JP4203915B2 - Refrigeration equipment - Google Patents

Refrigeration equipment Download PDF

Info

Publication number
JP4203915B2
JP4203915B2 JP2004299499A JP2004299499A JP4203915B2 JP 4203915 B2 JP4203915 B2 JP 4203915B2 JP 2004299499 A JP2004299499 A JP 2004299499A JP 2004299499 A JP2004299499 A JP 2004299499A JP 4203915 B2 JP4203915 B2 JP 4203915B2
Authority
JP
Japan
Prior art keywords
compressor
motor
driven
rotor
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004299499A
Other languages
Japanese (ja)
Other versions
JP2005040000A (en
Inventor
宏明 坪江
進 中山
彰 猿田
和幹 浦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2004299499A priority Critical patent/JP4203915B2/en
Publication of JP2005040000A publication Critical patent/JP2005040000A/en
Application granted granted Critical
Publication of JP4203915B2 publication Critical patent/JP4203915B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • F25B2400/0751Details of compressors or related parts with parallel compressors the compressors having different capacities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Description

本発明は、蒸気圧縮冷凍サイクルを用いる空気調和機及び室外機並びに冷凍装置に関し、低価格品から高価格品までの広い用途、共通化を進め機種展開を容易にするものに好適である。   The present invention relates to an air conditioner, an outdoor unit, and a refrigeration apparatus that use a vapor compression refrigeration cycle, and is suitable for a wide range of uses from a low-priced product to a high-priced product and for facilitating the development of models.

蒸気圧縮冷凍サイクルを使用した空気調和機及び室外機並びに冷凍装置に用いる冷媒圧縮機としては、回転数がほぼ一定として駆動される一定速形圧縮機、回転速度が制御されるインバータ形圧縮機があり、商用周波数の交流電圧で容易に駆動できること等よりかご型導体(巻線)を設けた誘導電動機が採用されることが多い。また、高効率化の観点より回転子鉄心に永久磁石を設けてなる回転子と電機子鉄心に三相巻線を設けた電機子を有するDCモータを採用することも例えば、特開平5−211796号公報に記載されているように知られている。
さらに、産業用モータは、省エネルギニーズの要求より、高効率で商用電源駆動が可能なものとして埋込磁石同期電動機が提案され、例えば 平野他3名:新高率モータと応用:技報 安川、第62巻、No.4、1998、通巻241号 に記載されている。
Refrigerant compressors used in air conditioners, outdoor units and refrigeration systems that use a vapor compression refrigeration cycle include constant-speed compressors that are driven at a substantially constant rotational speed, and inverter-type compressors that are controlled in rotational speed. In addition, an induction motor provided with a squirrel-cage conductor (winding) is often adopted because it can be easily driven by an AC voltage of commercial frequency. Further, from the viewpoint of high efficiency, it is also possible to employ a DC motor having a rotor in which a permanent magnet is provided on a rotor core and an armature in which a three-phase winding is provided on an armature core. It is known as described in the Gazette.
Furthermore, for industrial motors, embedded magnet synchronous motors have been proposed as those that can drive commercial power sources with high efficiency in response to demands for energy conservation. For example, Hirano et al. 3: New high-rate motor and application: Technical report Yaskawa, No. 62, No. 4, 1998, Vol.

特開平5−211796号公報JP-A-5-211796 平野他3名著,「新高率モータと応用」技報 安川,第62巻,No.4,1998,通巻241号Hirano et al., “New High Rate Motor and Application” Technical Report Yaskawa, Vol. 62, No. 4, 1998, Vol.

上記従来技術において、特開平5−211796号公報に記載されているものでは、高効率化の点では良いが、始動するためにはその電源に周波数を可変できるインバータを採用することが必然的となり、電源回路等が複雑化し、冷凍サイクルを有するシステムとして見た場合、用途によっては必要以上に複雑となり高価となることがある。
また、上記従来技術による埋込磁石同期電動機を冷凍サイクルが用いられる空気調和機及び室外機並びに冷凍装置に採用するには、例えば、電動機の回転速度についても冷凍サイクルに必要とされる冷媒吐出量、冷凍サイクルとしての効率を考慮しなければならないし、圧縮機の圧縮室の容積、圧縮機全体の大きさ、さらには圧縮機を搭載する室外ユニットのサイズなどが大きくならないようにしなければならない。
In the above prior art, what is described in JP-A-5-211796 is good in terms of high efficiency, but in order to start, it is necessary to employ an inverter whose frequency can be varied for the power supply. When a power supply circuit or the like is complicated and viewed as a system having a refrigeration cycle, it may be more complicated than necessary and expensive depending on the application.
In addition, in order to employ the above-described prior art synchronous magnet synchronous motor for an air conditioner, an outdoor unit, and a refrigeration apparatus in which a refrigeration cycle is used, for example, the refrigerant discharge amount required for the refrigeration cycle with respect to the rotational speed of the motor The efficiency of the refrigeration cycle must be taken into consideration, and the volume of the compression chamber of the compressor, the overall size of the compressor, and the size of the outdoor unit on which the compressor is mounted must not be increased.

さらに、冷凍サイクルを始動する場合、圧縮機の吐出側と吸入側の差圧が大きいと埋込磁石同期電動機であっても始動が不可能となったり、その信頼性が不充分となったりする恐れがある。
さらに、冷凍サイクルの定常運転時、つまり同期状態の運転時に過負荷が生じると埋込磁石同期電動機の回転子が大きく失速したり、電動機の巻線温度が上昇して最悪の場合、巻線の絶縁材料が劣化したり、巻線の絶縁破壊を生じたりして、装置の信頼性が著しく損なわることになる。
さらに、埋込磁石同期電動機の永久磁石の冷凍サイクルを循環する冷媒や潤滑油の劣化に対する影響も最小限となるようにする必要がある。
Further, when starting the refrigeration cycle, if the differential pressure between the discharge side and the suction side of the compressor is large, even the embedded magnet synchronous motor may not be able to start or its reliability may be insufficient. There is a fear.
Furthermore, if an overload occurs during steady operation of the refrigeration cycle, i.e., during synchronous operation, the rotor of the embedded magnet synchronous motor will greatly stall, or the winding temperature of the motor will rise and in the worst case, The insulation material is deteriorated or the insulation breakdown of the winding is caused, so that the reliability of the device is remarkably impaired.
Furthermore, it is necessary to minimize the influence on the deterioration of refrigerant and lubricating oil circulating in the refrigeration cycle of the permanent magnet of the embedded magnet synchronous motor.

本発明の目的は、消費電力を小さくし、高効率とすると共に、商用電源駆動が可能で信頼性の高い冷凍装置を得ることにある。 An object of the present invention is to obtain a highly reliable refrigeration apparatus that can reduce power consumption, increase efficiency, and drive a commercial power source .

上記課題を解決するため、本発明は、電動機によって駆動される複数台の圧縮機を備えた冷凍サイクルを有する冷凍装置において、インバータで容量制御される可変速形圧縮機と、回転子の鉄心にかご形導体と永久磁石が設けられ商用電源で駆動され、始動時は誘導電動機として非同期状態で駆動され、定常運転時は同期速度で同期電動機として運転される電動機を有する一定速形圧縮機と、前記複数台の圧縮機の吐出側と吸入側とをバイパスし、前記複数台の圧縮機の吐出側圧力が前記圧縮機の失速に関連して定められた設定圧力となった場合、前記複数台の圧縮機の吐出側と吸入側とをバイパスさせるバイパス回路と、前記一定速形圧縮機の吐出側に設けられた逆止弁とを備え、前記可変速形圧縮機を始動し、その後前記一定速形圧縮機を駆動するものである。 In order to solve the above problems, the present invention provides a variable speed compressor controlled in capacity by an inverter and a rotor iron core in a refrigeration apparatus having a refrigeration cycle including a plurality of compressors driven by an electric motor. A constant-speed compressor having a cage-shaped conductor and a permanent magnet, driven by a commercial power supply, driven in an asynchronous state as an induction motor at start- up , and driven as a synchronous motor at a synchronous speed during steady operation ; If the a plurality discharge side of the compressor and a suction side bypassing the discharge pressure of the plurality of compressors is a set pressure defined in relation to the stall of the compressor, said plurality A bypass circuit for bypassing the discharge side and the suction side of the compressor, and a check valve provided on the discharge side of the constant speed compressor, starting the variable speed compressor, and then starting the constant speed High speed compressor It is intended to drive.

また、上記のものにおいて、前記一定速形圧縮機をスクロール圧縮機としたことが望ましい。   Moreover, in the above, it is preferable that the constant speed compressor is a scroll compressor.

さらに、上記のものにおいて、前記冷凍装置は室外熱交換器及び室内熱交換器を備えた空気調和機であることが望ましい。   Furthermore, in the above, it is desirable that the refrigeration apparatus is an air conditioner including an outdoor heat exchanger and an indoor heat exchanger.

また、上記のものにおいて、前記スクロール圧縮機は固定スクロールと旋回スクロールとを有し、圧力容器に内封された前記電動機で前記旋回スクロールが駆動されることが望ましい。 Further, in those described above, the scroll compressor and a orbiting scroll and the fixed scroll, said orbiting scroll in the motor which is Uchifu the pressure vessel is driven Rukoto is desirable.

以上説明した本発明によれば、以下の効果が得られる。
(イ)電動機によって駆動される複数台の圧縮機を備えた冷凍サイクルを有する冷凍装置において、インバータで容量制御される可変速形圧縮機と、回転子の鉄心にかご形導体と永久磁石が設けられ商用電源で駆動され、始動時は誘導電動機として非同期状態で駆動され、定常運転時は同期速度で同期電動機として運転される電動機を有する一定速形圧縮機と、前記複数台の圧縮機の吐出側と吸入側とをバイパスし、前記複数台の圧縮機の吐出側圧力が前記圧縮機の失速に関連して定められた設定圧力となった場合、前記複数台の圧縮機の吐出側と吸入側とをバイパスさせるバイパス回路を備える構成とし、複数台の圧縮機の吐出圧力が圧縮機の失速に関連して定められた設定圧力となったときに吐出側と吸入側とがバイパスされるように構成しているので、運転中の吐出側圧力を下げることができ、回転子の鉄心にかご形導体と永久磁石が設けられ商用電源で駆動される電動機を有する一定速形圧縮機の失速を防止できる。この結果、冷凍サイクルの異常を防ぐことができ、信頼性の高い冷凍装置を得ることができる。
(ロ)電動機によって駆動される複数台の圧縮機を備えた冷凍サイクルを有する冷凍装置において、インバータで容量制御される可変速形圧縮機と、回転子の鉄心にかご形導体と永久磁石が設けられ商用電源で駆動され、始動時は誘導電動機として非同期状態で駆動され、定常運転時は同期速度で同期電動機として運転される電動機を有する一定速形圧縮機とを備え、可変速形圧縮機を始動し、その後一定速形圧縮機を駆動するようにしているため、一定速形圧縮機の起動時にはその吐出側圧力と吸入側圧力の差圧が大きくなるが、本発明では一定速形圧縮機の吐出側に逆止弁を備えているため、可変速形圧縮機の駆動中でも前記差圧を小さくして一定速形圧縮機を始動できる。従って、回転子の鉄心にかご形導体と永久磁石が設けられ商用電源で駆動される電動機を有する一定速形圧縮機の商用電源での始動も容易に行うことができる。
(ハ)インバータで容量制御される可変速形圧縮機と、回転子の鉄心にかご形導体と永久磁石が設けられ商用電源で駆動され、始動時は誘導電動機として非同期状態で駆動され、定常運転時は同期速度で同期電動機として運転される電動機を有する一定速形圧縮機とを備えているので、大容量で、容量可変幅が大きく、かつ木目細かい制御ができると共に、高効率の冷凍装置を得ることができる。
According to the present invention described above, the following effects can be obtained.
(B) In a refrigeration system having a refrigeration cycle having a plurality of compressors driven by an electric motor, a variable speed compressor whose capacity is controlled by an inverter, and a cage conductor and a permanent magnet provided on the rotor core A constant speed compressor having an electric motor driven in an asynchronous state as an induction motor at start- up , and driven as a synchronous motor at a synchronous speed during steady operation , and discharge of the plurality of compressors bypass the side and suction side, wherein if the discharge pressure of the plurality of compressors is a set pressure defined in relation to the stall of the compressor, suction and discharge side of the plurality of compressors And a bypass circuit that bypasses the discharge side, so that the discharge side and the suction side are bypassed when the discharge pressure of a plurality of compressors reaches a set pressure determined in connection with the stall of the compressor Ni Therefore, the discharge-side pressure during operation can be reduced, and the stall of a constant speed compressor having an electric motor that is provided with a squirrel-cage conductor and a permanent magnet in the rotor core and driven by a commercial power source can be prevented. . As a result, an abnormality in the refrigeration cycle can be prevented, and a highly reliable refrigeration apparatus can be obtained.
(B) In a refrigeration apparatus having a refrigeration cycle having a plurality of compressors driven by an electric motor, a variable speed compressor whose capacity is controlled by an inverter, and a squirrel-cage conductor and a permanent magnet provided on the rotor core And a constant speed compressor having an electric motor that is driven in an asynchronous state as an induction motor at start- up, and that is operated as a synchronous motor at a synchronous speed during steady operation. Since the constant speed compressor is started after that, the differential pressure between the discharge side pressure and the suction side pressure increases when the constant speed compressor is started. In the present invention, the constant speed compressor Since the check valve is provided on the discharge side, the constant pressure compressor can be started by reducing the differential pressure even while the variable speed compressor is being driven. Therefore, it is possible to easily start the constant speed compressor having the electric motor provided with the cage conductor and the permanent magnet on the iron core of the rotor and driven by the commercial power source.
(C) a variable speed type compressor which is capacitively controlled by the inverter is driven by a commercial power supply provided cage conductor and the permanent magnet to the core of the rotor, during startup is driven asynchronously state as an induction motor, the steady operation When equipped with a constant speed compressor that has a motor that operates as a synchronous motor at a synchronous speed, it has a large capacity, a large capacity variable width, fine control, and a highly efficient refrigeration system. Obtainable.

以下、本発明の実施の形態を詳細に図を参照して説明する。
蒸気圧縮冷凍サイクルを用いる空気調和機の効率向上のためには、冷凍サイクルを構成する部品の中で最も消費電力が大きい冷媒圧縮機に用いる電動機の効率を向上することが効果的である。従来、冷媒圧縮機には誘導電動機が用いられることが多いが、それに比べ効率の高い電動機としては、回転子鉄心内に永久磁石を埋設した同期電動機が知られている。同期電動機は、電動機の回転子に埋設された永久磁石と固定子より発生した回転磁場の引き合いを利用して回転することから、誘導電動機では発生する電動機の回転子に流れる2次電流が発生せず、これによるエネルギー損失がないことから効率が高くなる。
しかし、冷媒圧縮機に用いる電動機として同期電動機を使用する場合、以下のようなことを考慮しなければならない。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
In order to improve the efficiency of an air conditioner that uses a vapor compression refrigeration cycle, it is effective to improve the efficiency of an electric motor that is used in a refrigerant compressor that consumes the largest amount of power among the components that make up the refrigeration cycle. Conventionally, induction motors are often used for refrigerant compressors, but synchronous motors in which permanent magnets are embedded in a rotor core are known as motors with higher efficiency. Since the synchronous motor rotates by utilizing the magnetic field generated by the permanent magnet embedded in the rotor of the motor and the stator, the induction motor generates a secondary current that flows to the motor rotor. Therefore, the efficiency is increased because there is no energy loss.
However, when using a synchronous motor as an electric motor used for a refrigerant compressor, the following must be considered.

冷媒圧縮機の電動機として同期電動機を使用し、その同期電動機に直接、商用電源を接続すると、電動機の固定子より発生する回転磁界は電源周波数(50/60Hz)に相当する回転速度(同期速度)となる。冷媒圧縮機に用いる電動機の回転子は、冷媒圧縮機の回転部品と一体化されているため慣性力が大きい。そのため、始動時において、回転子は固定子より発生する回転磁界の回転速度に追従できず、冷凍サイクルは始動できない。よって、一定速形圧縮機が必要とされる場合、商用電源駆動を前提とすることが好ましいので同期電動機を使用することはできなかった。   When a synchronous motor is used as the motor for the refrigerant compressor and a commercial power source is directly connected to the synchronous motor, the rotating magnetic field generated from the stator of the motor is a rotating speed (synchronous speed) corresponding to the power frequency (50/60 Hz). It becomes. Since the rotor of the electric motor used for the refrigerant compressor is integrated with the rotating parts of the refrigerant compressor, the inertial force is large. Therefore, at the time of starting, the rotor cannot follow the rotation speed of the rotating magnetic field generated from the stator, and the refrigeration cycle cannot be started. Therefore, when a constant speed compressor is required, it is preferable to use a commercial power supply, and thus a synchronous motor cannot be used.

図1および図2は、本発明による一実施の形態である空気調和機であり、圧縮機が商用電源で駆動される一定速形圧縮機であり、その圧縮機に用いられる電動機の回転子鉄心が同期速度以下では、誘導電動機として作用する同期電動機を内蔵し、つまり回転子鉄心内に2極に着磁された永久磁石が埋設されている。
図1に示す空気調和機は、一定速形圧縮機1、四方弁2、室外熱交換器3、室外膨張装置5、室内膨張装置6、室内熱交換器7、アキュムレータ9を順次連結し構成されている。一定速形圧縮機1に使用する電動機として、その回転子に、回転子の外周近傍に周方向に沿ってかご型巻線(導体)を形成し、かつ回転子に永久磁石が埋設されることで、回転子の回転速度が同期速度になるまでは誘導電動機として作用し、回転子の回転速度が同期速度となると同期電動機として働く。そのため、インバータを用いなくても始動が可能であると共に、同期速度での運転時、つまり商用電源の電源周波数(50/60Hz)で決まる回転数(3000r/min、3600r/min)での定常運転時において、電動機の回転子に2次電流が発生しないので効率を向上できる。
1 and 2 show an air conditioner according to an embodiment of the present invention, in which a compressor is a constant speed compressor driven by a commercial power source, and a rotor core of an electric motor used in the compressor. However, below the synchronous speed, a synchronous motor acting as an induction motor is incorporated, that is, a permanent magnet magnetized in two poles is embedded in the rotor core.
The air conditioner shown in FIG. 1 is configured by sequentially connecting a constant speed compressor 1, a four-way valve 2, an outdoor heat exchanger 3, an outdoor expansion device 5, an indoor expansion device 6, an indoor heat exchanger 7, and an accumulator 9. ing. As an electric motor used for the constant speed compressor 1, a squirrel-cage winding (conductor) is formed in the rotor in the vicinity of the outer periphery of the rotor, and a permanent magnet is embedded in the rotor. Thus, it acts as an induction motor until the rotational speed of the rotor reaches the synchronous speed, and acts as a synchronous motor when the rotational speed of the rotor reaches the synchronous speed. Therefore, it is possible to start without using an inverter, and at the time of operation at a synchronous speed, that is, steady operation at a rotational speed (3000 r / min, 3600 r / min) determined by the power frequency (50/60 Hz) of the commercial power source. In some cases, since no secondary current is generated in the rotor of the electric motor, the efficiency can be improved.

