JP4203208B2 - 放射線のエネルギ分布調整機構、並びに、これを用いた放射線の照射装置 - Google Patents

放射線のエネルギ分布調整機構、並びに、これを用いた放射線の照射装置 Download PDF

Info

Publication number
JP4203208B2
JP4203208B2 JP2000089249A JP2000089249A JP4203208B2 JP 4203208 B2 JP4203208 B2 JP 4203208B2 JP 2000089249 A JP2000089249 A JP 2000089249A JP 2000089249 A JP2000089249 A JP 2000089249A JP 4203208 B2 JP4203208 B2 JP 4203208B2
Authority
JP
Japan
Prior art keywords
radiation
variable
bolus
energy distribution
slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000089249A
Other languages
English (en)
Other versions
JP2001276238A (ja
Inventor
豪 西田
直昭 谷崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2000089249A priority Critical patent/JP4203208B2/ja
Publication of JP2001276238A publication Critical patent/JP2001276238A/ja
Application granted granted Critical
Publication of JP4203208B2 publication Critical patent/JP4203208B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、放射線のエネルギ分布調整機構、並びに、これを用いた放射線の照射装置に係り、特に、臨床用陽子線治療システムに用いるのに好適な、例えば患者の外部から患部に向けて照射される放射線のエネルギ分布を、任意形状に調整するための放射線のエネルギ分布調整機構、並びに、これを用いた放射線の照射装置に関する。
【0002】
【従来の技術】
粒子加速器により真空中で荷電粒子を高速、高エネルギに加速し、これによって発生するX線、電子線、中性子線、陽子線、π中間子線、重粒子線等、又はコバルト遠隔治療装置からのγ線等を、患者体外から経皮的に病巣に照射する外部放射線治療は、固形癌の治療において、外科手術と共に重要な治療法となっている。特に、患部周辺の正常組織へのダメージを少なくできることから、患者のQOL(Quality Of Life)が重視される今後の医療現場において、ますます需要が高まると考えられる。
【0003】
この外部照射による放射線治療では、周辺正常組織又は重要臓器を避け、患部にできるだけ正確に患部形状と一致する照射線量分布を与えることが重要である。陽子線治療は、図1に示すように、物質に入射した陽子線が、停止する直前にブラッグピークPで最大の線量を与えるという性質を利用して、癌組織のみを該ブラッグピークPで被うことにより、この理想を実現しようとするものである。
【0004】
放射線治療の作業に際しては、図2に示す如く、まずステップ100で、患部のX線CT画像を撮影する。その撮影画像を基に、ステップ110で、患者の体輪郭、患部領域、周辺重要臓器を考慮して治療計画を立てる。この治療計画で決定された、照射門数と方向、放射線強度に基づいて、ステップ120で、照射する放射線を微調整するための固定補助具の選定、加工が行われる。次いで、ステップ130で、患者の位置決め132を行った後、放射線照射134による照射治療が行われる。
【0005】
図3に、放射線治療システムの構成を示す。この放射線治療システムでは、加速器等の放射線発生装置10で作られた放射線が、放射線輸送装置12を通って、患者8に放射線を照射するためのガントリノズル14に導かれる。ガントリノズル14では、放射線を、放射線観測・調整機構16で一様なエネルギ分布に整えた後、放射線エネルギ形状形成機構18において、患部に照射したい任意のエネルギ分布に調整し、これを患者8の外部から患部に向けて照射する。患者体内における線量分布は、放射線のエネルギ分布によって決まるため、患部形状を考慮して予め計画されている。
【0006】
即ち、加速器から得られる放射線、例えば陽子線は、細いビーム状であり、そのエネルギ(ブラッグピークPの深さ)も一定である。一方、癌組織は、様々な大きさと複雑な形状を持ち、その体内における深さも一定ではなく、又、陽子線が通過しなければならない組織の密度も一様ではない。従って、陽子線治療を行うためには、陽子線ビームを、(1)癌全体が一度に照射できるくらいの幅広いビームに拡大し、(2)癌の深さに応じて、そのエネルギを調整し、(3)奥行きのある癌組織全体が一様に照射できるよう、癌の厚みに応じてエネルギ分布を持たせ、更に、(4)癌の輪郭や陽子線が通過する組織の不均一さに応じた補正を加える必要がある。
【0007】
そこで、従来の外部放射線治療においては、患者体内における線量分布を補償するために、前記放射線エネルギ形状形成機構18では、照射部位の皮膚面が平坦で無い場合や、照射すべきターゲットが皮膚面と傾きを持っている場合に、線量分布の歪みを補償するための補償フィルタのようなエネルギ分布修正器具が用いられてきた。
【0008】
この補償フィルタとしては、例えば従来の放射線治療で用いられている、通過したビームの空間的等線量曲線が一定の傾きを持つような濾過板であるくさびフィルタや、皮膚面に置き、照射表面の凹凸を平坦にするために使用されるボーラスがある。又、最近の重粒子線治療では、治療する患者毎に患部形状を複数の照射方向から再現するための患者ボーラスを作成する治療法も試みられている。
【0009】
更に、照射する放射線を最終的に調整する機構では、前記エネルギ分布修正器具と、不必要な放射線が照射される領域を遮蔽して照射野を整形する照射野整形器具を同時に用いるのが通常である。
【0010】
高エネルギ放射線用としては、不必要なビーム部分を遮蔽することにより、不整形な矩形の照射野を作成するブロックコリメータ、図4に示す如く、左右からくし状に配置された、幅数mm〜1cm程度の棒状のコリメータをそれぞれ動かすことで、照射すべきターゲットの形に合わせた照射野に設定できるマルチリーフコリメータ、予め、患者の患部形状を照射方向に射影し、放射線が通過しない板を、その形状にくりぬくことにより、照射野を患部形状に限定する患者コリメータ等がある。前記マルチリーフコリメータは、最近の高エネルギ放射線治療装置に標準装備されつつある。
【0011】
具体的には、例えば陽子線治療では、図5に示すようにして、照射対象の形状に合わせたエネルギ分布を形成している。即ち、照射部であるガントリノズル14まで送られてきた、細い陽子ビーム20に、例えば厚さ数mmの鉛でできた散乱体22により、横方向に広がりを持たせて、幅広いビーム24に拡大する。該散乱体22を頂点とする円錐状に広がって伝搬する拡大ビーム24から、後述するコリメータを用いて、中心軸付近の、エネルギが比較的均一な部分を切り出すと、下方の治療台(図示せず)上で、治療に必要な直径十数cmの照射野が得られる。
【0012】
前記拡大ビーム24は、治療対象(例えば患者8の体内の腫瘍8C)の深さに応じて、陽子線の最大到達深さを調整するためのファインディグレーダ26に入射される。該ファインディグレーダ26は、例えば2個のくさび型をした対向するアクリルブロック26a、26bから構成され、該ブロック26a、26bの重なり方を調節することによって、陽子線が通過する部分の厚みを連続的に変化させることができる。陽子線は、通過した物質の厚みに応じてエネルギを失い、到達できる深さが変わるので、このファインディグレーダ26の調節により、図1に示したブラッグピークPを、治療が必要な深さに合わせることができる。
【0013】
該ファインディグレーダ26を透過した陽子線は、腫瘍8Cの厚みに対応して陽子線のエネルギ深さに分布ΔPを持たせるためのリッジフィルタ28に入射される。該リッジフィルタ28は、例えば階段状に厚みの変化する三角柱状の金属棒を簾状に並べたものであり、厚みの異なる部分を通過した陽子線は、異なる深さにブラッグピークPを作るので、階段の幅と高さの調節により、それらを適当に重ね合わせて、ピークの幅ΔPを拡大することができる。
【0014】
前記リッジフィルタ28を通過した陽子線は、陽子線の平面形状を粗く整形するためのブロックコリメータ30に入射される。後述する最終コリメータに加えて、ここで、ブロックコリメータ30による整形を行っているのは、患者8の近くでブロックコリメータによる2次放射線が発生しないようにするためである。
【0015】
前記ブロックコリメータ30を通過した陽子線は、例えば樹脂製の不整形フィルタであるボーラス32に入力され、腫瘍8Cの最大深さの断面形状と組織の不均一性に関する補正が行われる。このボーラス32の形状は、腫瘍8Cの輪郭線と、例えばX線CTのデータから求められる周辺組織の電子密度とに基づいて、算出される。
【0016】
該ボーラス32を通過した陽子線は、例えば真鍮等の最終コリメータ34に入射され、腫瘍8Cの平面形状の輪郭に合わせた最終調整が行われた後、治療用陽子線36として、患者8に照射される。
【0017】
以上のようなエネルギ分布調整機構を用いた従来の放射線治療の概略を図6及び図7に示す。図6は、患者の頭部8Hに対してくさびフィルタ33を用いて、線量分布Dを形成したX線照射の例である。図7は、患者の肝臓8Lに対する陽子線直交二門照射の例である。この例では、患者の患部形状に応じた患者ボーラス32を加工して使用し、患部形状に集中された線量分布Dを得ている。これらの2つの例において、エネルギ分布調整機構は、照射方向に対して固定されている。
【0018】
又、従来の治療計画は、前述のエネルギ分布修正器具の組合せを、経験則に基づき試行錯誤的に行っていた。これは、重粒子線治療における治療計画についても同様であり、更なる治療効果と治療速度の向上のため、照射方法の改善が望まれていた。
【0019】
【発明が解決しようとする課題】
即ち、従来の放射線治療システムの放射線エネルギ分布調整機構では、治療効率という点で、以下のような問題点を有していた。
【0020】
(1)照射パターンが、比較的単純な修正具の組合せによってのみ構成されているため、複雑な患部形状や、重要臓器を避ける照射に対して、機構的制限が大きい。特に、陽子線や重粒子線のような、透過性の高い線質を用いた場合は、マルチリーフコリメータであっても、小さな腫瘍には使えない。
【0021】
(2)線量分布修正器具と照射野整形器具は、共に放射線照射時には固定されており、異なった照射パターンを与えたい時には、照射毎に、その修正具を装備し直さなくてはならない。
【0022】
(3)患者ボーラスのように治療毎に作成する修正具を用いる場合は、その修正具の作成時間とコストに問題がある。
【0023】
(4)治療毎に修正具を作成する場合、一度使用した修正具は放射線廃棄物となるので、廃棄する場合の取扱いが困難である。
【0024】
本発明は、前記従来の問題点を解決するべくなされたもので、修正具を取り替えることなく、患者体内の患部形状に合わせた3次元線量分布を実現できるようにすることを第1の課題とする。
【0025】
本発明は、又、放射線治療を高精度化すると共に、実照射時間を短縮して、患者の負担を軽減することを第2の課題とする。
【0026】
【課題を解決するための手段】
本発明は、照射される放射線のエネルギ分布を、任意形状に調整するための放射線のエネルギ分布調整機構において、放射線をスリット状に整形するためのスリットコリメータと、放射線エネルギ吸収体で作成され、スリット方向各位置の放射線吸収量が可変とされた可変ボーラスと、該可変ボーラスのスリット方向各位置における放射線吸収量を制御するための吸収量制御手段とを備え、前記スリットコリメータと可変ボーラスによって形成されるスリット状線量分布を走査することにより3次元線量分布を得るようにして、前記第1の課題を解決したものである。
【0027】
又、前記可変ボーラスを、幅方向に多数並設された、放射線吸収量が長手方向に略連続的に変化するようにされた、棒状の連続階調ボーラスにより構成し、前記吸収量制御手段が、各連続階調ボーラスを、それぞれ独立して長手方向にスライドさせるようにして、スリット方向各位置における放射線吸収量を制御するようにしたものである。
【0028】
又、前記連続階調ボーラスを、密度が長手方向に略連続的に変化するようにされた棒状部材により構成するようにしたものである。
【0029】
あるいは、前記連続階調ボーラスが、くさび状部材を含むようにして、簡単な構成で連続階調ボーラスを実現したものである。
【0030】
又、前記スリットコリメータの端部位置を可変として、照射に必要な部分以外を遮蔽する、適切な長さのスリットが形成されるようにしたものである。
【0032】
本発明は、又、任意形状の放射線を照射するための放射線照射装置において、前記放射線のエネルギ分布調整機構と、該エネルギ分布調整機構中の可変ボーラスを、通過した放射線の必要な深さ方向到達線量に応じて駆動するための可変ボーラス駆動機構と、前記エネルギ分布調整機構中のスリットコリメータと可変ボーラスを走査して、必要な3次元線量分布を得るための走査機構とを備えることにより、前記第2の課題を解決したものである。
【0033】
又、同様の放射線照射装置において、可変スリットコリメータを含む前記放射線のエネルギ分布調整機構と、該エネルギ分布調整機構中の可変ボーラスを、通過した放射線の必要な深さ方向到達線量に応じて駆動するための可変ボーラス駆動機構と、前記エネルギ分布調整機構中の可変スリットコリメータの端部位置を、通過した放射線の必要な平面的長さに応じて駆動するための可変スリットコリメータ駆動機構と、前記エネルギ分布調整機構中の可変スリットコリメータと可変ボーラスを走査して、必要な3次元線量分布を得るための走査機構とを備えることにより、同じく前記第2の課題を解決したものである。
【0034】
本発明によれば、従来用いられていた、照射する放射線を微調整するための固定補助具によるパッシブな照射部機構に比べ、照射時に可変動作可能なアクティブな機構を取り入れることにより、治療計画から照射までの全体の治療時間を短縮しつつ、放射線の外部照射時の患者体内線量分布を、より正確に患部形状と一致させることができる。
【0035】
【発明の実施の形態】
以下図面を参照して、本発明の実施形態を詳細に説明する。
【0036】
本発明に係る放射線のエネルギ分布調整機構の第1実施形態は、図8に示す如く、図5に示したブロックコリメータ30に代わる、スリット長が放射線の必要な最大平面的長さに応じて固定された固定スリットコリメータ40と、患者ボーラス32に代わる可変ボーラス機構42と、最終コリメータ34に代わる、スリット長が必要な放射線の平面的な長さに応じて可変とされた可変スリットコリメータ50とを備えている。
【0037】
なお、治療グレードに応じて、他にマルチリーフコリメータや患者コリメータ等を併用することもできる。
【0038】
前記可変ボーラス機構42は、図9に詳細に示す如く、幅方向に多数並設された、放射線吸収量が長手方向に略連続的に変化するようにされた、棒状の連続階調ボーラス44A〜44Kと、各連続階調ボーラス44A〜44K毎に設けられた、これらをそれぞれ独立して長さ方向にスライドさせるための、例えばボールねじからなるボーラス駆動機構48A〜48Kによって構成され、該ボーラス駆動機構によって、照射ライン41に対応するスリット方向各位置における放射線吸収量を制御するようにされている。
【0039】
前記連続階調ボーラス44A〜44Kは、例えば、図10に示す如く、密度が長手方向に略連続的に変化するようにされた棒状部材により構成されている。
【0040】
この連続階調ボーラス44A〜44Jは、図11に示す変形例の如く、密度の異なるくさび46A、46Bを組み合わせたり、あるいは図12に示す他の変形例の如く、単一のくさび46を用いたり、あるいは、図13に示す更に他の変形例の如く、図5に示したファインディグレーダのように、2つのくさび46A、46Bを、それぞれ独立したボーラス駆動機構49A、49Bでスライドさせることにより、実現可能である。あるいは、等放射線吸収率を持つ薄板状の吸収体を階段状に配置して構成してもよい。
【0041】
前記可変スリットコリメータ50は、図14に詳細に示す如く、スリット50Sの両側からそれぞれ挿入される一対のエンドバー52A、52Bと、各エンドバー52A、52Bを、必要なスリット開口幅に合わせて駆動するための、例えばボールねじで構成されるスリット駆動機構54A、54Bを用いて構成されている。
【0042】
図8に示した如く、前記可変ボーラス機構42のボーラス駆動機構48A〜48Kは可変ボーラス制御装置60により制御され、前記可変スリットコリメータ50のスリット駆動機構54A、54Bは可変スリットコリメータ制御装置62により制御され、ガントリノズル14はガントリ制御装置64により制御され、患者ベッド9は患者ベッド制御装置66により制御される。
【0043】
更に、前記可変ボーラス制御装置60、可変スリットコリメータ制御装置62、ガントリ制御装置64及び患者ベッド制御装置66は、操作端末70から入力される信号に応じて、可変ボーラス機構42と可変スリットコリメータ50の調整、及び、ガントリノズル14と患者ベッド9の移動で、分割されたターゲットを照射する計画を計算する照射計画装置72の出力により制御される。
【0044】
ここで、照射した放射線の等エネルギ線又はエネルギピークのみに注目し、これをエネルギ分布として表わすものとする。連続階調ボーラスの全部分に放射線が垂直方向から一様に入射すると、放射線吸収率が低い側と高い側との間で、図10に示した如く、深さ方向のエネルギ分布の勾配が生じる。この連続階調ボーラス44を通過した放射線は、患者体内入射後に、エネルギ分布に応じた線量分布を生じる。
【0045】
従って、照射目標が直線状であるとき、連続階調ボーラス44の水平方向の位置決めを行うことで、その直線状の深さ方向のエネルギ分布、即ち、目標線量分布を、連続階調ボーラスの両端間差異の範囲内で任意に決定できる。更に、本実施形態で用いられている可変ボーラス機構42では、連続階調ボーラス44A〜44Kを組合せ、並列に配置したスライド式連続階調ボーラスを、それぞれ独立に動かすようにしている。この並列に配置したスライド式連続階調ボーラスを、図8に示した如く、予め計画されたパターンに配置すると、入射した放射線は、ボーラス群通過後に、計画された部分を含む放射線エネルギ分布Eを形成する。このボーラス通過後の放射線を、可変スリットコリメータ50によって、実際照射に用いられる計画された部分のみを通過させれば、最終的に、コリメータ通過後の放射線エネルギ分布によって、照射後に計画された線量分布Dを生じる。この線量分布Dは、予め治療計画によって、患部形状に適合するように調整される。
【0046】
もしくは、ある評価基準に基づいて最適化された照射パターンが用いられる。
【0047】
ここで、評価基準とは、ターゲット内の線量や、その一様性、周辺正常組織への影響、DVH(dose volume histogram)に基づく結果などが考えられる。なお、最適化によって得られた照射パターンの一つ一つは、直接ターゲット形状の一部と必ずしも一致している必要性はない。
【0048】
患部の形状が滑らかに変化するとすれば、一度の照射によって作られるライン状の目標線量分布を、図15に示す如く水平方向に連続的に変化させながら走査することで、任意の3次元曲面を形作る目標線量分布が得られる。この走査は、可変ボーラス機構42を備えたガントリノズル14の初期位置及びそのボーラスパターンにより形成される線量分布D1から、中間ガントリ位置及びその線量分布D2を通過し、最終ガントリ位置及びその線量分布D3まで、ボーラスを滑らかに変化させつつガントリノズル14を移動させることで実現することができる。なお、ガントリノズル14を固定し、患者ベッド9を移動させたり、両者を共に移動させても、同様な効果が実現できる。
【0049】
計画によって求められる、1回の照射によって与えられる線量分布の形状は、直接ターゲット形状の一部分と一致してもよいし、複数照射の重ね合わせで結果的にターゲット形状と一致するようにしてもよい。後者の場合、1回の照射ごとに与えられる線量分布の形状は、必ずしもターゲット形状の一部とは一致しなくてよい。
【0050】
ここでは、1回ごとの形状が一致する場合の治療例を説明する。
【0051】
前記操作端末70からは、図16に示す如く、ターゲット形状データ及び手動分割又は自動分割アルゴリズムが、前記照射計画装置72に入力される。
【0052】
該照射計画装置72は、前記操作端末70から入力されるターゲット形状データを記憶するターゲット形状データ記憶メモリ74と、該ターゲット形状データ記憶メモリ74から入力されるターゲット形状データ及び前記操作端末70から入力される手動分割又は自動分割アルゴリズムに従って、ターゲットを3次元分割するターゲット3次元分割装置76と、該ターゲット3次元分割装置76の出力に基づいて、分割ターゲットの射影形状を計算する分割ターゲット射影形状計算装置78と、該分割ターゲット射影形状計算装置78の出力に基づいて、必要なスリット長となるように可変スリットコリメータ50のエンドバー52A、52Bを駆動する信号を可変スリットコリメータ制御装置62に出力する可変スリットコリメータパターン出力装置80と、前記ターゲット3次元分割装置76の出力に基づいて、分割ターゲットの照射エネルギ分布を決定する照射エネルギパターン計算装置82と、該照射エネルギパターン計算装置82の出力に応じて、必要なボーラスパターンが得られるように、前記ボーラス駆動機構48A〜48Jを駆動するための信号を可変ボーラス制御装置60に出力する可変ボーラスパターン出力装置84と、前記ターゲット3次元分割装置76の出力に基づいて、ガントリノズル14や患者ベット9の走査パターンを計算する走査パターン計算装置86と、該走査パターン計算装置86の出力に基づいて、ガントリノズル14や患者ベット9の移動データを、ガントリ制御装置64や患者ベット制御装置66に出力するガントリ・患者ベッド移動データ出力装置88とを含んで構成されている。
【0053】
以下、図17を参照して、前記実施形態を用いた放射線治療作業の手順を説明する。
【0054】
まず、治療計画での照射データ計算処理200では、ステップ210でX線CT画像から復元された立体患部形状を読み込み、ステップ220で照射門数と方向に対応して、いくつかの領域に分割する。この分割された領域1つに対して、照射方向から見た3次元曲面が、目標線量分布となる。
【0055】
次に、ステップ230で、ボーラス駆動機構48A〜48Kのサーボ性能とガントリ速度に応じて、曲面情報をある軸に沿って変化する曲線情報に離散化し、ステップ240で、この曲線同士を補間するようにボーラスパターン移動データを計算する。更に、ステップ250で、ガントリ移動方向と直交方向の照射野長さをコリメータパターンとして計算し、ステップ260でガントリ移動データを計算する。
【0056】
次いで、実際の照射に移る前に、アライメント処理300へ進み、ステップ310でガントリ位置を読み込むと共に、ステップ320で患者の位置を読み込み、ステップ330でガントリの初期位置を計算する。
【0057】
次いで、ステップ340でガントリを初期位置に移動させ、ステップ350でボーラスパターンも初期位置に設定する。
【0058】
そして、放射線照射処理400では、計算されたデータを基に、ステップ410で照射を開始し、ステップ420で、最小単位部分照射(位置測定、ボーラスパターンの変化、コリメータ調整、ガントリ移動)し、ステップ430で照射データが終了したと判断されるまで、連続的にボーラスパターン、可変コリメータ、ガントリを移動させながら、最小単位部分である離散曲線間をつなぐように照射する。全照射終了後、ステップ440で照射を停止する。
【0059】
本実施形態においては、ボーラス駆動機構及びスリット駆動機構を設けて、連続階調ボーラス及びエンドバーの駆動を自動化しているので、従来、照射方向毎に作成され、照射方向が変わる毎に交換されていた修正具の人手による取り替えが不要であり、照射方向を迅速に変えることができるので、患者の負担が少ない治療が行える。なお、連続階調ボーラスやエンドバーの出入を人手により行うことも可能である。
【0060】
又、本実施形態においては、可変ボーラスの上に固定スリットコリメータ40を設け、下に可変スリットコリメータ50を設けているので、不要な2次放射線の発生を最小限に止めることができる。なお、2次放射線の発生が問題にならない場合には、固定スリットコリメータ40を省略して、可変スリットコリメータ50のみとすることができる。又、照射される放射線の平面的長さが問題とならない場合には、可変スリットコリメータ50の代わりに最大開口幅を有する固定スリットコリメータを用いることも可能である。
【0061】
前記実施形態においては、本発明が、陽子線治療システムに適用されていたが、本発明の適用対象はこれに限定されず、陽子線以外の放射線治療システム、あるいは一般の放射線照射システムにも、同様に適用できることは明らかである。
【0062】
【発明の効果】
本発明によれば、複雑な患部形状と一致する任意の放射線照射パターンを、単純な形状の放射線エネルギ吸収材料同士の組合せで正確に実現することができる。
【0063】
従って、従来のくさびフィルタ等の固定機構を用いた治療計画に比べ、複雑な3次元形状を再現する線量分布が実現できるため、放射線治療の本来の利点である周辺正常組織の保護という点で治療効果が高い。
【0064】
又、高エネルギ放射線治療において、患者毎のボーラスを作成する時間が不要となり、患者ボーラスが作成されるまでの待ち時間を減らして、治療全般を高速化することができる。従って、単位時間当たりの照射時間の変更許容範囲を大幅に増大させ、更なる高度な治療計画も可能となる。
【0065】
又、患者毎に作成する修正具等の放射性廃棄物となる廃材が発生せず、廃棄処理の問題も生じない。
【図面の簡単な説明】
【図1】陽子線治療の原理を示す線図
【図2】一般的な放射線治療作業手順を示す流れ図
【図3】同じく放射線治療システムの一例を示すブロック図
【図4】従来よりブロックコリメータとして用いられているマルチリーフコリメータの構成を示す平面図
【図5】陽子線治療におけるエネルギ分布調整と照射野形成の原理を示す斜視図
【図6】従来のエネルギ分布修正器具を用いた放射線治療の概略を示す、脳の断面図
【図7】同じく肝臓部分の断面図
【図8】本発明に係るエネルギ分布調整機構の実施形態の構成を示す、一部ブロック図を含む斜視図
【図9】前記実施形態で用いられている可変ボーラス機構の構成を示す平面図
【図10】同じく連続階調ボーラスの構成及び作用を示す斜視図
【図11】連続階調ボーラスの変形例を示す斜視図
【図12】同じく連続階調ボーラスの他の変形例を示す斜視図
【図13】同じく連続階調ボーラスの更に他の変形例を示す斜視図
【図14】前記実施形態で用いられている可変スリットコリメータの構成を示す平面図
【図15】前記実施形態の作用を説明するための、ガントリを移動しながら照射している状態を示す斜視図
【図16】前記実施形態で用いられている操作端末及び照射計画装置の構成を示すブロック図
【図17】前記実施形態を用いた放射線治療作業の手順を示す流れ図
【符号の説明】
8…患者
8C…腫瘍
8H…頭部
8L…肝臓
9…患者ベッド
10…放射線発生装置
12…放射線輸送装置
14…ガントリノズル
16…放射線観測・調整機構
18…放射線エネルギ形状形成機構
40…固定スリットコリメータ
41…照射ライン
42…可変ボーラス機構
44、44A〜44J…連続階調ボーラス
48、48A〜48J、49A、49B…ボーラス駆動機構
46、46A、46B…くさび
50…可変スリットコリメータ
50S…スリット
52…操作端末
54A、54B…スリット駆動機構
60…可変ボーラス制御装置
62…可変スリットコリメータ制御装置
64…ガントリ制御装置
66…患者ベッド制御装置
70…操作端末
72…照射計画装置

Claims (7)

  1. 照射される放射線のエネルギ分布を、任意形状に調整するための放射線のエネルギ分布調整機構において、
    放射線をスリット状に整形するためのスリットコリメータと、
    放射線エネルギ吸収体で作成され、スリット方向各位置の放射線吸収量が可変とされた可変ボーラスと、
    該可変ボーラスのスリット方向各位置における放射線吸収量を制御するための吸収量制御手段とを備え、
    前記スリットコリメータと可変ボーラスによって形成されるスリット状線量分布を走査することにより3次元線量分布を得るようにされていることを特徴とする放射線のエネルギ分布調整機構。
  2. 前記可変ボーラスが、幅方向に多数並設された、放射線吸収量が長手方向に略連続的に変化するようにされた、棒状の連続階調ボーラスにより構成され、前記吸収量制御手段が、各連続階調ボーラスを、それぞれ独立して長手方向にスライドさせることによって、スリット方向各位置における放射線吸収量を制御するようにされていることを特徴とする請求項1に記載の放射線のエネルギ分布調整機構。
  3. 前記連続階調ボーラスが、密度が長手方向に略連続的に変化するようにされた棒状部材により構成されていることを特徴とする請求項2に記載の放射線のエネルギ分布調整機構。
  4. 前記連続階調ボーラスが、くさび状部材を含むこと特徴とする請求項2に記載の放射線のエネルギ分布調整機構。
  5. 前記スリットコリメータの端部位置が可変とされていることを特徴とする請求項1乃至4のいずれかに記載の放射線のエネルギ分布調整機構。
  6. 任意形状の放射線を照射するための放射線の照射装置において、
    請求項1乃至5のいずれかに記載の放射線のエネルギ分布調整機構と、
    該エネルギ分布調整機構中の可変ボーラスを、通過した放射線の必要な深さ方向到達線量に応じて駆動するための可変ボーラス駆動機構と、
    前記エネルギ分布調整機構中のスリットコリメータと可変ボーラスを走査して、必要な3次元線量分布を得るための走査機構と、
    を備えたことを特徴とする放射線の照射装置。
  7. 任意形状の放射線を照射するための放射線の照射装置において、
    請求項5に記載の放射線のエネルギ分布調整機構と、
    該エネルギ分布調整機構中の可変ボーラスを、通過した放射線の必要な深さ方向到達線量に応じて駆動するための可変ボーラス駆動機構と、
    前記エネルギ分布調整機構中の可変スリットコリメータの端部位置を、通過した放射線の必要な平面的長さに応じて駆動するための可変スリットコリメータ駆動機構と、
    前記エネルギ分布調整機構中の可変スリットコリメータと可変ボーラスを走査して、必要な3次元線量分布を得るための走査機構と、
    を備えたことを特徴とする放射線の照射装置。
JP2000089249A 2000-03-28 2000-03-28 放射線のエネルギ分布調整機構、並びに、これを用いた放射線の照射装置 Expired - Fee Related JP4203208B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000089249A JP4203208B2 (ja) 2000-03-28 2000-03-28 放射線のエネルギ分布調整機構、並びに、これを用いた放射線の照射装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000089249A JP4203208B2 (ja) 2000-03-28 2000-03-28 放射線のエネルギ分布調整機構、並びに、これを用いた放射線の照射装置

Publications (2)

Publication Number Publication Date
JP2001276238A JP2001276238A (ja) 2001-10-09
JP4203208B2 true JP4203208B2 (ja) 2008-12-24

Family

ID=18605030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000089249A Expired - Fee Related JP4203208B2 (ja) 2000-03-28 2000-03-28 放射線のエネルギ分布調整機構、並びに、これを用いた放射線の照射装置

Country Status (1)

Country Link
JP (1) JP4203208B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112240234B (zh) * 2020-10-21 2021-08-31 安徽天沃重工机械有限公司 一种农业机械用具有排气净化效果的柴油机

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6822252B2 (en) 2001-07-20 2004-11-23 Siemens Medical Solutions Usa, Inc. Verification of electron treatment fields
US6853703B2 (en) 2001-07-20 2005-02-08 Siemens Medical Solutions Usa, Inc. Automated delivery of treatment fields
US6813337B2 (en) * 2001-07-20 2004-11-02 Siemens Medical Solutions Usa, Inc Removable electron multileaf collimator
EP1584353A1 (en) * 2004-04-05 2005-10-12 Paul Scherrer Institut A system for delivery of proton therapy
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
US10925147B2 (en) 2016-07-08 2021-02-16 Mevion Medical Systems, Inc. Treatment planning
US10653892B2 (en) 2017-06-30 2020-05-19 Mevion Medical Systems, Inc. Configurable collimator controlled using linear motors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112240234B (zh) * 2020-10-21 2021-08-31 安徽天沃重工机械有限公司 一种农业机械用具有排气净化效果的柴油机

Also Published As

Publication number Publication date
JP2001276238A (ja) 2001-10-09

Similar Documents

Publication Publication Date Title
AU2020232818B2 (en) Method of providing rotational radiation therapy using particles
CN109195664B (zh) 放射治疗系统和方法
JP5330253B2 (ja) 粒子線ビーム照射装置
US7295649B2 (en) Radiation therapy system and method of using the same
JP5646312B2 (ja) 粒子線照射装置及び粒子線治療装置
US6984835B2 (en) Irradiation apparatus and irradiation method
US20100012859A1 (en) Method For Treating A Target Volume With A Particle Beam And Device Implementing Same
EP3508253B1 (en) Methods and systems for determining the shape of a radiotherapy beam
JP2001212253A (ja) 粒子線照射方法及び粒子線照射装置
JP4203208B2 (ja) 放射線のエネルギ分布調整機構、並びに、これを用いた放射線の照射装置
JP4159229B2 (ja) 放射線のエネルギ分布調整機構、並びに、これを用いた放射線照射装置
WO2018116354A1 (ja) 放射線照射計画装置、臨床判断支援装置およびプログラム
US20120330086A1 (en) Rapid Range Stacking (RRS) for Particle Beam Therapy
JP5619462B2 (ja) 治療計画装置及び治療計画装置の治療計画を用いた粒子線治療装置
JP2003126278A (ja) 粒子線治療装置及び治療計画装置及び荷電粒子ビーム照射方法
JP4142230B2 (ja) 放射線のエネルギ分布調整機構、並びに、これを用いた放射線の照射装置
US20230090348A1 (en) Pinhole collimator systems and methods
KR101739648B1 (ko) 다엽 콜리메이터
JP5784808B2 (ja) 粒子線治療装置
Svensson et al. Beam characteristics and clinical possibilities of a new compact treatment unit design combining narrow pencil beam scanning and segmental multileaf collimation
US9861835B2 (en) Method for determining a dose entering an object that is to be irradiated
JP2008173298A (ja) 荷電粒子線照射装置
JPH0732806B2 (ja) 陽子線を用いた治療装置
Chauvel Treatment planning with heavy ions
Wadi‐Ramahi et al. Effect of ethmoid sinus cavity on dose distribution at interface and how to correct for it: Magnetic field with photon beams

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081010

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees