JP4201189B2 - Transmission line fault location system - Google Patents

Transmission line fault location system Download PDF

Info

Publication number
JP4201189B2
JP4201189B2 JP2003355369A JP2003355369A JP4201189B2 JP 4201189 B2 JP4201189 B2 JP 4201189B2 JP 2003355369 A JP2003355369 A JP 2003355369A JP 2003355369 A JP2003355369 A JP 2003355369A JP 4201189 B2 JP4201189 B2 JP 4201189B2
Authority
JP
Japan
Prior art keywords
surge
failure
point
slave station
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003355369A
Other languages
Japanese (ja)
Other versions
JP2005121434A (en
Inventor
和則 杉町
勝久 高塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishimu Electronics Industries Co Inc
Original Assignee
Nishimu Electronics Industries Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishimu Electronics Industries Co Inc filed Critical Nishimu Electronics Industries Co Inc
Priority to JP2003355369A priority Critical patent/JP4201189B2/en
Publication of JP2005121434A publication Critical patent/JP2005121434A/en
Application granted granted Critical
Publication of JP4201189B2 publication Critical patent/JP4201189B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Description

本発明は、送電線故障点標定システムに関し、特に、送電線に発生するサージに基づいて故障点を標定する送電線故障点標定システムに関する。   The present invention relates to a transmission line failure point locating system, and more particularly to a transmission line failure point locating system for locating a failure point based on a surge generated in a transmission line.

従来より、送電線が地絡、短絡したとき、或いは送電線に雷が直撃したときなどに発生するサージを、送電線の送電端と受信端に設けた親局および子局で受信し、サージ発生箇所を標定するサージ標定システムが知られている。   Conventionally, surges that occur when the transmission line is grounded, short-circuited, or when lightning strikes the transmission line directly are received by the master station and slave stations provided at the transmission end and reception end of the transmission line. There is known a surge locating system for locating an occurrence point.

図8は、従来のサージ標定システムの原理図である。この故障点標定システムでは、送電線1の末端に設けた親局2(電気所A)と子局3(電気所B)でサージ到達時間を検出し、検出したサージ到達時間の差を求め、下記(1)式を用いて親局2からサージ発生箇所までの距離L1 を算出する。   FIG. 8 is a principle diagram of a conventional surge localization system. In this fault location system, the surge arrival time is detected at the master station 2 (electricity station A) and the slave station 3 (electricity station B) provided at the end of the transmission line 1, and the difference between the detected surge arrival times is obtained. The distance L1 from the master station 2 to the surge occurrence location is calculated using the following equation (1).

L1 =(L+c・Δt)/2 ・・・(1)
ここで、Lは、送電線両端に設置した親局2と子局3との間の距離、Δtは、親局2と子局3でのサージ到達時間の差、cは、サージ伝搬速度である。
L1 = (L + c · Δt) / 2 (1)
Here, L is the distance between the master station 2 and the slave station 3 installed at both ends of the transmission line, Δt is the difference in surge arrival time between the master station 2 and the slave station 3, and c is the surge propagation speed. is there.

図9は、送電線1に複数の分岐1,2,・・がある場合に対応し得る、下記特許文献1で提案されたサージ標定システムの原理図である。送電線1の送電端と受電端に親局2または子局3,4,・・・を配置する。親局2と子局3,4,・・・はそれぞれ、送電線1に発生したサージを受信するサージ受信手段と、人工衛星からの電波を受理し、これに基づいて生成された周期パルスに従って作動するとともにサージ受信手段からの出力に応答してサージ到着時間を示すカウンタ値を生成するカウンタ手段と、カウンタ手段により生成されたカウンタ値を送信する送信手段を有する。   FIG. 9 is a principle diagram of a surge localization system proposed in Patent Document 1 below, which can cope with a case where the power transmission line 1 has a plurality of branches 1, 2,. The master station 2 or the slave stations 3, 4,... Are arranged at the power transmission end and the power reception end of the power transmission line 1. Each of the master station 2 and the slave stations 3, 4,... Receives a surge generated in the transmission line 1, and receives radio waves from the artificial satellite, and according to a periodic pulse generated based on this. Counter means for operating and generating a counter value indicating a surge arrival time in response to an output from the surge receiving means, and transmitting means for transmitting the counter value generated by the counter means.

このサージ標定システムでは、親局2と子局3のサージ到達時間のカウンタ値に基づいて標定したサージ発生点が分岐1,2,・・付近でなければその点をサージ発生点とするが、もし標定したサージ発生点が分岐点1,2,・・付近であるときは、分岐側でのサージ発生が考えられるため、親局2と分岐側の子局のサージ到達時間のカウンタ値からサージ発生点を標定する。   In this surge locating system, if the surge occurrence point that is standardized based on the counter value of the surge arrival time of the master station 2 and the slave station 3 is not near the branch 1, 2,. If the determined surge occurrence point is near the branch point 1, 2,..., It is possible that a surge will occur on the branch side, so the surge value is determined from the counter value of the surge arrival time of the master station 2 and the slave station on the branch side. Determine the point of origin.

例えば、図9に示すように、点Pでサージが発生したとすると、親局2と子局3のカウント値によりサージ発生点を標定する。また、点Qでサージが発生したとすると、親局2と子局3のカウント値でサージ発生点を算出し、この場合、算出したサージ発生点は分岐1付近となるので、さらに親局2と子局4のカウント値でサージ発生点を標定する。このようにカウンタ値によって標定に用いるべき2局を選択することにより、分岐があっても簡単にサージ発生点を求めることができる。   For example, as shown in FIG. 9, if a surge occurs at a point P, the surge occurrence point is determined by the count values of the master station 2 and the slave station 3. If a surge occurs at point Q, the surge occurrence point is calculated from the count values of the master station 2 and the slave station 3. In this case, the calculated surge occurrence point is in the vicinity of branch 1, so that the master station 2 The surge occurrence point is determined by the count value of the slave station 4. Thus, by selecting the two stations to be used for the orientation based on the counter value, it is possible to easily obtain the surge occurrence point even if there is a branch.

図10は、下記特許文献2で提案されたサージ標定システムの原理図である。このサージ標定システムは、送配電線1に関するサージ時刻と情報を親局2に送信する子局3,4,・・・と、子局3,4,・・・からのサージ時刻と情報をもとにサージ発生区間を特定する親局2を送配電線1に配置する。子局3,4,・・・は、GPS電波を受信してGPSの保有する現在時刻と自己の現在時刻を同期させ、送配電線1のサージ検出時刻を特定し、また、サージ電流の極性を認識し、サージ検出時刻とサージ電流極性情報とを通信網を通じて親局2に送信する。親局2は、子局3,4,・・・から送信されてきたサージ検出時刻から送配電線1の電源端に最も近い子局3と送配電線1の複数の末端子局との間で、それぞれサージ検出時刻の差と子局間の送配電線1の長さとから送配電線1のサージ発生位置候補点を特定し、該候補点を含む所定範囲の送配電線1を総合してサージ発生位置候補区間とする。さらに、サージ発生位置候補区間内に含まれる子局のサージ電流極性情報とサージ発生位置候補区間内には含まれないがサージ発生位置候補区間内に含まれる子局と隣り合う子局のサージ電流極性情報とから、サージ発生区間として枝分かれのない区間を特定し、サージ発生区間とする。   FIG. 10 is a principle diagram of the surge localization system proposed in Patent Document 2 below. This surge locating system also includes the surge time and information from the slave stations 3, 4,... That transmit the surge time and information about the transmission and distribution line 1 to the master station 2, and the slave stations 3, 4,. In addition, a master station 2 that specifies a surge occurrence section is arranged on the transmission and distribution line 1. The slave stations 3, 4,... Receive the GPS radio wave, synchronize the current time held by the GPS and the current time of their own, identify the surge detection time of the transmission and distribution line 1, and the polarity of the surge current And the surge detection time and surge current polarity information are transmitted to the master station 2 through the communication network. The master station 2 is located between the slave station 3 closest to the power supply terminal of the transmission / distribution line 1 and the plurality of terminal slave stations of the transmission / distribution line 1 from the surge detection time transmitted from the slave stations 3, 4,. Then, the surge generation position candidate point of the transmission / distribution line 1 is identified from the difference in the surge detection time and the length of the transmission / distribution line 1 between the slave stations, and the transmission / distribution line 1 within a predetermined range including the candidate point is synthesized. The surge occurrence position candidate section. Furthermore, the surge current polarity information of the slave station included in the surge occurrence position candidate section and the surge current of the slave station adjacent to the slave station not included in the surge occurrence position candidate section but included in the surge occurrence position candidate section From the polarity information, a section without branching is identified as a surge generation section, and is defined as a surge generation section.

例えば、図10に示すように、点Rでサージが発生したとすると、電源端の子局3と末端子局6,8のサージ検出時刻によりサージ発生位置候補区間を求め、求めたサージ発生位置候補区間内の子局4と隣り合う子局3,5,7のサージ電流極性を比較してサージ発生区間を子局3,4間と限定する。   For example, as shown in FIG. 10, if a surge occurs at point R, the surge occurrence position candidate section is obtained from the surge detection times of the slave station 3 at the power supply terminal and the terminal slave stations 6 and 8, and the obtained surge occurrence position The surge current polarities of the slave stations 3, 5, and 7 adjacent to the slave station 4 in the candidate section are compared, and the surge occurrence section is limited to between the slave stations 3 and 4.

このように送配電線の両端子局のサージ到達時刻でサージ発生位置候補区間を求め、求めたサージ発生位置候補区間近傍の子局のサージ電流極性に基づいてサージ発生区間を求めることにより、送配電線に分岐があり、それに設置した子局の数が多い場合でも比較的簡単な手順でサージ発生区間を限定することができる。
特開平8−184635号公報 特開2000−193707号公報
In this way, the surge occurrence position candidate section is obtained at the surge arrival time of both terminal stations of the transmission and distribution lines, and the surge occurrence section is obtained based on the surge current polarity of the slave station in the vicinity of the obtained surge occurrence position candidate section. Even if there is a branch in the distribution line and the number of slave stations installed on it is large, it is possible to limit the surge occurrence section with a relatively simple procedure.
JP-A-8-184635 JP 2000-193707 A

一般的な送電線は、線路長が長く、また途中に分岐がある。雷サージなどの高周波成分は、分岐により分波してそのレベルが低下するため、送電線の両端でサージを検出するにはサージ検出の閾値を下げる必要がある。しかしながら、サージ検出の閾値を下げると、サージ標定システムが誘導雷で頻繁に動作してしまうという課題が生じる。また、送電線の線路長が長いとサージ伝播距離が長くなるため、サージ発生点を精度よく算出するためにはサージ伝播速度のばらつきや電線たるみなどの影響を考慮する必要がある。   A general power transmission line has a long line length and a branch in the middle. A high-frequency component such as a lightning surge is demultiplexed by a branch and its level is lowered. Therefore, in order to detect a surge at both ends of a transmission line, it is necessary to lower a surge detection threshold. However, when the threshold for surge detection is lowered, the problem arises that the surge localization system frequently operates with induced lightning. Further, since the surge propagation distance becomes longer when the line length of the transmission line is longer, in order to calculate the surge occurrence point with high accuracy, it is necessary to consider influences such as variations in surge propagation speed and sagging of the electric wire.

図9の場合は、親局2と本線端子局3のサージ到達時間によりサージ発生点標定に使用する2局を選択しているので、分岐でのサージ発生時に、本線で標定したサージ発生点の誤差が大きく、分岐範囲以内に含まれなかった場合には誤標定となる。   In the case of FIG. 9, since two stations used for surge generation point location are selected according to the surge arrival times of the master station 2 and the main line terminal station 3, the surge occurrence point standardized on the main line is detected when a surge occurs at a branch. If the error is large and it is not included within the branching range, it is misdirected.

図10では、送配電線1の途中に複数台の子局3,4,・・・を設置し、各子局のサージ電流極性情報でサージ発生区間を標定するので、サージ発生点標定の精度を300m程度とするためには鉄塔間隔を平均300mとして全ての鉄塔に子局を設置する必要がある。これは、送電線でのサージ発生点標定には現実的でない。   In FIG. 10, a plurality of slave stations 3, 4,... Are installed in the middle of the transmission / distribution line 1, and the surge generation section is determined by the surge current polarity information of each slave station. In order to make the distance about 300 m, it is necessary to install slave stations on all the steel towers with an average distance of 300 m between the steel towers. This is not realistic for locating a surge occurrence point on a transmission line.

また、図11(a)に示すように、送電線1に、例えば、18km離して子局4,5を設置した場合、同図(b)に子局4,5の雷サージ波形を示すように、雷サージは高周波成分が多く、子局が離れると分岐点での反射波や波形歪などの影響でサージ波形形状が変化し、サージ電流極性の判定が困難になる場合がある。   Moreover, as shown in FIG. 11A, when the slave stations 4 and 5 are installed on the power transmission line 1 at a distance of 18 km, for example, the lightning surge waveform of the slave stations 4 and 5 is shown in FIG. In addition, lightning surge has many high-frequency components, and when the slave station is separated, the surge waveform shape may change due to the influence of the reflected wave or waveform distortion at the branch point, making it difficult to determine the surge current polarity.

本発明は、送電線のように長い線路で、しかも分岐がある場合でも比較的簡単かつ精度よく故障点を標定することができる送電線故障点標定システムを提供することを目的とする。   An object of the present invention is to provide a power transmission line fault location system that can determine a fault point relatively easily and accurately even when a long line such as a power transmission line has a branch.

上記課題を解決するために、本発明は、送電線に複数配置され、該送電線に関する情報を親局に送信する子局と、該子局からの情報をもとに故障点を特定する親局とを有する送電線故障点標定システムにおいて、前記子局は、人工衛星からのGPS電波を受信してGPSの保有する現在時刻を取り出すGPS受信手段と、前記送電線に流れる故障電流を検出して故障電流情報を出力する故障電流検出手段と、前記送電線に発生する故障電圧を検出して故障電圧情報を出力する故障電圧検出手段と、前記送電線にサージが発生した直後の故障電流の変化状態と故障電圧の変化状態に対応した故障状態フラグを送出する電流電圧監視手段と、サージ検出時刻を前記GPS受信手段から取り出し、該サージ検出時刻とサージピーク値を前記故障状態フラグとともに送出するサージ検出手段と、前記サージ検出時刻、前記サージピーク値、前記故障状態フラグ、前記故障電流情報および前記故障電圧情報を故障情報として通信網を通じて前記親局に送信する故障情報送信手段とを備え、前記親局は、前記故障情報送信手段からの故障情報を受信する故障情報受信手段と、前記故障情報に基づいて標定に用いるべき子局を選択する子局選択処理手段と、前記子局選択処理手段で選択した子局のサージ検出時刻を用いてサージ発生点を算出するサージ発生点算出処理手段と、前記サージ発生点算出処理手段でサージ発生点算出に使用した子局の故障状態フラグに従って故障点表示を選択する故障点表示選択処理手段とを備え、前記子局選択処理手段は、故障状態フラグの状態により故障検出の有無を検出し、故障検出の場合は、故障電流の電流値と位相角の何れかが異なる子局のうちサージ検出時刻の早いものから子局を2つ以上選択し、故障未検出の場合は、サージ検出時刻の早いものから子局を2つ以上選択することを特徴とし、前記サージ発生点算出処理手段は、前記子局選択処理手段が選択した子局が3つ以上ある場合、選択された子局のうちサージ検出時刻の早いものから3つを選択し、3つの全ての組合せでサージ発生点を算出し、算出されたサージ発生点が近い2つのサージ発生点の平均点をサージ発生点とするか、または、算出されたサージ発生点が近い2つのサージ発生点のうちサージの検出時刻の差が小さい方をサージ発生点とすることを第1の特徴としている。 In order to solve the above-described problem, the present invention provides a plurality of slave stations that are arranged on a power transmission line and that transmit information related to the power transmission line to a master station, and a master that identifies a failure point based on information from the slave station In the transmission line fault location system having a station, the slave station receives GPS radio waves from an artificial satellite and detects a current that the GPS has, and a fault current flowing in the transmission line. Fault current detection means for outputting fault current information, fault voltage detection means for detecting fault voltage generated in the transmission line and outputting fault voltage information, fault current immediately after a surge occurs in the transmission line Current voltage monitoring means for sending out a failure state flag corresponding to the change state and the change state of the failure voltage, and the surge detection time is extracted from the GPS reception means, and the surge detection time and surge peak value are determined from the failure state. Surge detection means for sending together with a lag, and failure information transmission means for sending the surge detection time, the surge peak value, the failure state flag, the failure current information and the failure voltage information as failure information to the master station through a communication network The master station, fault information receiving means for receiving fault information from the fault information transmitting means, slave station selection processing means for selecting a slave station to be used for orientation based on the fault information, Surge occurrence point calculation processing means for calculating the surge occurrence point using the surge detection time of the slave station selected by the slave station selection processing means, and the failure of the slave station used for calculating the surge occurrence point by the surge occurrence point calculation processing means and a fault point display selection processing means for selecting a fault point display according to the state flag, the slave station selection processing means, chromatic fault detection by the state of the fault condition flag In the case of failure detection, two or more slave stations are selected from the slave stations with different surge current current values and phase angles that have earlier surge detection times. If no failure is detected, The two or more slave stations are selected from those with the earlier surge detection time, and the surge occurrence point calculation processing means is selected when there are three or more slave stations selected by the slave station selection processing means. Select three of the slave stations with the earliest surge detection time, calculate the surge occurrence point for all three combinations, and calculate the average of the two surge occurrence points that are close to the calculated surge occurrence point. Alternatively , the first characteristic is that a surge occurrence point having a smaller difference in surge detection time among two surge occurrence points close to the calculated surge occurrence point is used.

また、本発明は、前記子局において、前記故障情報送信手段が送信する故障情報は、前記故障状態フラグに従って選択可能であることを第2の特徴としている。   The second feature of the present invention is that, in the slave station, the failure information transmitted by the failure information transmitting means can be selected according to the failure state flag.

また、本発明は、前記子局選択処理手段が、子局を前記故障電流情報と前記故障電圧情報に従ってグループに分けし、グループ毎にサージ検出時刻順に並べ、各グループにおいてサージ検出時刻が最も早い子局を選択することを第3の特徴としている。   Further, according to the present invention, the slave station selection processing unit divides the slave stations into groups according to the fault current information and the fault voltage information, and arranges the slave stations in order of surge detection time for each group, and the surge detection time is earliest in each group The third feature is to select a slave station.

さらに、本発明は、前記局において、前記故障状態フラグと前記サージピーク値の組み合わせに基づいて、故障とならない架空地線雷撃点を標定することを第の特徴としている。 Furthermore, the present invention is the master station, based on a combination of the surge peak value and the fault state flag, to locating a ground wire lightning point that does not malfunction to be the fourth feature.

前記第1の特徴によれば、送電線上に適当な間隔で配置した複数の子局のうち標定に用いるべき子局を、サージ検出時刻、故障電流情報、故障電圧情報などの故障情報に基づいて選択し、これらの子局に関するサージ検出時刻に基づいて標定を行うので、複雑で長い送電線系統においても、サージ伝播速度のばらつきや電線たるみなどの影響を考慮する必要がなく、精度よくサージ発生箇所を標定することができる。   According to the first feature, a slave station to be used for orientation among a plurality of slave stations arranged at appropriate intervals on the transmission line is determined based on failure information such as surge detection time, failure current information, and failure voltage information. Since it is selected and standardized based on the surge detection time for these slave stations, there is no need to consider the effects of fluctuations in surge propagation speed and wire sagging even in complicated and long transmission line systems, and surges can be generated accurately. The location can be standardized.

ここで、サージ検出時刻のみで標定に使用すべき子局を選ぶのではなく、サージ検出時刻に加えて故障電流情報、故障電圧情報により総合的に標定に使用すべき子局を選ぶので、送電線途中に配置された子局であってもサージ発生点を挟む2局を確実に選択することができる。   Here, instead of selecting a slave station to be used for standardization based only on the surge detection time, a slave station to be used for standardization is selected based on fault current information and fault voltage information in addition to the surge detection time. Even if it is a slave station arranged in the middle of the electric wire, two stations sandwiching the surge occurrence point can be reliably selected.

また、故障状態フラグを利用して故障点表示を選択できるので、例えば、サージによる故障点と誘導雷サージのサージ点を区別して表示させることができる。これにより、故障の場合は至急送電線を点検し、誘導雷サージの場合は発生状況履歴を蓄積してその結果によりサージ発生多発箇所の送電線の点検を行うというように、故障の点検および送電線の予防保全を効率的に行うことができる。さらに、分岐がある場合に分岐点に子局を置かなくても、サージ発生点を標定することができる。 Further, since the failure point display can be selected using the failure state flag, for example, the failure point due to the surge and the surge point of the induced lightning surge can be distinguished and displayed. As a result, in the event of a failure, the transmission line is inspected immediately, and in the case of an induced lightning surge, the occurrence status history is accumulated, and the transmission line at the location where the surge occurs frequently is checked as a result. The preventive maintenance of electric wires can be performed efficiently. Further, when there is a branch, the surge occurrence point can be determined without placing a slave station at the branch point.

前記第2の特徴によれば、サージ検出閾値を低くした場合に誘導雷で頻繁に動作することを抑制することができる。   According to the second feature, frequent operation by induced lightning can be suppressed when the surge detection threshold is lowered.

前記第3の特徴によれば、両端から故障電流が流れるような超高圧送電線や充電電流が大きい送電線の途中に配置された子局であっても、サージ発生点を挟む2つの子局を精度よく、かつ確実に選択することができる。   According to the third feature, even if the slave station is arranged in the middle of an ultra-high-voltage transmission line in which a fault current flows from both ends or a transmission line having a large charging current, two slave stations sandwiching the surge occurrence point Can be selected accurately and reliably.

前記第の特徴によれば、架空値線の予防保全を効果的に行うことができるようになる。 According to the fourth feature, the preventive maintenance of the fictitious value line can be effectively performed.

以下、図面を参照して本発明を説明する。本発明は、送電線の本線或いは分岐線の端部および線路途中に適当な間隔で配置した複数の子局と、少なくとも1つの親局とを備える。   The present invention will be described below with reference to the drawings. The present invention includes a plurality of slave stations arranged at appropriate intervals in the main line or branch line of the power transmission line and in the middle of the line, and at least one master station.

図1は、本発明に係る送電線故障点標定システムの子局の構成例を示すブロック図である。同図に示すように、子局は、GPS受信手段11、故障電流検出手段12、故障電圧検出手段13、電流電圧監視手段14、サージ検出手段15および故障情報送信手段16を備える。   FIG. 1 is a block diagram showing a configuration example of a slave station of a transmission line fault location system according to the present invention. As shown in the figure, the slave station includes GPS receiving means 11, fault current detecting means 12, fault voltage detecting means 13, current voltage monitoring means 14, surge detecting means 15, and fault information transmitting means 16.

GPS受信手段11は、人工衛星(図示せず)からのGPS信号を受信するGPSアンテナ111およびGPS受信機112を有する。GPS受信機112は、人工衛星から送信される符号化情報を受信し、この符号化情報に同期した1秒ごとのリセット信号と現在時刻を生成する。また、GPS受信機112は、リセット信号を故障情報送信手段16の制御用CPU161に送出し、制御CPU161がリセット信号に基づいて計時した1秒未満のnsec単位での時刻を受ける。さらに、GPS受信機112は、サージ検出手段15からサージ検出信号を受けると、その時の時刻を1msec未満表示の時刻としてサージ検出手段15に送出する。   The GPS receiving means 11 includes a GPS antenna 111 and a GPS receiver 112 that receive GPS signals from artificial satellites (not shown). The GPS receiver 112 receives the encoded information transmitted from the artificial satellite, and generates a reset signal and a current time every second synchronized with the encoded information. In addition, the GPS receiver 112 sends a reset signal to the control CPU 161 of the failure information transmission means 16 and receives a time in nsec units less than 1 second counted by the control CPU 161 based on the reset signal. Further, when receiving the surge detection signal from the surge detection means 15, the GPS receiver 112 sends the time at that time to the surge detection means 15 as a time of less than 1 msec display.

故障電流検出手段12は、送電線に流れる電流を検出する電流センサ121、電流センサ121が検出した電流波形から商用周波数成分を取出すフィルタ122、フィルタ122の出力信号をデジタル信号に変換するA/D変換器123、故障電流検出部124を有する。   The fault current detection means 12 includes a current sensor 121 that detects a current flowing through the transmission line, a filter 122 that extracts a commercial frequency component from the current waveform detected by the current sensor 121, and an A / D that converts the output signal of the filter 122 into a digital signal. A converter 123 and a fault current detector 124 are included.

故障電流検出部124は、デジタル信号に変換された電流波形の変化分を取り出し、予め設定された故障認定レベルと比較し、電流変化分が故障認定レベルを超えた場合に故障電流に基づく故障発生信号を電流電圧監視手段14に送出する。また、故障電流検出部124は、故障電流波形および電流値、位相角などの故障電流情報を記憶し、これを故障情報送信手段16に送出する。   The fault current detection unit 124 takes out the change in the current waveform converted into a digital signal, compares it with a preset failure certification level, and generates a fault based on the fault current when the current change exceeds the fault certification level. A signal is sent to the current voltage monitoring means 14. The fault current detection unit 124 stores fault current information such as a fault current waveform, current value, and phase angle, and sends the fault current information to the fault information transmitting means 16.

故障電圧検出手段13は、送電線に発生する電圧を検出する電圧センサ131、電圧センサ131が検出した電圧波形から商用周波数成分を取出すフィルタ132、フィルタ132の出力信号をデジタル信号に変換するA/D変換器133、故障電圧検出部134を有する。   The failure voltage detection means 13 includes a voltage sensor 131 that detects a voltage generated in the transmission line, a filter 132 that extracts a commercial frequency component from the voltage waveform detected by the voltage sensor 131, and an output signal A / A that converts the output signal of the filter 132 into a digital signal. A D converter 133 and a fault voltage detector 134 are included.

故障電圧検出部134は、デジタル信号に変換された電圧波形の変化分を取り出し、予め設定された故障認定レベルと比較し、電圧波形の変化分が故障認定レベルを超えた場合に故障電圧に基づく故障発生信号を電流電圧監視手段14に送出する。また、故障電圧検出部134は、故障電圧波形および電圧値、位相角などの故障電圧情報を記憶し、これを位相角を故障情報送信手段16に送出する。   The failure voltage detection unit 134 extracts a change in the voltage waveform converted into a digital signal, compares it with a preset failure certification level, and based on the failure voltage when the change in the voltage waveform exceeds the failure certification level. A failure occurrence signal is sent to the current voltage monitoring means 14. The failure voltage detection unit 134 stores failure voltage information such as a failure voltage waveform, a voltage value, and a phase angle, and sends the phase angle to the failure information transmission unit 16.

なお、各子局には、故障電流検出手段12と故障電圧検出手段13を複数備えることができる。また、故障電流検出手段12や故障電圧検出手段13における故障認定レベルを複数設け、故障状態の程度まで細かく電流電圧監視手段14に伝えるようにすることもできる。   Each slave station can include a plurality of fault current detection means 12 and fault voltage detection means 13. It is also possible to provide a plurality of failure qualification levels in the failure current detection means 12 and the failure voltage detection means 13 so as to be transmitted to the current voltage monitoring means 14 finely to the extent of the failure state.

電流電圧監視手段14は、故障電流検出手段12および故障電圧検出手段13の少なくとも一方から故障発生信号が送出されると故障状態フラグを変化させ、その故障状態フラグをサージ検出手段15に伝える。例えば、通常時の故障状態フラグを「0」とすると、故障発生信号を受けたとき、故障状態フラグを「1」にし、「1」の故障状態フラグをサージ検出手段15に送出する。なお、故障電流検出手段12や故障電圧検出手段13において故障認定レベルが複数設けられている場合にはそれに対応して故障状態フラグを複数設定する。   When a failure occurrence signal is sent from at least one of the failure current detection unit 12 and the failure voltage detection unit 13, the current / voltage monitoring unit 14 changes the failure state flag and transmits the failure state flag to the surge detection unit 15. For example, if the normal failure state flag is set to “0”, when a failure occurrence signal is received, the failure state flag is set to “1” and a failure state flag of “1” is sent to the surge detection means 15. When a plurality of failure certification levels are provided in the failure current detection means 12 and the failure voltage detection means 13, a plurality of failure status flags are set correspondingly.

サージ検出手段15は、送電線に発生した雷サージや電気故障サージを検出するサージセンサ151、サージセンサ151が検出したサージ波形を電子回路が処理できる電圧に変換し、高周波成分を取出すフィルタ152、フィルタ152の出力信号をデジタル信号に変換するA/D変換器153、サージ検出部154を有する。   The surge detection means 15 is a surge sensor 151 that detects a lightning surge or an electrical failure surge that has occurred in the transmission line, a filter 152 that converts a surge waveform detected by the surge sensor 151 into a voltage that can be processed by an electronic circuit, and extracts a high-frequency component, An A / D converter 153 that converts the output signal of the filter 152 into a digital signal and a surge detector 154 are included.

サージ検出部154は、A/D変換器153が出力する電圧と雑音レベルよりも大きな閾値VTHとを比較し、A/D変換器153が出力する電圧の方が閾値VTHよりも大きいときにサージ検出信号をGPS受信手段11に送出する。そして、サージ検出信号が発生した時の時刻(サージ検出時刻)をGPS受信手段11から受け、サージピーク値および電流電圧監視手段14から送出されてくる故障状態フラグとともに記憶し、これらを故障情報送信手段16に送出する。なお、サージと閾値VTHの比較は、A/D変換する前のアナログ信号の段階で行ってもよい。 The surge detection unit 154 compares the voltage output from the A / D converter 153 with a threshold value V TH greater than the noise level, and when the voltage output from the A / D converter 153 is greater than the threshold value V TH The surge detection signal is sent to the GPS receiving means 11. Then, the time when the surge detection signal is generated (surge detection time) is received from the GPS receiving means 11 and stored together with the surge peak value and the failure state flag sent from the current voltage monitoring means 14, and these are transmitted as failure information. Send to means 16. Note that the surge and the threshold value V TH may be compared at the analog signal stage before A / D conversion.

故障情報送信手段16は、サージ検出手段15から送出されてくるサージ検出時刻、サージピーク値および故障状態フラグ、故障電流検出手段2から送出されてくる故障電流の電流値および位相、故障電圧検出手段3から送出されてくる故障電圧の電圧値および位相などの故障情報を伝送制御するための制御CPU161、故障情報などのデータを一旦記憶しておくメモリ162、故障情報を架空地線(OPGW)内の光ファイバ17を通じて親局へ送信するための光モデム163を有する。   The failure information transmission means 16 includes a surge detection time sent from the surge detection means 15, a surge peak value and a failure state flag, a current value and phase of the failure current sent from the failure current detection means 2, and a failure voltage detection means. 3, a control CPU 161 for transmission control of failure information such as the voltage value and phase of the failure voltage sent from 3, a memory 162 for temporarily storing data such as failure information, and the failure information in the overhead ground wire (OPGW) The optical modem 163 for transmitting to the master station through the optical fiber 17 is provided.

故障情報としてサージ波形、故障電流波形、故障電圧波形を親局へ伝送するようにしてもよい。また、光モデム163を携帯電話や無線モデムや衛星通信用無線機などに変更することにより、それぞれの通信網を使って故障情報を親局に伝送するようにすることもできる。   A surge waveform, a fault current waveform, and a fault voltage waveform may be transmitted to the master station as fault information. In addition, by changing the optical modem 163 to a mobile phone, a wireless modem, a satellite communication radio, or the like, failure information can be transmitted to the master station using each communication network.

次に、上記構成の子局におけるサージ検出処理の概要を、図2を参照して説明する。図2は、雷サージ発生後に電気故障となった場合の波形図である。子局のサージ検出手段15は、サージが閾値VTH(サージ検出レベル)を超えるとサージ検出信号をGPU受信手段11に送出し、その時の時刻(サージ検出時刻)を受け、サージ検出時刻とサージピーク値を記憶する。 Next, an outline of surge detection processing in the slave station having the above-described configuration will be described with reference to FIG. FIG. 2 is a waveform diagram when an electrical failure occurs after the occurrence of a lightning surge. When the surge exceeds a threshold value V TH (surge detection level), the slave station surge detection means 15 sends a surge detection signal to the GPU reception means 11 and receives the time (surge detection time) at that time. Store the peak value.

故障電流検出手段12は、送電線に流れる電流の変化分を取出して故障電流波形として監視する。この故障電流波形が故障認定レベルを超えると、故障電流検出手段12は、故障が発生したものとして故障発生信号を電流電圧監視手段14に送出する。また、故障電流波形および電流値、位相角を記憶する。   The fault current detection means 12 takes out a change in the current flowing through the transmission line and monitors it as a fault current waveform. When the failure current waveform exceeds the failure recognition level, the failure current detection means 12 sends a failure occurrence signal to the current voltage monitoring means 14 as a failure has occurred. Further, the fault current waveform, current value, and phase angle are stored.

故障電圧検出手段13は、送電線に発生する電圧の変化分を取出して故障電圧波形として監視する。この故障電圧波形が故障認定レベルを超えると、故障電圧検出手段13は、故障が発生したものとして故障発生信号を電流電圧監視手段4に送出する。また、故障電圧波形および電流値、位相角を記憶する。   The failure voltage detection means 13 takes out a change in voltage generated in the transmission line and monitors it as a failure voltage waveform. When the failure voltage waveform exceeds the failure recognition level, the failure voltage detection unit 13 sends a failure occurrence signal to the current voltage monitoring unit 4 as a failure has occurred. Also, the fault voltage waveform, current value, and phase angle are stored.

電流電圧監視手段14は、故障電流検出手段12および故障電圧検出手段13の少なくとも一方から故障発生信号を受けると、故障状態フラグを「1」にしてサージ検出手段15に送出する。   When receiving a failure occurrence signal from at least one of the failure current detection unit 12 and the failure voltage detection unit 13, the current voltage monitoring unit 14 sets the failure state flag to “1” and sends it to the surge detection unit 15.

サージ検出手段15は、サージ検出時刻とサージピーク値に故障状態フラグを付加して故障情報伝送手段16に送出するとともに、サージ波形を記憶する。   The surge detection means 15 adds a failure state flag to the surge detection time and surge peak value and sends it to the failure information transmission means 16 and stores the surge waveform.

故障情報送信手段16は、サージ検出手段15から送出されてくるサージ検出時刻、サージピーク値および故障状態フラグ、故障電流検出手段12から送出されてくる故障電流の電流値および位相角、故障電圧検出手段13から送出されてくる故障電圧の電圧値および位相角を故障情報として親局に送出する。   The failure information transmission means 16 detects the surge detection time, surge peak value and failure state flag sent from the surge detection means 15, current value and phase angle of the failure current sent from the failure current detection means 12, and failure voltage detection. The voltage value and phase angle of the fault voltage sent from the means 13 are sent to the master station as fault information.

図3は、本発明に係る送電線故障点標定システムの親局の構成例を示すブロック図である。同図に示すように、親局は、故障情報受信手段31、子局選択処理手段32、サージ発生点算出処理手段33、故障点表示選択処理手段34、送信線データベース35およびモニタ36を備える。故障情報受信手段31は、光モデム311とデータタ形成処理部312で構成される。   FIG. 3 is a block diagram showing a configuration example of the master station of the transmission line fault location system according to the present invention. As shown in the figure, the master station includes a failure information receiving means 31, a slave station selection processing means 32, a surge occurrence point calculation processing means 33, a failure point display selection processing means 34, a transmission line database 35, and a monitor 36. The failure information receiving means 31 includes an optical modem 311 and a data formation processing unit 312.

送電線データベース35には、設置された送電線や子局の情報が予め蓄積されている。この情報は、例えば子局番号、子局間の送電線の亘長、分岐鉄塔番号、分岐鉄塔と隣接する子局間の送電線の亘長などを含む。   In the power transmission line database 35, information on installed power transmission lines and slave stations is stored in advance. This information includes, for example, the slave station number, the length of the transmission line between the slave stations, the branch tower number, the length of the transmission line between the branch tower and the adjacent slave station.

親局は、パーソナルコンピュータに組込まれており、子局選択処理手段32、サージ発生点算出処理手段33、故障点表示選択処理手段34は、ハードウエアあるいはソフトウエアとして構成することができ、ソフトウエアとして構成された場合には、中央処理装置により各処理が呼び出されて実行される。   The master station is incorporated in a personal computer, and the slave station selection processing means 32, surge generation point calculation processing means 33, and failure point display selection processing means 34 can be configured as hardware or software. Are configured to be called and executed by the central processing unit.

次に、上記構成の親局における処理の概要を説明する。故障情報受信手段31は、各子局から送出されてくる故障情報を受信する。   Next, an outline of processing in the master station having the above configuration will be described. The failure information receiving means 31 receives failure information sent from each slave station.

故障情報受信手段31は、架空地線内の光ファイバ17を介して各子局から送出されてくる故障情報を受信し、変換して子局選択処理手段32に送出する。子局選択処理手段32は、故障情報に基づいてサージ発生点算出処理手段33で使用する子局を選択する。   The failure information receiving means 31 receives failure information sent from each slave station via the optical fiber 17 in the overhead ground wire, converts it, and sends it to the slave station selection processing means 32. The slave station selection processing means 32 selects a slave station to be used by the surge occurrence point calculation processing means 33 based on the failure information.

子局選択処理手段32で2つの子局が選択された場合、サージ発生点算出処理手段33は、選択された子局のサージ検出時刻を用い、上記(1)式によりサージ発生点を算出する。なお、子局選択処理手段32で3つ以上の子局が選択された場合には、後述する手法でサージ発生点を算出する。   When two slave stations are selected by the slave station selection processing means 32, the surge generation point calculation processing means 33 uses the surge detection time of the selected slave station to calculate the surge occurrence point by the above equation (1). . When three or more slave stations are selected by the slave station selection processing means 32, a surge occurrence point is calculated by a method described later.

故障点表示選択処理手段34は、全ての子局の故障状態フラグを調べ、1局でも故障状態フラグが「1」になっていれば、算出されたサージ発生点を故障点としてモニタ36に表示させる。このとき、もし故障状態フラグが「1」でなければ,電気故障を伴わない誘導雷等によるサージ発生としてサージ点表示を行い、故障サージとそれ以外の誘導雷等のサージとを区別して表示する。   The failure point display selection processing means 34 checks the failure state flags of all the slave stations, and if the failure state flag is “1” even at one station, the calculated surge occurrence point is displayed on the monitor 36 as a failure point. Let At this time, if the failure status flag is not “1”, a surge point is displayed as a surge caused by an induced lightning without electrical failure, and the failure surge and other surges such as induced lightning are distinguished and displayed. .

さらに、サージの発生点や発生時刻の履歴をとって統計処理を行い、故障サージ以外の、緊急を要しないサージの場合は頻繁に発生する付近の点検を後日行うようにすることもできる。   Furthermore, statistical processing is performed by taking a history of the point of occurrence of the surge and the time of occurrence of the surge, and in the case of a surge that does not require an emergency other than a failure surge, a frequently occurring vicinity can be inspected at a later date.

以下に、上記構成の子局および親局からなる故障点標定システムの動作を具体例で説明する。図4は、電気所A,Bに電源および200Aの中性点接地抵抗(NGR)があり、電気所C,Dに負荷のみがあり、2箇所に分岐B1,B2がある送電線1の例である。ここで、電気所Aに親局2が置かれ、送電線1には適当な間隔で子局3〜10が置かれ、親局2と子局3〜10は架空地線内の光ファイバで接続されているとする。   Hereinafter, the operation of the fault location system composed of the slave station and the master station having the above configuration will be described with a specific example. FIG. 4 shows an example of a power transmission line 1 in which the power stations A and B have a power source and a neutral grounding resistance (NGR) of 200A, the power stations C and D have only a load, and there are branches B1 and B2 in two places. It is. Here, the master station 2 is placed at the electric power station A, the slave stations 3 to 10 are placed at appropriate intervals on the power transmission line 1, and the master station 2 and the slave stations 3 to 10 are optical fibers in the overhead ground wire. Assume that they are connected.

今、送電線1の点F1でサージが発生し故障が起こったとすると、サージは点F1から各末端に伝播していく。故障電流Ig1,Ig2は電源がある電気所A,Bから点F1に向かって流れる。電気所C,Dが置かれた分岐線にはサージは伝播するが、故障電流は流れない。図4には、送電線におけるサージ、および各子局における故障電流の電流値と位相が示してある。子局3〜10は、上記のようにして生成した故障情報を架空地線内にある光ファイバを介して親局2(電気所A)に送信する。 Assuming that a surge occurs at a point F1 of the transmission line 1 and a failure occurs, the surge propagates from the point F1 to each end. The fault currents I g1 and I g2 flow from the electric stations A and B having the power source toward the point F1. Surge propagates to the branch line where the electric stations C and D are placed, but no fault current flows. FIG. 4 shows the current value and phase of the surge in the transmission line and the fault current in each slave station. The slave stations 3 to 10 transmit the failure information generated as described above to the master station 2 (electricity station A) via the optical fiber in the overhead ground wire.

親局2の子局選択処理手段32(図3、以下同じ)は、故障情報を受けると、故障電流の電流値と位相角に基づき所定の条件に従って子局3〜10をグループ分けする。本例の場合、電流値200Aで位相角0°の子局3,4(Aグループ)、電流値200Aで位相角180°の子局5,6,7(Bグループ)、電流値0Aの子局8,9,10(Cグループ)にグループ分けする。   When receiving the failure information, the slave station selection processing means 32 (FIG. 3, the same applies hereinafter) of the master station 2 groups the slave stations 3 to 10 according to a predetermined condition based on the current value and phase angle of the fault current. In the case of this example, the slave stations 3 and 4 (A group) having a current value of 200A and a phase angle of 0 °, the slave stations 5, 6, and 7 (B group) having a current value of 200A and a phase angle of 180 °, and a child having a current value of 0A Group into stations 8, 9, 10 (group C).

そして、各グループ内でサージ検出時刻を比較し、その時刻順に並べ直し、各グループにおいてサージ検出時刻の最も早い子局を選択する。ここでは、Aグループでは子局4、Bグループでは子局5、Cグループでは子局8を選択する。これにより選択した子局番号をサージ発生点算出処理手段33に送出する。   Then, the surge detection times are compared in each group, rearranged in the order of the times, and the slave station having the earliest surge detection time in each group is selected. Here, the slave station 4 is selected in the A group, the slave station 5 is selected in the B group, and the slave station 8 is selected in the C group. As a result, the selected slave station number is sent to the surge occurrence point calculation processing means 33.

サージ発生点算出処理手段33では、子局選択処理手段32で選択した子局のサージ検出時刻から上記(1)式によりサージ発生点を算出する。本例の場合、選択した子局が3つであるので、下記の手順1〜3でサージ発生点を算出する。
手順1:3つの子局の全ての組合せでのサージ発生点を算出する。
手順2:算出したサージ発生点が互いに近いものを2つ選ぶ。
手順3:2つのサージ発生点の平均値を算出する。
The surge occurrence point calculation processing means 33 calculates the surge occurrence point by the above equation (1) from the surge detection time of the slave station selected by the slave station selection processing means 32. In the case of this example, since there are three selected slave stations, the surge occurrence point is calculated by the following procedures 1 to 3.
Procedure 1: Calculate surge occurrence points for all combinations of the three slave stations.
Procedure 2: Select the two whose calculated surge occurrence points are close to each other.
Procedure 3: Calculate the average value of two surge occurrence points.

手順1において、3つ子局の全ての組合せは、子局4−5,子局5−8,子局4−8である。子局4−5は点F1を挟んでおり、この組合せのサージ検出時刻でサージ発生点を求めると、点F1の近傍の点F11(図示せず)となる。子局5−8も点F1を挟んでおり、この組合せのサージ検出時刻でサージ発生点を求めると、点F1の近傍の点F12となる。子局4−8は分岐点B1を挟んでいるため、この組合せのサージ検出時刻でサージ発生点を求めると、分岐点B1の近傍の点B11となる。   In the procedure 1, all combinations of the three slave stations are the slave station 4-5, the slave station 5-8, and the slave station 4-8. The slave station 4-5 sandwiches the point F1, and when the surge occurrence point is obtained at the surge detection time of this combination, it becomes a point F11 (not shown) near the point F1. The slave station 5-8 also sandwiches the point F1, and when the surge occurrence point is obtained at the surge detection time of this combination, it becomes a point F12 in the vicinity of the point F1. Since the slave station 4-8 sandwiches the branch point B1, when the surge occurrence point is obtained at the surge detection time of this combination, it becomes a point B11 in the vicinity of the branch point B1.

手順2に従ってサージ発生点が互いに近い点F11,F12を選ぶ。次に、手順3に従って点F11とF12の平均値を算出してサージ発生点とする。なお、上記の手順3では2つのサージ発生点の平均値を算出するが、この手順3を、2つのサージ発生点のうち、サージ検出時刻の差が小さい方をサージ発生点としてもよい。   According to the procedure 2, the points F11 and F12 where the surge occurrence points are close to each other are selected. Next, according to the procedure 3, the average value of the points F11 and F12 is calculated as a surge occurrence point. In the procedure 3, the average value of the two surge occurrence points is calculated. However, in the procedure 3, the surge occurrence point having the smaller difference in the surge detection time may be set as the surge occurrence point.

故障点表示選択処理手段34では、故障情報受信手段31から送出されてきた全子局の故障状態フラグを調べ、1つでも故障状態フラグが「1」であれば、サージ発生点算出処理手段33から送出されたサージ発生点を故障点としてモニタ36に表示し、ユーザーに緊急点検を促す。   The failure point display selection processing means 34 checks the failure state flags of all the slave stations sent from the failure information receiving means 31, and if at least one failure state flag is "1", the surge occurrence point calculation processing means 33 Is displayed on the monitor 36 as a failure point to prompt the user to perform an emergency inspection.

全ての子局の故障状態フラグが「0」である場合には、サージピーク値を予め設定された雷撃判定レベルと比較する。ここで、全子局のうちの1局でも雷撃判定レベルを超えている場合には架空地線雷撃点表示を行う。また、全子局で雷撃レベルを超えていない場合には緊急性を伴わないサージ発生としてサージ発生点表示を行う。なお、雷撃判定レベルは、標準的な雷撃電流から算出した値を初期値とし、その後、後述する結果記録の履歴からその送電線に適切な雷撃判定レベルに変更するのが好ましい。図4の例の場合には、故障電流が発生しており、故障状態フラグが「1」であるので故障点表示を行う。   When the failure status flags of all the slave stations are “0”, the surge peak value is compared with a preset lightning strike determination level. Here, if even one of all the slave stations exceeds the lightning strike determination level, the overhead ground wire lightning strike point display is performed. In addition, when the lightning strike level is not exceeded in all the slave stations, a surge occurrence point is displayed as a surge occurrence without urgency. The lightning strike determination level is preferably a value calculated from a standard lightning strike current as an initial value, and then changed to a lightning strike determination level appropriate for the transmission line from a history of result recording described later. In the case of the example of FIG. 4, since a fault current has occurred and the fault status flag is “1”, the fault point is displayed.

さらに、故障点表示選択処理手段34は、親局がサージ発生による故障情報を受け、サージ発生点を算出する度に、その結果を記録して履歴として残す。そして、所定期間後に統計処理を行い、故障点や架空地線雷撃点やサージ発生点の位置やサージレベルについてグラフ表示や数値表示を行わせる。   Further, every time the master station receives the failure information due to the occurrence of surge and calculates the surge occurrence point, the failure point display selection processing means 34 records the result and leaves it as a history. Then, statistical processing is performed after a predetermined period, and a graph display and numerical display are performed for the position of the failure point, overhead ground lightning strike point, surge occurrence point, and surge level.

ユーザは、この統計処理結果のデータや表示から故障や架空地線雷撃やサージ発生が多発している箇所を割り出し、エリア内の送電線を点検することができる。これにより故障となる前に送電線を効率的に点検することができるので、特に架空地線雷撃によるダメージを早期に発見し、故障を未然に防ぐことが可能となる。   The user can inspect the transmission line in the area by determining the location where the failure, overhead ground lightning strikes and surges are frequently generated from the data and display of the statistical processing result. As a result, the power transmission line can be efficiently inspected before it breaks down, so that it is possible to detect damage particularly due to lightning strikes over the ground, and to prevent the failure in advance.

図5は、分岐点B1と電気所Cの間の点F2でサージが発生し故障が起こった場合の例を示す。点F2でサージが発生し故障が起こると、サージは点F2から各末端に伝播していく。故障電流Ig1,Ig2は電源がある電気所A,Bから点F2に向かって流れるため、分岐点B1で故障電流Ig1,Ig2が加算される。電気所Cと電気所Dが置かれた分岐線には点F2から雷サージは伝播するが、故障電流は流れない。図5には、このときの送電線におけるサージ、および各子局における故障電流の電流値と位相が示してある。子局3〜10は、故障情報を架空地線内にある光ファイバを介して親局2(電気所A)に送信する。 FIG. 5 shows an example when a surge occurs at a point F2 between the branch point B1 and the electric station C and a failure occurs. When a surge occurs at point F2 and a failure occurs, the surge propagates from point F2 to each end. Since the fault currents I g1 and I g2 flow from the electric power stations A and B having the power source toward the point F2, the fault currents I g1 and I g2 are added at the branch point B1. The lightning surge propagates from the point F2 to the branch line where the electric stations C and D are placed, but no fault current flows. FIG. 5 shows the current value and phase of the surge in the transmission line at this time and the fault current in each slave station. The slave stations 3 to 10 transmit the failure information to the master station 2 (electricity station A) via the optical fiber in the overhead ground wire.

親局2の子局選択処理手段32は、故障情報を受けると、子局3〜10をグループ分けする。本例の場合、電流値200Aで位相角0°の子局3,4(Aグループ)、電流値200Aで位相角が180°の子局5,6,7(Bグループ)、電流値400Aの子局8(Cグループ)、電流値0Aの9,10(Dグループ)にグループ分けする。   When receiving the failure information, the slave station selection processing unit 32 of the master station 2 groups the slave stations 3 to 10 into groups. In the case of this example, the slave stations 3 and 4 (group A) having a current value of 200A and a phase angle of 0 °, the slave stations 5, 6, and 7 (group B) having a current value of 200A and a phase angle of 180 °, and a current value of 400A It is grouped into a slave station 8 (C group) and current values 0A and 9 (D group).

そして、各グループ内でサージ検出時刻を比較し、その時刻順に並べ直し、各グループにおいてサージ検出時刻の最も早い子局を選択する。ここでは、Aグループでは子局4、Bグループでは子局5、Cグループでは子局8、Dグループでは子局9を選択する。この場合、選択した子局は3つ以上であるので、選択した子局4,5,8,9のうち、サージ検出時刻の早いものから順に3つの子局8,9,4を選択し、これにより選択した子局番号をサージ発生点算出処理手段33に送出する。   Then, the surge detection times are compared in each group, rearranged in the order of the times, and the slave station having the earliest surge detection time in each group is selected. Here, the slave station 4 is selected for the A group, the slave station 5 is selected for the B group, the slave station 8 is selected for the C group, and the slave station 9 is selected for the D group. In this case, since there are three or more selected slave stations, among the selected slave stations 4, 5, 8, and 9, three slave stations 8, 9, and 4 are selected in order from the earliest surge detection time, As a result, the selected slave station number is sent to the surge occurrence point calculation processing means 33.

サージ発生点算出処理手段33は、上記手順1に従って全ての子局の組合せでサージ発生点を算出する。この場合、子局の組合せは子局8−9、子局4−8、子局4−9である。子局8−9は点F2を挟んでおり、この組合せのサージ検出時刻でサージ発生点を求めると、点F2の近傍の点F21となる。子局4−9も点F2を挟んでおり、この組合せのサージ検出時刻でサージ発生点を求めると、点F2の近傍の点F22となる。子局4−8の場合は、点F2が子局8と子局9の間にあるため、この組合せのサージ検出時刻でサージ発生点を求めると、子局8の近傍の点F23となる。   The surge occurrence point calculation processing means 33 calculates the surge occurrence point for all the combinations of slave stations according to the above procedure 1. In this case, the combination of the slave stations is a slave station 8-9, a slave station 4-8, and a slave station 4-9. The slave station 8-9 sandwiches the point F2, and when the surge occurrence point is obtained at the surge detection time of this combination, it becomes a point F21 in the vicinity of the point F2. The slave station 4-9 also sandwiches the point F2, and when the surge occurrence point is obtained at the surge detection time of this combination, it becomes a point F22 near the point F2. In the case of the slave station 4-8, since the point F2 is between the slave station 8 and the slave station 9, when the surge occurrence point is obtained at the surge detection time of this combination, the point F23 near the slave station 8 is obtained.

次に、上記手順2に従ってサージ発生点が互いに近い点F21,F22を選ぶ。次に、手順3に従って点F21とF22の平均値を算出してサージ発生点とする。なお、ここでも、2つのサージ発生点のうち、サージ検出時刻の差が小さい方をサージ発生点としてもよい。   Next, the points F21 and F22 where the surge occurrence points are close to each other are selected according to the procedure 2. Next, according to the procedure 3, the average value of the points F21 and F22 is calculated as a surge occurrence point. In this case as well, the smaller one of the two surge occurrence points may be the surge occurrence point.

故障点表示選択処理手段35は、故障電流が発生しており、故障状態フラグが「1」であるのでモニタ36に故障点表示を行わせる。   The failure point display selection processing means 35 causes the monitor 36 to display the failure point because a failure current has occurred and the failure state flag is “1”.

図6は、点F3で架空地線に落雷したが、故障とならなかった場合の例を示す。点F3で雷サージが発生すると、サージは点F3から各末端に伝播して行く。この場合、故障となっていないため故障電流や故障電圧は発生しない。この場合、子局から送信される故障情報における故障状態フラグは「0」であり、故障電圧情報および故障電圧情報は、故障を示さない。   FIG. 6 shows an example in which lightning strikes the overhead ground wire at point F3, but no failure occurs. When a lightning surge occurs at point F3, the surge propagates from point F3 to each end. In this case, no failure current or failure voltage is generated because there is no failure. In this case, the failure state flag in the failure information transmitted from the slave station is “0”, and the failure voltage information and the failure voltage information do not indicate a failure.

子局選択処理手段32は、故障電流情報および故障電圧情報が故障を示さないので、各子局のサージ検出時刻を比較し、サージ検出時刻の早いもから順に3つの子局5,6,10を選択する。そして、選択した子局番号をサージ発生点算出処理手段33に送出する。   The slave station selection processing means 32 compares the surge detection time of each slave station and the three slave stations 5, 6, 10 in order from the earliest surge detection time because the fault current information and fault voltage information do not indicate a fault. Select. Then, the selected slave station number is sent to the surge occurrence point calculation processing means 33.

サージ発生点算出処理手段33は、上記手順1に従って全ての子局の組合せでサージ発生点を算出する。この場合、子局の組合せは、子局5−6、子局5−10、子局6−10である。子局5−6は点F3を挟んでおり、この組合せのサージ検出時刻でサージ発生点を求めると、点F3の近傍の点F31となる。子局5−10も点F3を挟んでおり、この組合せのサージ検出時刻でサージ発生点を求めると、点F3の近傍の点F32となる。子局6−10の場合は点F3点が子局6と子局10の間で分岐点B2を挟んでいるため、この組合せのサージ検出時刻でサージ発生点を求めると、分岐点B2の近傍の点B33となる。次に、上記手順2に従ってサージ発生点の近い点F31,F32を選び、手順3に従って点F31,F32の平均値をサージ発生点とする。ここでも、2つのサージ発生点のうち、サージ検出時刻の差が小さい方をサージ発生点としてもよい。   The surge occurrence point calculation processing means 33 calculates the surge occurrence point for all the combinations of slave stations according to the above procedure 1. In this case, a combination of the slave stations is a slave station 5-6, a slave station 5-10, and a slave station 6-10. The slave station 5-6 sandwiches the point F3, and when the surge occurrence point is obtained at the surge detection time of this combination, it becomes a point F31 in the vicinity of the point F3. The slave station 5-10 also sandwiches the point F3, and when the surge occurrence point is obtained at the surge detection time of this combination, it becomes a point F32 in the vicinity of the point F3. In the case of the slave station 6-10, since the point F3 sandwiches the branch point B2 between the slave station 6 and the slave station 10, when the surge occurrence point is obtained at the surge detection time of this combination, the vicinity of the branch point B2 It becomes point B33. Next, the points F31 and F32 that are close to the surge occurrence point are selected according to the procedure 2, and the average value of the points F31 and F32 is set as the surge occurrence point according to the procedure 3. Here, it is good also considering a direction with a smaller difference of surge detection time as a surge generation point among two surge generation points.

故障点表示選択処理手段34は、故障電流、故障電圧が発生しておらず、故障状態フラグは「0」であるので、サージ発生点表示を行う。また、サージピーク値を雷撃判定レベルと比較し、雷撃と判定した場合には架空地線雷撃点表示をモニタ36に行わせる。   The failure point display selection processing means 34 displays a surge occurrence point because no failure current or failure voltage is generated and the failure state flag is “0”. Further, the surge peak value is compared with the lightning strike determination level, and when it is determined that the lightning strike is detected, the monitor 36 displays the overhead ground wire lightning strike point.

図7は、本発明に係る送電線故障点標定システムの他の実施形態を示す。本実施形態は、電気所A,Bに電源および200Aの中性点接地抵抗(NGR)があり、分岐がないような送電線1において、衛星通信の通信網を利用して故障点標定を行う構成例である。同図において、送電線1に適当な間隔で子局3〜7を配置している。この場合、図1および図3とは、子局における故障情報送信手段の光モデムの代わりに衛星通信用の無線機を用い、親局の故障情報受信手段において光モデムの代わりにLAN用モジュールを用いる点が異なる。その他の構成は基本的に変わりはないので、子局と親局の具体的構成例の図示を省略し、以下では図1,図3と同じ参照符号を用いて説明する。   FIG. 7 shows another embodiment of the power transmission line fault location system according to the present invention. In this embodiment, a fault point is determined using a communication network of satellite communication in a power transmission line 1 in which the power stations A and B have a power source and a neutral grounding resistance (NGR) of 200A and there is no branch. It is a structural example. In the figure, slave stations 3 to 7 are arranged at an appropriate interval on the transmission line 1. In this case, FIG. 1 and FIG. 3 show that a satellite communication radio is used instead of the optical modem of the failure information transmitting means in the slave station, and a LAN module is used instead of the optical modem in the failure information receiving means of the master station. The point to use is different. Since other configurations are basically the same, illustration of a specific configuration example of the slave station and the master station is omitted, and the following description will be made using the same reference numerals as those in FIGS.

今、点F4でサージが発生し故障が起こったとすると、サージは点F4から各末端に伝播していく。故障電流は電源がある電気所A,Bから点F4に向かって流れる。各子局3〜7は、サージおよび故障電流、故障電圧を検出し、故障情報をメールにして衛星71−地球局72−ネットワーク管理局73、さらにインターネットを介して親局2に送信する。   If a surge occurs at point F4 and a failure occurs, the surge propagates from point F4 to each end. The fault current flows from the electric stations A and B where the power source is located toward the point F4. Each of the slave stations 3 to 7 detects a surge, a fault current, and a fault voltage, and sends the fault information as a mail to the master station 2 via the satellite 71, the earth station 72, the network management station 73, and the Internet.

親局2の子局選択処理手段32は、電流値200Aで位相角が0°の子局3〜6(Aグループ)、電流値200Aで位相角が180°の子局7(Bグループ)にグループ分けする。そして、各グループ内でサージ検出時刻を比較し、サージ検出時刻順に並べ直し、各グループのサージ検出時刻の最も早い子局を選択する。ここでは、Aグループでは子局6、Bグループでは子局7を選択する。そして、選択した子局は2つであるので、選択した子局番号をサージ発生点算出処理手段33に伝える。サージ発生点算出処理手段33は、2つの子局6,7のサージ検出時刻から上記(1)式を用いてサージ発生点を算出し、それを故障点表示選択処理手段34に伝える。   The slave station selection processing means 32 of the master station 2 is connected to the slave stations 3 to 6 (group A) having a current value of 200A and a phase angle of 0 °, and to the slave station 7 (group B) having a current value of 200A and a phase angle of 180 °. Divide into groups. Then, the surge detection times are compared in each group, rearranged in order of surge detection time, and the slave station with the earliest surge detection time in each group is selected. Here, the slave station 6 is selected in the A group, and the slave station 7 is selected in the B group. Since there are two selected slave stations, the selected slave station number is transmitted to the surge occurrence point calculation processing means 33. The surge occurrence point calculation processing means 33 calculates a surge occurrence point from the surge detection times of the two slave stations 6 and 7 using the above equation (1), and transmits it to the failure point display selection processing means 34.

故障点表示選択処理手段34は、故障電流が発生しており、故障状態フラグが「1」であるのでモニタ36に故障点表示を行わせる。   The failure point display selection processing means 34 causes the monitor 36 to display the failure point because a failure current has occurred and the failure state flag is “1”.

衛星通信や携帯電話等の無線では通信費用が基本料金にパケット料金を加算した料金体系となっており,通信データの量や通信回数が増えると通信費用が増大する。通信費用の増大を抑制するには、子局において故障状態フラグを参照して送信すべき情報を選択可能にし、特に必要な情報のみを伝送するようにすればよい。例えば、故障が発生した場合のみ故障情報を伝送するようにすれば、故障は年間に数件しか発生しないためパケット料金は微々たるもととなり通信費用を大幅に軽減できる。   In wireless communication such as satellite communication and mobile phone, the communication cost is a fee structure in which the packet charge is added to the basic charge, and the communication cost increases as the amount of communication data and the number of communication increases. In order to suppress an increase in communication cost, it is only necessary to select information to be transmitted with reference to the failure state flag in the slave station and transmit only necessary information. For example, if failure information is transmitted only when a failure occurs, only a few failures occur annually, so that packet charges become insignificant and communication costs can be greatly reduced.

本発明によれば、送電線のような長い線路に分岐がある場合でも比較的簡単に精度良く故障点を標定することができる。また、故障状態フラグの利用により故障サージと架空地線雷撃サージと誘導雷サージを区別して表示できることから、故障サージの場合は送電線を至急点検するように促し、架空地線雷撃サージと誘導雷サージの場合は発生状況履歴を蓄積し、その結果によりサージ発生が多発している箇所の送電線や架空地線の点検を促すことができる。これにより故障の点検および送電線の予防保全を効率的に行うことができる。   According to the present invention, even when a long line such as a power transmission line has a branch, a failure point can be relatively easily and accurately determined. In addition, the use of the fault status flag can distinguish and display fault surges, overhead ground line lightning surges, and induced lightning surges. In the case of a surge, an occurrence history is accumulated, and as a result, inspection of power transmission lines and overhead ground lines at locations where surges frequently occur can be promoted. As a result, failure inspection and preventive maintenance of the transmission line can be performed efficiently.

また、送電線に分岐がある場合でも、3つの子局の全ての組合せでサージ発生点を算出することにより、分岐点に子局を置く必要がなく効果的に故障点を標定することができる。さらに、サージの発生状況により伝送データを選択できるため無線を使った場合の通信費用の軽減が可能となる。   Moreover, even when there is a branch in the transmission line, by calculating the surge occurrence point with all combinations of the three slave stations, it is not necessary to place the slave station at the branch point, and the fault point can be located effectively. . Furthermore, since transmission data can be selected depending on the occurrence of surges, it is possible to reduce communication costs when using wireless communication.

本発明に係る送電線故障点標定システムの子局の構成例を示すブロック図である。It is a block diagram which shows the structural example of the subunit | mobile_unit of the power transmission line fault location system which concerns on this invention. 雷サージ発生後に電気故障となった場合の波形図である。It is a wave form diagram at the time of becoming an electrical failure after lightning surge generation | occurrence | production. 本発明に係る送電線故障点標定システムの親局の構成例を示すブロック図である。It is a block diagram which shows the structural example of the master station of the power transmission line fault location system which concerns on this invention. 本発明に係る故障点標定システムの動作の一例の説明図である。It is explanatory drawing of an example of operation | movement of the fault location system based on this invention. 本発明に係る故障点標定システムの動作の他の例の説明図である。It is explanatory drawing of the other example of operation | movement of the fault location system which concerns on this invention. 本発明に係る故障点標定システムの動作のさらに他の例の説明図である。It is explanatory drawing of the further another example of operation | movement of the fault location system which concerns on this invention. 本発明に係る送電線故障点標定システムの他の実施形態を示す図である。It is a figure which shows other embodiment of the power transmission line fault location system which concerns on this invention. 従来のサージ標定システムの原理図である。It is a principle diagram of a conventional surge orientation system. 従来の他のサージ標定システムの原理図である。It is a principle diagram of another conventional surge locating system. 従来のさらに他のサージ標定システムの原理図である。It is a principle diagram of still another conventional surge localization system. 送電線の構成および雷サージ波形の一例を示す図である。It is a figure which shows an example of a structure of a power transmission line, and a lightning surge waveform.

符号の説明Explanation of symbols

1・・・ 送(配)電線、2・・・親局、3〜10・・・子局、11・・・GPS受信手段、12・・・故障電流検出手段、13・・・故障電圧検出手段、14・・・電流電圧監視手段、15・・・サージ検出手段、16・・・故障情報送信手段、17・・・光ファイバ、31・・・故障情報受信手段、32・・・子局選択処理手段、33・・・サージ発生点算出処理手段、34・・・故障点表示選択処理手段、35・・・送電線データベース、36・・・モニタ、71・・・人工衛星、72・・・地球局、73・・・ネットワーク管理局、111・・・GPSアンテナ、112・・・GPS受信機、121・・・電流センサ、122,132,152・・・フィルタ、123,133,153・・・A/D変換器、124・・・故障電流検出部、132・・・電圧センサ、 134・・・故障電圧検出部、154・・・サージ検出部、161・・・制御CPU、162・・・メモリ、163,311・・・光モデム、312・・・データ形成処理部 DESCRIPTION OF SYMBOLS 1 ... Transmission (distribution) electric wire, 2 ... Master station, 3-10 ... Slave station, 11 ... GPS receiving means, 12 ... Fault current detection means, 13 ... Fault voltage detection Means 14 ... Current / voltage monitoring means 15 ... Surge detection means 16 ... Fault information transmission means 17 ... Optical fiber 31 ... Fault information reception means 32 ... Slave station Selection processing means 33... Surge occurrence point calculation processing means 34. Fault point display selection processing means 35 35 Transmission line database 36. Monitor 71 71 Artificial satellite 72. -Earth station, 73 ... Network management station, 111 ... GPS antenna, 112 ... GPS receiver, 121 ... Current sensor, 122, 132, 152 ... Filter, 123, 133, 153 ..A / D converter, 124 ... Fault current detection , 132 ... Voltage sensor, 134 ... Fault voltage detector, 154 ... Surge detector, 161 ... Control CPU, 162 ... Memory, 163, 311 ... Optical modem, 312 ..Data formation processing section

Claims (4)

送電線に複数配置され、該送電線に関する情報を親局に送信する子局と、該子局からの情報をもとに故障点を特定する親局とを有する送電線故障点標定システムにおいて、
前記子局は、
人工衛星からのGPS電波を受信してGPSの保有する現在時刻を取り出すGPS受信手段と、
前記送電線に流れる故障電流を検出して故障電流情報を出力する故障電流検出手段と、
前記送電線に発生する故障電圧を検出して故障電圧情報を出力する故障電圧検出手段と、
前記送電線にサージが発生した直後の故障電流の変化状態および故障電圧の変化状態に対応した故障状態フラグを送出する電流電圧監視手段と、
サージ検出時刻を前記GPS受信手段から取り出し、該サージ検出時刻とサージピーク値を前記故障状態フラグとともに送出するサージ検出手段と、
前記サージ検出時刻、前記サージピーク値、前記故障状態フラグ、前記故障電流情報および前記故障電圧情報を故障情報として通信網を通じて前記親局に送信する故障情報送信手段とを備え、
前記親局は、
前記故障情報送信手段からの故障情報を受信する故障情報受信手段と、
前記故障情報に基づいて標定に用いるべき子局を選択する子局選択処理手段と、
前記子局選択処理手段で選択した子局のサージ検出時刻を用いてサージ発生点を算出するサージ発生点算出処理手段と、
前記サージ発生点算出処理手段でサージ発生点算出に使用した子局の故障状態フラグに従って故障点表示を選択する故障点表示選択処理手段とを備え
前記子局選択処理手段は、故障状態フラグの状態により故障検出の有無を検出し、故障検出の場合は、故障電流の電流値と位相角の何れかが異なる子局のうちサージ検出時刻の早いものから子局を2つ以上選択し、故障未検出の場合は、サージ検出時刻の早いものから子局を2つ以上選択することを特徴とし、前記サージ発生点算出処理手段は、前記子局選択処理手段が選択した子局が3つ以上ある場合、選択された子局のうちサージ検出時刻の早いものから3つを選択し、3つの全ての組合せでサージ発生点を算出し、算出されたサージ発生点が近い2つのサージ発生点の平均点をサージ発生点とするか、または、算出されたサージ発生点が近い2つのサージ発生点のうちサージの検出時刻の差が小さい方をサージ発生点とすることを特徴とする送電線故障点標定システム。
In a transmission line failure point locating system, which is arranged in a plurality of transmission lines and has a slave station that transmits information about the transmission line to a master station, and a master station that identifies a failure point based on information from the slave station.
The slave station is
GPS receiving means for receiving GPS radio waves from an artificial satellite and extracting the current time held by GPS;
Fault current detection means for detecting fault current flowing in the transmission line and outputting fault current information;
Fault voltage detection means for detecting fault voltage generated in the transmission line and outputting fault voltage information;
Current voltage monitoring means for sending a failure state flag corresponding to a change state of a failure current and a change state of a failure voltage immediately after a surge occurs in the transmission line; and
Surge detection means for taking out the surge detection time from the GPS receiving means and sending the surge detection time and surge peak value together with the failure state flag;
Failure information transmitting means for transmitting the surge detection time, the surge peak value, the failure state flag, the failure current information, and the failure voltage information to the parent station through the communication network as failure information,
The master station is
Failure information receiving means for receiving failure information from the failure information transmitting means;
A slave station selection processing means for selecting a slave station to be used for orientation based on the failure information;
Surge occurrence point calculation processing means for calculating a surge occurrence point using the surge detection time of the slave station selected by the slave station selection processing means,
A failure point display selection processing means for selecting a failure point display according to the failure state flag of the slave station used for the surge occurrence point calculation in the surge occurrence point calculation processing means ,
The slave station selection processing means detects the presence / absence of failure detection according to the state of the failure state flag. In the case of failure detection, the surge detection time is early among slave stations in which either the current value or the phase angle of the failure current is different. Two or more slave stations are selected from the ones, and when no failure is detected, two or more slave stations are selected from the ones with the earlier surge detection time, and the surge generation point calculation processing means includes the slave station When there are three or more slave stations selected by the selection processing means, three of the selected slave stations with the earliest surge detection time are selected, and the surge occurrence point is calculated by all three combinations. The average point of two surge occurrence points that are close to the surge occurrence point is taken as the surge occurrence point, or the two surge occurrence points that are close to the calculated surge occurrence point are those with the smaller difference in surge detection time. characterized in that the generation point Transmission line fault point location system to be.
前記子局において、前記故障情報送信手段が送信する故障情報は、前記故障状態フラグに従って選択可能であることを特徴とする請求項1に記載の送電線故障点標定システム。 2. The transmission line fault location system according to claim 1, wherein in the slave station, the failure information transmitted by the failure information transmission unit can be selected according to the failure state flag. 前記子局選択処理手段は、子局を前記故障電流情報と前記故障電圧情報に従ってグループに分けし、グループ毎にサージ検出時刻順に並べ、各グループにおいてサージ検出時刻が最も早い子局を選択することを特徴とする請求項1に記載の送電線故障点標定システム。 The slave station selection processing means divides the slave stations into groups according to the fault current information and the fault voltage information, arranges them in order of surge detection time for each group, and selects a slave station having the earliest surge detection time in each group. The transmission line fault location system according to claim 1. 前記親局において、前記故障状態フラグと前記サージピーク値の組み合わせに基づいて、故障とならない架空地線雷撃点を標定することを特徴とする請求項1に記載の送電線故障点標定システム。 2. The transmission line failure point location system according to claim 1, wherein an aerial ground lightning point that does not cause a failure is located in the master station based on a combination of the failure state flag and the surge peak value .
JP2003355369A 2003-10-15 2003-10-15 Transmission line fault location system Expired - Lifetime JP4201189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003355369A JP4201189B2 (en) 2003-10-15 2003-10-15 Transmission line fault location system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003355369A JP4201189B2 (en) 2003-10-15 2003-10-15 Transmission line fault location system

Publications (2)

Publication Number Publication Date
JP2005121434A JP2005121434A (en) 2005-05-12
JP4201189B2 true JP4201189B2 (en) 2008-12-24

Family

ID=34612990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003355369A Expired - Lifetime JP4201189B2 (en) 2003-10-15 2003-10-15 Transmission line fault location system

Country Status (1)

Country Link
JP (1) JP4201189B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102193050A (en) * 2011-04-19 2011-09-21 嘉兴电力局 Positioning system for fault of direct-current transmission line

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102944794B (en) * 2012-11-18 2015-01-07 山东电力集团公司检修公司 Direct current electric transmission line state detection communication system
RU2532760C1 (en) * 2013-04-05 2014-11-10 Александр Леонидович Куликов Method for determining damaged point of branched power transmission line
JP6150391B2 (en) * 2013-08-19 2017-06-21 ニシム電子工業株式会社 Transmission line fault location system
JP6263034B2 (en) * 2014-01-24 2018-01-17 九電テクノシステムズ株式会社 Fault location system and fault location method
US9476930B2 (en) * 2014-02-07 2016-10-25 Mitsubishi Electric Research Laboratories, Inc. Locating multi-phase faults in ungrounded power distribution systems
JP6310334B2 (en) * 2014-06-06 2018-04-11 九電テクノシステムズ株式会社 Insulation degradation diagnosis device and method for power cable or electrical equipment
CN104159082A (en) * 2014-08-18 2014-11-19 国家电网公司 Portable line acceptance equipment
CN105676064A (en) * 2016-01-12 2016-06-15 国网浙江省电力公司嘉兴供电公司 User-side leakage current monitoring method and system
WO2017216673A1 (en) * 2016-06-13 2017-12-21 Electrical Grid Monitoring Ltd. A method and system for dynamic fault detection in an electric grid
CN106546877B (en) * 2016-11-08 2019-01-25 国网上海市电力公司 A kind of Method of Cable Trouble Point accurate positioning method based on curve matching
JP6597933B1 (en) * 2018-09-20 2019-10-30 中国電力株式会社 Ground fault location device, ground fault location system, ground fault location method, program, recording medium
CN109981168A (en) * 2019-03-07 2019-07-05 中山水木光华电子信息科技有限公司 Fault locator for automatically collecting geographic information and collecting method
JP7302819B2 (en) * 2019-10-16 2023-07-04 中国電力株式会社 FAILURE POINT LOCATION SYSTEM, MASTER STATION, CONTROL METHOD OF MASTER STATION, AND PROGRAM
JP7360663B2 (en) 2019-10-17 2023-10-13 西日本電線株式会社 Abnormal location identification device, system and program
JP7359386B2 (en) 2019-12-12 2023-10-11 中国電力株式会社 Ground fault point location system, ground fault point location device, location method and program for ground fault point location device
JP7359388B2 (en) 2019-12-12 2023-10-11 中国電力株式会社 Ground fault point location system, ground fault point location device, location method and program for ground fault point location device
JP7359387B2 (en) 2019-12-12 2023-10-11 中国電力株式会社 Ground fault point location system, ground fault point location device, location method and program for ground fault point location device
JP7319633B2 (en) 2020-01-06 2023-08-02 中国電力株式会社 Arrangement distance setting device and arrangement distance setting method for measuring terminals
KR102426301B1 (en) * 2020-05-20 2022-07-28 전현진 Surge monitoring system and method for providing surge-map

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102193050A (en) * 2011-04-19 2011-09-21 嘉兴电力局 Positioning system for fault of direct-current transmission line

Also Published As

Publication number Publication date
JP2005121434A (en) 2005-05-12

Similar Documents

Publication Publication Date Title
JP4201189B2 (en) Transmission line fault location system
CN100510765C (en) Method and system for monitoring partial discharge in gas-insulated apparatus
CN107390049A (en) A kind of power cable fault monitoring method and device
JPWO2020044660A1 (en) State identification system, state identification device, state identification method, and program
US20110285399A1 (en) Device, system and method for monitoring lines of grounding electrodes
US10585133B2 (en) Electric power fault protection device using single-ended traveling wave fault location estimation
JP6150391B2 (en) Transmission line fault location system
EP3719511A1 (en) Sensor and method for remotely monitoring the state of a surge arrester
CN111175610B (en) Fault positioning system and method for distribution line
KR200436919Y1 (en) Active Grounding Terminal
KR101099788B1 (en) Apparatus and method of determinating lightening induced flashover in transmission lines
CN110346690B (en) Submarine cable fault distance measurement system and method based on optical fiber pulse transmission
JP4142608B2 (en) Tree contact monitoring device for distribution lines
JP4790050B2 (en) Automatic oscillograph device, waveform data server device, and automatic oscillograph system
JP2019007812A (en) Distribution line fault point locating system
EP1222473A1 (en) Electricity supply monitoring system
JPS62207974A (en) Monitoring system for lightning insulator
JP2003172758A (en) Lightning strike detection section orientation method by transmission line failure section detection system
JPH0583876B2 (en)
CN108051693A (en) A kind of method of the raising earth fault judgment accuracy based on TAS devices
JP4641262B2 (en) Fault location device and method for gas insulated switchgear
KR101101938B1 (en) Method for detecting high resistance grounding fault
JPH0862277A (en) Apparatus for locating fault point of transmission line
JP4714436B2 (en) Termination circuit, sensor, repeater and disaster prevention system
JP3362755B2 (en) A method for searching for incorrectly connected cores in balanced communication lines.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081001

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081002

R150 Certificate of patent or registration of utility model

Ref document number: 4201189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141017

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term