また、一定速形圧縮機1に用いる電動機として、電動機の回転子に永久磁石を埋設しているが、単なる永久磁石形の同期電動機と、その同期電動機の同期速度付近まで駆動することのできる誘導電動機とを組み合わせても良い。この場合、始動時はまず誘導電動機のみに電力を供給し、電動機の回転子が同期電動機の同期速度付近まで回転速度が達したら、誘導電動機への電力の供給を断ち、同時に同期電動機に電力を供給する。これにより、圧縮機1は定常運転にて同期電動機のみで駆動され、電動機及び圧縮機1の運転効率が高くなり、空気調和機全体としての効率も大幅に向上する。
つまり、同期電動機は誘導電動機にあった固定子と回転子間の滑り(スリップ)が発生しないため、誘導電動機に比べ、回転子の回転速度の負荷変動が小さく、同じ負荷ならば圧縮機1の回転数が速くなるので、圧縮機1の冷媒圧縮機構部により圧縮される冷媒量も増加し、圧縮機1の冷媒吐出量が増加し、図2に示すように冷凍サイクルの通常の負荷範囲ではその能力を向上することができる。
Further, as a motor used in the constant speed compressor 1, a permanent magnet is embedded in the rotor of the motor, but a simple permanent magnet type synchronous motor and an induction that can be driven to near the synchronous speed of the synchronous motor. You may combine with an electric motor. In this case, at the start, power is supplied only to the induction motor, and when the rotation speed of the motor reaches the synchronization speed of the synchronous motor, the power supply to the induction motor is cut off and the power is supplied to the synchronous motor at the same time. Supply. Thereby, the compressor 1 is driven only by the synchronous motor in the steady operation, the operation efficiency of the motor and the compressor 1 is increased, and the efficiency of the entire air conditioner is greatly improved.
In other words, since the synchronous motor does not cause slippage between the stator and the rotor that was in the induction motor, the fluctuation in the rotational speed of the rotor is smaller than that of the induction motor. Since the rotational speed becomes faster, the amount of refrigerant compressed by the refrigerant compression mechanism portion of the compressor 1 also increases, the refrigerant discharge amount of the compressor 1 increases, and in the normal load range of the refrigeration cycle as shown in FIG. The ability can be improved.

特に、冷凍サイクルが過負荷となる運転時においても、同期状態で滑りが0となり、かご形導体に電流が流れないので、誘導電動機が過負荷では滑りが大きいことと比較して、能力が向上する効果は非常に大きくなる。さらに、圧縮機1をスクロール圧縮機とすれば圧縮トルクの変動が小さいことから、電動機に対する負荷変動が小さいのでより一層効率向上を図ることができる。なお、図2では冷房運転時の例を示しているが、暖房運転時においても同様である。   In particular, even when the refrigeration cycle is overloaded, the slip is zero in the synchronized state and no current flows through the cage conductor, so the capacity is improved compared to the large slip when the induction motor is overloaded. The effect to do becomes very large. Furthermore, if the compressor 1 is a scroll compressor, the fluctuation in the compression torque is small, and therefore the load fluctuation on the electric motor is small, so that the efficiency can be further improved. In addition, although the example at the time of air_conditionaing | cooling operation is shown in FIG. 2, it is the same also at the time of heating operation.

また、電動機の回転子の回転速度は、電動機の極数に反比例するため、電動機の極数を最小の2極とすることで、電動機の回転子の回転速度は速くなり、圧縮機1からの冷媒吐出量は多くなる。よって、圧縮機1の圧縮室の容積を小さくすることができ、圧縮機1及びそれを搭載する室外ユニット20のサイズを小型化することができる。さらに、インバータが用いられる可変速形の空気調和機などとも圧縮機構部あるいはその他の冷凍サイクルに必要とされる部品を共通化することができ、機種展開等も容易で安価とすることができる。   In addition, since the rotation speed of the rotor of the motor is inversely proportional to the number of poles of the motor, the rotation speed of the rotor of the motor is increased by setting the number of poles of the motor to the minimum two poles. The refrigerant discharge amount increases. Therefore, the volume of the compression chamber of the compressor 1 can be reduced, and the size of the compressor 1 and the outdoor unit 20 on which the compressor 1 is mounted can be reduced. Furthermore, the variable speed type air conditioner using an inverter can share the compression mechanism section or other parts required for the refrigeration cycle, and the model can be easily and inexpensively developed.

圧縮機1及び回転子52の詳細を図6、7を参照して説明する。
圧縮機機構部は、固定スクロール60の端板61に直立する渦巻状ラップ63と、旋回スクロール57の端板58に直立する渦巻状ラップ68とを噛み合わせて形成し、旋回スクロール57をクランクシャフト55によって旋回運動させることで圧縮動作を行う。
固定スクロール60及び旋回スクロール57によって形成される圧縮室59(59a、59b…)のうち、最も外径側に位置している圧縮室は旋回運動に伴って両スクロール60、57の中心に向かって移動し、容積が次第に縮小する。両圧縮室59a、59bが両スクロール60、57の中心近傍に達すると、両圧縮室内の圧縮された冷媒ガスは圧縮室と連通した吐出口62から吐出される。吐出された冷媒ガスは、固定スクロール60及びフレーム56に設けられたガス通路を通ってフレーム56下部の圧縮容器内に至り圧縮容器の側壁に設けられた吐出パイプ64から圧縮機外に排出される。
Details of the compressor 1 and the rotor 52 will be described with reference to FIGS.
The compressor mechanism unit is formed by meshing a spiral wrap 63 standing upright on the end plate 61 of the fixed scroll 60 and a spiral wrap 68 standing upright on the end plate 58 of the orbiting scroll 57. The compression operation is performed by the turning motion by 55.
Of the compression chambers 59 (59a, 59b...) Formed by the fixed scroll 60 and the orbiting scroll 57, the compression chamber located on the outermost diameter side is directed toward the center of the scrolls 60 and 57 along with the orbiting motion. It moves and the volume gradually decreases. When both compression chambers 59a and 59b reach the vicinity of the centers of both scrolls 60 and 57, the compressed refrigerant gas in both compression chambers is discharged from a discharge port 62 communicating with the compression chamber. The discharged refrigerant gas passes through gas passages provided in the fixed scroll 60 and the frame 56, reaches the compression container below the frame 56, and is discharged out of the compressor from a discharge pipe 64 provided on the side wall of the compression container. .

また、圧力容器内(電動機室)に電動機が内封されており、電動機で旋回スクロール57が駆動されて圧縮動作を行う。
電動機の下部には、油溜め部66が設けられ、そのなかの潤滑油は回転運動によって生じる圧力差によってクランクシャフト55内に設けられた油孔65を通って旋回スクロール57とクランクシャフト55との摺動部、滑り軸受け等の潤滑を行う。
電動機は固定子51と回転子52とで構成される埋込磁石形同期電動機であり、固定子51は固定子鉄心53とそれに巻き回された電機子巻線(導体)とを有し、回転子52は、永久磁石71が埋設され、磁石間スリット73を有する回転子鉄心52を設けている。
図7は、回転子52の詳細構造を示し、永久磁石71が2極に着磁され、かつ回転子52の外周近傍に導体が埋設されてかご型導体(巻線)72を形成している。
An electric motor is enclosed in the pressure vessel (electric motor chamber), and the orbiting scroll 57 is driven by the electric motor to perform a compression operation.
An oil sump 66 is provided at the lower part of the electric motor, and the lubricating oil in the oil reservoir 66 passes through an oil hole 65 provided in the crankshaft 55 due to a pressure difference caused by a rotational motion, so that the orbiting scroll 57 and the crankshaft 55 Lubricate the sliding parts and sliding bearings.
The electric motor is an embedded magnet type synchronous motor including a stator 51 and a rotor 52. The stator 51 has a stator core 53 and an armature winding (conductor) wound around the stator core 53, and rotates. The rotor 52 is provided with a rotor core 52 having a permanent magnet 71 embedded therein and a slit 73 between magnets.
FIG. 7 shows a detailed structure of the rotor 52, in which a permanent magnet 71 is magnetized in two poles, and a conductor is embedded in the vicinity of the outer periphery of the rotor 52 to form a cage conductor (winding) 72. .

次に図3を用いて、他の実施の形態について説明する。
冷凍サイクルを始動する場合、圧縮機1の吐出側と吸入側の差圧が大きいと始動が不可能となったり、その信頼性が不充分となったりするので電動機の始動トルクを充分確保する必要がある。そのため、冷凍サイクルを誘導電動機として始動し、その後、同期電動機として運転するにしても電動機の始動トルクを大きくするには誘導電動機としての作用を、つまり、回転子のかご形導体の量を多くしたり、電流を多くするため線径を太くしたりしなければならず、圧縮機1が大型化する恐れがある。そして、コンパクト化するには、かご形導体が設けられた回転子の鉄心に永久磁石を埋め込むことが構造的にも困難となる。また冷凍サイクル内の圧力がバランスするには、圧縮機1が停止してから数分間かかる。
Next, another embodiment will be described with reference to FIG.
When starting the refrigeration cycle, if the pressure difference between the discharge side and the suction side of the compressor 1 is large, the start-up becomes impossible or the reliability becomes insufficient. Therefore, it is necessary to ensure a sufficient starting torque of the motor. There is. Therefore, even if the refrigeration cycle is started as an induction motor and then operated as a synchronous motor, the action as an induction motor is increased in order to increase the starting torque of the motor, that is, the amount of rotor cage conductors is increased. In order to increase the current, the wire diameter must be increased, and the compressor 1 may be increased in size. In order to make it compact, it is structurally difficult to embed a permanent magnet in the iron core of the rotor provided with the cage conductor. In addition, it takes several minutes for the pressure in the refrigeration cycle to be balanced after the compressor 1 is stopped.

そこで、圧縮機1の吐出側と吸入側とをバイパス管で接続し、そのバイパス回路を開閉する開閉弁10を設け、始動前に開閉弁10を開けることで、吐出圧力と吸入圧力との差圧を小さくすることができるので、圧縮機1は始動しやすくなり、かご形導体の量を少なくできるので、永久磁石を回転子52に設けることも容易となり、コンパクト化に適し、信頼性を確保することができる。   Therefore, the discharge side and the suction side of the compressor 1 are connected by a bypass pipe, and an opening / closing valve 10 for opening and closing the bypass circuit is provided, and the opening / closing valve 10 is opened before starting, whereby the difference between the discharge pressure and the suction pressure is established. Since the pressure can be reduced, the compressor 1 can be started easily and the amount of the cage conductor can be reduced, so that a permanent magnet can be easily provided on the rotor 52, which is suitable for downsizing and ensures reliability. can do.

さらに、圧縮機1の運転中において、圧縮機1の電動機の回転子52にかかるトルクが大きくなる、つまり吐出圧力が高くなると、電動機の回転子は失速する恐れがある。そこで、電動機の回転子52が失速しない吐出圧力の値Pdsetを設定し、吐出圧力検出装置14により吐出圧力を計測し、吐出圧力がPdsetまで上昇したら、開閉弁10を開けることで吐出圧力を下げることで、電動機の失速による冷凍サイクルの異常を防止できる。さらに、圧縮機をスクロール圧縮機とすれば圧縮トルクの変動が少ないので、この冷凍サイクルの異常をより防止して、信頼性を高め、低騒音化を達成することができる。
圧力検出装置14としては、設定圧力Pdsetとなったときに、電気回路のスイッチが開(または閉)するように設定した圧力スイッチでもよい。
Furthermore, during operation of the compressor 1, when the torque applied to the rotor 52 of the motor of the compressor 1 increases, that is, when the discharge pressure increases, the rotor of the motor may stall. Therefore, a discharge pressure value Pdset at which the rotor 52 of the electric motor does not stall is set, the discharge pressure is measured by the discharge pressure detection device 14, and when the discharge pressure rises to Pdset, the discharge pressure is lowered by opening the on-off valve 10. Thus, it is possible to prevent an abnormality in the refrigeration cycle due to the stall of the electric motor. Furthermore, if the compressor is a scroll compressor, the fluctuation of the compression torque is small, so that the abnormality of the refrigeration cycle can be further prevented, the reliability can be improved, and the noise can be reduced.
The pressure detection device 14 may be a pressure switch set so that the switch of the electric circuit is opened (or closed) when the set pressure Pdset is reached.

次に図4を用いて、本発明による他の実施の形態について説明する。
本空気調和機は、室外熱交換器3と室内熱交換器7(室外熱交換器3と室内膨張装置6)の間に受液器11が設けられており、主配管と受液器11内とをつなぐ冷媒導入出管もしくは主配管の流れ方向に対して後流側に受液器11内のガス冷媒をバイパスするバイパス管と、そのバイパス回路を開閉する開閉弁10a、10bとを設けている。
冷房運転時においては、開閉弁10bを開けることで、受液器11内のガス冷媒を導出することができ、受液器11出入口の冷媒かわき度が大きくなり、凝縮器として働く室外熱交換器3の出口の冷媒かわき度が大きくなるため、凝縮器として有効に活用することができるので、凝縮圧力が低く抑えることができ吐出圧力を下げることができる。暖房時においては開閉弁10aを開けることで、冷房時と同様の効果を得ることができる。
これを利用して、圧縮機1に用いる電動機の回転子52が失速しない吐出圧力Pdsetを設定し、吐出圧力検出装置14により吐出圧力を検出し、Pdsetまで上昇したら、冷房時は開閉弁10bを、暖房時は開閉弁10aを開けることで吐出圧力を下げることができ、冷凍サイクルの異常を防ぐことができる。
Next, another embodiment according to the present invention will be described with reference to FIG.
In this air conditioner, a liquid receiver 11 is provided between the outdoor heat exchanger 3 and the indoor heat exchanger 7 (the outdoor heat exchanger 3 and the indoor expansion device 6). A bypass pipe for bypassing the gas refrigerant in the liquid receiver 11 on the downstream side with respect to the flow direction of the refrigerant inlet / outlet pipe or the main pipe, and on-off valves 10a and 10b for opening and closing the bypass circuit. Yes.
During the cooling operation, by opening the on-off valve 10b, the gas refrigerant in the liquid receiver 11 can be led out, the degree of refrigerant evacuation at the inlet / outlet of the liquid receiver 11 is increased, and the outdoor heat exchanger that functions as a condenser Since the degree of refrigerant at the outlet of No. 3 increases, it can be effectively used as a condenser, so that the condensation pressure can be kept low and the discharge pressure can be lowered. By opening the on-off valve 10a during heating, the same effect as during cooling can be obtained.
Using this, the discharge pressure Pdset is set so that the rotor 52 of the electric motor used in the compressor 1 does not stall, the discharge pressure is detected by the discharge pressure detection device 14, and when the pressure rises to Pdset, the on-off valve 10 b is set during cooling. During heating, the discharge pressure can be lowered by opening the on-off valve 10a, and an abnormality in the refrigeration cycle can be prevented.

図5を用いて他の実施の形態について説明する。
圧縮機1としては、1台の可変速形圧縮機1aと1台以上の商用電源で駆動される一定速形圧縮機1bを搭載し、一定速圧縮機1bの吐出側に逆止弁13、さらに油分離器12を設けている。
Another embodiment will be described with reference to FIG.
As the compressor 1, a variable speed compressor 1a and a constant speed compressor 1b driven by one or more commercial power sources are mounted, and a check valve 13 is provided on the discharge side of the constant speed compressor 1b. Furthermore, an oil separator 12 is provided.

室内ユニットは21a、21bのように複数設けられそれぞれの使用状態によって負荷が大きく変動する。室内ユニット側の負荷が小さい場合、圧縮機1a、1bを全て駆動する必要はなく、可変速形圧縮機1aのみを駆動することで容量制御運転を実施する。可変速形圧縮機1aのみ駆動の時に、室内ユニット側の負荷が大きくなり、可変速形圧縮機1aのみでは能力を確保できなくなった場合、一定速圧縮機1bを駆動する。そのとき、可変速形圧縮機1aは既に駆動されているので、一定速形圧縮機1bにして見れば吐出側圧力と吸入側圧力との差圧が大きくなる。そこで、一定速形圧縮機1bの吐出側に逆止弁13を設置し、可変速形圧縮機1aが駆動中においても、一定速形圧縮機1bの吐出側圧力と吸入側圧力との差圧を小さくして、商用電源での始動を容易にすることができる。よって、マルチエアコンのように大容量化が要求されても、インバータ電源を増設することなく、容量可変幅を大きく、かつ木目細かい制御を実現することができる。   A plurality of indoor units are provided such as 21a and 21b, and the load varies greatly depending on the use state. When the load on the indoor unit side is small, it is not necessary to drive all the compressors 1a and 1b, and the capacity control operation is performed by driving only the variable speed compressor 1a. When only the variable speed compressor 1a is driven, the load on the indoor unit side increases, and if the variable speed compressor 1a alone cannot secure the capacity, the constant speed compressor 1b is driven. At that time, since the variable speed compressor 1a is already driven, the differential pressure between the discharge side pressure and the suction side pressure becomes large when viewed as the constant speed compressor 1b. Therefore, even if the check valve 13 is installed on the discharge side of the constant speed compressor 1b and the variable speed compressor 1a is being driven, the pressure difference between the discharge side pressure and the suction side pressure of the constant speed compressor 1b. Can be reduced to facilitate starting with a commercial power source. Therefore, even when a large capacity is required as in a multi-air conditioner, it is possible to realize a large capacity variable width and fine control without adding an inverter power supply.

以上において、圧縮機1として、電動機の回転子52の鉄心内に埋設した永久磁石として、磁力の大きいネオジム、鉄、ボロン磁石、またはサマリウム・コバルト磁石を用いれば、永久磁石の大きさを小さく、かつ数を少なくすることができる。よって、回転子52の鉄心内にかご形導体と永久磁石を設けることが構造的に容易となり、圧縮機1を小型化できる。そして、効率も向上されるので、圧縮機1を搭載する室外ユニット(室外機)20の大きさを小さくすることができる。
さらに、電動機の永久磁石としてネオジム、鉄、ボロン磁石やサマリウム・コバルト磁石を用いた場合、冷媒及び潤滑油と永久磁石とが接触して、永久磁石の構成物質であるネオジムやサマリウムなどの希土類元素が強力な触媒として作用し、潤滑油を劣化して、その劣化生成物が冷凍サイクル中の低温部でスラッジとして析出し、キャピラリを閉塞するため冷媒の流れが阻害され、冷媒圧縮機の温度が異常に上昇してしまう。
しかし、永久磁石の表面をコーティング、ニッケルメッキ、またはアルミメッキを施し被覆することで、圧縮機1内の冷媒及び潤滑油と永久磁石とが直接接することがなくなるので、潤滑油の劣化を抑えることができ、信頼性を向上することができる。
In the above, if the neodymium, iron, boron magnet, or samarium-cobalt magnet having a large magnetic force is used as the compressor 1 as a permanent magnet embedded in the iron core of the rotor 52 of the electric motor, the size of the permanent magnet is reduced. And the number can be reduced. Therefore, it is structurally easy to provide the cage conductor and the permanent magnet in the iron core of the rotor 52, and the compressor 1 can be downsized. And since efficiency is also improved, the magnitude | size of the outdoor unit (outdoor unit) 20 which mounts the compressor 1 can be made small.
Furthermore, when neodymium, iron, boron magnets or samarium / cobalt magnets are used as the permanent magnets of the electric motor, the rare earth elements such as neodymium and samarium, which are constituent materials of the permanent magnets, come into contact with the refrigerant and lubricating oil and the permanent magnets. Acts as a powerful catalyst, degrades the lubricating oil, and the deteriorated product precipitates as sludge in the low temperature part of the refrigeration cycle, clogs the capillary, obstructing the flow of the refrigerant, and the temperature of the refrigerant compressor It rises abnormally.
However, by coating the surface of the permanent magnet with coating, nickel plating, or aluminum plating, the refrigerant and lubricating oil in the compressor 1 and the permanent magnet are not in direct contact with each other, so that deterioration of the lubricating oil is suppressed. And reliability can be improved.

以上により、冷凍サイクルは商用電源で運転されるので、冷凍サイクルを有するシステムとして単純化でき、広い用途に適用できる。また、回転子に埋め込まれる永久磁石を2極とするので、商用電源として50Hz又は60Hzの低い周波数であるにも係わらず、比較的高い回転数(3000r/min、3600r/min)で冷凍サイクルの定常運転を行うことができ、圧縮機、室外ユニット、冷凍装置等を小形でコンパクトにして、冷凍サイクルの効率向上、低騒音化などに有利となる。特に、冷凍サイクルの効率は、定常運転時に電動機が同期状態となり滑りに対する電力が不要となること、外気温度が変化して負荷が大きくなっても圧縮機の回転数は変化しないので圧縮効率が低下しないこと、冷凍サイクルに対する負荷変動があっても冷凍サイクル自体を安定にできること、なども合わせてより一層向上することができる。   As described above, since the refrigeration cycle is operated by a commercial power source, it can be simplified as a system having a refrigeration cycle and can be applied to a wide range of applications. In addition, since the permanent magnet embedded in the rotor has two poles, the refrigeration cycle can be operated at a relatively high rotational speed (3000 r / min, 3600 r / min) even though the commercial power supply has a low frequency of 50 Hz or 60 Hz. Steady operation can be performed, and the compressor, the outdoor unit, the refrigeration apparatus, etc. can be made compact and compact, which is advantageous for improving the efficiency of the refrigeration cycle and reducing noise. In particular, the efficiency of the refrigeration cycle is such that the motor is in a synchronized state during steady operation and no electric power is required for slipping, and the compressor speed does not change even when the outside air temperature changes and the load increases, reducing the compression efficiency. In addition, the fact that the refrigeration cycle itself can be stabilized even when there is a load variation on the refrigeration cycle can be further improved.

また、始動時、冷媒液が圧縮機に多量に戻って潤滑油の油粘度を低下させたり、暖房運転の始動時は立ち上がりが悪くなるが、冷媒ガスが電動機室を通過するようにして、さらに、商用電源で始動から同期に入るまではすべりを生じた非同期状態で駆動されるので、電動機の発熱が冷媒及び潤滑油を加熱し、圧縮機の軸受けの損傷を防止したり、暖房能力を増加することができる。   Also, at the time of start-up, the refrigerant liquid returns to the compressor in a large amount to lower the oil viscosity of the lubricating oil, or the start-up worsens at the start of heating operation, but the refrigerant gas passes through the motor room, Since it is driven in a non-synchronized state from the start to the start of synchronization with a commercial power supply, the heat generated by the motor heats the refrigerant and lubricating oil, preventing damage to the compressor bearings and increasing heating capacity. can do.

さらに、少なくとも暖房運転の場合、冷凍サイクルを誘導電動機として始動するので、電動機の発熱が冷媒及び潤滑油を加熱し粘度の低下を防ぎ、圧縮機の軸受けの損傷を防止し、暖房能力を増加することができる。そして、それにも係わらずその後、電動機が同期状態となり圧縮機の回転数は変化しないので外気温度が変化して負荷が大きくなっても圧縮効率の低下を防ぐことができる。   Furthermore, at least in the case of heating operation, since the refrigeration cycle is started as an induction motor, the heat generated by the motor heats the refrigerant and lubricating oil to prevent a decrease in viscosity, prevent damage to the compressor bearing, and increase the heating capacity. be able to. In spite of this, since the electric motor is in a synchronized state and the rotation speed of the compressor does not change, it is possible to prevent a reduction in compression efficiency even when the outside air temperature changes and the load increases.

さらに、可変速形圧縮機が駆動中であっても、逆止弁によって一定速形圧縮機の吐出側圧力と吸入側圧力との差圧を小さくして商用電源での始動を容易にすることができ、大容量化してもその分インバータ電源を大きくすることなく、容量可変幅を大きく、かつ木目細かい制御を実現することができる。   Furthermore, even when the variable speed compressor is in operation, the check valve can reduce the differential pressure between the discharge side pressure and the suction side pressure of the constant speed compressor to facilitate starting with a commercial power supply. Therefore, even when the capacity is increased, the capacity variable width can be increased and fine control can be realized without increasing the inverter power supply accordingly.

本発明に係る一実施の形態による冷凍サイクルの系統図。The system diagram of the refrigerating cycle by one embodiment concerning the present invention. 本発明に係る一実施の形態によるの空気調和機の外気温度に対する冷房能力の関係を示すグラフ。The graph which shows the relationship of the cooling capacity with respect to the external temperature of the air conditioner by one Embodiment which concerns on this invention. 本発明に係るさらに他の実施の形態による冷凍サイクルの系統図。The systematic diagram of the refrigerating cycle by other embodiment which concerns on this invention. 本発明に係るさらに他の実施の形態による冷凍サイクルの系統図。The systematic diagram of the refrigerating cycle by other embodiment which concerns on this invention. 本発明に係るさらに他の実施の形態による冷凍サイクルの系統図。The systematic diagram of the refrigerating cycle by other embodiment which concerns on this invention. 本発明に係る一実施の形態による圧縮機の側断面図。1 is a side sectional view of a compressor according to an embodiment of the present invention. 本発明に係る一実施の形態による電動機の回転子の断面図。Sectional drawing of the rotor of the electric motor by one Embodiment which concerns on this invention.

符号の説明Explanation of symbols

1、1b…一定速圧縮機、1a…インバータ圧縮機、2…四方弁、3…室外熱交換器、4…室外送風装置、5、5a…室外膨張装置、6、6a、6b…室内膨張装置、7、7a、7b…室内熱交換器、8、8a、8b…室内送風装置、9…アキュムレータ、10、10a、10b…電磁開閉弁、11…受液器、12…油分離器 13…逆止弁、14…吐出圧力検出装置、20…室外ユニット、21、21a、21b…室内ユニット。
DESCRIPTION OF SYMBOLS 1, 1b ... Constant speed compressor, 1a ... Inverter compressor, 2 ... Four-way valve, 3 ... Outdoor heat exchanger, 4 ... Outdoor fan, 5, 5a ... Outdoor expansion device, 6, 6a, 6b ... Indoor expansion device 7, 7a, 7b ... indoor heat exchangers, 8, 8a, 8b ... indoor air blower, 9 ... accumulator, 10, 10a, 10b ... electromagnetic on-off valve, 11 ... liquid receiver, 12 ... oil separator 13 ... reverse Stop valve, 14 ... discharge pressure detection device, 20 ... outdoor unit, 21, 21a, 21b ... indoor unit.

Claims (4)

電動機によって駆動される複数台の圧縮機を備えた冷凍サイクルを有する冷凍装置において、
インバータで容量制御される可変速形圧縮機と、
回転子の鉄心にかご形導体と永久磁石が設けられ商用電源で駆動され、始動時は誘導電動機として非同期状態で駆動され、定常運転時は同期速度で同期電動機として運転される電動機を有する一定速形圧縮機と、
前記複数台の圧縮機の吐出側と吸入側とをバイパスし、前記複数台の圧縮機の吐出側圧力が前記圧縮機の失速に関連して定められた設定圧力となった場合、前記複数台の圧縮機の吐出側と吸入側とをバイパスさせるバイパス回路と、
前記一定速形圧縮機の吐出側に設けられた逆止弁とを備え、
前記可変速形圧縮機を始動し、その後前記一定速形圧縮機を駆動することを特徴とする冷凍装置。
In a refrigeration apparatus having a refrigeration cycle comprising a plurality of compressors driven by an electric motor,
A variable speed compressor whose capacity is controlled by an inverter;
A constant-speed motor having a squirrel-cage conductor and a permanent magnet on the rotor core, driven by a commercial power supply, driven asynchronously as an induction motor at startup, and operated as a synchronous motor at a synchronous speed during steady operation A compressor,
If the a plurality discharge side of the compressor and a suction side bypassing the discharge pressure of the plurality of compressors is a set pressure defined in relation to the stall of the compressor, said plurality A bypass circuit for bypassing the discharge side and the suction side of the compressor of
A check valve provided on the discharge side of the constant speed compressor,
A refrigerating apparatus, wherein the variable speed compressor is started, and then the constant speed compressor is driven.
請求項1に記載のものにおいて、前記一定速形圧縮機をスクロール圧縮機としたことを特徴とする冷凍装置。   2. The refrigeration apparatus according to claim 1, wherein the constant speed compressor is a scroll compressor. 請求項1に記載のものにおいて、前記冷凍装置は室外熱交換器及び室内熱交換器を備えた空気調和機であることを特徴とする冷凍装置。   2. The refrigeration apparatus according to claim 1, wherein the refrigeration apparatus is an air conditioner including an outdoor heat exchanger and an indoor heat exchanger. 請求項2に記載のものにおいて、前記スクロール圧縮機は固定スクロールと旋回スクロールとを有し、圧力容器に内封された前記電動機で前記旋回スクロールが駆動されることを特徴とする冷凍装置。   3. The refrigeration apparatus according to claim 2, wherein the scroll compressor has a fixed scroll and a turning scroll, and the turning scroll is driven by the electric motor enclosed in a pressure vessel.
JP2004299499A 2004-10-14 2004-10-14 Refrigeration equipment Expired - Fee Related JP4203915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004299499A JP4203915B2 (en) 2004-10-14 2004-10-14 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004299499A JP4203915B2 (en) 2004-10-14 2004-10-14 Refrigeration equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000039729A Division JP3629587B2 (en) 2000-02-14 2000-02-14 Air conditioner, outdoor unit and refrigeration system

Publications (2)

Publication Number Publication Date
JP2005040000A JP2005040000A (en) 2005-02-10
JP4203915B2 true JP4203915B2 (en) 2009-01-07

Family

ID=34214520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004299499A Expired - Fee Related JP4203915B2 (en) 2004-10-14 2004-10-14 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP4203915B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127327A (en) * 2005-11-02 2007-05-24 Yanmar Co Ltd High pressure rise preventing means of engine drive type heat pump

Also Published As

Publication number Publication date
JP2005040000A (en) 2005-02-10

Similar Documents

Publication Publication Date Title
JP3629587B2 (en) Air conditioner, outdoor unit and refrigeration system
JP3896472B2 (en) Refrigeration equipment
KR101067550B1 (en) Air conditioning system and the method of controlling the same
US20140147294A1 (en) Variable capacity compressor with line-start brushless permanent magnet motor
KR101023351B1 (en) Modulation compressor and air conditioning system having the same
CN110651158B (en) Air conditioner and operation control method for air conditioner
WO2009084245A1 (en) Electric motor for compressor, compressor, and freezing cycle device
JP3984864B2 (en) Refrigeration equipment and compressor
JP3637368B2 (en) Refrigeration equipment
JP4203915B2 (en) Refrigeration equipment
JP4134899B2 (en) Refrigeration air conditioner
JP2005171943A (en) Hermetic compressor for ammonia refrigerant
JP2012215159A (en) Hermetic rotary compressor and refrigerating cycle device using the same
KR20110098704A (en) Air conditioning system and the method of controlling the same
KR101412585B1 (en) Rotary compressor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041117

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080606

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080619

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080709

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081006

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees