JP4201082B2 - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP4201082B2
JP4201082B2 JP2003064408A JP2003064408A JP4201082B2 JP 4201082 B2 JP4201082 B2 JP 4201082B2 JP 2003064408 A JP2003064408 A JP 2003064408A JP 2003064408 A JP2003064408 A JP 2003064408A JP 4201082 B2 JP4201082 B2 JP 4201082B2
Authority
JP
Japan
Prior art keywords
rubber
tread
modulus
pneumatic tire
anisotropic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003064408A
Other languages
Japanese (ja)
Other versions
JP2004268808A (en
Inventor
賢司 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2003064408A priority Critical patent/JP4201082B2/en
Publication of JP2004268808A publication Critical patent/JP2004268808A/en
Application granted granted Critical
Publication of JP4201082B2 publication Critical patent/JP4201082B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Tires In General (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は空気入りタイヤに関し、さらに詳しくは、操縦安定性と乗心地性とを両立させた空気入りタイヤに関する。
【0002】
【従来の技術】
空気入りタイヤの操縦安定性を向上する対策の一つとして、トレッドゴムの剛性を上げることが考えられる。しかし、トレッドゴムの剛性を増大すると、ゴム硬度が高くなり、かつトレッドの路面に対するエンベロープ性も低下するため乗心地性が悪化する問題が発生する。
【0003】
すなわち、空気入りタイヤの操縦安定性と乗心地性とは互いに相反する関係にあり、これら両特性を同時に満足させる強い要望はあるものの、満足できる完全な解決策は未だ見だされていない。
【0004】
【発明が解決しようとする課題】
本発明の目的は、上述した従来の問題を解決し、トレッドのエンベロープ性を阻害することなく操縦安定性と乗心地性とを両立可能にした空気入りタイヤを提供することにある。
【0005】
【課題を解決するための手段】
上記目的を達成する本発明の空気入りタイヤは、トレッドにトレッド幅方向のモジュラスMwがトレッド厚み方向のモジュラスMvよりも大きい特性をもつ異方性ゴムを配置し、該異方性ゴムとしてトレッド幅方向のモジュラスMwとトレッド厚み方向のモジュラスMvとの比Mw/Mvが互いに異なる2種類以上を使用したことを特徴とするものである。
【0006】
このようにトレッドにトレッド幅方向のモジュラスMwがトレッド厚み方向のモジュラスMvよりも大きな特性をもつ異方性ゴムを配置し、この異方性ゴムとしてトレッド幅方向のモジュラスMwとトレッド厚み方向のモジュラスMvとの比Mw/Mvが互いに異なる2種類以上を使用したので、タイヤ幅方向に高モジュラス特性を有することによって高いコーナリングパワーを発生可能になり、操縦安定性を向上することができる。また、トレッド厚み方向には低モジュラス特性であるためエンベロープ性を良好に維持し、良好な乗心地性を得ることができる。
【0007】
【発明の実施の形態】
図1は、本発明の空気入りタイヤの一例を示す縦断面図である。
【0008】
図1において、1はトレッド、2はサイドウォール部、3はビード部である。タイヤ内部にはカーカス4がトレッド1から両側のサイドウォール部2,2を経て両ビード部3,3に至るように配置され、かつカーカス4の外周側にベルト層5が環状に取り巻くように設けられている。
【0009】
本発明の空気入りタイヤは、上記トレッドを構成するトレッドゴムに、トレッド幅方向(すなわち、子午線方向)のモジュラスMwがトレッド厚み方向のモジュラスMvよりも大きい特性をもつ異方性ゴムを使用し、その異方性ゴムとしてトレッド幅方向のモジュラスMwとトレッド厚み方向のモジュラスMvとの比Mw/Mvが互いに異なる2種類以上を使用する。このような特性を有する異方性ゴムをトレッドゴムの全体を占めるように配置してもよく、或いはトレッドゴムの一部だけを占めるように配置してもよい。
【0010】
なお、本発明において使用する「モジュラス」とは、JIS K6301の規定により測定される300%伸長時のモジュラスをいう。
【0011】
上記のようにトレッド幅方向のモジュラスMwがトレッド厚み方向のモジュラスMvよりも大きい特性をもつ異方性ゴムをトレッドゴムの一部に使用する場合は、好ましくは図2〜図4に例示するように、トレッド1を複数のゴム層a,bからなる積層体(図2);ゴム層a,b,c,dからなる積層体(図3);ゴム層a,b,c,d,e,fからなる積層体(図4)で構成し、その積層体中の少なくとも層に上記特性の異方性ゴムを使用するとよい。
【0012】
積層体中において異方性ゴムが占める位置は特に限定されないが、図2のような2層構造の場合には最内ゴム層bにベースゴムとして配置するとよい。また、図3や図4のように2層を超える3層以上、特に4層以上の積層体の場合には、異方性ゴムと等方性ゴムとを交互に配置するとよい。
【0013】
このようにトレッドを複数のゴム層の積層体にし、その積層体中に異方性ゴムと等方性ゴムとを交互に配置することで、操縦安定性と乗心地性との両立性を一層向上し、かつエンベロープ性も向上することができる。異方性ゴムと組み合わせる他の等方性ゴムは特に限定されないが、好ましくは、300%モジュラスが4〜10MPaの低モジュラスのゴムとか、或いは測定条件を温度60℃、初期歪み10%、振幅±2%、振動周波数20Hzとするときに損失正接tanδが0.03〜0.3の低い値のゴムを使用するとよい。
【0014】
上記低モジュラスゴムを組み合わせた場合ではエンベロープ性が向上し、乗心地性およびロードノイズを一層向上することができる。また、低tanδのゴムを組み合わせた場合では、転動抵抗を一層向上することができる。これらの等方性ゴムは、異方性ゴムと1層ずつ交互に配置するとよい。
【0016】
本発明に使用する異方性ゴムは、上述したように、トレッド幅方向(子午線方向)のモジュラスMwがトレッド厚み方向のモジュラスMvよりも大きい特性を有するゴムで、トレッド幅方向のモジュラスMwとトレッド厚み方向のモジュラスMvとの比Mw/Mvが互いに異なる2種類以上を使用するが、好ましくは、そのトレッド幅方向のモジュラスMwのトレッド厚み方向のモジュラスMvに対する比Mw/Mvが1.2以上のものを、それぞれ使用するとよい。このように比Mw/Mvが1.2以上の異方性ゴムを使用することにより、操縦安定性と乗心地性の両立性を一層確かなものにすることができる。
【0017】
また、このような条件を満たす異方性ゴムとしては、トレッド幅方向のモジュラスMwが4〜20MPaであり、トレッド厚み方向のモジュラスMvが4〜20MPaであるものが好ましい。
【0018】
上記比Mw/Mvの上限は、特に限定されないが、製造の可能性の観点からは5.0が限度である。これ以上に大きい異方性ゴムは製造が難しく、かつ伸びも小さいため取扱い性が悪くなる。
【0019】
上記のような異方性のゴムは、そのゴム中に短繊維を高モジュラスMwが発生する方向に配列するように混入することで容易に得ることができる。このような異方性ゴムの製造方法としては、未加硫ゴムに短繊維を配合し、これを押出機中で混練しながら板状に押し出せばよい。短繊維は押出後の板状ゴム中に押出方向に平行に配列した状態になるので、その短繊維の配列方向のモジュラスが高くなり、これと直交する厚み方向のモジュラスが低くなる異方性を呈する。したがって、この板状ゴムをタイヤのトレッドゴムとして成形するとき、押出方向をトレッド幅方向にし、かつ厚み方向をトレッド厚み方向に合わせるように成形すればよい。
【0020】
短繊維としては、種類は特に限定されないが、例えば、ポリアミド繊維、ポリエステル繊維、PVA繊維、ポリプロピレン繊維、ポリエチレン繊維、ポリアクリル繊維、アラミド繊維などの有機繊維、ガラス繊維、炭素繊維などの無機繊維、綿、麻などの天然繊維などを例示することができる。短繊維の太さとしては単糸繊度で0.5〜15dtex、長さが3〜50mmであることが好ましい。
【0021】
本発明は、好ましくは空気入りラジアルタイヤに適用されるが、バイアスタイヤなど空気入りタイヤ一般に適用可能なことは勿論である。
【0022】
【実施例】
以下に説明する実施例で評価に使用したコーナリングパワー(CP)と、乗心地性は、下記の測定方法により行った。
【0023】
コーナリングパワー(CP):
ドラム試験機により、荷重4kN、スリップ角1°、走行速度10km/hに設定してCPを測定した。評価は従来タイヤ(比較例)の測定値を100とする指数で示した。指数が大きいほどCPが大きいことを意味する。
【0024】
乗心地性:
5人のテストドライバーによる官能試験により10点法で評価し、5人の平均値を従来タイヤ(比較例)を100とする指数で示した。指数が大きいほど乗心地性が優れていることを意味する。
【0025】
比較例1
タイヤサイズが235/45ZR17であり、トレッドを図2の2層構造にすると共に、上層のキャップゴムと下層のベースゴムとに、それぞれ下記のトレッド幅方向の300%モジュラスMwと、トレッド厚み方向の300%モジュラスMvとをもつ等方性ゴムと異方性ゴムとを配置した空気入りラジアルタイヤを製作した。
キャップゴム Mw=11.1MPa,Mv=11.1MPa
(Mw/Mv=1.0)
ベースゴム Mw=15.5MPa,Mv=11.1MPa
(Mw/Mv=1.4)
得られたタイヤについてコーナリングパワー(CP)と乗心地性とを測定したところ、表1の結果が得られた。
【0026】
比較例
トレッドを単層構造にし、トレッドゴムとして比較例1のキャップゴムと同じ等方性ゴムを使用した以外は、比較例1と同一の構成にした従来構造の空気入りラジアルタイヤを製作した。
得られたタイヤについてコーナリングパワー(CP)と乗心地性とを測定したところ、表1の結果が得られた。
【0027】
比較例3
トレッドを図4に示す6層構造にし、比較例1のキャップゴムと同じ等方性ゴムを図4におけるゴム層b,d,fに、またベースゴムと同じ異方性ゴムを図4におけるゴム層a,c,eにそれぞれ配置した以外は、比較例1と同一の構成にした空気入りラジアルタイヤを製作した。
得られたタイヤについてコーナリングパワー(CP)と乗心地性とを測定したところ、表1の結果が得られた。
【0028】
実施例
トレッドを図2に示す2層構造にし、キャップゴムとベースゴムとに、それぞれ下記のトレッド幅方向の300%モジュラスMwと、トレッド厚み方向の300%モジュラスMvとをもつ異方性ゴムを配置した以外は、比較例1と同一構成にした空気入りラジアルタイヤを製作した。
キャップゴム Mw=15.5MPa,Mv=8.1MPa
(Mw/Mv=1.8)
ベースゴム Mw=15.5MPa,Mv=11.1MPa
(Mw/Mv=1.4)
得られたタイヤについてコーナリングパワー(CP)と乗心地性とを測定したところ、表1の結果が得られた。
【0029】
【表1】

Figure 0004201082
【0030】
【発明の効果】
上述したように本発明によれば、トレッドにトレッド幅方向のモジュラスMwがトレッド厚み方向のモジュラスMvよりも大きな特性をもつ異方性ゴムを配置し、前記異方性ゴムとしてトレッド幅方向のモジュラスMwとトレッド厚み方向のモジュラスMvとの比Mw/Mvが互いに異なる2種類以上を使用したので、タイヤ幅方向の高モジュラス特性によって高いコーナリングパワーを発生することが可能になり、操縦安定性を向上することができる。また、トレッド厚み方向には低モジュラス特性であるのでエンベロープ性を良好にし、良好な乗心地性を得ることができる。
【図面の簡単な説明】
【図1】本発明の空気入りタイヤの一例を示す子午線方向断面図である。
【図2】本発明の空気入りタイヤのトレッド構造の一例を示すモデル断面図である。
【図3】本発明の空気入りタイヤのトレッド構造の他の例を示すモデル断面図である。
【図4】本発明の空気入りタイヤのトレッド構造の更に他の例を示すモデル断面図である。
【符号の説明】
1 トレッド
2 サイドウォール部
3 ビード部
a,b,c,d,e,f ゴム層[0001]
[Technical field to which the invention belongs]
The present invention relates to a pneumatic tire, and more particularly to a pneumatic tire that achieves both steering stability and riding comfort.
[0002]
[Prior art]
As one of the measures for improving the handling stability of the pneumatic tire, it can be considered to increase the rigidity of the tread rubber. However, when the rigidity of the tread rubber is increased, the rubber hardness is increased, and the envelope property of the tread with respect to the road surface is also lowered.
[0003]
That is, the handling stability and riding comfort of pneumatic tires are in conflict with each other, and there is a strong demand to satisfy both of these characteristics at the same time, but no satisfactory complete solution has yet been found.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a pneumatic tire that solves the above-described conventional problems and makes it possible to achieve both steering stability and riding comfort without inhibiting the tread envelope.
[0005]
[Means for Solving the Problems]
In the pneumatic tire of the present invention that achieves the above object, an anisotropic rubber having a characteristic that the modulus Mw in the tread width direction is larger than the modulus Mv in the tread thickness direction is arranged on the tread, and the tread width is used as the anisotropic rubber. Two or more different ratios Mw / Mv between the direction modulus Mw and the tread thickness direction modulus Mv are used .
[0006]
In this way, an anisotropic rubber having a characteristic in which the modulus Mw in the tread width direction is larger than the modulus Mv in the tread thickness direction is arranged on the tread, and as this anisotropic rubber, the modulus Mw in the tread width direction and the modulus in the tread thickness direction are arranged. Since two or more different Mw / Mv ratios Mw / Mv are used , high cornering power can be generated by having high modulus characteristics in the tire width direction, and steering stability can be improved. Moreover, since it has a low modulus characteristic in the tread thickness direction, the envelope property can be maintained well and good riding comfort can be obtained.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a longitudinal sectional view showing an example of the pneumatic tire of the present invention.
[0008]
In FIG. 1, 1 is a tread, 2 is a sidewall portion, and 3 is a bead portion. The carcass 4 is arranged in the tire so as to reach from the tread 1 to both bead parts 3 and 3 through the side wall parts 2 and 2 on both sides, and the belt layer 5 is provided on the outer peripheral side of the carcass 4 so as to surround the ring. It has been.
[0009]
The pneumatic tire of the present invention uses an anisotropic rubber having a characteristic that the modulus Mw in the tread width direction (that is, the meridian direction) is larger than the modulus Mv in the tread thickness direction for the tread rubber constituting the tread . As the anisotropic rubber, two or more kinds having different ratios Mw / Mv between the modulus Mw in the tread width direction and the modulus Mv in the tread thickness direction are used . The anisotropic rubber having such characteristics may be disposed so as to occupy the entire tread rubber, or may be disposed so as to occupy only a part of the tread rubber.
[0010]
The “modulus” used in the present invention refers to a modulus at 300% elongation measured according to JIS K6301.
[0011]
As described above, when the anisotropic rubber having the characteristic that the modulus Mw in the tread width direction is larger than the modulus Mv in the tread thickness direction is used as a part of the tread rubber, it is preferably illustrated in FIGS. In addition, the tread 1 includes a plurality of rubber layers a, b (FIG. 2); a rubber layer a, b, c, d (FIG. 3); rubber layers a, b, c, d, e. , F, and an anisotropic rubber having the above characteristics may be used for at least two layers in the laminate.
[0012]
The position occupied by the anisotropic rubber in the laminate is not particularly limited. However, in the case of a two-layer structure as shown in FIG. 2, it is preferable to arrange the base rubber in the innermost rubber layer b. Further, in the case of a laminate of 3 layers or more, particularly 4 layers or more, as shown in FIGS. 3 and 4, anisotropic rubber and isotropic rubber may be alternately arranged.
[0013]
In this way, the tread is made into a laminated body of a plurality of rubber layers, and anisotropic rubber and isotropic rubber are alternately arranged in the laminated body, thereby further improving compatibility between driving stability and riding comfort. In addition, the envelope property can be improved. Other isotropic rubbers to be combined with the anisotropic rubber are not particularly limited, but preferably a low modulus rubber having a 300% modulus of 4 to 10 MPa, or measurement conditions of a temperature of 60 ° C., an initial strain of 10%, and an amplitude of ± When the vibration frequency is 2% and the vibration frequency is 20 Hz, it is preferable to use a rubber having a low loss tangent tan δ of 0.03 to 0.3.
[0014]
When the low modulus rubber is combined, the envelope property is improved, and riding comfort and road noise can be further improved. Further, when a low tan δ rubber is combined, rolling resistance can be further improved. These isotropic rubbers may be arranged alternately with anisotropic rubber one layer at a time.
[0016]
As described above, the anisotropic rubber used in the present invention is a rubber having a characteristic that the modulus Mw in the tread width direction (meridian direction) is larger than the modulus Mv in the tread thickness direction, and the modulus Mw in the tread width direction and the tread. Two or more types having different ratios Mw / Mv to the modulus Mv in the thickness direction are used. Preferably, the ratio Mw / Mv of the modulus Mw in the tread width direction to the modulus Mv in the tread thickness direction is 1.2 or more. Each thing should be used. Thus, by using an anisotropic rubber having a ratio Mw / Mv of 1.2 or more, compatibility between steering stability and riding comfort can be further ensured.
[0017]
Moreover, as an anisotropic rubber | gum which satisfy | fills such conditions, the modulus Mw of the tread width direction is 4-20 MPa, and the modulus Mv of the tread thickness direction is 4-20 MPa.
[0018]
The upper limit of the ratio Mw / Mv is not particularly limited, but 5.0 is the limit from the viewpoint of manufacturing possibility. An anisotropic rubber larger than this is difficult to manufacture and has a small elongation, so that the handleability is deteriorated.
[0019]
The anisotropic rubber as described above can be easily obtained by mixing the short fibers in the rubber so as to be arranged in the direction in which the high modulus Mw is generated. As a method for producing such an anisotropic rubber, short fibers may be blended with unvulcanized rubber and extruded into a plate shape while being kneaded in an extruder. Since the short fibers are arranged in parallel in the extrusion direction in the extruded rubber sheet, the anisotropy that increases the modulus in the arrangement direction of the short fibers and decreases the modulus in the thickness direction perpendicular thereto. Present. Therefore, when this plate-like rubber is molded as a tread rubber of a tire, it may be molded so that the extrusion direction is the tread width direction and the thickness direction is matched with the tread thickness direction.
[0020]
The type of short fiber is not particularly limited. For example, organic fiber such as polyamide fiber, polyester fiber, PVA fiber, polypropylene fiber, polyethylene fiber, polyacryl fiber, and aramid fiber, inorganic fiber such as glass fiber and carbon fiber, Examples thereof include natural fibers such as cotton and hemp. The thickness of the short fiber is preferably 0.5 to 15 dtex in terms of single yarn fineness and 3 to 50 mm in length.
[0021]
The present invention is preferably applied to a pneumatic radial tire, but is naturally applicable to a pneumatic tire such as a bias tire.
[0022]
【Example】
The cornering power (CP) and riding comfort used for evaluation in the examples described below were measured by the following measuring methods.
[0023]
Cornering power (CP):
CP was measured with a drum tester at a load of 4 kN, a slip angle of 1 °, and a running speed of 10 km / h. The evaluation was shown by an index with the measured value of the conventional tire (Comparative Example 2 ) as 100. A larger index means a larger CP.
[0024]
Ride comfort:
Evaluation was made by a 10-point method based on a sensory test with five test drivers, and the average value of the five was shown as an index with the conventional tire (Comparative Example 2 ) as 100. A larger index means better ride comfort.
[0025]
Comparative Example 1
The tire size is 235 / 45ZR17, and the tread has the two-layer structure shown in FIG. 2, and the upper cap rubber and the lower base rubber have a 300% modulus Mw in the tread width direction and a tread thickness direction, respectively. A pneumatic radial tire in which an isotropic rubber having 300% modulus Mv and an anisotropic rubber were arranged was manufactured.
Cap rubber Mw = 11.1MPa, Mv = 11.1MPa
(Mw / Mv = 1.0)
Base rubber Mw = 15.5MPa, Mv = 11.1MPa
(Mw / Mv = 1.4)
When the cornering power (CP) and riding comfort of the obtained tire were measured, the results shown in Table 1 were obtained.
[0026]
Comparative Example 2
A pneumatic radial tire having a conventional structure having the same configuration as that of Comparative Example 1 was produced except that the tread had a single layer structure and the same isotropic rubber as the cap rubber of Comparative Example 1 was used as the tread rubber.
When the cornering power (CP) and riding comfort of the obtained tire were measured, the results shown in Table 1 were obtained.
[0027]
Comparative Example 3
The tread has a six-layer structure shown in FIG. 4, the same isotropic rubber as the cap rubber of Comparative Example 1 is used as the rubber layers b, d, and f in FIG. 4, and the same anisotropic rubber as the base rubber is used as the rubber shown in FIG. A pneumatic radial tire having the same configuration as that of Comparative Example 1 was manufactured except that the layers were arranged in the layers a, c, and e, respectively.
When the cornering power (CP) and riding comfort of the obtained tire were measured, the results shown in Table 1 were obtained.
[0028]
Example 1
The tread has a two-layer structure shown in FIG. 2, and anisotropic rubber having 300% modulus Mw in the tread width direction and 300% modulus Mv in the tread thickness direction is arranged on the cap rubber and the base rubber, respectively. Except for the above, a pneumatic radial tire having the same configuration as Comparative Example 1 was produced.
Cap rubber Mw = 15.5 MPa, Mv = 8.1 MPa
(Mw / Mv = 1.8)
Base rubber Mw = 15.5MPa, Mv = 11.1MPa
(Mw / Mv = 1.4)
When the cornering power (CP) and riding comfort of the obtained tire were measured, the results shown in Table 1 were obtained.
[0029]
[Table 1]
Figure 0004201082
[0030]
【The invention's effect】
As described above, according to the present invention, an anisotropic rubber having a characteristic that the modulus Mw in the tread width direction is larger than the modulus Mv in the tread thickness direction is arranged on the tread, and the modulus in the tread width direction is used as the anisotropic rubber. Using two or more different Mw / Mv ratio Mw / Mv ratio Mw / Mv in the tread thickness direction makes it possible to generate high cornering power due to high modulus characteristics in the tire width direction and improve steering stability. can do. Further, since it has a low modulus characteristic in the tread thickness direction, it is possible to improve the envelope property and obtain a good riding comfort.
[Brief description of the drawings]
FIG. 1 is a meridional direction sectional view showing an example of a pneumatic tire of the present invention.
FIG. 2 is a model sectional view showing an example of a tread structure of a pneumatic tire according to the present invention.
FIG. 3 is a model cross-sectional view showing another example of the tread structure of the pneumatic tire of the present invention.
FIG. 4 is a model sectional view showing still another example of the tread structure of the pneumatic tire of the present invention.
[Explanation of symbols]
1 Tread 2 Side wall part 3 Bead part a, b, c, d, e, f Rubber layer

Claims (7)

トレッドにトレッド幅方向のモジュラスMwがトレッド厚み方向のモジュラスMvよりも大きい特性をもつ異方性ゴムを配置し、該異方性ゴムとしてトレッド幅方向のモジュラスMwとトレッド厚み方向のモジュラスMvとの比Mw/Mvが互いに異なる2種類以上を使用した空気入りタイヤ。An anisotropic rubber having a characteristic that the modulus Mw in the tread width direction is larger than the modulus Mv in the tread thickness direction is arranged on the tread, and the modulus Mw in the tread width direction and the modulus Mv in the tread thickness direction are used as the anisotropic rubber. A pneumatic tire using two or more types having different ratios Mw / Mv . トレッドを複数のゴム層からなる積層体で構成し、該積層体中の少なくとも層を前記異方性ゴムにした請求項1に記載の空気入りタイヤ。 2. The pneumatic tire according to claim 1, wherein the tread is configured by a laminate including a plurality of rubber layers, and at least two layers in the laminate are the anisotropic rubber. 前記積層体中のベースゴムを前記異方性ゴムにした請求項2に記載の空気入りタイヤ。  The pneumatic tire according to claim 2, wherein the base rubber in the laminate is the anisotropic rubber. 前記積層体において、前記異方性ゴムと等方性ゴムとを交互に配置した請求項2または3に記載の空気入りタイヤ。The pneumatic tire according to claim 2 or 3, wherein the anisotropic rubber and the isotropic rubber are alternately arranged in the laminate. 記トレッド幅方向のモジュラスMwとトレッド厚み方向のモジュラスMvとの比Mw/Mvが1.2以上である請求項1〜4のいずれかに記載の空気入りタイヤ。The pneumatic tire according to claim 1 ratio Mw / Mv and modulus Mv modulus Mw and the tread thickness direction before Quito Red width direction is 1.2 or more. 記トレッド幅方向のモジュラスMwが4〜20MPaであり、前記トレッド厚み方向のモジュラスMvが4〜20MPaである請求項1〜5のいずれかに記載の空気入りタイヤ。Before modulus Mw Quito Red width direction is 4~20MPa, pneumatic tire according to claim 1 wherein the tread thickness direction modulus Mv is 4~20MPa. 前記異方性ゴムに短繊維をトレッド幅方向に配列するように混合した求項1〜6のいずれかに記載の空気入りタイヤ。The pneumatic tire according to any one of Motomeko 1-6 mixed to arrange the short fibers in the tread width direction in the anisotropic rubber.
JP2003064408A 2003-03-11 2003-03-11 Pneumatic tire Expired - Fee Related JP4201082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003064408A JP4201082B2 (en) 2003-03-11 2003-03-11 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003064408A JP4201082B2 (en) 2003-03-11 2003-03-11 Pneumatic tire

Publications (2)

Publication Number Publication Date
JP2004268808A JP2004268808A (en) 2004-09-30
JP4201082B2 true JP4201082B2 (en) 2008-12-24

Family

ID=33125707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003064408A Expired - Fee Related JP4201082B2 (en) 2003-03-11 2003-03-11 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP4201082B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5009605B2 (en) * 2006-12-21 2012-08-22 株式会社ブリヂストン Tire manufacturing method
JP6121202B2 (en) * 2013-03-13 2017-04-26 住友ゴム工業株式会社 Pneumatic tire

Also Published As

Publication number Publication date
JP2004268808A (en) 2004-09-30

Similar Documents

Publication Publication Date Title
JP6718867B2 (en) Reinforcing member for tire and tire using the same
JP6605460B2 (en) Pneumatic radial tire for passenger cars
JP6537496B2 (en) Pneumatic tire
US9290063B2 (en) Motorcycle tire for uneven terrain
JP4880810B2 (en) Pneumatic run-flat radial tire
JP4506477B2 (en) Installation method of pneumatic tire
JP2004306637A (en) Pneumatic radial tire and its manufacturing method
JP2005205933A (en) Pneumatic radial tire
JP4201082B2 (en) Pneumatic tire
JP4501511B2 (en) Pneumatic tire
JP3079028B2 (en) Pneumatic tire
JP2005199763A (en) Pneumatic tire
JP2004203129A (en) Pneumatic radial tire
JP2003335110A (en) Pneumatic tire for heavy load
JP4544961B2 (en) Run flat tire
JP4428098B2 (en) Pneumatic radial tire for passenger cars
JP2004123019A (en) Pneumatic tire
JP2005007962A (en) Pneumatic tire
CN109789730A (en) Pneumatic tire
JP4687159B2 (en) Pneumatic tire
JP4326416B2 (en) Pneumatic radial tire
JP2004306636A (en) Pneumatic radial tire
JP2010058740A (en) Pneumatic tire
JP2021070349A (en) tire
JP4261866B2 (en) Pneumatic radial tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080930

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees