155981B2 - Resin porous body and method for producing the same - Google Patents

Resin porous body and method for producing the same Download PDF

Info

Publication number
JP4155981B2
JP4155981B2 JP2005120494A JP2005120494A JP4155981B2 JP 4155981 B2 JP4155981 B2 JP 4155981B2 JP 2005120494 A JP2005120494 A JP 2005120494A JP 2005120494 A JP2005120494 A JP 2005120494A JP 4155981 B2 JP4155981 B2 JP 4155981B2
Authority
JP
Japan
Prior art keywords
resin
forming material
pore
porous body
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005120494A
Other languages
Japanese (ja)
Other versions
JP2005330474A (en
Inventor
正和 平田
英之 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2005120494A priority Critical patent/JP4155981B2/en
Publication of JP2005330474A publication Critical patent/JP2005330474A/en
Application granted granted Critical
Publication of JP4155981B2 publication Critical patent/JP4155981B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

本発明は、樹脂製多孔体およびその製造方法に関する。   The present invention relates to a resinous porous body and a method for producing the same.

連通孔率の調整が可能で、しかも安価な多孔体の製造方法として脱塩法が知られている。脱塩法は、塩化ナトリウムや硫酸ナトリウムなどの粉末状の気孔形成材を樹脂やゴムなどに添加した成形材料を、気孔形成材を含む充実成形体として成形し、得られた充実成形体を水などで洗浄することにより気孔形成材を溶出して、気孔形成材が存在していた部分に気孔を形成する多孔体の製造方法である。
従来、脱塩法により連通孔率が高い多孔体を製造するものとして、常温では固体であるが、多孔体の骨格を形成する高分子物質の成形温度では溶融して液体状態として存在することができる気孔形成材を用いて多孔体を成形するもの(特許文献1参照)、粒状気孔形成材を高分子物質に分散させてなる成形材料を、該粒気孔形成材の一部が溶融する温度で成形し、該成形体を上記高分子物質は溶解しないが上記気孔形成材は溶解する溶媒で洗浄することにより気孔を形成するもの(特許文献2参照)、特に連続気泡を有するポリオレフィン多孔体を製造するもの(特許文献3参照)などがある。
また、抽出物の分離および被抽出物の再利用を容易にするため、水溶性粉末からなる気孔形成材を用いて、これを温水により抽出するもの(特許文献4参照)がある。
A desalting method is known as a method for producing an inexpensive porous body that allows adjustment of the communication porosity. In the desalting method, a molding material obtained by adding a powdery pore forming material such as sodium chloride or sodium sulfate to a resin or rubber is molded as a solid molded body including the pore forming material, and the resulting solid molded body is washed with water. This is a method for producing a porous body, in which the pore-forming material is eluted by washing, etc., and pores are formed in the portion where the pore-forming material was present.
Conventionally, a porous body having a high communication porosity by a desalting method is solid at room temperature, but is melted and present in a liquid state at a molding temperature of a polymer material forming a skeleton of the porous body. A porous material is molded using a pore-forming material that can be formed (see Patent Document 1), and a molding material in which a granular pore-forming material is dispersed in a polymer substance is melted at a temperature at which a part of the particulate pore-forming material melts. Molding the molded body so as not to dissolve the polymer substance, but forming the pores by washing the pore-forming material with a solvent that dissolves (see Patent Document 2), especially producing a porous polyolefin body having open cells (See Patent Document 3).
Moreover, in order to facilitate the separation of the extract and the reuse of the extract, there is one that uses a pore-forming material made of a water-soluble powder and extracts it with warm water (see Patent Document 4).

上記各特許文献に気孔形成材として開示されている塩化ナトリウム、塩化アンモニウム、硫酸ナトリウム、硝酸ナトリウム、硫酸カリウム、硫酸マグネシウム、塩化カルシウムなどは、比較的水に溶解しやすく、安価で入手しやすいので気孔径の大きな多孔体の製造に用いる気孔形成材として有効である。しかしながら、微細な気孔を形成する場合には、気孔形成材を完全に溶解抽出するのは困難である。このため、気孔形成材を例えば潤滑油を含浸して使用する場合、この未抽出分の気孔成形材が使用中に滲み出し金属部分を錆びさせるなどの不具合が発生する場合がある。
特開2001−2825号公報(段落「0011」) 特開2002−194131号公報(段落「0009」) 特開2002−60534号公報(段落「0004」) 特開2002−322310号公報(段落「0007」、「0008」)
Sodium chloride, ammonium chloride, sodium sulfate, sodium nitrate, potassium sulfate, magnesium sulfate, calcium chloride and the like disclosed as pore forming materials in each of the above patent documents are relatively easy to dissolve in water, and are inexpensive and easily available. It is effective as a pore-forming material used for producing a porous body having a large pore diameter. However, when forming fine pores, it is difficult to completely dissolve and extract the pore-forming material. For this reason, when the pore forming material is impregnated with, for example, a lubricating oil, there may be a problem that the non-extracted pore molding material oozes out during use and rusts the metal portion.
JP 2001-2825 A (paragraph “0011”) JP 2002-194131 A (paragraph “0009”) JP 2002-60534 A (paragraph “0004”) JP 2002-322310 A (paragraphs “0007” and “0008”)

本発明はこのような問題に対処するためになされたもので、連通孔率が高く潤滑油などを多量に保持できる樹脂製多孔体であって、特に金属部分等と接触する用途などにおいて使用され、該多孔体の未抽出分の気孔形成材が使用中に滲み出しても金属部分を錆びさせることがない樹脂製多孔体およびその製造方法の提供を目的とする。   The present invention has been made to cope with such problems, and is a resin porous body having a high communication porosity and capable of holding a large amount of lubricating oil, etc., and is used particularly in applications that come into contact with metal parts and the like. An object of the present invention is to provide a resinous porous body that does not rust the metal part even if the pore-forming material of the unextracted portion of the porous body oozes out during use, and a method for producing the same.

本発明の樹脂製多孔体は、アルカリ性の化合物からなる気孔形成材が配合された樹脂を成形して成形体とした後、該気孔形成材を溶解し、かつ上記樹脂を溶解しない溶媒を用いて上記成形体から上記気孔形成材を抽出して得られることを特徴とする。
また、上記気孔形成材は、上記樹脂の成形温度より高い融点を有することを特徴とする。また、上記気孔形成材は、水溶性物質であることを特徴とする。
The resin porous body of the present invention is obtained by molding a resin containing a pore forming material composed of an alkaline compound into a molded body, and then using a solvent that dissolves the pore forming material and does not dissolve the resin. It is obtained by extracting the pore forming material from the molded body.
Further, the pore forming material has a melting point higher than the molding temperature of the resin. The pore-forming material is a water-soluble substance.

上記気孔形成材は、アルカリ性の化合物であることを特徴とする。また、該アルカリ性の化合物は、有機アルカリ金属塩および有機アルカリ土類金属塩から選ばれた少なくとも1つの金属塩であり、また安息香酸ナトリウム、酢酸ナトリウム、セバシン酸ナトリウム、三リン酸ナトリウム、ピロリン酸ナトリウムまたは炭酸カリウムであることを特徴とする。   The pore forming material is an alkaline compound. The alkaline compound is at least one metal salt selected from an organic alkali metal salt and an organic alkaline earth metal salt, and also sodium benzoate, sodium acetate, sodium sebacate, sodium triphosphate, pyrophosphate It is characterized by being sodium or potassium carbonate.

本発明の樹脂製多孔体の製造方法は、樹脂に気孔形成材を配合する工程と、上記気孔形成材を含む樹脂を成形して成形体とする工程と、上記気孔形成材を溶解し、かつ上記樹脂を溶解しない溶媒を用いて上記成形体から上記気孔形成材を抽出する工程とを備えてなることを特徴とする。   The method for producing a resinous porous body of the present invention includes a step of blending a pore-forming material with a resin, a step of molding a resin containing the pore-forming material to form a molded body, dissolving the pore-forming material, and And a step of extracting the pore forming material from the molded body using a solvent that does not dissolve the resin.

本発明の樹脂製多孔体は、連通孔率が高いので保油体等の用途に好適に利用できる。また、樹脂製多孔体の製造に用いる気孔形成材として、酸性塩ではなく、アルカリ性塩、特に防錆剤の役割を果たす有機アルカリ金属塩などを用いることにより、周囲に鉄鋼等がある軸受などに該樹脂製多孔体を使用する場合において、多孔体に残存している該気孔形成材が滲み出しても該鉄鋼の錆びを防止できるので、多孔質保油体等に利用できる。   Since the resin porous body of the present invention has a high communication porosity, it can be suitably used for applications such as oil retaining bodies. In addition, as a pore-forming material used in the production of a resin porous body, not an acidic salt, but an alkaline salt, particularly an organic alkali metal salt that plays a role of a rust preventive agent, etc. In the case of using the resin porous body, even if the pore forming material remaining in the porous body oozes out, the steel can be prevented from being rusted, so that it can be used for a porous oil retaining body or the like.

本発明の樹脂製多孔体は、気孔形成材、特にアルカリ性の気孔形成材が配合された樹脂を成形して成形体とした後、該気孔形成材を溶解し、かつ上記樹脂を溶解しない溶媒を用いて上記成形体から上記気孔形成材を抽出して得られるものであり、有機アルカリ金属塩などを用いることにより、該気孔形成材が完全に溶解・抽出されない場合であっても該気孔形成材は防錆剤として作用するので、周囲に鉄鋼がある軸受などにも好適に利用できる。
以下、本発明の樹脂製多孔体を構成する樹脂、気孔形成材、成形方法、抽出方法などについて説明する。
The resin porous body of the present invention is obtained by molding a resin containing a pore-forming material, particularly an alkaline pore-forming material, into a molded body, and then dissolving the pore-forming material and a solvent that does not dissolve the resin. The pore-forming material is obtained by extracting the pore-forming material from the molded body using the organic alkali metal salt or the like, even if the pore-forming material is not completely dissolved and extracted. Since it acts as a rust preventive agent, it can be suitably used for bearings having steel around them.
Hereinafter, the resin, the pore forming material, the molding method, the extraction method, and the like constituting the resin porous body of the present invention will be described.

本発明の樹脂としては、熱可塑性樹脂、熱硬化性樹脂、エラストマーまたはゴムなどの樹脂粉末やペレットを使用できる。樹脂粉末、ペレットの粒径や形状は、溶融成形する場合には、溶融時に気孔形成材と混練されるので、特に限定されるものではない。ドライブレンドしてそのまま圧縮成形する場合には 1〜500μmのものが好ましい。
熱可塑性樹脂または熱硬化性樹脂としては、例えば、低密度ポリエチレン、高密度ポリエチレン、超高分子量ポリエチレンなどのポリエチレン樹脂、変性ポリエチレン樹脂、水架橋ポリオレフィン樹脂、ポリアミド樹脂、芳香族ポリアミド樹脂、ポリスチレン樹脂、ポリプロピレン樹脂、シリコーン樹脂、ウレタン樹脂、ポリテトラフルオロエチレン樹脂、クロロトリフルオロエチレン樹脂、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体樹脂、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体樹脂、フッ化ビニリデン樹脂、エチレン・テトラフルオロエチレン共重合体樹脂、ポリアセタール樹脂、ポリエチレンテレフタラート樹脂、ポリブチレンテレフタラート樹脂、ポリフェニレンエーテル樹脂、ポリカーボネート樹脂、脂肪族ポリケトン樹脂、ポリビニルピロリドン樹脂、ポリオキサゾリン樹脂、ポリフェニレンサルフィド樹脂、ポリエーテルサルフォン樹脂、ポリエーテルイミド樹脂、ポリアミドイミド樹脂、ポリエーテルエーテルケトン樹脂、熱可塑性ポリイミド樹脂、熱硬化性ポリイミド樹脂、エポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂などを例示できる。また、上記合成樹脂から選ばれた2種以上の材料の混合物、すなわちポリマーアロイなどを例示できる。
As the resin of the present invention, resin powder and pellets such as thermoplastic resin, thermosetting resin, elastomer or rubber can be used. The particle size and shape of the resin powder and pellets are not particularly limited when melt molding because they are kneaded with the pore forming material at the time of melting. In the case of dry blending and compression molding as it is, those of 1 to 500 μm are preferable.
Examples of the thermoplastic resin or thermosetting resin include polyethylene resins such as low density polyethylene, high density polyethylene, and ultrahigh molecular weight polyethylene, modified polyethylene resins, water-crosslinked polyolefin resins, polyamide resins, aromatic polyamide resins, polystyrene resins, Polypropylene resin, silicone resin, urethane resin, polytetrafluoroethylene resin, chlorotrifluoroethylene resin, tetrafluoroethylene / hexafluoropropylene copolymer resin, tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer resin, vinylidene fluoride resin , Ethylene / tetrafluoroethylene copolymer resin, polyacetal resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polyphenylene ether resin, Recarbonate resin, aliphatic polyketone resin, polyvinylpyrrolidone resin, polyoxazoline resin, polyphenylene sulfide resin, polyethersulfone resin, polyetherimide resin, polyamideimide resin, polyetheretherketone resin, thermoplastic polyimide resin, thermosetting Examples thereof include a functional polyimide resin, an epoxy resin, a phenol resin, an unsaturated polyester resin, and a vinyl ester resin. Moreover, the mixture of 2 or more types of materials chosen from the said synthetic resin, ie, a polymer alloy, etc. can be illustrated.

上記樹脂の中で、自動車部品、機械部品、電気・電子部品等の工業用途に使用できる樹脂が好ましく、特に、引張り強さが 49 MPa 以上、曲げ弾性率が 1.9 GPa 以上、100℃以上の耐熱性(熱変形温度( 18.6 kg/cm2 ))を有するエンジニアリング樹脂、耐熱性がさらに高く、150℃以上の高温でも長期間使用できる特殊エンジニアリング樹脂またはスーパーエンジニアリング樹脂、および摺動特性などの機械的性質または熱的性質の一部が特に優れているため工業用途に使用できる樹脂が好ましい。
本発明に使用できる好ましい樹脂の具体例としては、ポリエーテルエーテルケトン樹脂、ポリフェニレンサルフィド樹脂、ポリアミドイミド樹脂、熱可塑性ポリイミド樹脂、熱硬化性ポリイミド樹脂、ポリアミド9T樹脂、エポキシ樹脂、ポリテトラフルオロエチレン樹脂、テトラフルオロエチレン−パーフルオロアルキルビニルエーテルコポリマー樹脂、不飽和ポリエステル樹脂、超高分子量ポリエチレンが挙げられる。
Among the resins mentioned above, resins that can be used for industrial applications such as automobile parts, machine parts, electrical / electronic parts, etc. are preferable, and in particular, a tensile strength of 49 MPa or more, a flexural modulus of 1.9 GPa or more, and a heat resistance of 100 ° C. or more. Engineering resin with heat resistance (heat deformation temperature (18.6 kg / cm 2 )), special engineering resin or super engineering resin that has higher heat resistance and can be used for a long time even at high temperatures of 150 ° C or higher, and mechanical properties such as sliding characteristics Resins that can be used in industrial applications are preferred because some of their properties or thermal properties are particularly excellent.
Specific examples of preferred resins that can be used in the present invention include polyetheretherketone resins, polyphenylene sulfide resins, polyamideimide resins, thermoplastic polyimide resins, thermosetting polyimide resins, polyamide 9T resins, epoxy resins, polytetrafluoroethylene. Examples include resins, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer resins, unsaturated polyester resins, and ultrahigh molecular weight polyethylene.

エラストマーまたはゴムとしては、例えば、アクリロニトリルブタジエンゴム、イソプレンゴム、スチレンゴム、ブタジエンゴム、ニトリルゴム、クロロプレンゴム、ブチルゴム、アクリルゴム、シリコーンゴム、フッ素ゴム、エチレンプロピレンゴム、クロロスルフォン化ポリエチレンゴム、塩素化ポリエチレンゴム、エピクロルヒドリンゴム等の加硫ゴム類;ポリウレタンエラストマー、ポリエステルエラストマー、ポリアミドエラストマー、ポリブタジエン系エラストマー、軟質ナイロン系エラストマー等の熱可塑性エラストマー類が例示できる。   Examples of the elastomer or rubber include acrylonitrile butadiene rubber, isoprene rubber, styrene rubber, butadiene rubber, nitrile rubber, chloroprene rubber, butyl rubber, acrylic rubber, silicone rubber, fluorine rubber, ethylene propylene rubber, chlorosulfonated polyethylene rubber, chlorinated Examples thereof include vulcanized rubbers such as polyethylene rubber and epichlorohydrin rubber; and thermoplastic elastomers such as polyurethane elastomer, polyester elastomer, polyamide elastomer, polybutadiene elastomer, and soft nylon elastomer.

本発明に使用できる気孔形成材としては、気孔形成材が配合された樹脂を成形して成形体とした後、該気孔形成材を溶解し、かつ気孔形成材配合樹脂を溶解しない溶媒を用いて、樹脂成形体から抽出できる物質であれば使用できる。
特に、気孔形成材としては、防錆剤として利用できる弱アルカリ塩を好ましく使用できる。弱アルカリ塩としては、有機アルカリ金属塩、有機アルカリ土類金属塩、無機アルカリ金属塩、無機アルカリ土類金属塩などが挙げられる。未抽出分が脱落した時でも、比較的軟らかく、転動面やすべり面を損傷し難いことから、有機アルカリ金属塩、有機アルカリ土類金属塩を用いることが好ましい。なお、これらの金属塩は1種または2種以上混合して用いてもよい。また、洗浄用溶媒として安価な水を使用することができ、気孔形成時における廃液処理などが容易となることから水溶性の弱アルカリ塩を使用することが好ましい。
As the pore-forming material that can be used in the present invention, a resin containing the pore-forming material is molded into a molded body, and then the pore-forming material is dissolved and a solvent that does not dissolve the pore-forming material-containing resin is used. Any substance that can be extracted from the resin molding can be used.
In particular, as the pore forming material, a weak alkali salt that can be used as a rust inhibitor can be preferably used. Examples of the weak alkali salt include organic alkali metal salts, organic alkaline earth metal salts, inorganic alkali metal salts, inorganic alkaline earth metal salts, and the like. Even when an unextracted part falls off, an organic alkali metal salt or an organic alkaline earth metal salt is preferably used because it is relatively soft and hardly damages a rolling surface or a sliding surface. In addition, you may use these metal salts 1 type or in mixture of 2 or more types. In addition, it is preferable to use a water-soluble weak alkali salt because inexpensive water can be used as a cleaning solvent, and waste liquid treatment at the time of pore formation is facilitated.

成形時における気孔形成材の溶解を防止するため、気孔形成材は使用する樹脂の成形温度よりも高い融点の物質を使用することが好ましい。
本発明に好適に用いることができる水溶性有機アルカリ金属塩としては、安息香酸ナトリウム(融点 430℃)、酢酸ナトリウム(融点 320℃)またはセバシン酸ナトリウム(融点 340℃)、コハク酸ナトリウム、ステアリン酸ナトリウムなどが挙げられる。融点が高く、多種の樹脂に対応でき、かつ水溶性が高いという理由から、安息香酸ナトリウム、酢酸ナトリウムまたはセバシン酸ナトリウムが特に好ましい。
無機アルカリ金属塩としては、例えば、モリブデン酸ナトリウム、モリブデン酸カリウム、タングステン酸ナトリウム、三リン酸ナトリウム、ピロリン酸ナトリウム、炭酸カリウムなどが挙げられる。
In order to prevent dissolution of the pore-forming material during molding, it is preferable to use a substance having a melting point higher than the molding temperature of the resin used for the pore-forming material.
Water-soluble organic alkali metal salts that can be suitably used in the present invention include sodium benzoate (melting point 430 ° C.), sodium acetate (melting point 320 ° C.) or sodium sebacate (melting point 340 ° C.), sodium succinate, stearic acid Sodium etc. are mentioned. Sodium benzoate, sodium acetate, or sodium sebacate is particularly preferred because of its high melting point, compatibility with various resins, and high water solubility.
Examples of the inorganic alkali metal salt include sodium molybdate, potassium molybdate, sodium tungstate, sodium triphosphate, sodium pyrophosphate, potassium carbonate, and the like.

また、気孔形成材は上記樹脂の成形温度よりも高い融点の物質と、上記樹脂の成形温度よりも低い融点の物質との混合物として使用することができる。
上記樹脂の成形温度よりも低い融点の物質としては、ペンタエリスリトール、ホウ酸( 171℃)等が挙げられる。
The pore-forming material can be used as a mixture of a substance having a melting point higher than the molding temperature of the resin and a substance having a melting point lower than the molding temperature of the resin.
Examples of the substance having a melting point lower than the molding temperature of the resin include pentaerythritol and boric acid (171 ° C.).

気孔形成材は樹脂製多孔体の用途に応じた平均粒径に管理する。樹脂製多孔体を保油体として用いる場合は、平均粒径 1〜500 μmの気孔形成材が好ましい。
気孔形成材の割合は、樹脂粉末、多孔体形成材料および充填材などの他の材料を含めた全量に対して、30体積%〜90体積%、好ましくは40体積%〜90体積%とする。30体積%以下では多孔体の気孔が連続孔になり難く、90体積%以上では所望の機械的強度が得られない。
また配合時において、気孔形成材の抽出に使用する溶媒に不溶な充填材を配合してもよい。例えば、該溶媒が水である場合には、多孔体の機械的強度を向上させるなどの目的で、ガラス繊維、炭素繊維などを配合してもよい。
The pore forming material is controlled to have an average particle size according to the use of the resin porous body. When a resin porous body is used as an oil retaining body, a pore forming material having an average particle diameter of 1 to 500 μm is preferable.
The ratio of the pore forming material is 30% by volume to 90% by volume, preferably 40% by volume to 90% by volume, with respect to the total amount including other materials such as the resin powder, the porous body forming material, and the filler. If the volume is 30% by volume or less, the pores of the porous body are difficult to become continuous pores, and if it is 90% by volume or more, desired mechanical strength cannot be obtained.
Moreover, you may mix | blend the filler insoluble in the solvent used for extraction of a pore formation material at the time of a mixing | blending. For example, when the solvent is water, glass fiber, carbon fiber, or the like may be blended for the purpose of improving the mechanical strength of the porous body.

樹脂材料と気孔形成材の混合法は特に限定されるものではなくドライブレンド、溶融混練など樹脂の混合に一般に使用する混練法が適用できる。
また、気孔形成材を液体溶媒中に溶解させて透明溶液とした後、この溶液に樹脂粉末を分散混合させて、その後、この溶媒を除去する方法を用いることができる。
分散混合させる方法としては、液中混合できる方法であれば特に限定されるものではなく、ボールミル、超音波分散機、ホモジナイザー、ジューサーミキサー、ヘンシェルミキサーなどが例示できる。また、分散液の分離を抑えるために少量の界面活性剤を添加することも有効である。なお、混合時においては、混合により気孔形成材が完全に溶解するよう溶媒量を確保する。
また、溶媒を除去する方法としては、加熱蒸発、真空蒸発、窒素ガスによるバブリング、透析、凍結乾燥などの方法を用いることができる。手法が容易で、設備が安価であることから加熱蒸発により液体溶媒の除去を行なうことが好ましい。
樹脂に気孔成形材を配合した混合物の成形に関しては、圧縮成形、射出成形、押し出し成形、ブロー成形、真空成形、トランスファ成形などの任意の成形方法を採用できる。また成形前に作業性を向上させるため、ペレットやプリプレグなどに加工してもよい。
The mixing method of the resin material and the pore forming material is not particularly limited, and a kneading method generally used for mixing the resin such as dry blending and melt kneading can be applied.
Alternatively, a method may be used in which the pore-forming material is dissolved in a liquid solvent to form a transparent solution, and then resin powder is dispersed and mixed in the solution, and then the solvent is removed.
The method of dispersing and mixing is not particularly limited as long as it can be mixed in a liquid, and examples thereof include a ball mill, an ultrasonic disperser, a homogenizer, a juicer mixer, and a Henschel mixer. It is also effective to add a small amount of a surfactant in order to suppress separation of the dispersion. At the time of mixing, the amount of solvent is secured so that the pore forming material is completely dissolved by mixing.
As a method for removing the solvent, methods such as heat evaporation, vacuum evaporation, bubbling with nitrogen gas, dialysis, and freeze-drying can be used. Since the method is easy and the equipment is inexpensive, it is preferable to remove the liquid solvent by heat evaporation.
For molding a mixture in which a pore molding material is blended with a resin, any molding method such as compression molding, injection molding, extrusion molding, blow molding, vacuum molding, transfer molding or the like can be employed. Moreover, in order to improve workability | operativity before shaping | molding, you may process into a pellet, a prepreg, etc.

得られた成形体からの気孔形成材の抽出は、上記気孔形成材を溶解し、かつ上記樹脂を溶解しない溶媒で成形体を洗浄することにより行なう。
該溶媒としては、例えば、水、および水と相溶しうる溶媒としてアルコール系、エステル系、ケトン系溶媒などを用いることができる。これらの中で、樹脂および気孔形成材の種類によって上記条件に従い適宜選択される。また、これらの溶媒は1種または2種以上を混合し使用してもよい。廃液処理などが容易、安価などの利点から水を用いることが好ましい。
該抽出処理を行なうことにより、気孔形成材が充填されていた部分が溶解され、該溶解部分に気孔が形成された樹脂製多孔体が得られる。
Extraction of the pore-forming material from the obtained molded body is performed by washing the molded body with a solvent that dissolves the pore-forming material and does not dissolve the resin.
As the solvent, for example, water and alcohol solvents, ester solvents, ketone solvents, and the like can be used as solvents compatible with water. Among these, it is appropriately selected according to the above conditions depending on the type of resin and pore forming material. These solvents may be used alone or in combination of two or more. It is preferable to use water because of its advantages such as easy waste liquid treatment and low cost.
By performing the extraction treatment, a portion filled with the pore forming material is dissolved, and a resin porous body having pores formed in the dissolved portion is obtained.

実施例1
体積比1:1の超高分子量ポリエチレン粉末(三井化学(株)製ミペロンXM220)と安息香酸ナトリウム粉末(和光純薬(株)製試薬)をミキサーにて5分間混合して混合粉末を得た。この混合粉末を用いて、直径φ30×厚さt5mmのディスクを加熱圧縮成形法(200℃×30分)にて成形した。この成形体を80℃の温水で超音波洗浄器にて10時間洗浄して安息香酸ナトリウム粉末を溶出させた。その後100℃で8時間乾燥し連通孔率43%の多孔体を得た。7体積%の安息香酸ナトリウムが未溶出であり、多孔体に残存した。
Example 1
An ultra-high molecular weight polyethylene powder (Miplon XM220 manufactured by Mitsui Chemicals, Inc.) having a volume ratio of 1: 1 and sodium benzoate powder (reagent manufactured by Wako Pure Chemical Industries, Ltd.) were mixed for 5 minutes with a mixer to obtain a mixed powder. . Using this mixed powder, a disk having a diameter of φ30 × thickness of t5 mm was formed by a heat compression molding method (200 ° C. × 30 minutes). The molded body was washed with warm water at 80 ° C. for 10 hours with an ultrasonic cleaner to elute the sodium benzoate powder. Thereafter, it was dried at 100 ° C. for 8 hours to obtain a porous body having a communication porosity of 43%. 7% by volume of sodium benzoate was not eluted and remained in the porous body.

実施例2
体積比1:1の超高分子量ポリエチレン粉末(三井化学(株)製ミペロンXM220)と酢酸ナトリウム粉末(和光純薬(株)製試薬)をミキサーにて5分間混合して混合粉末を得た。この混合粉末を用いて、直径φ30×厚さt5mmのディスクを加熱圧縮成形法(200℃×30分)にて成形した。この成形体を80℃の温水で超音波洗浄器にて10時間洗浄して酢酸ナトリウム粉末を溶出させた。その後100℃で8時間乾燥し連通孔率44%の多孔体を得た。6体積%の酢酸ナトリウムが未溶出であり、多孔体に残存した。
Example 2
A volume ratio of 1: 1 ultra high molecular weight polyethylene powder (Mipperon XM220 manufactured by Mitsui Chemicals, Inc.) and sodium acetate powder (reagent manufactured by Wako Pure Chemical Industries, Ltd.) were mixed for 5 minutes with a mixer to obtain a mixed powder. Using this mixed powder, a disk having a diameter of φ30 × thickness of t5 mm was formed by a heat compression molding method (200 ° C. × 30 minutes). The molded body was washed with warm water at 80 ° C. for 10 hours with an ultrasonic cleaner to elute the sodium acetate powder. Thereafter, it was dried at 100 ° C. for 8 hours to obtain a porous body having a communication porosity of 44%. 6% by volume of sodium acetate was not eluted and remained in the porous body.

実施例3
体積比1:1の四フッ化エチレン樹脂粉末(ダイキン工業(株)製 M15)と安息香酸ナトリウム粉末(和光純薬(株)製試薬)をミキサーにて5分間混合して混合粉末を得た。この混合粉末を用いて、直径φ30×厚さt5mmのディスクを加熱圧縮成形法(350℃×30分)にて成形した。この成形体を80℃の温水で超音波洗浄器にて10時間洗浄して安息香酸ナトリウム粉末を溶出させた。その後100℃で8時間乾燥し連通孔率48%の多孔体を得た。2体積%の安息香酸ナトリウムが未溶出であり、多孔体に残存した。
Example 3
A volume ratio of 1: 1 tetrafluoroethylene resin powder (M15 manufactured by Daikin Industries, Ltd.) and sodium benzoate powder (reagent manufactured by Wako Pure Chemical Industries, Ltd.) were mixed for 5 minutes with a mixer to obtain a mixed powder. . Using this mixed powder, a disk having a diameter of φ30 × thickness of t5 mm was formed by a heat compression molding method (350 ° C. × 30 minutes). The molded body was washed with warm water at 80 ° C. for 10 hours with an ultrasonic cleaner to elute the sodium benzoate powder. Thereafter, it was dried at 100 ° C. for 8 hours to obtain a porous body having a communication porosity of 48%. 2% by volume of sodium benzoate was not eluted and remained in the porous body.

比較例1
体積比1:1の超高分子量ポリエチレン粉末(三井化学(株)製ミペロンXM220)と塩化ナトリウム粉末(和光純薬(株)製試薬)をミキサーにて5分間混合して混合粉末を得た。この混合粉末を用いて、直径φ30×厚さt5mmのディスクを加熱圧縮成形法(200℃×30分)にて成形した。この成形体を80℃の温水で超音波洗浄器にて10時間洗浄して塩化ナトリウム粉末を溶出させた。その後100℃で8時間乾燥し連通孔率44%の多孔体を得た。6体積%の塩化ナトリウムが未溶出であり、多孔体に残存した。
Comparative Example 1
A volume ratio of 1: 1 ultra high molecular weight polyethylene powder (Miperon XM220 manufactured by Mitsui Chemicals, Inc.) and sodium chloride powder (reagent manufactured by Wako Pure Chemical Industries, Ltd.) were mixed for 5 minutes with a mixer to obtain a mixed powder. Using this mixed powder, a disk having a diameter of φ30 × thickness of t5 mm was formed by a heat compression molding method (200 ° C. × 30 minutes). The molded body was washed with warm water at 80 ° C. for 10 hours with an ultrasonic cleaner to elute the sodium chloride powder. Thereafter, it was dried at 100 ° C. for 8 hours to obtain a porous body having a communication porosity of 44%. 6% by volume of sodium chloride was not eluted and remained in the porous body.

比較例2
体積比1:1の超高分子量ポリエチレン粉末(三井化学(株)製ミペロンXM220)とペンタエリスリトール(融点260℃。アルコール類)をミキサーにて5分間混合して混合粉末を得た。この混合粉末を用いて、直径φ30×厚さt5mmのディスクを加熱圧縮成形法(200℃×30分)にて成形した。この成形体を80℃の温水で超音波洗浄器にて10時間洗浄してペンタエリスリトールを溶出させた。その後100℃で8時間乾燥し連通孔率41%の多孔体を得た。9体積%のペンタエリスリトールが未溶出であり、多孔体に残存した。
Comparative Example 2
Ultra-high molecular weight polyethylene powder (Miplon XM220 manufactured by Mitsui Chemicals, Inc.) having a volume ratio of 1: 1 and pentaerythritol (melting point 260 ° C., alcohols) were mixed for 5 minutes with a mixer to obtain a mixed powder. Using this mixed powder, a disk having a diameter of φ30 × thickness of t5 mm was formed by a heat compression molding method (200 ° C. × 30 minutes). This molded article was washed with warm water at 80 ° C. for 10 hours with an ultrasonic cleaner to elute pentaerythritol. Thereafter, it was dried at 100 ° C. for 8 hours to obtain a porous body having a communication porosity of 41%. 9% by volume of pentaerythritol was not eluted and remained in the porous body.

なお、各実施例において、連通孔率は、樹脂成形体において相互に連続している気孔の総体積が樹脂成形体の体積に占める割合をいう。
具体的には、連通孔率は数1内の式(1)に示す方法で算出した。

Figure 0004155981
上記、数1において、各符号の意味を以下に示す。
V;加熱圧縮成形法にて成形された洗浄前成形体の体積
ρ;加熱圧縮成形法にて成形された洗浄前成形体の密度
W;加熱圧縮成形法にて成形された洗浄前成形体の重量
1;樹脂粉末の体積
ρ1;樹脂粉末の密度
1;樹脂粉末の重量
2;気孔形成材の体積
ρ2;気孔形成材の密度
2;気孔形成材の重量
3;洗浄後の多孔体の体積
3;洗浄後の多孔体の重量
V'2;洗浄後に多孔体に残存する気孔形成材の体積 In addition, in each Example, a communicating porosity means the ratio for which the total volume of the pores which are mutually continuous in a resin molding accounts to the volume of a resin molding.
Specifically, the communication porosity was calculated by the method shown in Equation (1) in Equation 1.
Figure 0004155981
In the above Equation 1, the meaning of each symbol is shown below.
V: Volume ρ of the pre-cleaning molded body formed by the heat compression molding method; density W of the pre-cleaning molded body molded by the heat compression molding method; Weight V 1 ; Volume ρ 1 of resin powder; Density W 1 of resin powder; Weight V 2 of resin powder; Volume ρ 2 of pore forming material; Density W 2 of pore forming material; Weight V 3 of pore forming material; Washing The volume W 3 of the porous body after; the weight V ′ 2 of the porous body after cleaning; the volume of the pore forming material remaining in the porous body after cleaning

錆試験
実施例および比較例で作製したディスクを合成潤滑油PAO(シンフルード801、新日鉄化学製)を薄く塗布したSPCC鋼板(40×40×t2)で挟み、JISK2246「さび止め油」に規定された湿潤試験方法(49±1℃、相対温度95%以上)にて錆試験を行なった。96時間(h)、192時間(h)、384時間(h)後の合わせ面の発錆状況を比較した。結果を表1に示す。

Figure 0004155981
Rust test Discs produced in Examples and Comparative Examples are sandwiched between SPCC steel plates (40 × 40 × t2) with thinly applied synthetic lubricating oil PAO (Shin Fluid 801, manufactured by Nippon Steel Chemical Co., Ltd.) The rust test was conducted by the wet test method (49 ± 1 ° C., relative temperature 95% or more). The rusting conditions of the mating surfaces after 96 hours (h), 192 hours (h), and 384 hours (h) were compared. The results are shown in Table 1.
Figure 0004155981

表1に示すように本発明による実施例1では384h後も錆が認められなかった。これに対し比較例1では96hで錆が認められた。これは微量の塩化ナトリウムの溶出により発錆が加速されたものと考えられる。また、発錆の加速要因がない比較例2よりも実施例は防錆性が高かった。これは気孔形成材として用いた安息香酸ナトリウムが防錆剤として作用していると考えられる。   As shown in Table 1, in Example 1 according to the present invention, no rust was observed after 384 hours. In contrast, in Comparative Example 1, rust was observed after 96 hours. This is probably because rusting was accelerated by the elution of a small amount of sodium chloride. Moreover, the Example had higher rust prevention property than the comparative example 2 without the acceleration factor of rusting. This is considered that the sodium benzoate used as a pore forming material is acting as a rust preventive agent.

本発明の樹脂製多孔体は防錆性に優れるため、転がり軸受、滑り軸受の保持器などの材料として、周囲に鉄鋼がある用途に好適に用いることができる。   Since the resin-made porous body of the present invention is excellent in rust prevention, it can be suitably used as a material for rolling bearings, cages for sliding bearings, and the like in applications where there is steel around.

Claims (7)

連通孔を有する樹脂製多孔体であって、前記連通孔は、アルカリ性の化合物からなる気孔形成材が配合された樹脂を成形して成形体とした後、該気孔形成材を溶解し、かつ前記樹脂を溶解しない溶媒を用いて前記成形体から前記気孔形成材を抽出して得られる連通孔であることを特徴とする樹脂製多孔体。 A resin porous body having communication holes, wherein the communication holes are formed by molding a resin containing a pore forming material composed of an alkaline compound to form a molded body, and then dissolving the pore forming material, and A resin porous body, which is a communication hole obtained by extracting the pore-forming material from the molded body using a solvent that does not dissolve the resin. 前記気孔形成材は、前記樹脂の成形温度より高い融点を有する物質であることを特徴とする請求項1記載の樹脂製多孔体。   The resin porous body according to claim 1, wherein the pore forming material is a substance having a melting point higher than a molding temperature of the resin. 前記気孔形成材は、水溶性物質であることを特徴とする請求項1または請求項2記載の樹脂製多孔体。   The resin porous body according to claim 1 or 2, wherein the pore forming material is a water-soluble substance. 連通孔率が30%以上であることを特徴とする請求項1、請求項2または請求項3記載の樹脂製多孔体。   The resin porous body according to claim 1, wherein the communication porosity is 30% or more. 前記アルカリ性の化合物は、有機アルカリ金属塩および有機アルカリ土類金属塩から選ばれた少なくとも1つの金属塩であることを特徴とする請求項項記載の樹脂製多孔体。 The alkaline compound is a resin porous body of claim 1, wherein said is at least one metal salt selected from organic alkali metal salts and organic alkaline earth metal salt. 前記アルカリ性の化合物は、安息香酸ナトリウム、酢酸ナトリウム、セバシン酸ナトリウム、三リン酸ナトリウム、ピロリン酸ナトリウムまたは炭酸カリウムから選ばれた少なくとも1つの化合物であることを特徴とする請求項記載の樹脂製多孔体。 The alkaline compound, sodium benzoate, sodium acetate, sodium sebacate, sodium triphosphate, resin of claim 1, wherein the at least one compound selected from sodium or potassium carbonate pyrophosphate Porous body. 樹脂にアルカリ性の化合物からなる気孔形成材を配合する工程と、前記気孔形成材を含む樹脂を成形して成形体とする工程と、前記気孔形成材を溶解し、かつ前記樹脂を溶解しない溶媒を用いて前記成形体から前記気孔形成材を抽出する工程とを備えてなることを特徴とする樹脂製多孔体の製造方法。 A step of blending a resin with a pore-forming material composed of an alkaline compound, a step of molding a resin containing the pore-forming material to form a molded body, and a solvent that dissolves the pore-forming material and does not dissolve the resin. And a step of extracting the pore-forming material from the molded body. A method for producing a resinous porous body, comprising:
JP2005120494A 2004-04-23 2005-04-19 Resin porous body and method for producing the same Expired - Fee Related JP4155981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005120494A JP4155981B2 (en) 2004-04-23 2005-04-19 Resin porous body and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004128897 2004-04-23
JP2005120494A JP4155981B2 (en) 2004-04-23 2005-04-19 Resin porous body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005330474A JP2005330474A (en) 2005-12-02
JP4155981B2 true JP4155981B2 (en) 2008-09-24

Family

ID=35485352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005120494A Expired - Fee Related JP4155981B2 (en) 2004-04-23 2005-04-19 Resin porous body and method for producing the same

Country Status (1)

Country Link
JP (1) JP4155981B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3935907B2 (en) * 2004-12-01 2007-06-27 株式会社伏見製薬所 Continuous pore elastic body and method for producing the same, water absorbing roller and swab
JP5033311B2 (en) * 2005-03-04 2012-09-26 Ntn株式会社 Resin oil body and method
JP4772359B2 (en) * 2005-04-01 2011-09-14 Ntn株式会社 Method for producing resin porous body
JP2007186621A (en) * 2006-01-13 2007-07-26 Ntn Corp Resin porous body

Also Published As

Publication number Publication date
JP2005330474A (en) 2005-12-02

Similar Documents

Publication Publication Date Title
EP1746125B1 (en) Porous resin article and method for production thereof
JP4848121B2 (en) Sliding material
US7771125B2 (en) Retainer for rolling bearing, and rolling bearing
JP4155981B2 (en) Resin porous body and method for producing the same
WO2005121288A1 (en) Sliding material and sliding bearing
WO2004111476A1 (en) Sliding bearing
JP2007186621A (en) Resin porous body
JP5033311B2 (en) Resin oil body and method
JP4206377B2 (en) Resin oil body and method for producing the same
JP4982049B2 (en) Resin porous body and method for producing the same
JP2005344906A (en) Cage for rolling bearing and rolling bearing
JP4848131B2 (en) Aromatic polyetherketone resin porous body and method for producing the same
JP4851695B2 (en) Sliding material
JP2006125482A (en) Seal member and bearing using the same
JP4772359B2 (en) Method for producing resin porous body
JP2005330473A (en) Method for producing cellular material and the cellular material
JP2006063279A (en) In-liquid sliding material
JP2006123058A (en) Sliding member for machine tool
JP2006009834A (en) Sliding bearing
JP2007023230A (en) Porous body made of polytetrafluoroethylene and method for producing the same
JP2006028379A (en) Porous resin oil retainer
JP4478085B2 (en) Roller bearing cage and rolling bearing
JP4541769B2 (en) Roller bearing cage and rolling bearing
JP2006250262A (en) Sliding bearing for precision sliding-component
JP2007023231A (en) Porous body made of fluororesin and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080228

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20080228

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20080318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees