WO2009084245A1 - Electric motor for compressor, compressor, and freezing cycle device - Google Patents

Electric motor for compressor, compressor, and freezing cycle device Download PDF

Info

Publication number
WO2009084245A1
WO2009084245A1 PCT/JP2008/053235 JP2008053235W WO2009084245A1 WO 2009084245 A1 WO2009084245 A1 WO 2009084245A1 JP 2008053235 W JP2008053235 W JP 2008053235W WO 2009084245 A1 WO2009084245 A1 WO 2009084245A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
rotor
compressor
end ring
refrigerant
Prior art date
Application number
PCT/JP2008/053235
Other languages
French (fr)
Japanese (ja)
Inventor
Takahiro Tsutsumi
Tomoaki Oikawa
Osamu Kazama
Tsuneyoshi Tajima
Sadami Okugawa
Hayato Yoshino
Koji Yabe
Original Assignee
Mitsubishi Electric Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corporation filed Critical Mitsubishi Electric Corporation
Priority to CN200880110655A priority Critical patent/CN101821925A/en
Priority to JP2009547918A priority patent/JPWO2009084245A1/en
Publication of WO2009084245A1 publication Critical patent/WO2009084245A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/16Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors
    • H02K17/18Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors having double-cage or multiple-cage rotors

Definitions

  • the present invention relates to an electric motor for a compressor, a compressor, and a refrigeration cycle apparatus.
  • a compressor used in a refrigerating and air-conditioning apparatus such as an air conditioner, a brushless DC motor, an induction motor, or the like is used as an electric motor that drives a compression mechanism.
  • induction motors ordinary cage induction motors (single cage type) are mainly used.
  • Induction motors include three-phase induction motors and single-phase induction motors.
  • the three-phase induction motor has a large start torque, so there are few problems regarding the start.
  • a starting capacitor may be added in addition to the driving capacitor (see, for example, Patent Document 1).
  • phase difference between the main winding and the auxiliary winding wound around the stator of the single-phase induction motor is shifted from 90 ° (electrical angle).
  • the method of adding a starting capacitor as in the above-mentioned Patent Document 1 has a problem that the part price is high because a switch for opening and closing the starting capacitor is also required.
  • the method of increasing the starting torque by increasing the secondary resistance of the rotor has a problem that the efficiency during operation of the single-phase induction motor decreases.
  • An electric motor for a compressor, a compressor, and a refrigeration cycle capable of increasing a starting torque while suppressing a rise in parts price and a decrease in efficiency during operation.
  • An object is to provide an apparatus.
  • An electric motor for a compressor according to the present invention is housed together with a compression element that compresses a refrigerant in an airtight container, and is connected to the compression element by a drive shaft to drive the compression element.
  • a stator fixed to the inner periphery of the sealed container;
  • a rotor provided inside the stator and having a rotor core;
  • a double squirrel-cage conductor composed of an outer ring secondary conductor and an inner layer secondary conductor and an end ring, which are cast into the rotor core,
  • the rotor iron core has air holes that serve as refrigerant passages.
  • the end ring expands to the drive shaft side so that the inner diameter side closes the air hole, In order to prevent the air holes from being blocked, an escape portion that communicates the air holes with the space of the sealed container is provided.
  • the motor for a compressor according to the present invention is characterized in that a relief portion is formed by a notch provided in the inner periphery of the end ring.
  • the motor for a compressor according to the present invention is characterized in that it is constituted by an end ring air hole having a relief portion provided in the end ring.
  • An electric motor for a compressor according to the present invention is housed together with a compression element that compresses a refrigerant in an airtight container, and is connected to the compression element by a drive shaft to drive the compression element.
  • a stator fixed to the inner periphery of the sealed container;
  • a rotor provided inside the stator and having a rotor core;
  • a double squirrel-cage conductor composed of an outer ring secondary conductor and an inner layer secondary conductor and an end ring, which are cast into the rotor core,
  • the stator is provided with a stator air hole that serves as a refrigerant passage,
  • the inner ring side of the end ring is configured to be positioned in the vicinity of the drive shaft.
  • the stator includes a stator core, a notch is provided in the outer peripheral portion of the stator core, and the stator air hole is provided between the hermetic container and the notch in the outer peripheral portion of the stator core. Is provided.
  • An electric motor for a compressor according to the present invention is characterized in that the rotor core has a shaft hole for fitting with the drive shaft, and the inner diameter of the end ring is made 8 mm or more larger than the diameter of the shaft hole.
  • the motor for a compressor according to the present invention is characterized in that the total volume of the end ring is 13% or more of the volume of the rotor core.
  • the compression element includes a bearing
  • the compressor motor has a cantilever structure in which the bearing is supported on one side by the bearing of the compression element, and between the stator and the rotor.
  • the length of the gap in the radial direction is as follows. (1) When the outer diameter of the stator is smaller than 140 mm, the radial length of the gap is 0.6 mm or less; (2) When the outer diameter of the stator exceeds 140 mm, the radial length of the gap is 0.8 mm or less.
  • the electric motor for a compressor according to the present invention is characterized in that the outer periphery on the opposite side of the bearing of the compression element of the rotor core is cut so that the outer diameter is smaller than the outer periphery on the bearing side of the compression element of the rotor core. .
  • a compressor according to the present invention is characterized in that the above-described electric motor for compressor is mounted.
  • the compressor according to the present invention is characterized by using R22 as a refrigerant.
  • the compressor according to the present invention is characterized by using R410a as a refrigerant.
  • the compressor according to the present invention is characterized by using CO 2 as a refrigerant.
  • the refrigeration cycle apparatus is characterized in that the compressor, the condenser, the decompression device, and the evaporator are connected by a refrigerant pipe.
  • the electric motor for a compressor according to the present invention can increase the starting torque while suppressing the rise in the parts price and the decrease in efficiency during operation.
  • FIG. FIGS. 1 to 14 are diagrams showing Embodiment 1
  • FIG. 1 is a longitudinal sectional view of a rotary compressor 100
  • FIG. 2 is a transverse sectional view showing an electric element 13
  • FIG. 3 shows a rotor 11 of the electric element 13.
  • 4 is a perspective view showing the rotor 11 of the electric element 13
  • FIG. 5 is a side view of the rotor 11 provided with a notch 34 in the end ring 32
  • FIG. 6 is provided with an end ring air hole 32a.
  • 7 is a side view of the rotor 11
  • FIG. 7 is a cross-sectional view of the vicinity of the electric element 13 showing an example in which an air hole is provided on the side of the stator 12, FIG. 8 and FIG.
  • FIG. 11 is the fragmentary sectional view of the electrically-driven element 13
  • FIG. 12 is a single cage shape and a double cage shape
  • FIG. 13 is a diagram showing the torque ripple of the rotor 11 in which a cutting portion is provided on a part of the outer periphery.
  • Side view FIG. 14 is a configuration diagram of a refrigeration cycle apparatus using the rotary compressor 100.
  • This embodiment is characterized by the structure of a rotor of an electric motor used for a compressor such as a rotary compressor.
  • a rotary compressor 100 houses a compression element 10 and an electric element 13 (referred to as a compressor motor) and refrigerating machine oil (not shown) in a sealed container 4. ing.
  • the refrigerating machine oil is stored at the bottom of the sealed container 4.
  • the refrigerating machine oil mainly lubricates the sliding portion of the compression element 10.
  • the sealed container 4 includes a body 1, an upper dish container 2, and a lower dish container 3.
  • the compression element 10 includes a cylinder 5, an upper bearing 6 (an example of a bearing), a lower bearing 7 (an example of a bearing), a drive shaft 8, a rolling piston 9, a vane, and the like.
  • the cylinder 5 forms a compression chamber inside.
  • the upper bearing 6 and the lower bearing 7 close the openings at both ends (axial direction) of the cylinder 5.
  • the upper bearing 6 and the lower bearing 7 support a compressive load received by the eccentric portion of the drive shaft 8.
  • the rolling piston 9 is fitted to the eccentric portion of the drive shaft 8.
  • the vane reciprocates in the groove of the cylinder 5, and the tip contacts the rolling piston 9.
  • a compression chamber is formed by the cylinder 5, the rolling piston 9, and the vane.
  • the electric element 13 includes a stator 12 that is fixed to the body 1 of the sealed container 4 and a rotor 11 that rotates inside the stator 12.
  • the rotor 11 is a double squirrel-cage rotor made of aluminum die cast, details of which will be described later.
  • the drive shaft 8 is fixed to the inner periphery of the rotor 11.
  • the lead wire 21 is connected to the winding 20 of the stator 12.
  • the lead wire 21 is connected to the glass terminal 17.
  • the glass terminal 17 is fixed to the sealed container 4 by welding. Electric power is supplied to the glass terminal 17 from an external power source.
  • the rotary compressor 100 includes a suction muffler 14 outside the sealed container 4.
  • the suction muffler 14 is provided to prevent liquid refrigerant from being directly sucked into the rotary compressor 100.
  • a suction pipe 15 of the suction muffler 14 is connected to the cylinder 5 of the compression element 10.
  • the high-temperature and high-pressure gas refrigerant compressed by the compression element 10 passes through the electric element 13 and is finally discharged from the discharge pipe 16 to the outside.
  • the single-phase induction motor is a capacitor motor that uses only a driving capacitor in order to reduce the component price.
  • a capacitor motor has a smaller starting torque than a three-phase induction motor.
  • the starting torque of the capacitor motor is related to the secondary resistance of the rotor 11 (cage rotor).
  • the starting torque of the capacitor motor increases as the secondary resistance of the rotor 11 increases.
  • the secondary resistance of the rotor 11 is also related to the efficiency during operation of the capacitor motor. When the secondary resistance of the rotor 11 is large, the efficiency during the operation of the capacitor motor decreases.
  • the resistance Rb of the aluminum bar starts with a large slip (relative speed between the rotating magnetic field formed by the winding 20 of the stator 12 and the rotor 11). There is not much difference between when driving and when driving with little slip.
  • the resistance Rb during operation is slightly smaller than the resistance Rb during startup.
  • the secondary resistance R2 of the rotor 11 cannot be increased too much. Therefore, the starting torque related to the secondary resistance R2 is relatively small.
  • a starting capacitor is added to increase the starting torque.
  • adding a starting capacitor increases the part price.
  • the double cage rotor is effective.
  • the double squirrel-cage rotor has the following characteristics.
  • the double cage rotor has an outer layer slot (a slot provided along the outer periphery of the rotor core) having a large resistance and an inner layer slot (a portion closer to the inner circumference of the rotor core than the outer layer slot) having a small resistance.
  • an induction motor having a double squirrel-cage rotor has a high slip frequency at startup. Therefore, magnetic flux flows on the rotor outer peripheral side. Since the secondary current flows mainly only in the outer layer slot having a high resistance, the starting torque is increased. Also, during normal operation, the slip frequency is low. Therefore, the secondary current flows in both the outer layer slot and the inner layer slot. Accordingly, the secondary resistance is reduced and the secondary copper loss is reduced. Therefore, it has a characteristic that high efficiency can be realized.
  • the electric element 13 includes a stator 12 and a rotor 11 that rotates inside the stator 12.
  • a stator 12 shown in FIG. 1 is a stator of a two-pole single-phase induction motor.
  • the stator 12 includes a stator core 12a and a main winding 20a and an auxiliary winding 20b inserted into the stator slot 12b.
  • the main winding 20a and the auxiliary winding 20b constitute the winding 20.
  • An insulating material is inserted into the stator slot 12b in order to ensure insulation between the winding 20 and the stator core 12a, but is omitted here.
  • the number of stator slots 12b is 24. However, this is an example, and the number of slots is not limited to 24.
  • the stator core 12a is manufactured by punching electromagnetic steel sheets having a thickness of 0.1 to 1.5 mm into a predetermined shape, laminating them in the axial direction, and fixing them by caulking or welding. On the outer peripheral surface of the stator core 12a, there is provided a notch 12c that forms a substantially straight portion obtained by notching the outer peripheral circular shape into a substantially straight line.
  • stator 12 When the single-phase induction motor using the stator 12 of FIG. 2 is used for the rotary compressor 100, the stator 12 is shrink-fitted into the cylindrical sealed container 4 of the rotary compressor 100. Therefore, the notch 12 c is necessary to ensure a refrigerant passage between the stator 12 and the sealed container 4.
  • a concentric winding or lap winding main winding 20a is inserted into the stator slot 12b.
  • a main winding magnetic flux is generated by passing a current through the main winding 20a.
  • a concentric winding type or overlapping winding type auxiliary winding 20b is inserted into the stator slot 12b.
  • the auxiliary winding magnetic flux is generated by passing a current through the auxiliary winding 20b.
  • the angle formed by the main winding magnetic flux and the auxiliary winding magnetic flux is 90 degrees in electrical angle (here, since the number of poles is two, the mechanical angle is also 90 degrees).
  • a main winding is connected in parallel to an operation capacitor (not shown) connected in series with the auxiliary winding 20b. And the both ends are connected to a single phase alternating current power supply. Thereby, a main winding magnetic flux and an auxiliary winding magnetic flux can be generated, and a dipole rotating magnetic field can be generated.
  • the rotor 11 includes a rotor core 11a and a double squirrel-cage conductor.
  • the double squirrel-cage conductor includes an aluminum bar 30 and an end ring 32.
  • the aluminum bar 30 includes an outer layer aluminum bar 30a (outer layer secondary conductor) cast into the outer layer slot 40a and an inner layer aluminum bar 30b (inner layer secondary conductor) cast into the inner layer slot 40b.
  • the end rings 32 (two pieces) are provided at both axial ends of the rotor 11.
  • the end ring 32 is literally ring-shaped (donut-shaped).
  • the end ring 32 is connected to both ends of each aluminum bar 30 (outer layer aluminum bar 30a, inner layer aluminum bar 30b).
  • the rotor core 11a is manufactured by punching electromagnetic steel sheets having a thickness of 0.1 to 1.5 mm into a predetermined shape and laminating them in the axial direction in the same manner as the stator core 12a. In general, the rotor core 11a is often punched from the same material as the stator core 12a. However, the materials of the rotor core 11a and the stator core 12a may be changed.
  • the rotor core 11 a has a double cage rotor slot 40.
  • the rotor slot 40 includes an outer layer slot 40a and an inner layer slot 40b.
  • the outer layer slot 40a is provided on the outer peripheral side in the radial direction.
  • the inner layer slot 40b is provided inside the outer layer slot 40a.
  • Aluminum which is a conductive material, is cast into both the outer layer slot 40a and the inner layer slot 40b. Then, the outer layer aluminum bar 30a is cast into the outer layer slot 40a. Further, the inner layer aluminum bar 30b is cast into the inner layer slot 40b.
  • a squirrel-cage secondary winding is formed together with the outer aluminum bar 30a and the inner aluminum bar 30b and the end rings 32 provided on both end surfaces of the rotor 11 in the stacking direction.
  • the aluminum bar 30 and the end ring 32 are manufactured by casting aluminum simultaneously by die casting.
  • the outer layer slot 40a and the inner layer slot 40b constituting the double cage shape are separated by an inner peripheral thin wall (thin wall portion provided between the outer layer slot 40a and the inner layer slot 40b) made of a magnetic steel sheet.
  • the outer layer aluminum bar 30 a inside the outer layer slot 40 a and the inner layer aluminum bar 30 b inside the inner layer slot 40 b are electrically connected by an end ring 32.
  • the electric element 13 single phase induction motor
  • the double squirrel-cage rotor a current flows through the outer aluminum bar 30a at the time of startup. Almost no current flows through the inner aluminum bar 30b. Therefore, the resistance Rb of the aluminum bar 30 is increased, and the secondary resistance R2 is increased.
  • the secondary resistance R2 is proportional to the sum of the resistance Rb of the aluminum bar 30 and the resistance Rr of the end ring 32 as shown in the equation (1).
  • the secondary resistance R2 necessary for producing the required starting torque can be earned by the resistance Rb of the aluminum bar 30. Therefore, the resistance Rr of the end ring 32 may be small.
  • the secondary resistance R2 should be small.
  • a current also flows through the inner layer aluminum bar 30b for the reasons described above. Accordingly, the area of the aluminum bar 30 increases, and the resistance Rb of the aluminum bar 30 becomes smaller during operation than during startup.
  • the secondary resistance R2 required for producing the required starting torque can be earned by the resistance Rb of the aluminum bar 30. Therefore, the resistance Rr of the end ring 32 can be reduced to increase the efficiency during operation.
  • the volume of the end ring 32 is increased.
  • the die-casting type of the end ring 32 requires a pressing margin for pressing the vicinity of the outer peripheral portion of the axial end surface of the rotor core 11a. That is, the end ring 32 cannot be expanded outward in the radial direction of the rotor 11.
  • the remaining method of increasing the volume of the end ring 32 is to extend the end ring 32 inward in the radial direction of the rotor 11.
  • the rotor 11 of the rotary compressor 100 has an air hole 33 (FIGS. 2 and 3) serving as a normal refrigerant passage. If the end ring 32 is extended inward in the radial direction of the rotor 11, the air hole 33 is blocked. Therefore, the end ring 32 needs a relief part (a part for communicating the air hole 33 with the outside) so as not to block the air hole 33.
  • the rotor 11 is manufactured by aluminum die casting, it is necessary that the inner periphery of the die-casting mold has a holding allowance for holding the rotor core 11a at least several millimeters. For example, the press margin needs to be 4 mm or more. Therefore, the inner diameter of the end ring 32 needs to be larger by 8 mm or more than the diameter of the shaft hole 31 (FIGS. 2 and 3) of the rotor 11.
  • the end ring 32 Since the inner diameter side of the end ring 32 expands to the drive shaft side so as to block the air hole 33, in order not to block the air hole 33, the end ring 32 has a relief part (a part that communicates the air hole 33 with the outside, for example, In the following, an example in which a portion that communicates the air holes 33 with the space in the sealed container 4 is provided.
  • the relief portion is formed by a notch 34 provided on the inner periphery of the end ring 32.
  • the notch 34 is formed in a portion corresponding to the air hole 33 of the end ring 32.
  • the notch 34 is provided so that the air hole 33 is exposed.
  • the rotor 11 shown in FIG. 5 has four air holes 33 formed therein. Accordingly, the notches 34 are also provided at four locations.
  • the distance between the inner periphery of the end ring 32 and the shaft hole 31 is secured in order to secure a press margin for the inner peripheral portion of the die cast mold to hold the rotor core 11a.
  • L is 4 mm or more.
  • the positioning of the air hole 33 of the rotor core 11a and the notch 34 of the end ring 32 can be performed by providing a positioning projection at the tip in the axial direction of the portion corresponding to the notch 34 of the aluminum die cast type. Positioning is performed by inserting positioning protrusions into the air holes 33 of the rotor core 11a.
  • the aluminum bar 30 of the rotor 11 is usually skewed. That is, the aluminum bar 30 is not parallel to the axis of the rotor 11 but is inclined. The skew is performed in order to prevent the voltage of the harmonic component (particularly the slot harmonic) in the magnetic field generated by the winding 20 of the stator 12 from being induced in the aluminum bar 30.
  • both end portions of the aluminum bar 30 in the axial direction have a predetermined length (longer than the axial length of the positioning protrusion of the aluminum die-casting type) parallel to the shaft.
  • the aluminum die-casting positioning protrusion can be smoothly inserted into the air hole 33 of the rotor core 11a.
  • the aluminum bar 30 of the rotor 11 is skewed over the entire length, it can be inserted by reducing the diameter of the positioning projection of the aluminum die-casting type. In this case, the positioning accuracy between the air hole 33 of the rotor core 11a and the notch 34 of the end ring 32 is slightly deteriorated.
  • FIG. 6 illustrates another example in which a portion in which the air hole 33 communicates with the space in the sealed container 4 is provided.
  • an end ring air hole 32a communicating with the air hole 33 of the rotor core 11a is formed.
  • the end ring air holes 32a are positioned and formed during aluminum die casting so as to communicate with the air holes 33 of the rotor core 11a.
  • the rotor 11 shown in FIG. 6 has four air holes 33 formed therein. Therefore, the end ring air holes 32a are also provided at four locations.
  • the inner periphery of the end ring 32 is secured in order to secure a holding allowance for the inner peripheral portion of the die cast mold to hold the rotor core 11 a.
  • the distance L between the shaft hole 31 is 4 mm or more.
  • the positioning of the air hole 33 of the rotor core 11a and the end ring air hole 32a of the end ring 32 can be performed by providing a positioning projection at the tip in the axial direction of the portion corresponding to the end ring air hole 32a of the aluminum die cast type. Positioning is performed by inserting positioning protrusions into the air holes 33 of the rotor core 11a.
  • the diameter of the end ring air hole 32a is slightly larger than the diameter of the air hole 33 of the rotor core 11a.
  • FIG. 5 and 6 show an example in which the air holes 33 are provided in the rotor 11.
  • an air hole may be provided on the stator 12 side.
  • a notch 12c is provided on the outer periphery of the stator core 12a.
  • the notches 12c are provided at six locations.
  • a space is formed between the notch 12c of the stator core 12a and the sealed container 4 (body 1). This space becomes the stator air hole 35.
  • These six stator air holes 35 and the air gap 36 between the stator 12 and the rotor 11 (the radial dimension is, for example, about 0.5 mm) are discharged from the compression element 10 at high temperature and high pressure. It becomes the passage of the gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant that has passed through the electric element 13 is discharged from the discharge pipe 16 to the outside (refrigeration cycle).
  • the notch 12c is provided on the outer periphery of the stator core 12a.
  • the stator air hole 35 may be provided on the core back of the stator core 12a (the outer portion of the stator slot 12b) instead of the outer periphery.
  • the end ring 32 can be enlarged (the inner diameter side of the end ring 32 is extended so as to be positioned in the vicinity of the drive shaft). Moreover, since the refrigerant
  • stator 12 omits the slots 12b and the like.
  • the slot shape of the rotor 11 is a so-called double basket shape as shown in FIGS.
  • the outer layer slot 40a and the inner layer slot 40b may be connected as shown in FIG. 8, or may not be connected as shown in FIG.
  • the secondary resistance R2 of the rotor 11 is expressed by the equation (1). That is, the secondary resistance R2 is proportional to the sum of the resistance Rb of the aluminum bar and the resistance Rr of the end ring. Therefore, even if the end ring volume ratio is increased and the end ring resistance Rr is decreased, the secondary resistance R2 converges on the resistance Rb of the aluminum bar.
  • the secondary resistance R2 decreases and the motor efficiency increases. However, as the secondary resistance R2 approaches (converges) the lower limit value, the motor efficiency also converges to the upper limit value.
  • the end ring volume ratio is preferably 13% or more, for example.
  • a magnetic attractive force P acting between the stator 12 and the rotor 11 is expressed by the following equation.
  • P k2 ⁇ W ⁇ Bm2 (2)
  • W is the core width (axial length) of the stator core 12a
  • Bm is the maximum magnetic flux density in the air gap 36 (the distance between the stator 12 and the rotor 11, see FIG. 11). It is.
  • the secondary resistance R2 of the rotor 11 can be reduced. Therefore, it is possible to increase the stalling torque (referring to the maximum torque at the rotational speed close to no load from the start). Therefore, if the stationary torque is constant, the design can be made such that the maximum magnetic flux density Bm of the air gap 41 is reduced by that amount (the specification of the winding 20 of the stator 12 is changed).
  • the magnetic attractive force P acting between the stator 12 and the rotor 11 is reduced from the equation (2).
  • the electric element 13 is only supported on one side by the upper bearing 6 of the compression element 10. That is, the electric element 13 has a cantilevered bearing. Accordingly, the portion of the rotor 11 opposite to the upper bearing 6 side that is not supported by the bearing (the upper portion of the rotor 11 in FIG. 1) swings. The swing of the rotor 11 is related to the magnetic attractive force P. When the magnetic attractive force P is large, the swing of the rotor 11 also increases.
  • the air gap length (the length in the radial direction of the air gap 36) is made larger than that in the case where the bearing of the electric element 13 is a double-supported structure. Yes.
  • the gap length between the stator 12 and the rotor 11 can be set as follows. (1) When the outer diameter of the stator 12 is 140 mm or less, the gap length is 0.6 mm or less; (2) When the outer diameter of the stator 12 exceeds 140 mm, the gap length is 0.8 mm or less.
  • a harmonic component (torque ripple) is superimposed on the torque generated by the electric element 13 (induction motor).
  • the horizontal axis represents the load torque [Nm]
  • the vertical axis represents the torque ripple [%] (ratio to the fundamental wave torque).
  • the gap length can be 0.6 mm or 0.8 mm or less depending on the outer diameter.
  • the gap length in the cutting part 38 is 0.6 mm or 0.8 mm or less depending on the outer diameter of the stator 12, the gap length of the part other than the cutting part 38 (part close to the upper bearing 6 in FIG. 1). Can be further reduced, and the motor efficiency can be improved.
  • the slot 40 of the rotor core 11a is composed of an outer layer slot 40a and an inner layer slot 40b. Therefore, in the slot 40 portion, the contact area between the core (rotor core 11a) and the secondary conductor (outer layer aluminum bar 30a and inner layer aluminum bar 30b) is wide, and the insulation between the core and the secondary conductor deteriorates.
  • the core and the secondary conductor are insulated by post heat. Brewing refers to heat treatment of the rotor core 11a to form an oxide film on the surface of the rotor core 11a.
  • Post-heating means that after the conductor is die-cast, the rotor 11 is heated, immersed in a liquid such as water and rapidly cooled to create a gap between the secondary conductor in the slot 40 and the rotor core 11a.
  • the secondary conductor is insulated.
  • R22 refrigerant may be used as the refrigerant in the refrigeration cycle in which the rotary compressor 100 is incorporated. In that case, when the R22 refrigerant is used, the winding 20 temperature of the stator 12 is likely to rise. Therefore, it is difficult to reduce the size of the motor. Since the efficiency is improved by using the double squirrel-cage rotor for the electric element 13, it is possible to reduce the size or increase the capacity with the same size.
  • R410a refrigerant is used as the refrigerant of the refrigeration cycle in which the rotary compressor 100 is incorporated.
  • the refrigerating capacity is increased by about 10% compared to the R22 refrigerant. Therefore, when the R410a refrigerant is used, the torque of the electric element 13 needs to be increased by that amount (about 10%) compared to the R22 refrigerant. In this case, torque improvement by using a double cage rotor for the rotor 11 is effective.
  • the electric element 13 corresponding to the R410a refrigerant is configured by simply selecting a motor based on the refrigerating capacity ratio and replacing the conventional single cage rotor with a double cage rotor. be able to.
  • CO 2 (R744) refrigerant is used as the refrigerant of the refrigeration cycle in which the rotary compressor 100 is incorporated.
  • the CO 2 refrigerant has a very high compression ratio, and at present, the electric element 13 of the rotary compressor 100 using the CO 2 refrigerant is mainly a brushless DC motor.
  • FIG. 14 is a configuration diagram of a refrigeration cycle apparatus using the rotary compressor 100.
  • the refrigeration cycle apparatus is, for example, an air conditioner.
  • the rotary compressor 100 is connected to a single-phase power source 18.
  • An operating capacitor 60 is connected between the auxiliary winding 20 b of the single-phase induction motor of the rotary compressor 100 and the single-phase power source 18. Electric power is supplied from the single-phase power source 18 to the rotary compressor 100, and the rotary compressor 100 is driven.
  • the refrigeration cycle apparatus (air conditioner) includes a rotary compressor 100, a four-way valve 51 that switches a refrigerant flow direction, an outdoor heat exchanger 52, a decompression device 53, an indoor heat exchanger 54, and the like. These are connected by refrigerant piping.
  • the refrigerant flows as indicated by arrows in FIG.
  • the outdoor heat exchanger 52 becomes a condenser.
  • the indoor heat exchanger 54 becomes an evaporator.
  • the refrigerant flows in the direction opposite to the arrow in FIG.
  • the direction in which the refrigerant flows is switched by the four-way valve 51.
  • the outdoor heat exchanger 52 becomes an evaporator.
  • the indoor heat exchanger 54 becomes a condenser.
  • HFC refrigerants represented by R134a, R410a, R407c, etc., and natural refrigerants represented by R744 (CO 2 ), R717 (ammonia), R600a (isobutane), R290 (propane), etc. are used as the refrigerant.
  • the refrigerating machine oil weakly compatible oils typified by alkylbenzene oils or compatible oils typified by ester oils are used.
  • rotary type rotary type
  • a reciprocating type, a scroll type, etc. can be used for the compressor.
  • the electric motor for a compressor according to the embodiment of the present invention can expand the end ring without blocking the air hole of the rotor core by configuring the relief portion with a notch provided in the inner periphery of the end ring.
  • the electric motor for a compressor according to the embodiment of the present invention can further expand the end ring without blocking the air hole of the rotor core by configuring the escape portion with the end ring air hole provided in the end ring.
  • An electric motor for a compressor is housed together with a compression element that compresses a refrigerant in an airtight container, and is connected to the compression element by a drive shaft to drive the compression element.
  • a stator that is fixed to the inner periphery of the container, a rotor that is provided inside the stator and has a rotor core, and an outer layer secondary conductor and an inner layer secondary conductor that are cast into the rotor core;
  • a double squirrel-cage conductor composed of a secondary conductor and an end ring is provided, and the stator is provided with a stator air hole serving as a refrigerant passage so that the inner diameter side of the end ring is positioned near the drive shaft.
  • the end ring can be further expanded.
  • the secondary resistance R2 of the rotor 11 is the sum of the resistance Rb of the aluminum bar and the resistance Rr of the end ring.
  • the resistance Rr of the end ring decreases, and as a result, the secondary resistance R2 of the rotor 11 decreases.
  • the efficiency during operation of the compressor motor is improved.
  • the stator includes a stator core, a notch is provided in the outer peripheral portion of the stator core, and the space between the hermetic container and the outer peripheral portion of the stator core is notched.
  • An electric motor for a compressor includes a shaft hole in which a rotor iron core is fitted with a drive shaft, and the inner diameter of the end ring is larger than the diameter of the shaft hole by 8 mm or more, thereby It is possible to secure the press-down allowance of the die when die casting the shape conductor.
  • the motor for a compressor according to the embodiment of the present invention can improve the motor efficiency by setting the total volume of the end ring to 13% or more of the volume of the rotor core.
  • the compression element includes a bearing
  • the compressor motor is supported on one side by the bearing of the compression element
  • the bearing has a cantilever structure, and rotates with the stator.
  • the motor efficiency can be improved by setting the radial length of the gap between the child and the child as follows. (1) When the outer diameter of the stator is smaller than 140 mm, the radial length of the gap is 0.6 mm or less; (2) When the outer diameter of the stator exceeds 140 mm, the radial length of the gap is 0.8 mm or less.
  • the outer periphery on the opposite side of the bearing of the compression element of the rotor core is cut, and the outer diameter is made smaller than the outer periphery on the bearing side of the compression element of the rotor core.
  • the compressor according to the embodiment of the present invention can realize energy saving, downsizing, and low price by mounting the compressor motor.
  • the capacity can be reduced or the capacity can be increased with the same size.
  • the compressor according to the embodiment of the present invention can realize a compressor using a CO 2 refrigerant equipped with a constant speed motor without increasing the size of the compressor even when CO 2 is used as the refrigerant.
  • the compressor, the condenser, the decompression apparatus, and the evaporator are connected by a refrigerant pipe, so that the performance of the refrigeration cycle apparatus is improved, downsized, and reduced. Pricing is possible.
  • FIG. 3 shows the first embodiment, and is a longitudinal sectional view of the rotary compressor 100.
  • FIG. 3 is a diagram illustrating the first embodiment and is a cross-sectional view illustrating the electric element 13.
  • FIG. 3 is a cross-sectional view showing the rotor 11 of the electric element 13 according to the first embodiment.
  • FIG. 3 is a diagram showing the first embodiment, and is a perspective view showing a rotor 11 of the electric element 13.
  • FIG. 4 is a diagram illustrating the first embodiment, and is a side view of the rotor 11 in which a cutout 34 is provided in an end ring 32;
  • FIG. 5 shows the first embodiment and is a side view of the rotor 11 provided with an end ring air hole 32a.
  • FIG. 3 shows the first embodiment, and is a longitudinal sectional view of the rotary compressor 100.
  • FIG. 3 is a diagram illustrating the first embodiment and is a cross-sectional view illustrating the electric element 13.
  • FIG. 3 is a cross-section
  • FIG. 5 shows the first embodiment and is a cross-sectional view of the vicinity of the electric element 13 showing an example in which an air hole is provided on the stator 12 side.
  • FIG. 5 shows the first embodiment, and is a cross-sectional view of the slot of the rotor 11.
  • FIG. 5 shows the first embodiment, and is a cross-sectional view of the slot of the rotor 11.
  • FIG. 5 is a diagram illustrating the first embodiment and is a diagram illustrating a relationship between a volume ratio between an end ring 32 and a rotor core 11a, a secondary resistance R2, and motor efficiency.
  • FIG. 3 shows the first embodiment and is a partial cross-sectional view of the electric element 13.
  • FIG. 5 shows the first embodiment, and is a side view of a rotor 11 in which a cutting portion is provided on a part of the outer periphery.
  • FIG. 3 shows the first embodiment, and is a configuration diagram of a refrigeration cycle apparatus using a rotary compressor 100.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Induction Machinery (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

An object is to provide an electric motor for a compressor starting torque for which can be increased with the rise of the price of a component and a deterioration in efficiency in operation suppressed. The electric motor for the compressor is housed with a compressor element for compressing a cooling medium in an airtight container and connected to the compressor element via a driving axis to drive the compressor element. The electric motor for the compressor comprises a stator fixed to the inner periphery portion of the airtight container, a rotator (11) which is provided on the inner side of the stator and which has a rotator core (11a), and a double squirrel-cage conductor which is cast in the rotator core (11a) and which is constituted by a secondary conductor comprising an outer layer secondary conductor and an inner layer secondary conductor and an end ring (32). In the rotator core (11a), an air hole (33) which is the passage of the cooling medium is provided. The inner diameter side of the end ring (32) is enlarged to a driving axis side in such a manner that the air hole (33) is sealed. The end ring (32) has a cutting (34) for allowing the air hole (33) to be communicated with the space of the airtight container so as not to seal the air hole (33).

Description

圧縮機用電動機及び圧縮機及び冷凍サイクル装置Electric motor for compressor, compressor and refrigeration cycle apparatus
 この発明は、圧縮機用電動機及び圧縮機及び冷凍サイクル装置に関するものである。 The present invention relates to an electric motor for a compressor, a compressor, and a refrigeration cycle apparatus.
 空気調和機等の冷凍空調装置に使用される圧縮機において、圧縮機構を駆動する電動機には、ブラシレスDCモータ、誘導電動機等が使用されている。誘導電動機では、普通かご形誘導電動機(一重かご形)が主に用いられる。 In a compressor used in a refrigerating and air-conditioning apparatus such as an air conditioner, a brushless DC motor, an induction motor, or the like is used as an electric motor that drives a compression mechanism. In induction motors, ordinary cage induction motors (single cage type) are mainly used.
 誘導電動機には、三相誘導電動機と単相誘導電動機とがある。圧縮機に誘導電動機を使用する場合、三相誘導電動機は起動トルクが大きいため起動に関する課題は少ない。しかし、単相誘導電動機では、外部に接続される運転用のコンデンサだけでは、十分な起動トルクがでない。そのため、運転用のコンデンサの他に、起動用のコンデンサを追加することがある(例えば、特許文献1参照)。 Induction motors include three-phase induction motors and single-phase induction motors. When an induction motor is used for the compressor, the three-phase induction motor has a large start torque, so there are few problems regarding the start. However, in a single-phase induction motor, a sufficient starting torque is not obtained only by an operating capacitor connected to the outside. Therefore, a starting capacitor may be added in addition to the driving capacitor (see, for example, Patent Document 1).
 また、単相誘導電動機の固定子に巻線される主巻線と補助巻線との位相差を90°(電気角)からずらすことも行われる。 Also, the phase difference between the main winding and the auxiliary winding wound around the stator of the single-phase induction motor is shifted from 90 ° (electrical angle).
 さらに、回転子の二次抵抗を大きくして、起動トルクを大きくすることも行われる。
特開平6-213167号公報
Furthermore, the secondary resistance of the rotor is increased to increase the starting torque.
JP-A-6-213167
 しかしながら、上記特許文献1のように、起動用のコンデンサを追加する方法は、起動用のコンデンサを開閉する開閉器も必要なため部品価格が高くなるという課題がある。 However, the method of adding a starting capacitor as in the above-mentioned Patent Document 1 has a problem that the part price is high because a switch for opening and closing the starting capacitor is also required.
 また、主巻線と補助巻線との位相差を90°(電気角)からずらす方法は、固定子鉄心のスロット数によっては実現できないという課題がある。 Also, there is a problem that the method of shifting the phase difference between the main winding and the auxiliary winding from 90 ° (electrical angle) cannot be realized depending on the number of slots of the stator core.
 さらに、回転子の二次抵抗を大きくして、起動トルクを大きくする方法は、単相誘導電動機の運転中の効率が低下するという課題がある。 Furthermore, the method of increasing the starting torque by increasing the secondary resistance of the rotor has a problem that the efficiency during operation of the single-phase induction motor decreases.
 この発明は、上記のような課題を解決するためになされたもので、部品価格の高騰及び運転中の効率の低下を抑えつつ、且つ起動トルクを大きくできる圧縮機用電動機及び圧縮機及び冷凍サイクル装置を提供することを目的とする。 The present invention has been made to solve the above-described problems. An electric motor for a compressor, a compressor, and a refrigeration cycle capable of increasing a starting torque while suppressing a rise in parts price and a decrease in efficiency during operation. An object is to provide an apparatus.
 この発明に係る圧縮機用電動機は、密閉容器の内部に冷媒を圧縮する圧縮要素とともに収納され、圧縮要素と駆動軸により連結して圧縮要素を駆動する圧縮機用電動機において、
 密閉容器の内周部に固定される固定子と、
 固定子の内側に設けられ、回転子鉄心を有する回転子と、
 回転子鉄心に鋳込まれる、外層二次導体及び内層二次導体を備える二次導体とエンドリングとで構成される二重かご形導体とを備え、
 回転子鉄心には、冷媒の通路となる風穴を設け、
 エンドリングは、その内径側が、風穴を塞ぐように、駆動軸側に拡大するとともに、
風穴を塞がないようにするために、風穴を密閉容器の空間に連通させる逃がし部を設けたことを特徴とする。
An electric motor for a compressor according to the present invention is housed together with a compression element that compresses a refrigerant in an airtight container, and is connected to the compression element by a drive shaft to drive the compression element.
A stator fixed to the inner periphery of the sealed container;
A rotor provided inside the stator and having a rotor core;
A double squirrel-cage conductor composed of an outer ring secondary conductor and an inner layer secondary conductor and an end ring, which are cast into the rotor core,
The rotor iron core has air holes that serve as refrigerant passages.
The end ring expands to the drive shaft side so that the inner diameter side closes the air hole,
In order to prevent the air holes from being blocked, an escape portion that communicates the air holes with the space of the sealed container is provided.
 この発明に係る圧縮機用電動機は、逃がし部をエンドリングの内周に設けた切欠きで構成したことを特徴とする。 The motor for a compressor according to the present invention is characterized in that a relief portion is formed by a notch provided in the inner periphery of the end ring.
 この発明に係る圧縮機用電動機は、逃がし部をエンドリングに設けたエンドリング風穴で構成したことを特徴とする。 The motor for a compressor according to the present invention is characterized in that it is constituted by an end ring air hole having a relief portion provided in the end ring.
 この発明に係る圧縮機用電動機は、密閉容器の内部に冷媒を圧縮する圧縮要素とともに収納され、圧縮要素と駆動軸により連結して該圧縮要素を駆動する圧縮機用電動機において、
 密閉容器の内周部に固定される固定子と、
 固定子の内側に設けられ、回転子鉄心を有する回転子と、
 回転子鉄心に鋳込まれる、外層二次導体及び内層二次導体を備える二次導体とエンドリングとで構成される二重かご形導体とを備え、
 固定子には、冷媒の通路となる固定子風穴を設け、
 エンドリングの内径側を駆動軸の近傍に位置するように構成することを特徴とする。
An electric motor for a compressor according to the present invention is housed together with a compression element that compresses a refrigerant in an airtight container, and is connected to the compression element by a drive shaft to drive the compression element.
A stator fixed to the inner periphery of the sealed container;
A rotor provided inside the stator and having a rotor core;
A double squirrel-cage conductor composed of an outer ring secondary conductor and an inner layer secondary conductor and an end ring, which are cast into the rotor core,
The stator is provided with a stator air hole that serves as a refrigerant passage,
The inner ring side of the end ring is configured to be positioned in the vicinity of the drive shaft.
 この発明に係る圧縮機用電動機は、固定子は固定子鉄心を備え、固定子鉄心の外周部に切欠きを設け、密閉容器と固定子鉄心の外周部の切欠きとの間に固定子風穴を設けたことを特徴とする。 In the compressor motor according to the present invention, the stator includes a stator core, a notch is provided in the outer peripheral portion of the stator core, and the stator air hole is provided between the hermetic container and the notch in the outer peripheral portion of the stator core. Is provided.
 この発明に係る圧縮機用電動機は、回転子鉄心は駆動軸と嵌合する軸孔を備え、エンドリングの内径を軸孔の直径よりも8mm以上大きくしたことを特徴とする。 An electric motor for a compressor according to the present invention is characterized in that the rotor core has a shaft hole for fitting with the drive shaft, and the inner diameter of the end ring is made 8 mm or more larger than the diameter of the shaft hole.
 この発明に係る圧縮機用電動機は、エンドリングの合計の体積を、回転子鉄心の体積の13%以上としたことを特徴とする。 The motor for a compressor according to the present invention is characterized in that the total volume of the end ring is 13% or more of the volume of the rotor core.
 この発明に係る圧縮機用電動機は、圧縮要素は軸受けを備え、圧縮機用電動機は、圧縮要素の軸受けで片側が支持される、軸受けが片持ち構造であり、固定子と回転子との間の空隙の径方向長さを以下のようにすることを特徴とする。
(1)固定子の外径が140mmより小さい場合、空隙の径方向長さを0.6mm以下;
(2)前記固定子の外径が140mmを超える場合、空隙の径方向長さを0.8mm以下。
In the compressor motor according to the present invention, the compression element includes a bearing, and the compressor motor has a cantilever structure in which the bearing is supported on one side by the bearing of the compression element, and between the stator and the rotor. The length of the gap in the radial direction is as follows.
(1) When the outer diameter of the stator is smaller than 140 mm, the radial length of the gap is 0.6 mm or less;
(2) When the outer diameter of the stator exceeds 140 mm, the radial length of the gap is 0.8 mm or less.
 この発明に係る圧縮機用電動機は、回転子鉄心の圧縮要素の軸受けの反対側の外周を切削し、回転子鉄心の圧縮要素の軸受け側の外周よりも外径を小さくしたことを特徴とする。 The electric motor for a compressor according to the present invention is characterized in that the outer periphery on the opposite side of the bearing of the compression element of the rotor core is cut so that the outer diameter is smaller than the outer periphery on the bearing side of the compression element of the rotor core. .
 この発明に係る圧縮機は、上記圧縮機用電動機を搭載したことを特徴とする。 A compressor according to the present invention is characterized in that the above-described electric motor for compressor is mounted.
 この発明に係る圧縮機は、冷媒にR22を使用することを特徴とする。 The compressor according to the present invention is characterized by using R22 as a refrigerant.
 この発明に係る圧縮機は、冷媒にR410aを使用することを特徴とする。 The compressor according to the present invention is characterized by using R410a as a refrigerant.
 この発明に係る圧縮機は、冷媒にCOを使用することを特徴とする。 The compressor according to the present invention is characterized by using CO 2 as a refrigerant.
 この発明に係る冷凍サイクル装置は、上記圧縮機と、凝縮器と、減圧装置と、蒸発器とを冷媒配管で接続したことを特徴とする。 The refrigeration cycle apparatus according to the present invention is characterized in that the compressor, the condenser, the decompression device, and the evaporator are connected by a refrigerant pipe.
 この発明に係る圧縮機用電動機は、上記構成により、部品価格の高騰及び運転中の効率の低下を抑えつつ、且つ起動トルクを大きくできる。 The electric motor for a compressor according to the present invention can increase the starting torque while suppressing the rise in the parts price and the decrease in efficiency during operation.
 実施の形態1.
 図1乃至14は実施の形態1を示す図で、図1は回転式圧縮機100の縦断面図、図2は電動要素13を示す横断面図、図3は電動要素13の回転子11を示す横断面図、図4は電動要素13の回転子11を示す斜視図、図5はエンドリング32に切欠き34を設けた回転子11の側面図、図6はエンドリング風穴32aを設けた回転子11の側面図、図7は固定子12側に風穴を設ける例を示す電動要素13付近の横断面図、図8、図9は回転子11のスロットの横断面図、図10はエンドリング32と回転子鉄心11aとの体積比率と、二次抵抗R2及びモータ効率との関係を示す図、図11は電動要素13の部分横断面図、図12は一重かご形と二重かご形のトルクリップルを示す図、図13は外周の一部に切削部を設けた回転子11の側面図、図14は回転式圧縮機100を使用する冷凍サイクル装置の構成図である。
Embodiment 1 FIG.
FIGS. 1 to 14 are diagrams showing Embodiment 1, FIG. 1 is a longitudinal sectional view of a rotary compressor 100, FIG. 2 is a transverse sectional view showing an electric element 13, and FIG. 3 shows a rotor 11 of the electric element 13. 4 is a perspective view showing the rotor 11 of the electric element 13, FIG. 5 is a side view of the rotor 11 provided with a notch 34 in the end ring 32, and FIG. 6 is provided with an end ring air hole 32a. 7 is a side view of the rotor 11, FIG. 7 is a cross-sectional view of the vicinity of the electric element 13 showing an example in which an air hole is provided on the side of the stator 12, FIG. 8 and FIG. The figure which shows the relationship between the volume ratio of the ring 32 and the rotor core 11a, secondary resistance R2, and motor efficiency, FIG. 11 is the fragmentary sectional view of the electrically-driven element 13, FIG. 12 is a single cage shape and a double cage shape FIG. 13 is a diagram showing the torque ripple of the rotor 11 in which a cutting portion is provided on a part of the outer periphery. Side view, FIG. 14 is a configuration diagram of a refrigeration cycle apparatus using the rotary compressor 100.
 本実施の形態は、回転式圧縮機等の圧縮機に使用される電動機の回転子の構造に特徴がある。 This embodiment is characterized by the structure of a rotor of an electric motor used for a compressor such as a rotary compressor.
 回転式圧縮機における電動機の回転子の構造以外は公知のものである。従って、図1を参照しながら1シリンダの回転式圧縮機(圧縮機の一例)の全体構成を簡単に説明する。 Other than the structure of the rotor of the electric motor in the rotary compressor, it is known. Accordingly, the overall configuration of a one-cylinder rotary compressor (an example of a compressor) will be briefly described with reference to FIG.
 図1に示すように、回転式圧縮機100(圧縮機の一例)は、密閉容器4内に、圧縮要素10と電動要素13(圧縮機用電動機と呼ぶ)と図示しない冷凍機油とを収納している。冷凍機油は、密閉容器4内の底部に貯留している。冷凍機油は、主に圧縮要素10の摺動部を潤滑する。密閉容器4は、胴部1と上皿容器2と下皿容器3とからなる。 As shown in FIG. 1, a rotary compressor 100 (an example of a compressor) houses a compression element 10 and an electric element 13 (referred to as a compressor motor) and refrigerating machine oil (not shown) in a sealed container 4. ing. The refrigerating machine oil is stored at the bottom of the sealed container 4. The refrigerating machine oil mainly lubricates the sliding portion of the compression element 10. The sealed container 4 includes a body 1, an upper dish container 2, and a lower dish container 3.
 圧縮要素10は、シリンダ5、上軸受け6(軸受けの一例)、下軸受け7(軸受けの一例)、駆動軸8、ローリングピストン9、ベーン等で構成される。シリンダ5は内部に圧縮室を形成する。上軸受け6、下軸受け7は、シリンダ5の両端開口部(軸方向)を閉塞する。また、上軸受け6、下軸受け7は、駆動軸8の偏芯部が受ける圧縮荷重を支持する。ローリングピストン9が、駆動軸8の偏芯部に嵌合する。ベーンは、シリンダ5の溝内を往復運動し、先端がローリングピストン9と接する。シリンダ5と、ローリングピストン9と、ベーンとにより圧縮室が形成される。 The compression element 10 includes a cylinder 5, an upper bearing 6 (an example of a bearing), a lower bearing 7 (an example of a bearing), a drive shaft 8, a rolling piston 9, a vane, and the like. The cylinder 5 forms a compression chamber inside. The upper bearing 6 and the lower bearing 7 close the openings at both ends (axial direction) of the cylinder 5. The upper bearing 6 and the lower bearing 7 support a compressive load received by the eccentric portion of the drive shaft 8. The rolling piston 9 is fitted to the eccentric portion of the drive shaft 8. The vane reciprocates in the groove of the cylinder 5, and the tip contacts the rolling piston 9. A compression chamber is formed by the cylinder 5, the rolling piston 9, and the vane.
 電動要素13は、密閉容器4の胴部1に固定される固定子12と、固定子12の内部で回転する回転子11とを有する。 The electric element 13 includes a stator 12 that is fixed to the body 1 of the sealed container 4 and a rotor 11 that rotates inside the stator 12.
 回転子11は、詳細は後述するが、アルミダイキャスト製の二重かご形回転子である。回転子11は、その内周に駆動軸8が固定される。 The rotor 11 is a double squirrel-cage rotor made of aluminum die cast, details of which will be described later. The drive shaft 8 is fixed to the inner periphery of the rotor 11.
 固定子12の巻線20にリード線21が接続される。リード線21は、ガラス端子17に接続する。ガラス端子17は、密閉容器4に溶接により固定されている。ガラス端子17に、外部の電源から電力が供給される。 The lead wire 21 is connected to the winding 20 of the stator 12. The lead wire 21 is connected to the glass terminal 17. The glass terminal 17 is fixed to the sealed container 4 by welding. Electric power is supplied to the glass terminal 17 from an external power source.
 回転式圧縮機100は、密閉容器4の外部に吸入マフラー14を備える。吸入マフラー14は、液冷媒が直接回転式圧縮機100に吸入されないようにするために設けられる。吸入マフラー14の吸入管15が圧縮要素10のシリンダ5に接続する。圧縮要素10で圧縮された高温・高圧のガス冷媒は、電動要素13を通過し、最後に吐出管16から外部へ吐出される。 The rotary compressor 100 includes a suction muffler 14 outside the sealed container 4. The suction muffler 14 is provided to prevent liquid refrigerant from being directly sucked into the rotary compressor 100. A suction pipe 15 of the suction muffler 14 is connected to the cylinder 5 of the compression element 10. The high-temperature and high-pressure gas refrigerant compressed by the compression element 10 passes through the electric element 13 and is finally discharged from the discharge pipe 16 to the outside.
 ここで、本実施の形態の基本概念を説明しておく。単相の交流電源用の回転式圧縮機100の電動要素13に、単相誘導電動機を用いるとする。単相誘導電動機は、部品価格を抑えるために、運転用のコンデンサのみを用いるコンデンサモータとする。コンデンサモータは、三相誘導電動機に比べると起動トルクが小さい。また、コンデンサモータの起動トルクは、回転子11(かご形回転子)の二次抵抗に関係する。コンデンサモータの起動トルクは、回転子11の二次抵抗を大きくするほど大きくなる。しかし、回転子11の二次抵抗は、コンデンサモータの運転中の効率にも関係する。回転子11の二次抵抗が大きいと、コンデンサモータの運転中の効率は低下する。 Here, the basic concept of this embodiment will be described. Assume that a single-phase induction motor is used as the electric element 13 of the rotary compressor 100 for a single-phase AC power supply. The single-phase induction motor is a capacitor motor that uses only a driving capacitor in order to reduce the component price. A capacitor motor has a smaller starting torque than a three-phase induction motor. The starting torque of the capacitor motor is related to the secondary resistance of the rotor 11 (cage rotor). The starting torque of the capacitor motor increases as the secondary resistance of the rotor 11 increases. However, the secondary resistance of the rotor 11 is also related to the efficiency during operation of the capacitor motor. When the secondary resistance of the rotor 11 is large, the efficiency during the operation of the capacitor motor decreases.
 回転子11の二次抵抗R2は、アルミバーの抵抗をRb、エンドリングの抵抗をRrとすると、
  R2=k1×(Rb+Rr)             (1)
で表される。ここで、k1は定数である。
When the resistance of the aluminum bar is Rb and the resistance of the end ring is Rr, the secondary resistance R2 of the rotor 11 is
R2 = k1 × (Rb + Rr) (1)
It is represented by Here, k1 is a constant.
 回転子11が普通かご形回転子(一重かご形)の場合、アルミバーの抵抗Rbは、すべり(固定子12の巻線20が形成する回転磁界と回転子11との相対速度)の大きい起動時と、すべりの小さい運転時とで余り変わらない。アルミバーの径方向の深さが長い場合、多少起動時の抵抗Rbよりも運転時の抵抗Rbが小さくなる程度である。 When the rotor 11 is an ordinary cage rotor (single cage type), the resistance Rb of the aluminum bar starts with a large slip (relative speed between the rotating magnetic field formed by the winding 20 of the stator 12 and the rotor 11). There is not much difference between when driving and when driving with little slip. When the radial depth of the aluminum bar is long, the resistance Rb during operation is slightly smaller than the resistance Rb during startup.
 運転中の効率を考慮して回転子11の二次抵抗R2は、余り大きくできない。そのため、二次抵抗R2に関係する起動トルクは、比較的小さい。 In consideration of the efficiency during operation, the secondary resistance R2 of the rotor 11 cannot be increased too much. Therefore, the starting torque related to the secondary resistance R2 is relatively small.
 そこで、通常は起動用のコンデンサを追加して、起動トルクを大きくすることが行われる。しかし、起動用のコンデンサを追加すると部品価格が上がる。 Therefore, usually, a starting capacitor is added to increase the starting torque. However, adding a starting capacitor increases the part price.
 部品価格を上げないで、且つ運転中の効率も下げないで起動トルクを改善する方法を模索した。 。 We searched for a method to improve the starting torque without increasing the part price and without reducing the efficiency during operation.
 その結果、二重かご形回転子が有力であることが判明した。二重かご形回転子は、以下に示す特徴を有する。 As a result, it was found that the double cage rotor is effective. The double squirrel-cage rotor has the following characteristics.
 即ち、二重かご形回転子は、抵抗の大きい外層スロット(回転子鉄心の外周に沿って設けられたスロット)と、抵抗の小さい内層スロット(外層スロットよりも回転子鉄心の内周に近い部分に、外層スロットに沿って設けられたスロット)を備える。二重かご形回転子を有する誘導電動機は一般的な特徴として、起動時はすべり周波数が高くなる。そのため、回転子外周側に磁束が流れる。主として抵抗の高い外層スロットのみに二次電流が流れることで、起動トルクが大きくなる。また通常運転時は、すべり周波数が低い。そのため、二次電流は外層スロットと内層スロットの両方に流れる。従って、二次抵抗が小さくなり、二次銅損が低くなる。よって、高効率化が実現できるという特性を有している。 That is, the double cage rotor has an outer layer slot (a slot provided along the outer periphery of the rotor core) having a large resistance and an inner layer slot (a portion closer to the inner circumference of the rotor core than the outer layer slot) having a small resistance. Provided with a slot provided along the outer layer slot. As a general feature, an induction motor having a double squirrel-cage rotor has a high slip frequency at startup. Therefore, magnetic flux flows on the rotor outer peripheral side. Since the secondary current flows mainly only in the outer layer slot having a high resistance, the starting torque is increased. Also, during normal operation, the slip frequency is low. Therefore, the secondary current flows in both the outer layer slot and the inner layer slot. Accordingly, the secondary resistance is reduced and the secondary copper loss is reduced. Therefore, it has a characteristic that high efficiency can be realized.
 二重かご形回転子を回転式圧縮機100の回転子11に適用する場合の実施例について以下説明を行う。 An embodiment in the case where the double cage rotor is applied to the rotor 11 of the rotary compressor 100 will be described below.
 先ず、図2乃至図4により、単相誘導電動機を用いる電動要素13の構成を簡単に説明する。電動要素13は、固定子12と、固定子12の内部で回転する回転子11とを有する。 First, the configuration of the electric element 13 using a single-phase induction motor will be briefly described with reference to FIGS. The electric element 13 includes a stator 12 and a rotor 11 that rotates inside the stator 12.
 図1に示す固定子12は、二極の単相誘導電動機の固定子である。固定子12は、固定子鉄心12aと固定子スロット12bに挿入される主巻線20aおよび補助巻線20bとを備える。主巻線20aおよび補助巻線20bで、巻線20を構成する。固定子スロット12bには巻線20と固定子鉄心12aとの間の絶縁を確保するために絶縁材が挿入されるが、ここでは省略する。この例では、固定子スロット12bの数は24である。但し、これは一例であり、スロット数が24に限定されるものではない。 A stator 12 shown in FIG. 1 is a stator of a two-pole single-phase induction motor. The stator 12 includes a stator core 12a and a main winding 20a and an auxiliary winding 20b inserted into the stator slot 12b. The main winding 20a and the auxiliary winding 20b constitute the winding 20. An insulating material is inserted into the stator slot 12b in order to ensure insulation between the winding 20 and the stator core 12a, but is omitted here. In this example, the number of stator slots 12b is 24. However, this is an example, and the number of slots is not limited to 24.
 固定子鉄心12aは、板厚が0.1~1.5mmの電磁鋼板を所定の形状に打ち抜き、軸方向に積層し、カシメや溶接等により固定して製作される。固定子鉄心12aの外周面には、外周円形状を略直線状に切り欠いた略直線部をなす切欠き12cが設けられている。 The stator core 12a is manufactured by punching electromagnetic steel sheets having a thickness of 0.1 to 1.5 mm into a predetermined shape, laminating them in the axial direction, and fixing them by caulking or welding. On the outer peripheral surface of the stator core 12a, there is provided a notch 12c that forms a substantially straight portion obtained by notching the outer peripheral circular shape into a substantially straight line.
 回転式圧縮機100に図2の固定子12を用いた単相誘導電動機を使用する場合に、固定子12は回転式圧縮機100の円筒状の密閉容器4に焼き嵌めされる。そのため、切欠き12cが、固定子12と密閉容器4との間に冷媒の通路を確保するために必要である。 When the single-phase induction motor using the stator 12 of FIG. 2 is used for the rotary compressor 100, the stator 12 is shrink-fitted into the cylindrical sealed container 4 of the rotary compressor 100. Therefore, the notch 12 c is necessary to ensure a refrigerant passage between the stator 12 and the sealed container 4.
 固定子スロット12bには、同心巻方式又は重ね巻方式の主巻線20aが挿入される。主巻線20aに電流を流すことで主巻線磁束が生成される。また固定子スロット12bには主巻線20aと同様に同心巻方式又は重ね巻方式の補助巻線20bが挿入される。補助巻線20bに電流を流すことで補助巻線磁束が生成される。 A concentric winding or lap winding main winding 20a is inserted into the stator slot 12b. A main winding magnetic flux is generated by passing a current through the main winding 20a. Similarly to the main winding 20a, a concentric winding type or overlapping winding type auxiliary winding 20b is inserted into the stator slot 12b. The auxiliary winding magnetic flux is generated by passing a current through the auxiliary winding 20b.
 一般的には主巻線磁束と補助巻線磁束のなす角度は電気角で90度である(ここでは極数が二極であるため、機械角も90度である)。補助巻線20bと直列に運転コンデンサ(図示せず)を接続したものに主巻線を並列接続させる。そして、その両端を単相交流電源へ接続する。それにより、主巻線磁束および補助巻線磁束を生成し、二極の回転磁界を生成することができる。 Generally, the angle formed by the main winding magnetic flux and the auxiliary winding magnetic flux is 90 degrees in electrical angle (here, since the number of poles is two, the mechanical angle is also 90 degrees). A main winding is connected in parallel to an operation capacitor (not shown) connected in series with the auxiliary winding 20b. And the both ends are connected to a single phase alternating current power supply. Thereby, a main winding magnetic flux and an auxiliary winding magnetic flux can be generated, and a dipole rotating magnetic field can be generated.
 また、回転子11は回転子鉄心11aと二重かご形導体を備える。二重かご形導体は、アルミバー30と、エンドリング32とで構成される。アルミバー30は、外層スロット40aに鋳込まれる外層アルミバー30a(外層二次導体)と、内層スロット40bに鋳込まれる内層アルミバー30b(内層二次導体)とで構成される。エンドリング32(二個)は、回転子11の軸方向両端に設けられる。エンドリング32は、文字通りリング状(ドーナッツ状)である。エンドリング32は、各アルミバー30(外層アルミバー30a、内層アルミバー30b)の両端に連結する。 The rotor 11 includes a rotor core 11a and a double squirrel-cage conductor. The double squirrel-cage conductor includes an aluminum bar 30 and an end ring 32. The aluminum bar 30 includes an outer layer aluminum bar 30a (outer layer secondary conductor) cast into the outer layer slot 40a and an inner layer aluminum bar 30b (inner layer secondary conductor) cast into the inner layer slot 40b. The end rings 32 (two pieces) are provided at both axial ends of the rotor 11. The end ring 32 is literally ring-shaped (donut-shaped). The end ring 32 is connected to both ends of each aluminum bar 30 (outer layer aluminum bar 30a, inner layer aluminum bar 30b).
 回転子鉄心11aは、固定子鉄心12aと同様に板厚が0.1~1.5mmの電磁鋼板を所定の形状に打ち抜き、軸方向に積層して製作される。一般的には回転子鉄心11aは、固定子鉄心12aと同一の材料から打ち抜くことが多い。但し、回転子鉄心11aと固定子鉄心12aの材料を変えても構わない。 The rotor core 11a is manufactured by punching electromagnetic steel sheets having a thickness of 0.1 to 1.5 mm into a predetermined shape and laminating them in the axial direction in the same manner as the stator core 12a. In general, the rotor core 11a is often punched from the same material as the stator core 12a. However, the materials of the rotor core 11a and the stator core 12a may be changed.
 回転子鉄心11aは、二重かご形状の回転子スロット40を有する。回転子スロット40は、外層スロット40aと内層スロット40bとからなる。外層スロット40aは、半径方向外周側に設けられる。内層スロット40bは、外層スロット40aの内側に設けられる。 The rotor core 11 a has a double cage rotor slot 40. The rotor slot 40 includes an outer layer slot 40a and an inner layer slot 40b. The outer layer slot 40a is provided on the outer peripheral side in the radial direction. The inner layer slot 40b is provided inside the outer layer slot 40a.
 外層スロット40a及び内層スロット40bともに導電性材料であるアルミが鋳込まれる。そして、外層スロット40a内に外層アルミバー30aが鋳込まれる。また、内層スロット40b内に内層アルミバー30bが鋳込まれる。外層アルミバー30a及び内層アルミバー30bと、回転子11の積層方向両端面に設けられたエンドリング32と共にかご形二次巻線を形成する。一般的にアルミバー30とエンドリング32はダイキャストにより同時にアルミを鋳込むことで製作される。 Aluminum, which is a conductive material, is cast into both the outer layer slot 40a and the inner layer slot 40b. Then, the outer layer aluminum bar 30a is cast into the outer layer slot 40a. Further, the inner layer aluminum bar 30b is cast into the inner layer slot 40b. A squirrel-cage secondary winding is formed together with the outer aluminum bar 30a and the inner aluminum bar 30b and the end rings 32 provided on both end surfaces of the rotor 11 in the stacking direction. Generally, the aluminum bar 30 and the end ring 32 are manufactured by casting aluminum simultaneously by die casting.
 図2において、二重かご形状を構成する外層スロット40aと内層スロット40bは電磁鋼板からなる内周薄肉(外層スロット40aと内層スロット40bとの間に設ける薄肉部分)によって分離されている。外層スロット40a内部の外層アルミバー30aと内層スロット40b内部の内層アルミバー30bとは、エンドリング32によって電気的に連結されている構造である。 In FIG. 2, the outer layer slot 40a and the inner layer slot 40b constituting the double cage shape are separated by an inner peripheral thin wall (thin wall portion provided between the outer layer slot 40a and the inner layer slot 40b) made of a magnetic steel sheet. The outer layer aluminum bar 30 a inside the outer layer slot 40 a and the inner layer aluminum bar 30 b inside the inner layer slot 40 b are electrically connected by an end ring 32.
 既に述べたように、二重かご形回転子を用いる電動要素13(単相誘導電動機)は、起動時には外層アルミバー30aに電流が流れる。内層アルミバー30bには電流が殆ど流れない。そのため、アルミバー30の抵抗Rbが大きくなり、二次抵抗R2が大きくなる。二次抵抗R2は、(1)式に示すようにアルミバー30の抵抗Rb、エンドリング32の抵抗Rrの和に比例する。要求される起動トルクを出すために必要な二次抵抗R2は、アルミバー30の抵抗Rbで稼げる。従って、エンドリング32の抵抗Rrは小さくてよい。 As already described, in the electric element 13 (single phase induction motor) using the double squirrel-cage rotor, a current flows through the outer aluminum bar 30a at the time of startup. Almost no current flows through the inner aluminum bar 30b. Therefore, the resistance Rb of the aluminum bar 30 is increased, and the secondary resistance R2 is increased. The secondary resistance R2 is proportional to the sum of the resistance Rb of the aluminum bar 30 and the resistance Rr of the end ring 32 as shown in the equation (1). The secondary resistance R2 necessary for producing the required starting torque can be earned by the resistance Rb of the aluminum bar 30. Therefore, the resistance Rr of the end ring 32 may be small.
 電動要素13(単相誘導電動機)の運転中の効率を上げるには、二次抵抗R2は小さい方がよい。電動要素13(単相誘導電動機)の運転中は、前述の理由により、内層アルミバー30bにも電流が流れる。その分、アルミバー30の面積が増加して、アルミバー30の抵抗Rbは起動時よりも運転中の方が小さくなる。 In order to increase the efficiency during operation of the electric element 13 (single phase induction motor), the secondary resistance R2 should be small. During the operation of the electric element 13 (single phase induction motor), a current also flows through the inner layer aluminum bar 30b for the reasons described above. Accordingly, the area of the aluminum bar 30 increases, and the resistance Rb of the aluminum bar 30 becomes smaller during operation than during startup.
 エンドリング32の抵抗Rrも小さければ、二次抵抗R2はさらに小さくなる。 If the resistance Rr of the end ring 32 is small, the secondary resistance R2 is further reduced.
 電動要素13に普通かご形回転子(一重かご形)を用いる場合は、アルミバー30の抵抗Rbが起動時と運転時で余り変わらない。そのため、要求される起動トルクを出すためには、エンドリング32の抵抗Rrは余り小さくできない。 When a normal cage rotor (single cage) is used for the electric element 13, the resistance Rb of the aluminum bar 30 does not change much between startup and operation. Therefore, the resistance Rr of the end ring 32 cannot be made too small in order to produce the required starting torque.
 電動要素13に二重かご形回転子を用いることで、要求される起動トルクを出すために必要な二次抵抗R2は、アルミバー30の抵抗Rbで稼げる。従って、エンドリング32の抵抗Rrを小さくして、運転中の効率を上げることができる。 By using a double squirrel-cage rotor for the electric element 13, the secondary resistance R2 required for producing the required starting torque can be earned by the resistance Rb of the aluminum bar 30. Therefore, the resistance Rr of the end ring 32 can be reduced to increase the efficiency during operation.
 エンドリング32の抵抗Rrを小さくするには、エンドリング32の体積を大きくすることになる。エンドリング32の体積を大きくする場合、エンドリング32の外周を、径方向に延ばすことは難しい。それは、エンドリング32のダイキャスト型が回転子鉄心11aの軸方向の端面の外周部近傍を押さえる押さえ代が必要なためである。即ち、エンドリング32は、回転子11の径方向の外側には拡大できない。 In order to reduce the resistance Rr of the end ring 32, the volume of the end ring 32 is increased. When the volume of the end ring 32 is increased, it is difficult to extend the outer periphery of the end ring 32 in the radial direction. This is because the die-casting type of the end ring 32 requires a pressing margin for pressing the vicinity of the outer peripheral portion of the axial end surface of the rotor core 11a. That is, the end ring 32 cannot be expanded outward in the radial direction of the rotor 11.
 エンドリング32を軸方向に延ばすことは可能である。しかし、エンドリング32を軸方向に延ばすと、回転式圧縮機100の高さが高くなる。特に、図1の上軸受け6側のエンドリング32は、回転式圧縮機100の高さへの影響が大である。 It is possible to extend the end ring 32 in the axial direction. However, when the end ring 32 is extended in the axial direction, the height of the rotary compressor 100 increases. In particular, the end ring 32 on the upper bearing 6 side in FIG. 1 has a great influence on the height of the rotary compressor 100.
 そこで、エンドリング32の体積を大きくする、残された方法は、エンドリング32を回転子11の径方向の内側に延ばすことである。 Therefore, the remaining method of increasing the volume of the end ring 32 is to extend the end ring 32 inward in the radial direction of the rotor 11.
 エンドリング32を回転子11の径方向の内側に延ばす場合、種々の制約がある。
(1)回転式圧縮機100の回転子11には、通常冷媒の通路となる風穴33(図2、図3)が開けられている。エンドリング32を回転子11の径方向の内側に延ばすと、この風穴33を塞いでしまう。従って、エンドリング32は風穴33を塞がないように、逃がし部(風穴33を外部と連通させる部分)が必要になる。
(2)アルミダイキャストで回転子11を製作する場合、ダイキャスト型の内周部が回転子鉄心11aを押さえる押さえ代が少なくとも数ミリ必要である。例えば、押さえ代は4mm以上必要である。従って、エンドリング32の内径は、回転子11の軸孔31(図2、図3)の直径よりも8mm以上大きくする必要がある。
When the end ring 32 is extended inward in the radial direction of the rotor 11, there are various restrictions.
(1) The rotor 11 of the rotary compressor 100 has an air hole 33 (FIGS. 2 and 3) serving as a normal refrigerant passage. If the end ring 32 is extended inward in the radial direction of the rotor 11, the air hole 33 is blocked. Therefore, the end ring 32 needs a relief part (a part for communicating the air hole 33 with the outside) so as not to block the air hole 33.
(2) When the rotor 11 is manufactured by aluminum die casting, it is necessary that the inner periphery of the die-casting mold has a holding allowance for holding the rotor core 11a at least several millimeters. For example, the press margin needs to be 4 mm or more. Therefore, the inner diameter of the end ring 32 needs to be larger by 8 mm or more than the diameter of the shaft hole 31 (FIGS. 2 and 3) of the rotor 11.
 エンドリング32の内径側は風穴33を塞ぐように駆動軸側に拡大するため、風穴33を塞がないようにするために、エンドリング32に逃がし部(風穴33を外部と連通させる部分、例えば、風穴33を密閉容器4内の空間に連通させる部分)を設ける例を以下説明する。 Since the inner diameter side of the end ring 32 expands to the drive shaft side so as to block the air hole 33, in order not to block the air hole 33, the end ring 32 has a relief part (a part that communicates the air hole 33 with the outside, for example, In the following, an example in which a portion that communicates the air holes 33 with the space in the sealed container 4 is provided.
 図5に示す例は、逃がし部をエンドリング32の内周に設けた切欠き34で形成している。切欠き34は、エンドリング32の風穴33相当部分に形成する。切欠き34は、風穴33が露出するように設けられる。図5に示す回転子11には、4個の風穴33が開けられている。従って、切欠き34も4箇所に設けられる。 In the example shown in FIG. 5, the relief portion is formed by a notch 34 provided on the inner periphery of the end ring 32. The notch 34 is formed in a portion corresponding to the air hole 33 of the end ring 32. The notch 34 is provided so that the air hole 33 is exposed. The rotor 11 shown in FIG. 5 has four air holes 33 formed therein. Accordingly, the notches 34 are also provided at four locations.
 また、アルミダイキャストで回転子11を製作する場合の、ダイキャスト型の内周部が回転子鉄心11aを押さえる押さえ代を確保するために、エンドリング32の内周と軸孔31との距離Lを4mm以上とする。 Further, when the rotor 11 is manufactured by aluminum die casting, the distance between the inner periphery of the end ring 32 and the shaft hole 31 is secured in order to secure a press margin for the inner peripheral portion of the die cast mold to hold the rotor core 11a. L is 4 mm or more.
 回転子鉄心11aの風穴33とエンドリング32の切欠き34との位置決めは、アルミダイキャスト型の切欠き34対応部分の軸方向先端に位置決め用突起を設けることで可能となる。位置決め用突起を回転子鉄心11aの風穴33に挿入して位置決めを行う。 The positioning of the air hole 33 of the rotor core 11a and the notch 34 of the end ring 32 can be performed by providing a positioning projection at the tip in the axial direction of the portion corresponding to the notch 34 of the aluminum die cast type. Positioning is performed by inserting positioning protrusions into the air holes 33 of the rotor core 11a.
 単相誘導電動機は、通常回転子11のアルミバー30は、スキューが行われる。即ち、アルミバー30は、回転子11の軸に平行ではなく傾いている。スキューは、固定子12の巻線20の発生する磁界の中の高調波成分(特にスロット高調波)の電圧がアルミバー30に誘起しないようにするために行われる。 In the single-phase induction motor, the aluminum bar 30 of the rotor 11 is usually skewed. That is, the aluminum bar 30 is not parallel to the axis of the rotor 11 but is inclined. The skew is performed in order to prevent the voltage of the harmonic component (particularly the slot harmonic) in the magnetic field generated by the winding 20 of the stator 12 from being induced in the aluminum bar 30.
 回転子11のアルミバー30がスキューされていると、アルミダイキャスト型の位置決め用突起を回転子鉄心11aの風穴33に挿入しにくい。そこで、アルミバー30の軸方向の両端部は、所定の長さ(アルミダイキャスト型の位置決め用突起の軸方向長さより長い)を軸と平行にする。これにより、アルミダイキャスト型の位置決め用突起をスムーズに回転子鉄心11aの風穴33に挿入することができる。但し、回転子11のアルミバー30が全長に亘ってスキューされていても、アルミダイキャスト型の位置決め用突起の径を小さくすれば挿入可能である。この場合、回転子鉄心11aの風穴33とエンドリング32の切欠き34との位置決めの精度が若干悪くなる程度である。 If the aluminum bar 30 of the rotor 11 is skewed, it is difficult to insert the aluminum die-casting positioning projection into the air hole 33 of the rotor core 11a. Therefore, both end portions of the aluminum bar 30 in the axial direction have a predetermined length (longer than the axial length of the positioning protrusion of the aluminum die-casting type) parallel to the shaft. Thereby, the aluminum die-casting positioning protrusion can be smoothly inserted into the air hole 33 of the rotor core 11a. However, even if the aluminum bar 30 of the rotor 11 is skewed over the entire length, it can be inserted by reducing the diameter of the positioning projection of the aluminum die-casting type. In this case, the positioning accuracy between the air hole 33 of the rotor core 11a and the notch 34 of the end ring 32 is slightly deteriorated.
 エンドリング32の内径側は風穴33を塞ぐように駆動軸側に拡大するため、風穴33を塞がないようにするために、エンドリング32に逃がし部(風穴33を外部と連通させる部分、例えば、風穴33を密閉容器4内の空間に連通させる部分)を設ける他の例を図6により説明する。 Since the inner diameter side of the end ring 32 expands to the drive shaft side so as to block the air hole 33, in order not to block the air hole 33, the end ring 32 has a relief part (a part that communicates the air hole 33 with the outside, for example, FIG. 6 illustrates another example in which a portion in which the air hole 33 communicates with the space in the sealed container 4 is provided.
 図6に示すように、回転子鉄心11aの風穴33に連通するエンドリング風穴32aを形成する。エンドリング風穴32aは、回転子鉄心11aの風穴33に連通するようにアルミダイキャスト時に位置決めされて形成される。図6に示す回転子11には、4個の風穴33が開けられている。従って、エンドリング風穴32aも4箇所に設ける。 As shown in Fig. 6, an end ring air hole 32a communicating with the air hole 33 of the rotor core 11a is formed. The end ring air holes 32a are positioned and formed during aluminum die casting so as to communicate with the air holes 33 of the rotor core 11a. The rotor 11 shown in FIG. 6 has four air holes 33 formed therein. Therefore, the end ring air holes 32a are also provided at four locations.
 また、図5のケースと同様、アルミダイキャストで回転子11を製作する場合の、ダイキャスト型の内周部が回転子鉄心11aを押さえる押さえ代を確保するために、エンドリング32の内周と軸孔31との距離Lを4mm以上とする。 Further, as in the case of FIG. 5, when the rotor 11 is manufactured by aluminum die casting, the inner periphery of the end ring 32 is secured in order to secure a holding allowance for the inner peripheral portion of the die cast mold to hold the rotor core 11 a. And the distance L between the shaft hole 31 is 4 mm or more.
 さらに、回転子鉄心11aの風穴33とエンドリング32のエンドリング風穴32aとの位置決めは、アルミダイキャスト型のエンドリング風穴32a対応部分の軸方向先端に位置決め用突起を設けることで可能となる。位置決め用突起を回転子鉄心11aの風穴33に挿入して位置決めを行う。 Further, the positioning of the air hole 33 of the rotor core 11a and the end ring air hole 32a of the end ring 32 can be performed by providing a positioning projection at the tip in the axial direction of the portion corresponding to the end ring air hole 32a of the aluminum die cast type. Positioning is performed by inserting positioning protrusions into the air holes 33 of the rotor core 11a.
 従って、エンドリング風穴32aの直径は、回転子鉄心11aの風穴33の直径よりも若干大きい。 Therefore, the diameter of the end ring air hole 32a is slightly larger than the diameter of the air hole 33 of the rotor core 11a.
 図5、図6では、回転子11に風穴33を設ける例を示した。図7に示すように、風穴を固定子12側に設けてもよい。図7に示すように、固定子鉄心12aの外周に切欠き12cを設ける。図7では、切欠き12cを6箇所に設ける。固定子鉄心12aの切欠き12cと密閉容器4(胴部1)との間に空間が形成される。この空間が固定子風穴35になる。これらの6箇所の固定子風穴35と、固定子12と回転子11との間の空隙36(径方向の寸法が、例えば0.5mm程度)とが、圧縮要素10から吐出される高温・高圧のガス冷媒の通路となる。電動要素13を通過した高温・高圧のガス冷媒は吐出管16から外部(冷凍サイクル)へ吐出される。 5 and 6 show an example in which the air holes 33 are provided in the rotor 11. As shown in FIG. 7, an air hole may be provided on the stator 12 side. As shown in FIG. 7, a notch 12c is provided on the outer periphery of the stator core 12a. In FIG. 7, the notches 12c are provided at six locations. A space is formed between the notch 12c of the stator core 12a and the sealed container 4 (body 1). This space becomes the stator air hole 35. These six stator air holes 35 and the air gap 36 between the stator 12 and the rotor 11 (the radial dimension is, for example, about 0.5 mm) are discharged from the compression element 10 at high temperature and high pressure. It becomes the passage of the gas refrigerant. The high-temperature and high-pressure gas refrigerant that has passed through the electric element 13 is discharged from the discharge pipe 16 to the outside (refrigeration cycle).
 図7では固定子鉄心12aの外周に切欠き12cを設けたが、外周ではなく固定子鉄心12aのコアバック(固定子スロット12bの外側の部分)に固定子風穴35を設けてもよい。 7, the notch 12c is provided on the outer periphery of the stator core 12a. However, the stator air hole 35 may be provided on the core back of the stator core 12a (the outer portion of the stator slot 12b) instead of the outer periphery.
 このように、風穴(固定子風穴35)を固定子12側に設けることにより、エンドリング32の拡大(エンドリング32の内径側を駆動軸の近傍に位置するように延ばす)ができる。また、固定子12を通過する冷媒流量が増加するので、固定子12の巻線20が冷却されて温度上昇が抑制される効果も有する。 Thus, by providing the air holes (stator air holes 35) on the stator 12 side, the end ring 32 can be enlarged (the inner diameter side of the end ring 32 is extended so as to be positioned in the vicinity of the drive shaft). Moreover, since the refrigerant | coolant flow rate which passes the stator 12 increases, it has the effect that the coil | winding 20 of the stator 12 is cooled and a temperature rise is suppressed.
 尚、図7では固定子12はスロット12b等を省略している。回転子11のスロット形状は、図8、図9に示すような所謂二重かご形である。外層スロット40aと内層スロット40bとは、図8に示すように連結していても、図9に示すように連結していなくてもよい。 In FIG. 7, the stator 12 omits the slots 12b and the like. The slot shape of the rotor 11 is a so-called double basket shape as shown in FIGS. The outer layer slot 40a and the inner layer slot 40b may be connected as shown in FIG. 8, or may not be connected as shown in FIG.
 次に、両側のエンドリング32の合計の体積と、回転子鉄心11aの体積との比(これを、エンドリング体積比とする)と、回転子11の二次抵抗R2及びモータ効率との関係を図10により説明する。 Next, the relationship between the total volume of the end rings 32 on both sides and the volume of the rotor core 11a (this is the end ring volume ratio), the secondary resistance R2 of the rotor 11, and the motor efficiency. Will be described with reference to FIG.
 既に説明したように、回転子11の二次抵抗R2は、(1)式で表される。即ち、二次抵抗R2は、アルミバーの抵抗Rbとエンドリングの抵抗Rrの和に比例する。従って、エンドリング体積比を大きくしてエンドリングの抵抗Rrを小さくしても、二次抵抗R2はアルミバーの抵抗Rbに収束する。 As already described, the secondary resistance R2 of the rotor 11 is expressed by the equation (1). That is, the secondary resistance R2 is proportional to the sum of the resistance Rb of the aluminum bar and the resistance Rr of the end ring. Therefore, even if the end ring volume ratio is increased and the end ring resistance Rr is decreased, the secondary resistance R2 converges on the resistance Rb of the aluminum bar.
 エンドリング体積比が大きくなると、二次抵抗R2が小さくなることによりモータ効率が増加する。しかし、二次抵抗R2が下限値に近づく(収束する)とともに、モータ効率も上限値に収束する。 As the end ring volume ratio increases, the secondary resistance R2 decreases and the motor efficiency increases. However, as the secondary resistance R2 approaches (converges) the lower limit value, the motor efficiency also converges to the upper limit value.
 従って、エンドリング体積比は、例えば、13%以上が好ましい。 Therefore, the end ring volume ratio is preferably 13% or more, for example.
 次に、固定子12と回転子11との間に作用する磁気吸引力について言及する。固定子12と回転子11との間に作用する磁気吸引力Pは、次式で表される。
   P=k2×W×Bm2              (2)
ここで、k2は定数、Wは固定子鉄心12aのコア幅(軸方向の長さ)、Bmは空隙36(固定子12と回転子11との間の距離、図11参照)における最大磁束密度である。
Next, the magnetic attraction force acting between the stator 12 and the rotor 11 will be described. A magnetic attractive force P acting between the stator 12 and the rotor 11 is expressed by the following equation.
P = k2 × W × Bm2 (2)
Here, k2 is a constant, W is the core width (axial length) of the stator core 12a, and Bm is the maximum magnetic flux density in the air gap 36 (the distance between the stator 12 and the rotor 11, see FIG. 11). It is.
 回転子11に二重かご形回転子を用いることにより、回転子11の二次抵抗R2を小さくできる。そのため、停動トルク(起動から無負荷に近い回転数における最大トルクをいう)を大きくすることができる。従って、停動トルクが一定であれば、空隙41の最大磁束密度Bmをその分小さくする設計が可能となる(固定子12の巻線20の仕様を変更する)。 By using a double squirrel-cage rotor for the rotor 11, the secondary resistance R2 of the rotor 11 can be reduced. Therefore, it is possible to increase the stalling torque (referring to the maximum torque at the rotational speed close to no load from the start). Therefore, if the stationary torque is constant, the design can be made such that the maximum magnetic flux density Bm of the air gap 41 is reduced by that amount (the specification of the winding 20 of the stator 12 is changed).
 空隙36の最大磁束密度Bmが小さくなれば、(2)式より固定子12と回転子11との間に作用する磁気吸引力Pが小さくなる。図1に示すように、電動要素13は、圧縮要素10の上軸受け6で片側を支持されているだけである。即ち、電動要素13は、軸受けが片持ち構造である。従って、軸受けで支持されていない上軸受け6側と反対側の回転子11部分(図1では回転子11の上部)は、振れ回る。この回転子11の振れ回りは、磁気吸引力Pに関係する。磁気吸引力Pが大きいと、回転子11の振れ回りも大きくなる。 If the maximum magnetic flux density Bm of the air gap 36 is reduced, the magnetic attractive force P acting between the stator 12 and the rotor 11 is reduced from the equation (2). As shown in FIG. 1, the electric element 13 is only supported on one side by the upper bearing 6 of the compression element 10. That is, the electric element 13 has a cantilevered bearing. Accordingly, the portion of the rotor 11 opposite to the upper bearing 6 side that is not supported by the bearing (the upper portion of the rotor 11 in FIG. 1) swings. The swing of the rotor 11 is related to the magnetic attractive force P. When the magnetic attractive force P is large, the swing of the rotor 11 also increases.
 このように、回転式圧縮機100は回転子11の振れ回りがあるため、空隙長(空隙36の径方向の長さ)を、電動要素13の軸受けが両持ち構造の場合よりも大きくしている。 As described above, since the rotary compressor 100 swings around the rotor 11, the air gap length (the length in the radial direction of the air gap 36) is made larger than that in the case where the bearing of the electric element 13 is a double-supported structure. Yes.
 回転子11に二重かご形回転子を用いることにより、固定子12と回転子11との間に作用する磁気吸引力Pを小さくできる。そのため、回転子11に一重かご形回転子(普通かご形)を用いる場合より、空隙長を小さくできる。例えば、固定子12と回転子11との間の空隙長(空隙の径方向長さ)を以下のようにすることができる。
(1)固定子12の外径が140mm以下の場合、空隙長を0.6mm以下;
(2)固定子12の外径が140mmを超える場合、空隙長を0.8mm以下。
By using a double squirrel-cage rotor for the rotor 11, the magnetic attractive force P acting between the stator 12 and the rotor 11 can be reduced. Therefore, the gap length can be made smaller than when a single cage rotor (ordinary cage shape) is used for the rotor 11. For example, the gap length between the stator 12 and the rotor 11 (the radial length of the gap) can be set as follows.
(1) When the outer diameter of the stator 12 is 140 mm or less, the gap length is 0.6 mm or less;
(2) When the outer diameter of the stator 12 exceeds 140 mm, the gap length is 0.8 mm or less.
 また、図12に示すように、電動要素13(誘導電動機)の発生するトルクには高調波成分(トルクリップル)が重畳する。図12は、横軸が負荷トルク[Nm]、縦軸がトルクリップル[%](基本波トルクに対する比率)である。二重かご形と一重かご形(普通かご形)を比較すると、負荷トルクの略全域において、二重かご形のトルクリップルが一重かご形のトルクリップルよりも小さくなっている。 Further, as shown in FIG. 12, a harmonic component (torque ripple) is superimposed on the torque generated by the electric element 13 (induction motor). In FIG. 12, the horizontal axis represents the load torque [Nm], and the vertical axis represents the torque ripple [%] (ratio to the fundamental wave torque). When the double cage type and the single cage type (ordinary cage type) are compared, the torque ripple of the double cage type is smaller than the torque ripple of the single cage type in almost the entire load torque.
 回転子11を二重かご形にすることにより、同一停動トルクにおいて磁気吸引力P(P=k2×W×Bm2)が小さくなり、回転子11の振れ回りを抑えることができ、固定子12の外径に応じて空隙長を0.6mm又は0.8mm以下にすることができることは既に述べた。さらに、図13に示すように、回転子鉄心11aの外周の一部(図1の上軸受け6側と反対側)を所定量切削して切削部38とする。そして、切削部38における空隙長を固定子12の外径に応じて0.6mm又は0.8mm以下にすれば、切削部38以外の部分(図1の上軸受け6に近い部分)の空隙長をさらに小さくでき、モータ効率を向上させることができる。 By making the rotor 11 into a double squirrel cage shape, the magnetic attraction force P (P = k2 × W × Bm2) is reduced at the same stationary torque, and the swinging of the rotor 11 can be suppressed. It has already been described that the gap length can be 0.6 mm or 0.8 mm or less depending on the outer diameter. Further, as shown in FIG. 13, a part of the outer periphery of the rotor core 11 a (on the side opposite to the upper bearing 6 side in FIG. 1) is cut by a predetermined amount to form a cutting portion 38. And if the gap length in the cutting part 38 is 0.6 mm or 0.8 mm or less depending on the outer diameter of the stator 12, the gap length of the part other than the cutting part 38 (part close to the upper bearing 6 in FIG. 1). Can be further reduced, and the motor efficiency can be improved.
 二重かご形回転子は、回転子鉄心11aのスロット40が、外層スロット40aと内層スロット40bとで構成される。そのため、スロット40部で、コア(回転子鉄心11a)と二次導体(外層アルミバー30aと内層アルミバー30b)の接触面積が広く、コアと二次導体間の絶縁が悪化する為、ブルーイングまたはポストヒートにより、コアと二次導体の絶縁を行う。ブルーイングとは、回転子鉄心11aを熱処理し、回転子鉄心11a表面に酸化被膜を形成するものである。ポストヒートとは、導体をダイキャスト後、回転子11を加熱、水などの液体に浸して急冷し、スロット40内の二次導体と回転子鉄心11aとの間に隙間を作り回転子鉄心と二次導体を絶縁するものである。 In the double squirrel-cage rotor, the slot 40 of the rotor core 11a is composed of an outer layer slot 40a and an inner layer slot 40b. Therefore, in the slot 40 portion, the contact area between the core (rotor core 11a) and the secondary conductor (outer layer aluminum bar 30a and inner layer aluminum bar 30b) is wide, and the insulation between the core and the secondary conductor deteriorates. Alternatively, the core and the secondary conductor are insulated by post heat. Brewing refers to heat treatment of the rotor core 11a to form an oxide film on the surface of the rotor core 11a. Post-heating means that after the conductor is die-cast, the rotor 11 is heated, immersed in a liquid such as water and rapidly cooled to create a gap between the secondary conductor in the slot 40 and the rotor core 11a. The secondary conductor is insulated.
 回転子鉄心11aと二次導体間の絶縁が悪化すると、電動要素13のトルク波形(回転数に対するトルク特性)にたるみが発生する。電動要素13のトルク波形にたるみが発生すると、回転式圧縮機100の起動不良に繋がる。 When the insulation between the rotor core 11a and the secondary conductor deteriorates, a sag occurs in the torque waveform (torque characteristics with respect to the rotational speed) of the electric element 13. If a sag occurs in the torque waveform of the electric element 13, this leads to a starting failure of the rotary compressor 100.
 回転式圧縮機100が組み込まれる冷凍サイクルの冷媒に、R22冷媒を使用することもある。その場合、R22冷媒を使用すると固定子12の巻線20温度が上昇しやすい。そのため、モータの小型化が困難である。電動要素13に二重かご形回転子を用いることで、効率が改善されるので、小型化又は同一サイズで能力アップが可能になる。 R22 refrigerant may be used as the refrigerant in the refrigeration cycle in which the rotary compressor 100 is incorporated. In that case, when the R22 refrigerant is used, the winding 20 temperature of the stator 12 is likely to rise. Therefore, it is difficult to reduce the size of the motor. Since the efficiency is improved by using the double squirrel-cage rotor for the electric element 13, it is possible to reduce the size or increase the capacity with the same size.
 また、回転式圧縮機100が組み込まれる冷凍サイクルの冷媒に、R410a冷媒を使用する。R410a冷媒を使用する場合は、R22冷媒に比べ冷凍能力が約10%増加する。そのため、電動要素13のトルクもR410a冷媒を使用する場合は、R22冷媒に比べその分(約10%)大きくする必要がある。この場合、回転子11に二重かご形回転子を使用することによるトルク改善が有効である。 Also, R410a refrigerant is used as the refrigerant of the refrigeration cycle in which the rotary compressor 100 is incorporated. When the R410a refrigerant is used, the refrigerating capacity is increased by about 10% compared to the R22 refrigerant. Therefore, when the R410a refrigerant is used, the torque of the electric element 13 needs to be increased by that amount (about 10%) compared to the R22 refrigerant. In this case, torque improvement by using a double cage rotor for the rotor 11 is effective.
 R22冷媒使用の回転式圧縮機100に対し、冷凍能力比でモータを選定し、従来の一重かご形回転子から二重かご形回転子に置き換えるだけで、R410a冷媒対応の電動要素13を構成することができる。 For the rotary compressor 100 using the R22 refrigerant, the electric element 13 corresponding to the R410a refrigerant is configured by simply selecting a motor based on the refrigerating capacity ratio and replacing the conventional single cage rotor with a double cage rotor. be able to.
 さらに、回転式圧縮機100が組み込まれる冷凍サイクルの冷媒に、CO(R744)冷媒を使用する。CO冷媒は圧縮比が非常に高く、現在、CO冷媒を使用する回転式圧縮機100の電動要素13はブラシレスDCモータが主流となっている。CO冷媒を使用する回転式圧縮機100に二重かご形電動機を用いることにより、圧縮機サイズを大型化せずに、一定速誘導電動機を搭載したCO冷媒を用いた回転式圧縮機100を実現できる。 Further, CO 2 (R744) refrigerant is used as the refrigerant of the refrigeration cycle in which the rotary compressor 100 is incorporated. The CO 2 refrigerant has a very high compression ratio, and at present, the electric element 13 of the rotary compressor 100 using the CO 2 refrigerant is mainly a brushless DC motor. By using the rotary compressor 100 to the double squirrel cage motor that uses CO 2 refrigerant, the compressor size without increasing the size of a rotary compressor using CO 2 refrigerant equipped with constant speed induction motor 100 Can be realized.
 図14は回転式圧縮機100を使用する冷凍サイクル装置の構成図である。冷凍サイクル装置は、例えば、空気調和機である。回転式圧縮機100は単相電源18に接続される。回転式圧縮機100の単相誘導電動機の補助巻線20bと単相電源18との間に運転コンデンサ60が接続される。単相電源18から電力が回転式圧縮機100に供給され、回転式圧縮機100が駆動する。冷凍サイクル装置(空気調和機)は、回転式圧縮機100、冷媒の流れる方向を切り替える四方弁51、室外熱交換器52、減圧装置53、室内熱交換器54等で構成される。これらが冷媒配管で接続される。 FIG. 14 is a configuration diagram of a refrigeration cycle apparatus using the rotary compressor 100. The refrigeration cycle apparatus is, for example, an air conditioner. The rotary compressor 100 is connected to a single-phase power source 18. An operating capacitor 60 is connected between the auxiliary winding 20 b of the single-phase induction motor of the rotary compressor 100 and the single-phase power source 18. Electric power is supplied from the single-phase power source 18 to the rotary compressor 100, and the rotary compressor 100 is driven. The refrigeration cycle apparatus (air conditioner) includes a rotary compressor 100, a four-way valve 51 that switches a refrigerant flow direction, an outdoor heat exchanger 52, a decompression device 53, an indoor heat exchanger 54, and the like. These are connected by refrigerant piping.
 冷凍サイクル装置(空気調和機)は、例えば、冷房運転時、図14の矢印のように冷媒が流れる。室外熱交換器52は凝縮器になる。また、室内熱交換器54は蒸発器になる。 In the refrigeration cycle apparatus (air conditioner), for example, during the cooling operation, the refrigerant flows as indicated by arrows in FIG. The outdoor heat exchanger 52 becomes a condenser. Moreover, the indoor heat exchanger 54 becomes an evaporator.
 図示はしないが、冷凍サイクル装置(空気調和機)の暖房運転時は、冷媒は図11の矢印と反対方向の流れとなる。四方弁51によって、冷媒の流れる方向が切り替えられる。このときは、室外熱交換器52は蒸発器になる。また、室内熱交換器54は凝縮器になる。 Although not shown, during the heating operation of the refrigeration cycle apparatus (air conditioner), the refrigerant flows in the direction opposite to the arrow in FIG. The direction in which the refrigerant flows is switched by the four-way valve 51. At this time, the outdoor heat exchanger 52 becomes an evaporator. Moreover, the indoor heat exchanger 54 becomes a condenser.
 また、冷媒としてR134a、R410a、R407c等に代表されるHFC系冷媒、および、R744(CO)、R717(アンモニア)、R600a(イソブタン)、R290(プロパン)等に代表される自然冷媒が使用される。冷凍機油としてアルキルベンゼン系油に代表される弱相溶性の油又はエステル油に代表される相溶性の油が使用される。圧縮機には、回転式(ロータリ式)以外に、レシプロ式、スクロール式などが使用可能である。 In addition, HFC refrigerants represented by R134a, R410a, R407c, etc., and natural refrigerants represented by R744 (CO 2 ), R717 (ammonia), R600a (isobutane), R290 (propane), etc. are used as the refrigerant. The As the refrigerating machine oil, weakly compatible oils typified by alkylbenzene oils or compatible oils typified by ester oils are used. In addition to the rotary type (rotary type), a reciprocating type, a scroll type, etc. can be used for the compressor.
 二重かご形回転子を搭載した回転式圧縮機100を冷凍サイクルに用いることにより、冷凍サイクル装置の性能の向上、小型化、低価格化が可能となる。 By using the rotary compressor 100 equipped with a double squirrel-cage rotor in the refrigeration cycle, it is possible to improve the performance of the refrigeration cycle apparatus, reduce the size, and reduce the price.
 以上の説明では、かご形巻線の材料にアルミを使用する例を示したが、アルミに代えて銅を使用してもよい。 In the above description, an example is shown in which aluminum is used as the material of the squirrel-cage winding, but copper may be used instead of aluminum.
 また、二重かご形回転子を用いた単相誘導電動機について説明したが、三相誘導電動機に適用しても同様の効果を奏する。 In addition, the single-phase induction motor using the double squirrel-cage rotor has been described, but the same effect can be obtained when applied to a three-phase induction motor.
 この発明の実施の形態に係る圧縮機用電動機は、逃がし部をエンドリングの内周に設けた切欠きで構成したことにより、回転子鉄心の風穴を塞ぐことなくエンドリングを拡大できる。 The electric motor for a compressor according to the embodiment of the present invention can expand the end ring without blocking the air hole of the rotor core by configuring the relief portion with a notch provided in the inner periphery of the end ring.
 この発明の実施の形態に係る圧縮機用電動機は、逃がし部をエンドリングに設けたエンドリング風穴で構成したことにより、回転子鉄心の風穴を塞ぐことなくエンドリングをさらに拡大できる。 The electric motor for a compressor according to the embodiment of the present invention can further expand the end ring without blocking the air hole of the rotor core by configuring the escape portion with the end ring air hole provided in the end ring.
 この発明の実施の形態に係る圧縮機用電動機は、密閉容器の内部に冷媒を圧縮する圧縮要素とともに収納され、圧縮要素と駆動軸により連結して圧縮要素を駆動する圧縮機用電動機において、密閉容器の内周部に固定される固定子と、固定子の内側に設けられ、回転子鉄心を有する回転子と、回転子鉄心に鋳込まれる、外層二次導体及び内層二次導体を備える二次導体とエンドリングとで構成される二重かご形導体とを備え、固定子には、冷媒の通路となる固定子風穴を設け、エンドリングの内径側を駆動軸の近傍に位置するように構成することにより、エンドリングをより一層拡大できる。(1)式で示したように、回転子11の二次抵抗R2は、アルミバーの抵抗Rbとエンドリングの抵抗Rrとの和である。エンドリングを拡大することにより、エンドリングの抵抗Rrが小さくなり、その結果回転子11の二次抵抗R2が小さくなる。回転子11の二次抵抗R2が小さくなると、圧縮機用電動機の運転中の効率が向上する。 An electric motor for a compressor according to an embodiment of the present invention is housed together with a compression element that compresses a refrigerant in an airtight container, and is connected to the compression element by a drive shaft to drive the compression element. A stator that is fixed to the inner periphery of the container, a rotor that is provided inside the stator and has a rotor core, and an outer layer secondary conductor and an inner layer secondary conductor that are cast into the rotor core; A double squirrel-cage conductor composed of a secondary conductor and an end ring is provided, and the stator is provided with a stator air hole serving as a refrigerant passage so that the inner diameter side of the end ring is positioned near the drive shaft. By configuring, the end ring can be further expanded. As shown in the equation (1), the secondary resistance R2 of the rotor 11 is the sum of the resistance Rb of the aluminum bar and the resistance Rr of the end ring. By enlarging the end ring, the resistance Rr of the end ring decreases, and as a result, the secondary resistance R2 of the rotor 11 decreases. When the secondary resistance R2 of the rotor 11 is reduced, the efficiency during operation of the compressor motor is improved.
 この発明の実施の形態に係る圧縮機用電動機は、固定子は固定子鉄心を備え、固定子鉄心の外周部に切欠きを設け、密閉容器と固定子鉄心の外周部の切欠きとの間に固定子風穴を設けたことにより、固定子風穴を通過する冷媒により固定子の巻線が冷却されて温度上昇が抑制される。 In the electric motor for a compressor according to the embodiment of the present invention, the stator includes a stator core, a notch is provided in the outer peripheral portion of the stator core, and the space between the hermetic container and the outer peripheral portion of the stator core is notched. By providing the stator air holes in the stator, the winding of the stator is cooled by the refrigerant passing through the stator air holes, and the temperature rise is suppressed.
 この発明の実施の形態に係る圧縮機用電動機は、回転子鉄心が駆動軸と嵌合する軸孔を備え、エンドリングの内径を軸孔の直径よりも8mm以上大きくしたことにより、二重かご形導体のダイキャスト時の型の押さえ代を確保することができる。 An electric motor for a compressor according to an embodiment of the present invention includes a shaft hole in which a rotor iron core is fitted with a drive shaft, and the inner diameter of the end ring is larger than the diameter of the shaft hole by 8 mm or more, thereby It is possible to secure the press-down allowance of the die when die casting the shape conductor.
 この発明の実施の形態に係る圧縮機用電動機は、エンドリングの合計の体積を、回転子鉄心の体積の13%以上としたことにより、モータ効率を改善できる。 The motor for a compressor according to the embodiment of the present invention can improve the motor efficiency by setting the total volume of the end ring to 13% or more of the volume of the rotor core.
 この発明の実施の形態に係る圧縮機用電動機は、圧縮要素は軸受けを備え、圧縮機用電動機は、圧縮要素の軸受けで片側が支持される、軸受けが片持ち構造であり、固定子と回転子との間の空隙の径方向長さを以下のようにすることにより、モータ効率を改善できる。
(1)固定子の外径が140mmより小さい場合、空隙の径方向長さを0.6mm以下;
(2)固定子の外径が140mmを超える場合、空隙の径方向長さを0.8mm以下。
In the compressor motor according to the embodiment of the present invention, the compression element includes a bearing, and the compressor motor is supported on one side by the bearing of the compression element, the bearing has a cantilever structure, and rotates with the stator. The motor efficiency can be improved by setting the radial length of the gap between the child and the child as follows.
(1) When the outer diameter of the stator is smaller than 140 mm, the radial length of the gap is 0.6 mm or less;
(2) When the outer diameter of the stator exceeds 140 mm, the radial length of the gap is 0.8 mm or less.
 この発明の実施の形態に係る圧縮機用電動機は、回転子鉄心の圧縮要素の軸受けの反対側の外周を切削し、回転子鉄心の圧縮要素の軸受け側の外周よりも外径を小さくしたことにより、さらに固定子と回転子との間の空隙の径方向長さを小さくでき、モータ効率を改善できる。 In the compressor motor according to the embodiment of the present invention, the outer periphery on the opposite side of the bearing of the compression element of the rotor core is cut, and the outer diameter is made smaller than the outer periphery on the bearing side of the compression element of the rotor core. As a result, the radial length of the gap between the stator and the rotor can be further reduced, and the motor efficiency can be improved.
 この発明の実施の形態に係る圧縮機は、上記圧縮機用電動機を搭載したことにより、省エネ、小型化及び低価格化を実現できる。 The compressor according to the embodiment of the present invention can realize energy saving, downsizing, and low price by mounting the compressor motor.
 この発明の実施の形態に係る圧縮機は、冷媒にR22を使用する場合でも、小型化又は同一サイズで能力アップが可能になる。 In the compressor according to the embodiment of the present invention, even when R22 is used as the refrigerant, the capacity can be reduced or the capacity can be increased with the same size.
 この発明の実施の形態に係る圧縮機は、冷媒にR410aを使用する場合、回転子に二重かご形回転子を使用することによるトルク改善が有効である。 In the compressor according to the embodiment of the present invention, when R410a is used as the refrigerant, torque improvement by using a double cage rotor as the rotor is effective.
 この発明の実施の形態に係る圧縮機は、冷媒にCOを使用する場合でも、圧縮機サイズを大型化せずに、一定速電動機を搭載したCO冷媒を用いた圧縮機を実現できる。 The compressor according to the embodiment of the present invention can realize a compressor using a CO 2 refrigerant equipped with a constant speed motor without increasing the size of the compressor even when CO 2 is used as the refrigerant.
 この発明の実施の形態に係る冷凍サイクル装置は、上記圧縮機と、凝縮器と、減圧装置と、蒸発器とを冷媒配管で接続したことにより、冷凍サイクル装置の性能の向上、小型化、低価格化が可能となる。 In the refrigeration cycle apparatus according to the embodiment of the present invention, the compressor, the condenser, the decompression apparatus, and the evaporator are connected by a refrigerant pipe, so that the performance of the refrigeration cycle apparatus is improved, downsized, and reduced. Pricing is possible.
実施の形態1を示す図で、回転式圧縮機100の縦断面図。FIG. 3 shows the first embodiment, and is a longitudinal sectional view of the rotary compressor 100. 実施の形態1を示す図で、電動要素13を示す横断面図。FIG. 3 is a diagram illustrating the first embodiment and is a cross-sectional view illustrating the electric element 13. 実施の形態1を示す図で、電動要素13の回転子11を示す横断面図。FIG. 3 is a cross-sectional view showing the rotor 11 of the electric element 13 according to the first embodiment. 実施の形態1を示す図で、電動要素13の回転子11を示す斜視図。FIG. 3 is a diagram showing the first embodiment, and is a perspective view showing a rotor 11 of the electric element 13. 実施の形態1を示す図で、エンドリング32に切欠き34を設けた回転子11の側面図。FIG. 4 is a diagram illustrating the first embodiment, and is a side view of the rotor 11 in which a cutout 34 is provided in an end ring 32; 実施の形態1を示す図で、エンドリング風穴32aを設けた回転子11の側面図。FIG. 5 shows the first embodiment and is a side view of the rotor 11 provided with an end ring air hole 32a. 実施の形態1を示す図で、固定子12側に風穴を設ける例を示す電動要素13付近の横断面図。FIG. 5 shows the first embodiment and is a cross-sectional view of the vicinity of the electric element 13 showing an example in which an air hole is provided on the stator 12 side. 実施の形態1を示す図で、回転子11のスロットの横断面図。FIG. 5 shows the first embodiment, and is a cross-sectional view of the slot of the rotor 11. 実施の形態1を示す図で、回転子11のスロットの横断面図。FIG. 5 shows the first embodiment, and is a cross-sectional view of the slot of the rotor 11. 実施の形態1を示す図で、エンドリング32と回転子鉄心11aとの体積比率と、二次抵抗R2及びモータ効率との関係を示す図。FIG. 5 is a diagram illustrating the first embodiment and is a diagram illustrating a relationship between a volume ratio between an end ring 32 and a rotor core 11a, a secondary resistance R2, and motor efficiency. 実施の形態1を示す図で、電動要素13の部分横断面図。FIG. 3 shows the first embodiment and is a partial cross-sectional view of the electric element 13. 実施の形態1を示す図で、一重かご形と二重かご形のトルクリップル波形を示す図。The figure which shows Embodiment 1 and is a figure which shows the torque ripple waveform of a single cage type and a double cage type. 実施の形態1を示す図で、外周の一部に切削部を設けた回転子11の側面図。FIG. 5 shows the first embodiment, and is a side view of a rotor 11 in which a cutting portion is provided on a part of the outer periphery. 実施の形態1を示す図で、回転式圧縮機100を使用する冷凍サイクル装置の構成図。FIG. 3 shows the first embodiment, and is a configuration diagram of a refrigeration cycle apparatus using a rotary compressor 100. FIG.
符号の説明Explanation of symbols
 1 胴部、2 上皿容器、3 下皿容器、4 密閉容器、5 シリンダ、6 上軸受け、7 下軸受け、8 駆動軸、9 ローリングピストン、10 圧縮要素、11 回転子、11a 回転子鉄心、12 固定子、12a 固定子鉄心、12b 固定子スロット、12c 切欠き、13 電動要素、14 吸入マフラー、15 吸入管、16 吐出管、17 ガラス端子、18 単相電源、20 巻線、20a 主巻線、20b 補助巻線、21 リード線、30 アルミバー、30a 外層アルミバー、30b 内層アルミバー、31 軸孔、32 エンドリング、32a エンドリング風穴、33 風穴、34 切欠き、35 固定子風穴、36 空隙、38 切削部、40a 外層スロット、40b 内層スロット、51 四方弁、52 室外熱交換器、53 減圧装置、54 室内熱交換器、60 運転コンデンサ、100 回転式圧縮機。 1 body part, 2 upper dish container, 3 lower dish container, 4 sealed container, 5 cylinder, 6 upper bearing, 7 lower bearing, 8 drive shaft, 9 rolling piston, 10 compression element, 11 rotor, 11a rotor core, 12 stator, 12a stator core, 12b stator slot, 12c notch, 13 motor elements, 14 suction muffler, 15 suction pipe, 16 discharge pipe, 17 glass terminal, 18 single phase power supply, 20 winding, 20a main winding Wire, 20b auxiliary winding, 21 lead wire, 30 aluminum bar, 30a outer layer aluminum bar, 30b inner layer aluminum bar, 31 shaft hole, 32 end ring, 32a end ring air hole, 33 air hole, 34 notch, 35 stator air hole, 36 gap, 38 cutting part, 40a outer layer slot, 40b inner layer slot, 51 four-way valve 52 outdoor heat exchanger, 53 the decompressor, 54 indoor heat exchanger, 60 run capacitor, 100 a rotary compressor.

Claims (19)

  1.  密閉容器の内部に冷媒を圧縮する圧縮要素とともに収納され、前記圧縮要素と駆動軸により連結して該圧縮要素を駆動する圧縮機用電動機において、
     前記密閉容器の内周部に固定される固定子と、
     前記固定子の内側に設けられ、回転子鉄心を有する回転子と、
     前記回転子鉄心に鋳込まれる、外層二次導体及び内層二次導体を備える二次導体とエンドリングとで構成される二重かご形導体とを備え、
     前記回転子鉄心には、前記冷媒の通路となる風穴を設け、
     前記エンドリングは、その内径側が前記風穴を塞ぐように前記駆動軸側に拡大するとともに、前記風穴を塞がないようにするために、前記風穴を前記密閉容器の空間に連通させる逃がし部を有することを特徴とする圧縮機用電動機。
    In a motor for a compressor that is housed together with a compression element that compresses a refrigerant in an airtight container and is connected to the compression element by a drive shaft to drive the compression element.
    A stator fixed to the inner periphery of the sealed container;
    A rotor provided inside the stator and having a rotor core;
    A double squirrel-cage conductor composed of an outer ring secondary conductor and an inner layer secondary conductor and an end ring, which are cast into the rotor core;
    The rotor core is provided with an air hole serving as a passage for the refrigerant,
    The end ring expands to the drive shaft side so that the inner diameter side closes the air hole, and has an escape portion that allows the air hole to communicate with the space of the sealed container so as not to close the air hole. An electric motor for a compressor.
  2.  前記逃がし部を前記エンドリングの内周に設けた切欠きで構成したことを特徴とする請求項1記載の圧縮機用電動機。 2. The electric motor for a compressor according to claim 1, wherein the relief portion is formed by a notch provided in an inner periphery of the end ring.
  3.  前記逃がし部を前記エンドリングに設けたエンドリング風穴で構成したことを特徴とする請求項1記載の圧縮機用電動機。 The motor for a compressor according to claim 1, wherein the escape portion is configured by an end ring air hole provided in the end ring.
  4.  密閉容器の内部に冷媒を圧縮する圧縮要素とともに収納され、前記圧縮要素と駆動軸により連結して該圧縮要素を駆動する圧縮機用電動機において、
     前記密閉容器の内周部に固定される固定子と、
     前記固定子の内側に設けられ、回転子鉄心を有する回転子と、
     前記回転子鉄心に鋳込まれる、外層二次導体及び内層二次導体を備える二次導体とエンドリングとで構成される二重かご形導体とを備え、
     前記固定子には、前記冷媒の通路となる固定子風穴を設け、
     前記エンドリングの内径側を前記駆動軸の近傍に位置するように構成することを特徴とする圧縮機用電動機。
    In a motor for a compressor that is housed together with a compression element that compresses a refrigerant in an airtight container and is connected to the compression element by a drive shaft to drive the compression element.
    A stator fixed to the inner periphery of the sealed container;
    A rotor provided inside the stator and having a rotor core;
    A double squirrel-cage conductor composed of a secondary conductor having an outer layer secondary conductor and an inner layer secondary conductor and an end ring, which is cast into the rotor core;
    The stator is provided with a stator air hole serving as a passage for the refrigerant,
    An electric motor for a compressor, wherein the inner diameter side of the end ring is positioned in the vicinity of the drive shaft.
  5.  前記固定子は固定子鉄心を備え、前記固定子鉄心の外周部に切欠きを設け、前記密閉容器と前記固定子鉄心の外周部の切欠きとの間に前記固定子風穴を設けたことを特徴とする請求項4記載の圧縮機用電動機。 The stator includes a stator core, a notch is provided in an outer periphery of the stator core, and the stator air hole is provided between the hermetic container and a notch in the outer periphery of the stator core. The electric motor for a compressor according to claim 4, wherein the electric motor is used.
  6.  前記回転子鉄心は前記駆動軸と嵌合する軸孔を備え、前記エンドリングの内径を前記軸孔の直径よりも8mm以上大きくしたことを特徴とする請求項1記載の圧縮機用電動機。 2. The electric motor for a compressor according to claim 1, wherein the rotor iron core has a shaft hole for fitting with the drive shaft, and an inner diameter of the end ring is made 8 mm or more larger than a diameter of the shaft hole.
  7.  前記回転子鉄心は前記駆動軸と嵌合する軸孔を備え、前記エンドリングの内径を前記軸孔の直径よりも8mm以上大きくしたことを特徴とする請求項4記載の圧縮機用電動機。 The motor for a compressor according to claim 4, wherein the rotor core has a shaft hole that fits with the drive shaft, and an inner diameter of the end ring is made 8 mm or more larger than a diameter of the shaft hole.
  8.  前記エンドリングの合計の体積を、前記回転子鉄心の体積の13%以上としたことを特徴とする請求項1記載の圧縮機用電動機。 The motor for a compressor according to claim 1, wherein the total volume of the end ring is 13% or more of the volume of the rotor core.
  9.  前記エンドリングの合計の体積を、前記回転子鉄心の体積の13%以上としたことを特徴とする請求項4記載の圧縮機用電動機。 The motor for a compressor according to claim 4, wherein the total volume of the end ring is 13% or more of the volume of the rotor core.
  10.  前記圧縮要素は軸受けを備え、前記圧縮機用電動機は、前記圧縮要素の軸受けで片側が支持される、軸受けが片持ち構造であり、
     前記固定子と前記回転子との間の空隙の径方向長さを以下のようにすることを特徴とする請求項1記載の圧縮機用電動機。
    (1)前記固定子の外径が140mmより小さい場合、前記空隙の径方向長さを0.6mm以下;
    (2)前記固定子の外径が140mmを超える場合、前記空隙の径方向長さを0.8mm以下。
    The compression element includes a bearing, and the electric motor for the compressor is supported on one side by the bearing of the compression element, the bearing has a cantilever structure,
    The electric motor for a compressor according to claim 1, wherein the radial length of the gap between the stator and the rotor is set as follows.
    (1) When the outer diameter of the stator is smaller than 140 mm, the radial length of the gap is 0.6 mm or less;
    (2) When the outer diameter of the stator exceeds 140 mm, the radial length of the gap is 0.8 mm or less.
  11.  前記回転子鉄心の前記圧縮要素の軸受けの反対側の外周を切削し、前記回転子鉄心の前記圧縮要素の軸受け側の外周よりも外径を小さくしたことを特徴とする請求項10記載の圧縮機用電動機。 11. The compression according to claim 10, wherein an outer periphery of the rotor core opposite to the bearing of the compression element is cut to have an outer diameter smaller than an outer periphery of the rotor core on the bearing side of the compression element. Electric motor for machine.
  12.  請求項1記載の圧縮機用電動機を搭載したことを特徴とする圧縮機。 A compressor equipped with the compressor motor according to claim 1.
  13.  冷媒にR22を使用することを特徴とする請求項12記載の圧縮機。 The compressor according to claim 12, wherein R22 is used as the refrigerant.
  14.  冷媒にR410aを使用することを特徴とする請求項12記載の圧縮機。 The compressor according to claim 12, wherein R410a is used as the refrigerant.
  15.  冷媒にCOを使用することを特徴とする請求項12記載の圧縮機。 The compressor according to claim 12, wherein CO 2 is used as the refrigerant.
  16.  請求項12記載の圧縮機と、凝縮器と、減圧装置と、蒸発器とを冷媒配管で接続したことを特徴とする冷凍サイクル装置。 13. A refrigeration cycle apparatus comprising: a compressor according to claim 12; a condenser; a decompressor; and an evaporator connected by refrigerant piping.
  17.  請求項13記載の圧縮機と、凝縮器と、減圧装置と、蒸発器とを冷媒配管で接続したことを特徴とする冷凍サイクル装置。 A refrigeration cycle apparatus comprising: a compressor according to claim 13; a condenser; a decompressor; and an evaporator connected by refrigerant piping.
  18.  請求項14記載の圧縮機と、凝縮器と、減圧装置と、蒸発器とを冷媒配管で接続したことを特徴とする冷凍サイクル装置。 15. A refrigeration cycle apparatus comprising the compressor according to claim 14, a condenser, a decompression device, and an evaporator connected by refrigerant piping.
  19.  請求項15記載の圧縮機と、凝縮器と、減圧装置と、蒸発器とを冷媒配管で接続したことを特徴とする冷凍サイクル装置。 A refrigeration cycle apparatus comprising: a compressor according to claim 15; a condenser; a decompressor; and an evaporator connected by refrigerant piping.
PCT/JP2008/053235 2007-12-27 2008-02-26 Electric motor for compressor, compressor, and freezing cycle device WO2009084245A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200880110655A CN101821925A (en) 2007-12-27 2008-02-26 Electric motor for compressor, compressor, and freezing cycle device
JP2009547918A JPWO2009084245A1 (en) 2007-12-27 2008-02-26 Electric motor for compressor, compressor and refrigeration cycle apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-335439 2007-12-27
JP2007335439 2007-12-27

Publications (1)

Publication Number Publication Date
WO2009084245A1 true WO2009084245A1 (en) 2009-07-09

Family

ID=40823981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/053235 WO2009084245A1 (en) 2007-12-27 2008-02-26 Electric motor for compressor, compressor, and freezing cycle device

Country Status (3)

Country Link
JP (1) JPWO2009084245A1 (en)
CN (1) CN101821925A (en)
WO (1) WO2009084245A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011167052A (en) * 2010-01-14 2011-08-25 Mitsubishi Electric Corp Single-phase induction motor for compressor, compressor, and refrigeration-cycling device
JP2012143034A (en) * 2010-12-28 2012-07-26 Mitsubishi Electric Corp Induction motor, compressor, and refrigeration cycle device
WO2014097560A1 (en) * 2012-12-20 2014-06-26 株式会社デンソー Electric compressor
JP2014155324A (en) * 2013-02-08 2014-08-25 Mitsubishi Electric Corp Motor, compressor and refrigeration cycle device
US9343930B2 (en) 2012-05-25 2016-05-17 Baldor Electric Company Segmented stator assembly
JPWO2019186682A1 (en) * 2018-03-27 2020-10-22 三菱電機株式会社 Electric motors, compressors, blowers, and refrigeration and air conditioners

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107171481A (en) * 2017-07-25 2017-09-15 濮阳市华南重工科技有限公司 A kind of vibrohammer threephase asynchronous

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61244248A (en) * 1985-04-22 1986-10-30 Toshiba Corp Preparation of cast rotor
JPS63234850A (en) * 1987-02-27 1988-09-30 ゼネラル・エレクトリック・カンパニイ Construction of closed slot type rotor
JPH0241672U (en) * 1988-09-08 1990-03-22
JPH0783170A (en) * 1993-09-17 1995-03-28 Hitachi Ltd Enclosed type electric compressor
JPH104658A (en) * 1996-06-13 1998-01-06 Hitachi Ltd Induction motor
JPH10281573A (en) * 1997-02-10 1998-10-23 Daikin Ind Ltd Freezer
JP2002125352A (en) * 2001-09-07 2002-04-26 Mitsubishi Electric Corp Squirrel-cage motor rotor and the squirrel-cage motor
JP2003013875A (en) * 2001-06-29 2003-01-15 Sanyo Electric Co Ltd Two-stage compression type compressor and refrigerating device using it
JP2004201428A (en) * 2002-12-19 2004-07-15 Matsushita Electric Ind Co Ltd Motor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4559872B2 (en) * 2005-02-22 2010-10-13 三菱電機株式会社 Single-phase motor and hermetic compressor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61244248A (en) * 1985-04-22 1986-10-30 Toshiba Corp Preparation of cast rotor
JPS63234850A (en) * 1987-02-27 1988-09-30 ゼネラル・エレクトリック・カンパニイ Construction of closed slot type rotor
JPH0241672U (en) * 1988-09-08 1990-03-22
JPH0783170A (en) * 1993-09-17 1995-03-28 Hitachi Ltd Enclosed type electric compressor
JPH104658A (en) * 1996-06-13 1998-01-06 Hitachi Ltd Induction motor
JPH10281573A (en) * 1997-02-10 1998-10-23 Daikin Ind Ltd Freezer
JP2003013875A (en) * 2001-06-29 2003-01-15 Sanyo Electric Co Ltd Two-stage compression type compressor and refrigerating device using it
JP2002125352A (en) * 2001-09-07 2002-04-26 Mitsubishi Electric Corp Squirrel-cage motor rotor and the squirrel-cage motor
JP2004201428A (en) * 2002-12-19 2004-07-15 Matsushita Electric Ind Co Ltd Motor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011167052A (en) * 2010-01-14 2011-08-25 Mitsubishi Electric Corp Single-phase induction motor for compressor, compressor, and refrigeration-cycling device
JP2012143034A (en) * 2010-12-28 2012-07-26 Mitsubishi Electric Corp Induction motor, compressor, and refrigeration cycle device
US8723388B2 (en) 2010-12-28 2014-05-13 Mitsubishi Electric Corporation Induction motor, compressor and refrigerating cycle apparatus
US8912701B2 (en) 2010-12-28 2014-12-16 Mitsubishi Electric Corporation Induction motor, compressor and refrigerating cycle apparatus
US9343930B2 (en) 2012-05-25 2016-05-17 Baldor Electric Company Segmented stator assembly
WO2014097560A1 (en) * 2012-12-20 2014-06-26 株式会社デンソー Electric compressor
US9982922B2 (en) 2012-12-20 2018-05-29 Denso Corporation Electric compressor
JP2014155324A (en) * 2013-02-08 2014-08-25 Mitsubishi Electric Corp Motor, compressor and refrigeration cycle device
JPWO2019186682A1 (en) * 2018-03-27 2020-10-22 三菱電機株式会社 Electric motors, compressors, blowers, and refrigeration and air conditioners
US11605991B2 (en) 2018-03-27 2023-03-14 Mitsubishi Electric Corporation Electric motor, compressor, air blower, and refrigerating and air conditioning apparatus

Also Published As

Publication number Publication date
CN101821925A (en) 2010-09-01
JPWO2009084245A1 (en) 2011-05-12

Similar Documents

Publication Publication Date Title
JP5591099B2 (en) Compressor and refrigeration cycle equipment
EP2146161B1 (en) Capacity modulation compressor and air conditioning system having the same
JP6742402B2 (en) Electric motor, compressor, and refrigeration cycle device
WO2009084245A1 (en) Electric motor for compressor, compressor, and freezing cycle device
JP5490251B2 (en) Induction motor rotor, induction motor, compressor, blower and air conditioner
KR20180040662A (en) Permanent magnet embedded type electric motor, compressor and refrigeration air-conditioning device
JP2011041379A (en) Self-starting permanent-magnet synchronous motor and compressor and refrigeration cycle using the same
JP2012060799A (en) Electric motor for compressor, compressor, and refrigeration cycle apparatus
JP4762301B2 (en) Electric motor for compressor, compressor and refrigeration cycle apparatus
EP2146420A1 (en) Capacity modulation compressor and air conditioning system having the same
CN102130553B (en) Single-phase induction motor for compressor, compressor thereof and refrigeration circulation device
JP5230574B2 (en) Electric motor for compressor, compressor and refrigeration cycle apparatus
JP6407432B2 (en) Compressor and refrigeration cycle apparatus
JP4156506B2 (en) Electric motor, hermetic compressor, refrigeration air conditioner and wedge
JP2015112011A (en) Induction motor, compressor and refrigeration cycle device
JP6556342B2 (en) Stator, motor, compressor and refrigeration cycle equipment
JP6395948B2 (en) Stator core, compressor and refrigeration cycle device
KR101412585B1 (en) Rotary compressor
JP5738213B2 (en) Compressor and refrigeration cycle apparatus provided with the compressor
JP2013051881A (en) Induction motor, compressor, and refrigeration cycle device
JP2015096013A (en) Compressor motor, and compressor with the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880110655.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08711964

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009547918

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08711964

Country of ref document: EP

Kind code of ref document: A1