JP4205184B2 - High fatigue strength non-tempered steel with excellent scale peelability after hot forging - Google Patents

High fatigue strength non-tempered steel with excellent scale peelability after hot forging Download PDF

Info

Publication number
JP4205184B2
JP4205184B2 JP14820697A JP14820697A JP4205184B2 JP 4205184 B2 JP4205184 B2 JP 4205184B2 JP 14820697 A JP14820697 A JP 14820697A JP 14820697 A JP14820697 A JP 14820697A JP 4205184 B2 JP4205184 B2 JP 4205184B2
Authority
JP
Japan
Prior art keywords
less
excluding
steel
fatigue strength
hot forging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14820697A
Other languages
Japanese (ja)
Other versions
JPH10330878A (en
Inventor
正人 鹿礒
義武 松島
克浩 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP14820697A priority Critical patent/JP4205184B2/en
Publication of JPH10330878A publication Critical patent/JPH10330878A/en
Application granted granted Critical
Publication of JP4205184B2 publication Critical patent/JP4205184B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Forging (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車や建設機械等のエンジン部品や構造用部品として用いられる非調質鋼に関するものであり、特に、高い疲労強度を有すると共に、熱間鍛造後のスケール剥離性に優れた非調質鋼に関するものである。
【0002】
【従来の技術】
従来、自動車や建設機械等に用いられる機械構造用部品は、機械構造用炭素鋼や機械構造用合金鋼を素材とし、必要な強度と靭性を確保するため熱間鍛造後に焼き入れ・焼き戻し処理(調質処理)を行って製造されていた。しかしながら、上記の様な調質処理に要するエネルギーの節約とコストの低減を目的に、調質処理を省略しても調質処理を行ったものと同等の特性を有する非調質鋼の開発が行われている。この様な非調質鋼としては、例えばJIS G 4051に規定される機械構造用炭素鋼やJIS G 4106に規定される機械構造用マンガン鋼に、VやNb等の析出硬化型元素を添加したものが挙げられ、自動車のコネクティングロッド(以下、コンロッドという)等のエンジン部品や足廻り部品、或いは建設機械部品等に使用されている。
【0003】
これらの非調質鋼は、熱間鍛造後、冷却して組織をフェライト・パーライト混合組織とし、フェライト部にVやNb等の炭化物や窒化物を析出させることで目標硬度を得るものであり、調質処理を省略することを可能とすると共に、熱処理歪みを減少させることができるので、その後の矯正加工が簡略化できるという利点も持つ。
【0004】
一方、自動車の軽量化の要求は、近年ますます強くなっており、上述した機械構造用部品についても同様に軽量化が求められている。特に、エンジン部品であるコンロッドは運動部品であることから、コンロッドの軽量化を達成することができれば、運動慣性力の低減にもつながって自動車の燃費低減に大きな効果を奏することが期待される。
【0005】
機械構造用部品の軽量化のためには該部品の疲労強度を向上させることが必要である。これまでにも非調質鋼の疲労強度を向上させようと様々な開発が行われてきた。例えば、特開平4−193931号公報、特開平6−212344号公報、特開平8−120398号公報等には、鋼中のC,V,Siの量を適正化し、且つ、熱間鍛造時の加熱条件を限定してフェライト脱炭量の低減およびフェライト脱炭層の硬さ低下を抑制し、疲労強度の向上を図る非調質鋼が紹介されている。また、特開平4−176842号公報には、組織がベイナイトを主体とする鋼において、合金元素添加量と組織の調整によって強度、靭性を向上させた非調質鋼が紹介されている。更に、特開平4−141548号公報や特開平4−141549号公報等には、組織がベイナイトを主体とする鋼において、特にCuを添加することで強度を向上させた非調質鋼が紹介されている。
【0006】
【発明が解決しようとする課題】
上述の様な様々な手法によって、非調質鋼本体の疲労強度はかなり向上してきた。しかしながら、表面が鍛造肌のままで使用されるコンロッド等の場合、疲労強度は、その表面性状によって大きく影響されることが分かっている。即ち熱間鍛造後の表面には酸化皮膜(スケール)が生成しているため、そのままでは非調質鋼本体が持っている疲労強度を発揮することが難しい。そこで、これらコンロッド等を製造する場合には、熱間鍛造後、ショットブラスト等により脱スケールを行っているが、十分な脱スケールを行うには、脱スケール工程に5分以上を費やさなければならない。
【0007】
また、組織がベイナイトを主体とする鋼とフェライト・パーライト混合組織鋼とを同じ強度レベルの鋼で比較した場合には、フェライト・パーライト混合組織鋼の方が疲労強度が優れている。近年、非調質鋼には、ますます高い疲労強度が求められる様になってきており、その様な要求を満たすため、ベイナイト鋼ではなくフェライト・パーライト混合組織鋼の使用が望まれている。
【0008】
本発明はこの様な状況に着目してなされたものであり、その目的は、高い疲労強度を有すると共に、脱スケール時間の短縮が可能な熱間鍛造用非調質鋼を提供する点にある。
【0009】
【課題を解決するための手段】
上記課題を達成し得た本発明に係る非調質鋼とは、鋼の金属組織がフェライト・パーライト混合組織からなる非調質鋼において、化学成分として、C :0.25〜0.60%、Si:0.05〜2.0%、Mn:0.30〜2.0%、V :0.03〜0.6%、Cu:0.03〜0.50%、S:0.12%以下(0%を含まない)を含み、残部Feおよび不可避不純物であることを特徴とする熱間鍛造後のスケール剥離性に優れた高疲労強度非調質鋼である。
【0010】
また、前記に加えて、化学成分として、
Cr:1.5%以下(0%を含まない)、
Mo:0.50%以下(0%を含まない)
よりなる群から選ばれる1種以上を含むことは本発明の好ましい態様であり、更に、化学成分として、
S :0.12%以下(0%を含まない)、
Pb:0.3%以下(0%を含まない)、
Zr:0.2%以下(0%を含まない)、
Ca:0.01%以下(0%を含まない)、
Te:0.1%以下(0%を含まない)、
Bi:0.1%以下(0%を含まない)
よりなる群から選ばれる1種以上を含むことも好ましい態様である。
【0011】
【発明の実施の形態】
本発明者らは、高い疲労強度を有すると共に、脱スケール工程の時間短縮が可能となる様なフェライト・パーライト混合組織非調質鋼の開発を行ってきた。その結果、Cuを適量含有した鋼では地鉄とスケールの界面状態がスケールの剥離し易いものになること、およびC,Si,Mn,Vの含有量を調整することで高い疲労強度を確保し得ることを見出し、本発明を完成したものである。
【0012】
即ち、上記課題は、鋼組織がフェライト・パーライト混合組織である様な非調質鋼において、化学成分としてC :0.25〜0.60%、Si:0.05〜2.0%、Mn:0.30〜2.0%、V :0.03〜0.6%、Cu:0.03〜0.50%、S:0.12%以下(0%を含まない)を含み、残部Feおよび不可避不純物である様にすることで達成される。以下に各成分元素の限定理由を示す。
【0013】
Cは熱間鍛造部品の金属組織中のパーライト量を増大させて強度を確保するのに欠くことのできない元素であり、そのために0.15%以上含有させる必要がある。好ましい下限値は、0.25%である。しかしながら、C量が多くなりすぎると靭性が低下すると共に被削性も低下してくる。更に、熱間鍛造後に生成するスケールが薄くなってスケール剥離性が劣化するので、含有量は0.60%以下にしなければならない。好ましい上限値は0.55%である。
【0014】
Siは鋼材溶製時の脱酸に有効である他、金属組織中のフェライト地に固溶して熱間鍛造部品の耐力、疲労強度の向上に有効な元素であり、そのために0.05%以上含有させることが必要である。好ましい下限値は0.1%である。しかしながら、Si量が多くなりすぎると被削性が劣化すると共に、熱間鍛造時の脱炭を促進して疲労強度が低下する様になるので、含有量は2.0%以下としなければならない。好ましい上限値は1.5%である。
【0015】
Mnは鋼材溶製時の脱酸・脱硫元素として有効であると共に、金属組織中のフェライト地に固溶してフェライトを強化する。更に、パーライト量を増大させ、パーライト中のラメラ間隔を細かくして耐力や疲労強度を向上させる。この様な効果を得るために含有量は0.30%以上とする必要がある。好ましい下限値は0.50%である。しかしながら、Mn量が多くなりすぎると金属組織中にベイナイトを生成して被削性に悪影響を及ぼす様になるので、含有量は2.0%以下にしなければならない。好ましい上限値は1.8%である。
【0016】
Vは微細な炭化物或いは窒化物を形成してフェライト部に析出し、耐力や疲労強度を向上させる元素であり、0.03%以上含有させる必要がある。好ましい下限値は0.05%である。しかしながら、過剰に含有させても効果が飽和するので、0.6%程度を上限とすれば十分である。経済的な面を考慮すると0.4%が好ましい上限値である。
【0017】
Cuはスケール剥離性にとって最も重要な元素である。Cuはスケールと地鉄の界面の地鉄側に濃化し、該濃化層の存在により、表面の局所的な酸化を防止して界面を平坦にする作用を有している。この様に表面全体にスケールが形成され、且つ、界面が平坦となるとスケール剥離性が向上する。その理由は、スケールの一部分に剥離が生じた際に、該剥離が全体に伝搬し易くなること、および、界面が粗く凹凸が多く存在する様な場合には、該凹部内に生成したスケールにより、いわゆるアンカー効果が働いてスケールは地鉄から剥離しにくくなるのに対して、界面が平坦であればアンカー効果が生じなくなること等による。スケール剥離性向上の効果を発揮するためにはCuの含有量は0.03%以上でなければならない。好ましくは0.05%以上である。しかしながら、Cuを過剰に添加するとかえってスケールの剥離性が低下する場合や延性が低下して熱間鍛造時に割れ等を生じる場合があるので、含有量は0.50%以下でなければならない。好ましくは0.30%以下である。
【0018】
また、上記の通り、非調質鋼の組織は、フェライト・パーライト混合組織でなければならない。フェライト・パーライト混合組織は上記の様な化学成分の組成を満足させると共に、熱間鍛造後の冷却速度を、熱間鍛造温度から500℃までの平均で5℃/秒以下程度にすることで製造可能である。
【0019】
本発明の実施にあたっては、鋼の成分として、更に
Cr:1.5%以下(0%を含まない)、
Mo:0.50%以下(0%を含まない)
よりなる群から選ばれる1種以上を含む様にすることが好ましい。これらの元素はいずれも鋼の強度を高めるのに有効な元素であるからである。
【0020】
Crは、パーライト焼き入れ性を高めて強度を向上させるが、1.5%を超えて含有させると鍛造品の金属組織中にベイナイトが生成して被削性に悪影響を及ぼす様になるので、含有量は1.5%以下とする必要がある。また、強度向上の効果を有効に発揮させるためには、0.02%以上含有させることが望ましい。
【0021】
Moは、靭性を損なうことなく、強度を向上させる元素であるが、0.50%を超えて含有させると鍛造品の金属組織中にベイナイトが生成して被削性に悪影響を及ぼす様になるので、含有量は0.50%以下とする必要がある。また、強度向上の効果を有効に発揮させるためには、0.01%以上含有させることが望ましい。
【0022】
また更に、鋼の成分として、
S :0.12%以下(0%を含まない)、
Pb:0.3%以下(0%を含まない)、
Zr:0.2%以下(0%を含まない)、
Ca:0.01%以下(0%を含まない)、
Te:0.1%以下(0%を含まない)、
Bi:0.1%以下(0%を含まない)
よりなる群から選ばれる1種以上を含む様にすることも、本発明の好ましい実施態様である。これらの元素はいずれも被削性を向上させる元素であるからである。
【0023】
特にSは、MnSを形成し被削性を向上させると共に、オーステナイト結晶粒の微細化や粒内フェライトの生成によってフェライト・パーライト混合組織を微細化し、強度や靭性の向上にも寄与する。しかしながら、過剰に含有すると脆化が生じるようになるので、含有量は0.12%以下とする必要がある。
【0024】
また、Zr,CaはMnSを球状化して鍛造品の異方性を改善し、強度の低下を防ぐ効果も有する。しかしながら、Zrの場合には0.2%を超えて、Caの場合には0.01%を超えて含有させたとしても、被削性の向上の効果や異方性の改善効果はほぼ飽和し、逆に靭性や強度の低下が生じる様になるので、含有量はZrは0.2%以下、Caは0.01%以下とする必要がある。
【0025】
Pb,Te,Biについても、過剰に含有させても被削性の向上効果は飽和し、経済的に無駄となるので、含有量はPbの場合には0.3%以下、Te,Biの場合には0.1%以下で十分である。
【0026】
尚、鋼の結晶粒微細化を目的として、鋼の成分として更にTi:0.1%以下(0%を含まない)、Nb:0.1%以下(0%を含まない)、N :0.015%以下(0%を含まない)よりなる群から選ばれる1種以上を含有させる様にすることもできる。しかしながら、各元素を過剰に含有させても、結晶粒微細化の効果は飽和し、逆に熱間鍛造材の脆化を招くようになるので、各元素の含有量には上記の様に上限が必要である。尚、これら以外に不可避不純物の混在が許されることは言うまでもない。
【0027】
【実施例】
以下、本発明を実施例によって更に詳細に説明するが、本発明は下記実施例によって制限されるものではなく、前・後記の趣旨に徴して変更することはいずれも本発明の技術的範囲に含まれる。
【0028】
(実験例1)
種々のCu含有量を有し、熱間鍛造を模擬した試験片(試料No.1〜9)を下記の手順で作製した。
▲1▼50kg真空炉にて溶製し、インゴット化
▲2▼該インゴットをφ25mmに熱間鍛造
▲3▼該熱間鍛造品からJIS Z 2274に規定される1号(D0=12mm、d=8mm、R=16mm、平行部L=25mm)疲労試験片を作製
▲4▼該試験片を高周波加熱装置で1200℃に加熱して1分間保持した後、空冷し、引張強さ800N/mm2 に調整
▲5▼該試験片をインペラー型のショットブラスト装置を用いて脱スケール(使用するショットは粒径φ1mm、硬さHRC40、ショットの投射速度は50m/秒、投射時間はNo.1〜8は1分、No.9は5分)
【0029】
以上により得られた各試料の平行部における表面粗さおよび残留するスケールの面積率を測定した。また、回転曲げ試験により各試料の疲労試験を行い、疲労限および疲労限度比を測定した。各試料のCu含有量および測定結果を表1に、またCu含有量と各測定結果の関係を図1〜3に示す。尚、各試料のCu以外の化学組成は、C:0.40%、Si:0.25%、Mn:0.80%、V:0.10%、残部Feおよび不可避不純物である。また鋼組織は各試料ともフェライト・パーライト混合組織となっており、ベイナイトの発生は見られなかった。
【0030】
【表1】

Figure 0004205184
【0031】
前述の通り、通常、脱スケールのために行われるショットブラスト時間は5分以上である。試料No.1と9を比較すると、両者は化学組成は同一であるが、ショットブラスト時間が通常行われる場合と同様であるNo.9ではスケールがほぼ除去されているのに対し、1分間しかショットブラストを施していないNo.1ではスケールが残存し、表面粗さが大きく、疲労限、疲労限度比が劣っている。
【0032】
一方、No.2〜6は、ショットブラスト時間が1分でも、スケールがほぼ完全に除去され、表面粗さが小さく、その結果、疲労限、疲労限度比がNo.9とほぼ同様に優れている。No.7はCuの含有量が多すぎたため、スケールの剥離性が悪く、表面粗さも大きい。No.8は、更にCu量が多いため、鍛造時に割れが生じた。以上の結果より、Cuを適正に含有させることで、スケールの剥離性が向上し、従来よりも短い時間で脱スケールを行えることが分かる。
【0033】
(実験例2)
種々の組成の試料(試料No.11〜34)を作製し、引張強さ(TS)、残留スケール面積率、表面粗さ、疲労限、疲労限度比等を調べた。TS測定用を除いて、試料の作成方法は実験例1と同様である。尚、ショットブラストの時間は全ての試料に対して1分間とした。また、TS以外の測定も実験例1と同様である。TS測定用資料は、実験例1に示す手順▲1▼〜▲5▼により得られた試験片から直径6mmの丸棒を切削により切り出し、熱処理時の線径効果を考慮してチャック間距離を疲労試験片平行部の長さと同じ25mmとなる様に作製した。得られた試料を引張試験に供して、TSを評価した。各試料の組成および測定の結果を表2、3に示す。尚、作製した試料のうちTSが800N/mm2 に満たないもの、組織観察の結果ベイナイト組織が混在するものについては、その後の測定を中止した。ベイナイト組織が混在するものは、上述の通り本発明の目的に合致しないためであり、TSが800N/mm2 に満たないものは、実際にコンロッド等に使用する際に必要な強度を有していないためである。
【0034】
【表2】
Figure 0004205184
【0035】
【表3】
Figure 0004205184
【0036】
料No.12、13、15、16、21〜23、25〜27、29〜34では、スケールの残留は認められず、表面粗さが小さい。その結果、良好な疲労特性を有している。
【0037】
No.11、18、20はそれぞれC,Mn,Vの含有量が少なかったため、強度が不足していた。No.19、24はそれぞれMn,Crの含有量が多すぎたため、ベイナイト組織が生成していた。No.14、17はそれぞれC,Siの含有量が多すぎたため、スケール剥離性が悪く、表面粗さが大きい。No.28はSの含有量が多かったため、熱間鍛造時に割れが生じた。
【0038】
【発明の効果】
以上説明してきた様に、本発明に係る非調質鋼は、鋼の金属組織がフェライト・パーライト混合組織からなる非調質鋼において、化学成分として、C :0.25〜0.60%、Si:0.05〜2.0%、Mn:0.30〜2.0%、V :0.03〜0.6%、Cu:0.03〜0.50%、S:0.12%以下(0%を含まない)を含み、残部Feおよび不可避不純物である様に構成されているので、高い疲労強度を有すると共に、熱間鍛造後のスケール剥離性に優れた非調質鋼を提供し得る。
【図面の簡単な説明】
【図1】実験例1で得られた実験結果のうち、ショットブラストを1分間施した各試料中のCu量と残留スケール量の関係を示すグラフである。
【図2】実験例1で得られた実験結果のうち、ショットブラストを1分間施した各試料中のCu量と表面粗さの関係を示すグラフである。
【図3】実験例1で得られた実験結果のうち、ショットブラストを1分間施した各試料中のCu量と疲労限の関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-heat treated steel used as an engine part or a structural part for automobiles, construction machines, etc., and in particular, it has a high fatigue strength and is excellent in scale peelability after hot forging. It relates to quality steel.
[0002]
[Prior art]
Conventionally, mechanical structural parts used in automobiles and construction machinery are made of carbon steel for mechanical structure or alloy steel for mechanical structure, and are quenched and tempered after hot forging to ensure the required strength and toughness. (Refining treatment) was performed. However, for the purpose of saving energy and reducing costs required for the tempering treatment as described above, even if the tempering treatment is omitted, the development of a non-tempered steel having the same characteristics as those subjected to the tempering treatment Has been done. As such non-tempered steel, for example, precipitation hardening type elements such as V and Nb are added to carbon steel for machine structure specified in JIS G 4051 and manganese steel for machine structure specified in JIS G 4106. These are used for engine parts such as connecting rods (hereinafter referred to as connecting rods), suspension parts, construction machine parts, and the like of automobiles.
[0003]
These non-tempered steels, after hot forging, are cooled to a ferrite / pearlite mixed structure, and a target hardness is obtained by precipitating carbides and nitrides such as V and Nb in the ferrite part, Since the tempering treatment can be omitted and the heat treatment distortion can be reduced, there is an advantage that the subsequent straightening process can be simplified.
[0004]
On the other hand, the demand for weight reduction of automobiles has been increasing in recent years, and the above-described machine structural parts are also required to be light weight. In particular, since the connecting rod, which is an engine component, is a moving component, if it is possible to reduce the weight of the connecting rod, it is expected to have a great effect on reducing the fuel consumption of an automobile by reducing the moving inertia force.
[0005]
In order to reduce the weight of a machine structural component, it is necessary to improve the fatigue strength of the component. Various developments have been made so far to improve the fatigue strength of non-heat treated steel. For example, in JP-A-4-193931, JP-A-6-212344, JP-A-8-120398, etc., the amount of C, V, Si in steel is optimized and hot forging is performed. Non-tempered steel has been introduced that limits the heating conditions to reduce the amount of ferrite decarburization and suppress the decrease in the hardness of the ferrite decarburized layer to improve the fatigue strength. Japanese Laid-Open Patent Publication No. 4-176842 introduces a non-heat treated steel whose strength and toughness are improved by adjusting the alloy element addition amount and the structure in a steel whose structure is mainly bainite. Further, JP-A-4-141548, JP-A-4-141549, and the like introduce non-tempered steel whose structure is mainly bainite and whose strength is improved by adding Cu. ing.
[0006]
[Problems to be solved by the invention]
The fatigue strength of the non-tempered steel body has been considerably improved by various methods as described above. However, in the case of a connecting rod or the like that is used with its surface being forged, it has been found that the fatigue strength is greatly influenced by the surface properties. That is, since an oxide film (scale) is formed on the surface after hot forging, it is difficult to exhibit the fatigue strength of the non-tempered steel body as it is. Therefore, when manufacturing these connecting rods, etc., after hot forging, descaling is performed by shot blasting, etc., but in order to perform sufficient descaling, it is necessary to spend at least 5 minutes in the descaling process. .
[0007]
Further, when the steel having a structure mainly composed of bainite and the steel having the same strength level are compared with the steel having the same strength level, the ferrite / pearlite mixed structure steel is superior in fatigue strength. In recent years, non-tempered steels are increasingly required to have high fatigue strength, and in order to satisfy such demands, it is desired to use ferritic / pearlite mixed structure steel instead of bainitic steel.
[0008]
The present invention has been made paying attention to such a situation, and an object thereof is to provide a non-heat treated steel for hot forging that has high fatigue strength and can shorten the descaling time. .
[0009]
[Means for Solving the Problems]
The non-heat treated steel according to the present invention that has achieved the above-mentioned problem is a non-heat treated steel in which the metal structure of the steel is a mixed structure of ferrite and pearlite. As a chemical component, C: 0.25 to 0.60% , Si: 0.05-2.0%, Mn: 0.30-2.0%, V: 0.03-0.6%, Cu: 0.03-0.50% , S: 0.12 % High-strength strength non-tempered steel excellent in scale peelability after hot forging, characterized by containing not more than% (not including 0%) and the balance being Fe and inevitable impurities.
[0010]
In addition to the above, as a chemical component,
Cr: 1.5% or less (excluding 0%),
Mo: 0.50% or less (excluding 0%)
It is a preferred embodiment of the present invention that contains at least one selected from the group consisting of:
S: 0.12% or less (excluding 0%),
Pb: 0.3% or less (excluding 0%),
Zr: 0.2% or less (excluding 0%),
Ca: 0.01% or less (excluding 0%),
Te: 0.1% or less (excluding 0%),
Bi: 0.1% or less (excluding 0%)
It is also a preferred embodiment that one or more selected from the group consisting of:
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The present inventors have developed a ferrite-pearlite mixed structure non-heat treated steel that has high fatigue strength and can shorten the time of the descaling process. As a result, in steel containing an appropriate amount of Cu, the interface state between the base iron and the scale becomes easy to peel off, and high fatigue strength is secured by adjusting the contents of C, Si, Mn, and V. The present invention has been found and the present invention has been completed.
[0012]
That is, the above problem is that in a non-heat treated steel in which the steel structure is a ferrite-pearlite mixed structure, C: 0.25 to 0.60% as a chemical component, Si: 0.05 to 2.0%, Mn : 0.30 to 2.0%, V: 0.03 to 0.6%, Cu: 0.03 to 0.50% , S: 0.12% or less (excluding 0%) , the balance This is achieved by making it Fe and inevitable impurities. The reason for limitation of each component element is shown below.
[0013]
C is an element indispensable for increasing the amount of pearlite in the metal structure of the hot forged part and ensuring the strength. For this reason, it is necessary to contain 0.15% or more . A preferred lower limit is 0.25%. However, when the amount of C is too large, toughness is lowered and machinability is also lowered. Furthermore, since the scale produced | generated after hot forging becomes thin and scale peelability deteriorates, content must be 0.60% or less. A preferred upper limit is 0.55%.
[0014]
In addition to being effective for deoxidation when melting steel, Si is an element effective for improving the yield strength and fatigue strength of hot forged parts by dissolving in ferrite in the metal structure. It is necessary to contain above. A preferred lower limit is 0.1%. However, if the amount of Si is too large, the machinability deteriorates and the decarburization at the time of hot forging is promoted so that the fatigue strength decreases. Therefore, the content must be 2.0% or less. . A preferred upper limit is 1.5%.
[0015]
Mn is effective as a deoxidizing / desulfurizing element when melting steel, and strengthens ferrite by dissolving in the ferrite ground in the metal structure. Furthermore, the amount of pearlite is increased, and the lamella spacing in the pearlite is reduced to improve the yield strength and fatigue strength. In order to obtain such an effect, the content needs to be 0.30% or more. A preferred lower limit is 0.50%. However, if the amount of Mn is too large, bainite is generated in the metal structure and adversely affects the machinability, so the content must be 2.0% or less. A preferred upper limit is 1.8%.
[0016]
V is an element that forms fine carbides or nitrides and precipitates in the ferrite portion to improve the proof stress and fatigue strength, and should be contained in an amount of 0.03% or more. A preferred lower limit is 0.05%. However, since the effect is saturated even if it is contained excessively, it is sufficient that the upper limit is about 0.6%. In consideration of economic aspect, 0.4% is a preferable upper limit value.
[0017]
Cu is the most important element for scale peelability. Cu concentrates on the ground iron side of the interface between the scale and the ground iron, and due to the presence of the concentrated layer, local oxidation of the surface is prevented and the interface is flattened. In this way, when the scale is formed on the entire surface and the interface becomes flat, the scale peelability is improved. The reason for this is that when peeling occurs in a part of the scale, the peeling easily propagates to the whole, and in the case where the interface is rough and there are many irregularities, the scale generated in the recess This is because the so-called anchor effect works to make it difficult for the scale to peel off from the ground iron, whereas the anchor effect does not occur if the interface is flat. In order to exhibit the effect of improving the scale peelability, the Cu content must be 0.03% or more. Preferably it is 0.05% or more. However, if Cu is added excessively, the peelability of the scale may be lowered, or the ductility may be lowered and cracking may occur during hot forging. Therefore, the content must be 0.50% or less. Preferably it is 0.30% or less.
[0018]
Further, as described above, the structure of the non-heat treated steel must be a ferrite / pearlite mixed structure. Ferrite and pearlite mixed structure satisfies the composition of the chemical components as described above, and is manufactured by setting the cooling rate after hot forging to about 5 ° C / second or less on average from the hot forging temperature to 500 ° C. Is possible.
[0019]
In carrying out the present invention, as a steel component, Cr: 1.5% or less (excluding 0%),
Mo: 0.50% or less (excluding 0%)
It is preferable to include at least one selected from the group consisting of: This is because these elements are effective elements for increasing the strength of steel.
[0020]
Cr increases the pearlite hardenability and improves the strength, but if it exceeds 1.5%, bainite is generated in the metal structure of the forged product, so that the machinability is adversely affected. The content needs to be 1.5% or less. Moreover, in order to exhibit the effect of strength improvement effectively, it is desirable to make it contain 0.02% or more.
[0021]
Mo is an element that improves the strength without impairing toughness. However, when it is contained in an amount exceeding 0.50%, bainite is generated in the metal structure of the forged product, and the machinability is adversely affected. Therefore, the content needs to be 0.50% or less. Moreover, in order to exhibit the effect of strength improvement effectively, it is desirable to make it contain 0.01% or more.
[0022]
Furthermore, as a component of steel,
S: 0.12% or less (excluding 0%),
Pb: 0.3% or less (excluding 0%),
Zr: 0.2% or less (excluding 0%),
Ca: 0.01% or less (excluding 0%),
Te: 0.1% or less (excluding 0%),
Bi: 0.1% or less (excluding 0%)
It is also a preferred embodiment of the present invention to include one or more selected from the group consisting of. This is because all of these elements improve the machinability.
[0023]
In particular, S forms MnS and improves machinability, and also refines the mixed structure of ferrite and pearlite by refining austenite crystal grains and generating intragranular ferrite, thereby contributing to improvement of strength and toughness. However, since it will embrittle if it contains excessively, content needs to be 0.12% or less.
[0024]
Zr and Ca also have an effect of improving the anisotropy of the forged product by spheroidizing MnS and preventing a decrease in strength. However, the effect of improving machinability and the effect of improving anisotropy are almost saturated even if the content of Zr exceeds 0.2% and the content of Ca exceeds 0.01%. On the other hand, since the toughness and the strength are lowered, the Zr content must be 0.2% or less and the Ca content must be 0.01% or less.
[0025]
Even if Pb, Te, Bi is excessively contained, the machinability improvement effect is saturated and is economically wasteful. Therefore, the content is 0.3% or less in the case of Pb, Te, Bi. In some cases, 0.1% or less is sufficient.
[0026]
For the purpose of refining steel crystal grains, the steel components are further Ti: 0.1% or less (not including 0%), Nb: 0.1% or less (not including 0%), N: 0 One or more selected from the group consisting of .015% or less (not including 0%) can also be included. However, even if each element is excessively contained, the effect of crystal grain refinement is saturated, and conversely, the hot forging material becomes brittle, so the content of each element is the upper limit as described above. is required. It goes without saying that inevitable impurities other than these are allowed to be mixed.
[0027]
【Example】
Hereinafter, the present invention will be described in more detail by way of examples. However, the present invention is not limited by the following examples, and any modifications made in accordance with the gist of the preceding and following descriptions are within the technical scope of the present invention. included.
[0028]
(Experimental example 1)
Test pieces (sample Nos. 1 to 9) having various Cu contents and simulating hot forging were produced by the following procedure.
(1) Melting in a 50 kg vacuum furnace to form an ingot (2) Hot forging the ingot to φ25 mm (3) No. 1 as defined in JIS Z 2274 (D0 = 12 mm, d = 8 mm, R = 16 mm, parallel part L = 25 mm) Fatigue test piece was prepared. (4) The test piece was heated to 1200 ° C. with a high-frequency heating device and held for 1 minute, then air-cooled, and tensile strength 800 N / mm 2. (5) Descaling the test piece using an impeller-type shot blasting device (the shot to be used has a particle diameter of 1 mm, the hardness is HRC40, the shot projection speed is 50 m / sec, and the projection time is No. 1-8) Is 1 minute, No. 9 is 5 minutes)
[0029]
The surface roughness at the parallel portion of each sample obtained as described above and the area ratio of the remaining scale were measured. Moreover, the fatigue test of each sample was performed by the rotating bending test, and the fatigue limit and the fatigue limit ratio were measured. The Cu content and measurement results of each sample are shown in Table 1, and the relationship between the Cu content and each measurement result is shown in FIGS. The chemical composition of each sample other than Cu is C: 0.40%, Si: 0.25%, Mn: 0.80%, V: 0.10%, the balance Fe and inevitable impurities. The steel structure was a ferrite-pearlite mixed structure in each sample, and no bainite was observed.
[0030]
[Table 1]
Figure 0004205184
[0031]
As described above, the shot blasting time usually performed for descaling is 5 minutes or more. Sample No. When comparing No. 1 and No. 9, both have the same chemical composition, but the same as in the case where shot blasting time is normally performed. In No. 9, the scale was almost removed, whereas No. 9 was shot blasted only for 1 minute. In No. 1, the scale remains, the surface roughness is large, and the fatigue limit and fatigue limit ratio are inferior.
[0032]
On the other hand , N o. In Nos. 2 to 6, even when the shot blasting time was 1 minute, the scale was almost completely removed and the surface roughness was small. As good as 9. No. No. 7 has too much Cu content, so the peelability of the scale is poor and the surface roughness is also large. No. Since No. 8 had a larger amount of Cu, cracking occurred during forging. From the above results, it can be seen that by appropriately containing Cu, the peelability of the scale is improved and the descaling can be performed in a shorter time than conventional.
[0033]
(Experimental example 2)
Samples of various compositions (Sample Nos. 11 to 34) were prepared and examined for tensile strength (TS), residual scale area ratio, surface roughness, fatigue limit, fatigue limit ratio, and the like. The sample preparation method is the same as in Experimental Example 1 except for TS measurement. The shot blasting time was 1 minute for all samples. Measurements other than TS are the same as in Experimental Example 1. For TS measurement data, a 6 mm diameter round bar is cut out from the test piece obtained by the procedures (1) to (5) shown in Experimental Example 1, and the distance between chucks is set in consideration of the wire diameter effect during heat treatment. The fatigue test piece was prepared to have the same length of 25 mm as the parallel part. The obtained sample was subjected to a tensile test to evaluate TS. Tables 2 and 3 show the composition of each sample and the measurement results. Of the prepared samples, the measurement was stopped for samples with a TS of less than 800 N / mm 2 and those with a bainite structure mixed as a result of the structure observation. As described above, the bainite structure is mixed because it does not meet the object of the present invention, and the TS less than 800 N / mm 2 has the strength required when actually used for a connecting rod or the like. This is because there is not.
[0034]
[Table 2]
Figure 0004205184
[0035]
[Table 3]
Figure 0004205184
[0036]
Specimen No. In 12, 13, 15, 16, 21-23, 25-27, and 29-34, no scale residue is observed and the surface roughness is small. As a result, it has good fatigue properties.
[0037]
No. Since 11, 18 and 20 each had a low content of C, Mn and V, the strength was insufficient. No. In 19 and 24, since the contents of Mn and Cr were too large, a bainite structure was generated. No. Nos. 14 and 17 had too much C and Si, respectively, so that the scale peelability was poor and the surface roughness was large. No. Since No. 28 had a high S content, cracking occurred during hot forging.
[0038]
【The invention's effect】
As explained above, the non-heat treated steel according to the present invention is a non-heat treated steel in which the metal structure of the steel is a ferrite / pearlite mixed structure. As a chemical component, C: 0.25 to 0.60%, Si: 0.05-2.0%, Mn: 0.30-2.0%, V: 0.03-0.6%, Cu: 0.03-0.50% , S: 0.12% The following (not including 0%) is included so that the balance is Fe and unavoidable impurities, so that non-tempered steel with high fatigue strength and excellent scale peelability after hot forging is provided. Can do.
[Brief description of the drawings]
1 is a graph showing the relationship between the amount of Cu and the amount of residual scale in each sample subjected to shot blasting for 1 minute, among the experimental results obtained in Experimental Example 1. FIG.
FIG. 2 is a graph showing the relationship between the amount of Cu in each sample subjected to shot blasting for 1 minute and the surface roughness among the experimental results obtained in Experimental Example 1.
FIG. 3 is a graph showing the relationship between the amount of Cu in each sample subjected to shot blasting for 1 minute and the fatigue limit among the experimental results obtained in Experimental Example 1.

Claims (3)

鋼の金属組織がフェライト・パーライト混合組織からなる非調質鋼において、化学成分として、
C :0.25〜0.60%(質量%、以下同じ)、
Si:0.05〜2.0%、
Mn:0.30〜2.0%、
V :0.03〜0.6%、
Cu:0.03〜0.50%
S :0.12%以下(0%を含まない)
を含み、残部Feおよび不可避不純物であることを特徴とする熱間鍛造後のスケール剥離性に優れた高疲労強度非調質鋼。
In the non-heat treated steel whose steel microstructure is a mixed structure of ferrite and pearlite,
C: 0.25 to 0.60% (mass%, the same shall apply hereinafter)
Si: 0.05-2.0%,
Mn: 0.30 to 2.0%,
V: 0.03-0.6%,
Cu: 0.03 to 0.50% ,
S: 0.12% or less (excluding 0%)
High fatigue strength non-tempered steel excellent in scale peelability after hot forging, characterized by comprising Fe and balance impurities.
化学成分として、
Cr:1.5%以下(0%を含まない)、
Mo:0.50%以下(0%を含まない)
よりなる群から選ばれる1種以上を含む請求項1に記載の高疲労強度非調質鋼。
As a chemical component
Cr: 1.5% or less (excluding 0%),
Mo: 0.50% or less (excluding 0%)
The high fatigue strength non-heat treated steel according to claim 1, comprising at least one selected from the group consisting of:
化学成分として
b:0.3%以下(0%を含まない)、
Zr:0.2%以下(0%を含まない)、
Ca:0.01%以下(0%を含まない)、
Te:0.1%以下(0%を含まない)、
Bi:0.1%以下(0%を含まない)
よりなる群から選ばれる1種以上を含む請求項1または2に記載の高疲労強度非調質鋼。
As a chemical component,
P b: 0.3% or less (not including 0%),
Zr: 0.2% or less (excluding 0%),
Ca: 0.01% or less (excluding 0%),
Te: 0.1% or less (excluding 0%),
Bi: 0.1% or less (excluding 0%)
The high fatigue strength non-heat treated steel according to claim 1 or 2, comprising at least one selected from the group consisting of:
JP14820697A 1997-06-05 1997-06-05 High fatigue strength non-tempered steel with excellent scale peelability after hot forging Expired - Lifetime JP4205184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14820697A JP4205184B2 (en) 1997-06-05 1997-06-05 High fatigue strength non-tempered steel with excellent scale peelability after hot forging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14820697A JP4205184B2 (en) 1997-06-05 1997-06-05 High fatigue strength non-tempered steel with excellent scale peelability after hot forging

Publications (2)

Publication Number Publication Date
JPH10330878A JPH10330878A (en) 1998-12-15
JP4205184B2 true JP4205184B2 (en) 2009-01-07

Family

ID=15447642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14820697A Expired - Lifetime JP4205184B2 (en) 1997-06-05 1997-06-05 High fatigue strength non-tempered steel with excellent scale peelability after hot forging

Country Status (1)

Country Link
JP (1) JP4205184B2 (en)

Also Published As

Publication number Publication date
JPH10330878A (en) 1998-12-15

Similar Documents

Publication Publication Date Title
JPH0892690A (en) Carburized parts excellent in fatigue resistance and its production
JP3809004B2 (en) Induction quenching steel with excellent high strength and low heat treatment strain characteristics and its manufacturing method
JP3255296B2 (en) High-strength steel for spring and method of manufacturing the same
JP3816721B2 (en) High strength wire rod excellent in delayed fracture resistance and under neck toughness, or delayed fracture resistance, forgeability and under neck toughness, and method for producing the same
JP3738004B2 (en) Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method
JPH09143610A (en) Hot forged non-heat treated steel having high fatigue strength and its production
CN112195412B (en) Nb-V microalloyed high-strength high-toughness bainite non-quenched and tempered steel for high-power engine crankshaft and preparation method thereof
JP2004027334A (en) Steel for induction tempering and method of producing the same
JP3327635B2 (en) Non-tempered steel for hot forging excellent in fatigue strength and method for producing non-heat-treated hot forged product using the steel
JP5204593B2 (en) Manufacturing method of high strength non-tempered hot forged steel
JPH11131134A (en) Production of high strength formed part made of non-refining steel
JP2991064B2 (en) Non-tempered nitrided forged steel and non-tempered nitrided forged products
JP3774697B2 (en) Steel material for high strength induction hardening and method for manufacturing the same
JP3999457B2 (en) Wire rod and steel bar excellent in cold workability and manufacturing method thereof
JP3716073B2 (en) Manufacturing method of hot forged parts with excellent machinability and fatigue characteristics
JP3739958B2 (en) Steel with excellent machinability and its manufacturing method
JP3304550B2 (en) Manufacturing method of induction hardened parts with notches
JP2888135B2 (en) High durability high strength non-heat treated steel and its manufacturing method
JP3443285B2 (en) Hot rolled steel for cold forging with excellent crystal grain coarsening prevention properties and cold forgeability, and method for producing the same
JP4205184B2 (en) High fatigue strength non-tempered steel with excellent scale peelability after hot forging
JPH07238343A (en) Free cutting carburizing steel and heat treatment therefor before machining
JP3644217B2 (en) Induction-hardened parts and manufacturing method thereof
JP2000008141A (en) Non-heat treated soft-nitrided steel forged parts and production thereof
JP3432944B2 (en) Steel material for induction hardened shaft parts with excellent torsional fatigue strength
JP3211627B2 (en) Steel for nitriding and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050314

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060921

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061002

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20061110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081016

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

EXPY Cancellation because of completion of term