JP4197640B2 - Subject setting device and interferometer device provided with the subject setting device - Google Patents

Subject setting device and interferometer device provided with the subject setting device Download PDF

Info

Publication number
JP4197640B2
JP4197640B2 JP2003346997A JP2003346997A JP4197640B2 JP 4197640 B2 JP4197640 B2 JP 4197640B2 JP 2003346997 A JP2003346997 A JP 2003346997A JP 2003346997 A JP2003346997 A JP 2003346997A JP 4197640 B2 JP4197640 B2 JP 4197640B2
Authority
JP
Japan
Prior art keywords
subject
holding means
axis
measurement
subjects
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003346997A
Other languages
Japanese (ja)
Other versions
JP2005114470A (en
Inventor
伸明 植木
重徳 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujinon Corp
Original Assignee
Fujinon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujinon Corp filed Critical Fujinon Corp
Priority to JP2003346997A priority Critical patent/JP4197640B2/en
Publication of JP2005114470A publication Critical patent/JP2005114470A/en
Application granted granted Critical
Publication of JP4197640B2 publication Critical patent/JP4197640B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)

Description

本発明は、干渉計を用いた計測の際に基準として用いられる基準板等の基準面の絶対形状を、いわゆる3面合せ方法を用いて計測する際に、略同一形状の基準面を有する3つの基準板等のうち所定の2つを、干渉光学系の光軸上の所定の2位置に配置するための被検体設置装置および該被検体設置装置を備えた干渉計装置に関するものである。   The present invention has a reference surface having substantially the same shape when measuring the absolute shape of a reference surface such as a reference plate used as a reference in measurement using an interferometer by using a so-called three-surface alignment method. The present invention relates to an object placement device for placing two predetermined ones of two reference plates and the like at two predetermined positions on the optical axis of an interference optical system, and an interferometer device including the subject placement device.

干渉計に用いられる基準板等の基準面は、被検面の形状を光干渉計測する際の形状の基準となるため、所定の形状を有するように極めて高精度に形成されている必要がある。従来、このような高精度な基準面の絶対形状を測定する方法として、いわゆる3面合せ方法が知られている(下記特許文献1、2参照)。   Since a reference surface such as a reference plate used in the interferometer serves as a reference for the shape of the surface to be measured when performing optical interference measurement, it needs to be formed with a very high accuracy so as to have a predetermined shape. . Conventionally, a so-called three-surface alignment method is known as a method for measuring the absolute shape of such a highly accurate reference surface (see Patent Documents 1 and 2 below).

この種の3面合せ方法では、概ね次のような手順で測定を行なう。すなわち、互いに略同一形状の基準面を有する3つの基準板等を被検体として用意し、これら3つの被検体のうちの所定の2つを、組み合わせを変えて順次3回選択する。そして、この選択操作を行なう度に、選択された2つの被検体を、干渉光学系の光軸上の所定の2位置において、各々の基準面が被測定面となるように互いに所定の間隔をおいて対向するように配置して、これら対向する2つの被測定面の相対変位を2次元的に測定する。そして、3回の選択ごとの測定結果に基づき所定の演算を行ない各被検体の被測定面(基準面)の絶対形状を求める。   In this type of three-plane alignment method, measurement is generally performed in the following procedure. That is, three reference plates having substantially the same shape of reference surfaces are prepared as subjects, and predetermined two of these three subjects are sequentially selected three times with different combinations. Each time this selection operation is performed, the two selected subjects are separated from each other at a predetermined interval so that the respective reference surfaces become the measurement target surfaces at two predetermined positions on the optical axis of the interference optical system. Are arranged so as to face each other, and the relative displacement between these two faces to be measured is measured two-dimensionally. Then, a predetermined calculation is performed based on the measurement results for each of the three selections, and the absolute shape of the measurement surface (reference surface) of each subject is obtained.

なお、3回のうち所定の2回の選択における測定においては、互いに対向する2つの被測定面の一方を他方に対して相対的に少しずつ回転させる操作が必要とされ、残りの1回の選択における測定においては、他の1回の選択において所定の2位置のうちの一方に配置された被検体を、該2位置のうちの他方に配置する操作が必要とされる。   In the measurement in the predetermined two selections among the three times, an operation of rotating one of the two measured surfaces facing each other little by little relative to the other is required, and the remaining one time In the measurement in the selection, an operation of placing the subject placed in one of the two predetermined positions in the other one selection in the other of the two positions is required.

特開平6−281427号公報JP-A-6-281427 特開平11−37742号公報JP 11-37742 A

上述したような3面合せ方法を実施するためには、干渉光学系の光軸上の所定の2位置に配置保持するための機構や、互いに対向する2つの被測定面の一方を他方に対して相対的に少しずつ回転させるための機構が必要となる。従来、これらの機構を備えた被検体設置装置も知られているが、従来の被検体設置装置では、3面合せ方法を実施する際に伴う次のような誤差要因については十分な考慮がなされていない。   In order to implement the three-surface alignment method as described above, a mechanism for arranging and maintaining two predetermined positions on the optical axis of the interference optical system, or one of two measured surfaces facing each other with respect to the other. Therefore, a mechanism for rotating relatively little by little is required. Conventionally, subject placement apparatuses having these mechanisms are also known. However, in the conventional subject placement apparatus, sufficient consideration is given to the following error factors associated with performing the three-plane alignment method. Not.

すなわち、3面合せ方法では被検体の組み合わせを変えて各測定を行なうので測定毎に被検体を交換するが、交換の前後で被検体の測定光軸(干渉光学系の光軸)に対する位置が変わってしまうと誤差が生じる。また、測定時に一方の被検体を少しずつ測定光軸回りに回転させる必要があるが、この回転軸が測定光軸と一致していないといわゆる味噌摺りが起きて誤差となる。さらに、対向配置される2つの被検体の各中心軸が測定光軸と平行になっていないと、一方の被検体の回転に従い2つの被測定面の相対的な傾き姿勢が変わるので誤差が生じる。   That is, in the three-plane alignment method, each measurement is performed by changing the combination of the objects, so that the object is exchanged for each measurement, but the position of the object relative to the measurement optical axis (the optical axis of the interference optical system) before and after the exchange is If it changes, an error will occur. Further, it is necessary to rotate one subject little by little around the measurement optical axis at the time of measurement. If this rotation axis does not coincide with the measurement optical axis, so-called miso-spicing occurs and an error occurs. Furthermore, if the central axes of the two objects arranged opposite to each other are not parallel to the measurement optical axis, an error occurs because the relative inclination postures of the two measurement surfaces change according to the rotation of one of the objects. .

本発明は、このような事情に鑑みなされたもので、3面合せ方法を実施する際に伴う上記誤差要因、すなわち被検体交換時における被検体の測定光軸に対する位置ずれ、被検体の回転軸と測定光軸との不一致、および対向配置される2つの被検体の各中心軸と測定光軸との傾きの不一致を抑制し得る被検体設置装置および該被検体設置装置を備えた干渉計装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and the error factors associated with the three-plane alignment method, that is, the positional deviation of the subject relative to the measurement optical axis when the subject is replaced, the rotational axis of the subject, and the like. And measuring optical axis, and an object placement device capable of suppressing a mismatch in inclination between the central axis of two subjects arranged opposite to each other and a measurement optical axis, and an interferometer device provided with the subject placement device The purpose is to provide.

上記課題を解決するため、本発明の被検体設置装置は、
互いに略同一形状の被測定面を有する3つの被検体のうちの所定の2つを、組み合わせを変えて順次3回選択し、この選択操作を行なう度に、選択された2つの被検体を、干渉光学系の光軸上の所定の2位置において各々の前記被測定面が互いに所定の間隔をおいて対向するように配置して、これら対向する被測定面の相対変位を2次元的に測定し、3回の測定結果を演算して前記各被検体の前記被測定面の形状を求める3面合せ方法を実施するための被検体設置装置において、
前記選択操作により選択された前記2つの被検体のうちの一方を、前記2位置のうちの一方において保持する第1の保持手段と、
前記選択操作により選択された前記2つの被検体のうちの他方を、前記2位置のうちの他方において所定の回転軸を中心に回転可能に保持する第2の保持手段と、
前記第1および/または第2の保持手段に保持されていた前記被検体が他の被検体に交換される際、該保持手段に対する交換前後の該各被検体の各中心軸の位置を互いに略一致させる位置合せ手段と、
前記第1の保持手段に保持された前記被検体の中心軸、前記第2の保持手段に保持された前記被検体の中心軸、および前記回転軸を、前記光軸に略一致させるアライメント手段とを備え
前記アライメント手段は、前記第1の保持手段に保持された前記被検体の中心軸を前記光軸と略平行にする第1の2軸傾き調整機構と、前記回転軸を前記光軸と略平行にする第2の2軸傾き調整機構と、前記第2の保持手段に保持された前記被検体の中心軸を前記回転軸と略平行にする第3の2軸傾き調整機構と、前記回転軸の位置を前記光軸の位置に略一致させる軸位置調整機構とを備え
前記3つの被検体は、これらの被検体にそれぞれ取り付けられた各枠体を介して、前記第1および第2の保持手段に保持されるように構成され、
前記各枠体および前記第3の2軸傾き調整機構の固定板の所定の各2位置には、位置決め調整用の2つの抜きピンがそれぞれ連通される各抜きピン孔が形成されており、
前記第1の保持手段に保持された前記被検体と前記第2の保持手段に保持された前記被検体とのアライメントが完了した状態の場合のみ、これらの被検体にそれぞれ取り付けられた前記各枠体および前記第3の2軸傾き調整機構の固定板の各抜きピン孔に、前記2つの抜きピンを連通し得るように構成されてなることを特徴とするものである。
In order to solve the above-described problem, the subject installation apparatus of the present invention includes:
A predetermined two of three subjects having measurement surfaces having substantially the same shape as each other are sequentially selected three times by changing the combination, and each time the selection operation is performed, the two selected subjects are The measurement surfaces are arranged so as to oppose each other at a predetermined interval at two predetermined positions on the optical axis of the interference optical system, and the relative displacements of these opposing measurement surfaces are measured two-dimensionally. In the subject placement apparatus for performing a three-surface alignment method for calculating the measurement result of three times to obtain the shape of the measurement surface of each subject,
First holding means for holding one of the two subjects selected by the selection operation at one of the two positions;
Second holding means for holding the other of the two subjects selected by the selection operation so as to be rotatable around a predetermined rotation axis in the other of the two positions;
When the subject held by the first and / or second holding means is exchanged with another subject, the positions of the central axes of the subjects before and after the exchange with respect to the holding means are substantially the same. Alignment means for matching;
Alignment means for causing the central axis of the subject held by the first holding means, the central axis of the subject held by the second holding means, and the rotation axis to substantially coincide with the optical axis; equipped with a,
The alignment means includes a first biaxial tilt adjustment mechanism that makes the central axis of the subject held by the first holding means substantially parallel to the optical axis, and the rotation axis substantially parallel to the optical axis. A second biaxial tilt adjusting mechanism that makes the center axis of the subject held by the second holding means substantially parallel to the rotating shaft, and the rotating shaft An axis position adjusting mechanism that substantially matches the position of the optical axis with the position of the optical axis ,
The three subjects are configured to be held by the first and second holding means via the respective frames attached to these subjects,
In each of the two predetermined positions of the frame and the fixing plate of the third biaxial inclination adjusting mechanism, each extraction pin hole through which two extraction pins for positioning adjustment are respectively communicated is formed.
Each frame attached to each of these subjects only when the alignment between the subject held by the first holding means and the subject held by the second holding means is completed. The two extraction pins can be communicated with each extraction pin hole of the body and the fixing plate of the third biaxial inclination adjusting mechanism .

記位置合せ手段は、前記被検体が前記他の被検体に交換される際の前記第1および/または第2の保持手段と前記枠体との位置合せ用として、これら保持手段および枠体にそれぞれ設けられた位置合せ指標を備えてなるものとすることができる。 Before Symbol alignment means, wherein for the positioning of the frame member and the first and / or second retaining means when the subject is exchanged to the other object, these retaining means and the frame Each of which is provided with an alignment index.

また、本発明の干渉計装置は、前記干渉光学系を備えた干渉計本体部と、上記特徴を備えた本発明の被検体設置装置と、前記3面合せ方法における所定の演算を実施する演算部とを備えてなることを特徴とするものである。   Further, the interferometer apparatus of the present invention includes an interferometer main body section provided with the interference optical system, a subject placement apparatus of the present invention having the above characteristics, and a calculation for performing a predetermined calculation in the three-plane alignment method. It is characterized by comprising a part.

本発明の被検体設置装置によれば、上記構成を備えていることにより、3面合せ方法を実施する際に伴う誤差要因、すなわち被検体交換時における被検体の測定光軸に対する位置ずれ、被検体の回転軸と測定光軸との不一致、および対向配置される2つの被検体の各中心軸と測定光軸との傾きの不一致を抑制することが可能となる。   According to the subject placement apparatus of the present invention, since the above configuration is provided, an error factor associated with performing the three-surface alignment method, that is, a positional deviation of the subject with respect to the measurement optical axis at the time of subject replacement, It is possible to suppress the mismatch between the rotation axis of the specimen and the measurement optical axis and the mismatch between the inclinations of the central axes of the two specimens arranged opposite to each other and the measurement optical axis.

また、本発明の干渉計装置によれば、上記のような本発明の被検体設置装置を備えていることにより、3面合せ方法を実施する際に伴う上記誤差要因を抑制することができるので、基準板等の基準面の絶対形状測定を高精度に行なうことが可能となる。   In addition, according to the interferometer apparatus of the present invention, since the subject placement apparatus of the present invention as described above is provided, the error factors associated with performing the three-plane alignment method can be suppressed. The absolute shape of the reference surface such as the reference plate can be measured with high accuracy.

以下、本発明の実施形態について、図面を参照しながら説明する。図1は本発明の一実施形態に係る被検体設置装置を備えた干渉計装置の概略構成図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of an interferometer apparatus provided with a subject setting apparatus according to an embodiment of the present invention.

〈装置構成〉
図1に示す干渉計装置1は、干渉計を用いた計測の際に基準として用いられる基準板等の基準面の絶対形状を、3面合わせ方法を用いて計測するためのもので、干渉計本体部2および第1および第2の保持手段3A,3Bからなる被検体設置装置3を備えてなる。また、干渉計装置1は、撮像された干渉縞を観察するモニタや、干渉縞の解析や後述する3面合わせ方法における演算を実行するコンピュータ等の演算部(いずれも図示略)を備えている。
<Device configuration>
An interferometer apparatus 1 shown in FIG. 1 is for measuring an absolute shape of a reference surface such as a reference plate used as a reference in measurement using an interferometer by using a three-surface alignment method. A subject placement device 3 comprising a main body 2 and first and second holding means 3A, 3B is provided. In addition, the interferometer device 1 includes a monitor for observing the captured interference fringes, and a computation unit (not shown) such as a computer that executes the analysis in the interference fringe analysis and the three-plane alignment method described later. .

上記干渉計本体部2は、上記第1の保持手段3A側に配置されており、レーザ光等の光束を射出する光源部、被検体に測定光を照射するための拡大レンズやコリメータレンズ等を含む照射光学系、および被検体の干渉像を撮像するための結像レンズやCCD等の撮像素子等を有する撮像光学系(いずれも図示略)を備えている。また、被検体に対する光束の出射端には第1の2軸傾き調整機構24が装備され、該第1の2軸傾き調整機構24には干渉縞の位相をシフトするためのフリンジスキャンアダプタ25が取り付けられている。該フリンジスキャンアダプタ25には枠体ホルダ26が取り付けられ、位相シフト計測をする際はフリンジスキャンアダプタ25内のピエゾ素子(不図示)により光軸Lに沿った方向(図中の矢印方向)に微動可能である。枠体ホルダ26の鍔部27には、所定の位置に位置決め用のピン41が設けられている。該ピン41と、被検体4または5または6(図1では被検体4)を保持した枠体7Aまたは7Bまたは7C(図1では7A)のピン孔42とを嵌合させ、図示しないネジで枠体7Aを鍔部27に位置決め固定している。   The interferometer body 2 is arranged on the first holding means 3A side, and includes a light source unit that emits a light beam such as a laser beam, a magnifying lens and a collimator lens for irradiating the subject with measurement light, and the like. And an imaging optical system (all not shown) including an imaging lens for capturing an interference image of the subject and an imaging element such as a CCD. In addition, a first biaxial tilt adjusting mechanism 24 is provided at the light beam exit end of the subject, and the first biaxial tilt adjusting mechanism 24 has a fringe scan adapter 25 for shifting the phase of the interference fringes. It is attached. A frame holder 26 is attached to the fringe scan adapter 25, and a phase shift measurement is performed in a direction along the optical axis L (in the direction of the arrow in the figure) by a piezo element (not shown) in the fringe scan adapter 25. Can be finely moved. A positioning pin 41 is provided at a predetermined position on the flange portion 27 of the frame holder 26. The pin 41 and the pin hole 42 of the frame 7A, 7B, or 7C (7A in FIG. 1) holding the subject 4 or 5 or 6 (the subject 4 in FIG. 1) are fitted, and screws (not shown) are used. The frame body 7A is positioned and fixed to the flange portion 27.

また、この干渉計本体部2は、1軸傾斜ステージ21および第1の回転ステージ22を介してXステージ23上に載置されており、Xステージ23により紙面に垂直な方向への移動が可能となっているとともに、1軸傾斜ステージ21により干渉光学系の光軸Lの紙面内での傾き調整が可能で、また、第1の回転ステージ22により干渉光学系の光軸Lの紙面に垂直な水平面内での回転角度調整が可能となっている。   The interferometer body 2 is placed on the X stage 23 via the uniaxial tilt stage 21 and the first rotary stage 22, and can be moved in the direction perpendicular to the paper surface by the X stage 23. In addition, the inclination of the optical axis L of the interference optical system in the plane of the paper can be adjusted by the uniaxial tilt stage 21, and the first rotary stage 22 is perpendicular to the plane of the optical axis L of the interference optical system. It is possible to adjust the rotation angle in a horizontal plane.

上記第2の保持手段3B側には、3つの被検体4,5,6のうちの所定の1つ(図1では被検体5)の被測定面(図1では被測定面5a)を干渉計本体部2の光軸Lを中心に回転させながら順次干渉計測が実行できるように、被検体5を回転させるための第2の回転ステージ32と、該回転ステージ32の回転軸Rと上記干渉計本体部2の光軸Lとを一致させるための第2の2軸傾き調整機構31およびZステージ39と、上記第2の回転ステージ32に取り付けられた第2の保持手段3B側の被測定面5aを上記干渉計本体部2側の被測定面4aに対してヌル状態に対向させるための第3の2軸傾き調整機構33とが配備されている。   The second holding means 3B side interferes with a measurement surface (measurement surface 5a in FIG. 1) of a predetermined one of the three subjects 4, 5, and 6 (subject 5 in FIG. 1). The second rotation stage 32 for rotating the subject 5 and the rotation axis R of the rotation stage 32 and the interference described above so that the interference measurement can be sequentially performed while rotating around the optical axis L of the meter body 2. The second biaxial tilt adjusting mechanism 31 and the Z stage 39 for matching the optical axis L of the meter body 2 and the second measured means on the second holding means 3B attached to the second rotary stage 32 A third biaxial tilt adjustment mechanism 33 is provided for making the surface 5a face the measured surface 4a on the interferometer body 2 side in a null state.

上記第2の回転ステージ32は、上記第2の2軸傾き調整機構31の可動板35に一体的に取り付けられており、その回転軸Rを中心とした中央部に光束通過用の開口(図1中に破線で表示)を持つ。また、上記可動板35との取付面の反対面には、第3の2軸傾き調整機構33の固定板38が取り付けられ、上記第2の回転ステージ32の上記回転軸Rまわりの回転に従い上記固定板38も回転するようになっている。また、上記第2の回転ステージ32の側面に設けられた図示しない角度読み取り機構で回転角度の読み取りが可能である。   The second rotary stage 32 is integrally attached to the movable plate 35 of the second biaxial tilt adjusting mechanism 31, and a light beam passage opening (see FIG. 1 (indicated by a broken line). Further, a fixed plate 38 of a third biaxial tilt adjusting mechanism 33 is attached to the surface opposite to the mounting surface with the movable plate 35, and the second rotary stage 32 rotates around the rotational axis R according to the rotation. The fixed plate 38 is also rotated. The rotation angle can be read by an angle reading mechanism (not shown) provided on the side surface of the second rotary stage 32.

上記第2の2軸傾き調整機構31は、支持体36と可動板35と調整ネジと図示しないコイルバネで構成されている。上記第2の回転ステージ32を一体的に取り付けた上記第2の傾き調整機構31の可動板35は、第2の傾き調整機構31の調整ネジを回転操作することにより支持体36に対して傾き調整することが可能である。このことにより、上記第2の回転ステージ32の回転軸Rを上記干渉計本体部2の光軸Lと平行になるように傾き調整することが可能となっている。   The second biaxial tilt adjusting mechanism 31 includes a support 36, a movable plate 35, an adjusting screw, and a coil spring (not shown). The movable plate 35 of the second tilt adjustment mechanism 31 to which the second rotation stage 32 is integrally attached is tilted with respect to the support 36 by rotating the adjustment screw of the second tilt adjustment mechanism 31. It is possible to adjust. This makes it possible to adjust the tilt so that the rotation axis R of the second rotation stage 32 is parallel to the optical axis L of the interferometer body 2.

また、上記支持体36にはZステージ39が備えられており、上記回転ステージ32の回転軸Rと上記干渉計本体部2の光軸Lとの高さを合致させることが可能となっている。   Further, the support 36 is provided with a Z stage 39, and the height of the rotation axis R of the rotary stage 32 and the optical axis L of the interferometer main body 2 can be matched. .

上記第3の2軸傾き調整機構33は、上記第2の回転ステージ32に取り付けられた固定板38と保持板37と調整ネジと図示しないコイルバネで構成され、固定板38と保持板37の中央部には、上記第2の回転ステージ32に設けられた光束通過用の開口と同様の光束通過用開口(図1中に破線で表示)が設けられている。保持板37の固定板38との反対面には、所定の位置に位置決め用のピン41が設けられている。該ピン41と、被検体4または5または6(図1では被検体5)を保持した枠体7Aまたは7Bまたは7C(図1では7B)のピン孔42とを嵌合させ、図示しないネジで枠体7Bを保持板37に位置決め固定できるようになっている。これらのことから、第3の2軸傾き調整機構33の調整ネジを回転操作することにより第1の保持手段3A側の被検体4の被測定面4aに対して被検体5の被測定面5aの傾きを調整することが可能となっている。   The third biaxial tilt adjusting mechanism 33 includes a fixing plate 38, a holding plate 37, an adjusting screw, and a coil spring (not shown) attached to the second rotary stage 32, and the center between the fixing plate 38 and the holding plate 37. The part is provided with a light beam passage opening (indicated by a broken line in FIG. 1) similar to the light beam passage opening provided in the second rotary stage 32. Positioning pins 41 are provided at predetermined positions on the surface of the holding plate 37 opposite to the fixed plate 38. The pin 41 and the pin hole 42 of the frame 7A, 7B or 7C (7B in FIG. 1) holding the subject 4 or 5 or 6 (the subject 5 in FIG. 1) are fitted, and screws (not shown) are used. The frame 7B can be positioned and fixed to the holding plate 37. For these reasons, the measurement surface 5a of the subject 5 with respect to the measurement surface 4a of the subject 4 on the first holding means 3A side by rotating the adjustment screw of the third biaxial tilt adjustment mechanism 33. It is possible to adjust the inclination.

上記3つの被検体4,5,6は干渉計の基準板として用いられるもので、各々の被測定面4a,5a,6aは、干渉計測において被検平面の形状の比較対照の基準面(参照面)となるように、それぞれ高精度に平面研磨されたものである。3つの被検体4,5,6は枠体7A,7B,7Cにそれぞれ取り付けられており、これら枠体7A,7B,7Cを介して上記枠体ホルダ26の鍔部27および第3の2軸傾き調整機構33の保持板37に保持されるようになっている。すなわち、鍔部27および保持板37には、3つの被検体4,5,6を保持する際、枠体7A,7B,7Cとの位置合わせ用として用いられるピン41がそれぞれ2個所に設けられており、枠体7A,7B,7Cには、上記ピンと係合して位置合わせをするための位置合せ指標となるピン孔42がそれぞれ2個所に設けられている。これらピン41およびピン孔42は、本発明の位置合わせ手段を構成するものであり、これらを互いに係合させることにより、被検体4,5,6の各中心軸C,C,Cが、3面合わせ測定中に枠体7A,7B,7Cを取り替えながら鍔部27あるいは保持板37に取り付けられた際にも常に略一致した状態となるように構成されている。 The above three objects 4, 5, and 6 are used as reference plates for the interferometer, and each of the measurement surfaces 4a, 5a, and 6a is a reference surface (reference) for comparison of the shape of the test plane in the interference measurement. The surface is polished with high precision so as to form a surface. The three subjects 4, 5, and 6 are attached to the frame bodies 7A, 7B, and 7C, respectively, and the flange portion 27 of the frame body holder 26 and the third two-axis are interposed through the frame bodies 7A, 7B, and 7C. The tilt adjusting mechanism 33 is held by a holding plate 37. That is, the pin 27 and the holding plate 37 are provided with two pins 41 used for alignment with the frame bodies 7A, 7B, and 7C when holding the three subjects 4, 5, and 6, respectively. Each of the frame bodies 7A, 7B, and 7C is provided with two pin holes 42 that serve as alignment indexes for engaging and aligning with the pins. The pin 41 and the pin hole 42 constitute the alignment means of the present invention. By engaging these pins with each other, the central axes C 1 , C 2 , C 3 of the subjects 4, 5, 6 are arranged. However, it is configured so as to always be substantially coincident when it is attached to the flange 27 or the holding plate 37 while replacing the frames 7A, 7B, and 7C during the three-surface alignment measurement.

また、上記第1の保持手段3A側に設けられた1軸傾斜ステージ21,第1の回転ステージ22,Xステージ23および第1の2軸調整機構24と、上記第2の保持手段3B側に設けられた第2の2軸調整機構31,第2の回転ステージ32,第3の2軸調整機構33およびZステージ39とにより、本発明のアライメント手段が構成されており、このうちの1軸傾斜ステージ21,第1の回転ステージ22,Xステージ23およびZステージ39により軸位置調整機構が構成されている。   Further, the uniaxial tilt stage 21, the first rotary stage 22, the X stage 23 and the first biaxial adjustment mechanism 24 provided on the first holding means 3A side, and the second holding means 3B side are provided. The second biaxial adjustment mechanism 31, the second rotary stage 32, the third biaxial adjustment mechanism 33, and the Z stage 39 provided in the present invention constitute the alignment means of the present invention. The tilt stage 21, the first rotary stage 22, the X stage 23, and the Z stage 39 constitute an axis position adjusting mechanism.

本実施形態では以下に示すセットアップ手順により、上記第1の保持手段3Aに保持された被検体4または5または6(図1では被検体4)の中心軸、上記第2の保持手段3Bに保持された被検体4または5または6(図1では被検体5)の中心軸、および上記回転軸Rを、上記光軸Lに略一致させるアライメントを行なう。また、アライメントが完了した状態を確認するために、抜きピン34,34が用いられる。この抜きピン34,34は、アライメントが完了した状態の場合のみ、第1および第2の保持手段3A,3Bにそれぞれ保持された枠体7Aまたは7Bまたは7C(図1では枠体7A,7B)および上記第3の2軸傾き調整機構33の固定板38の所定位置にそれぞれ形成されている各抜きピン孔43に連通できるように構成されている。なお、上記第2の2軸傾き調整機構31の可動板35および支持体36と、上記第3の2軸傾き調整機構33の保持体37には、上記抜きピン34の挿通を許容するため上記抜きピン孔43よりも大径の挿通孔44が設けられている。   In this embodiment, the center axis of the subject 4 or 5 or 6 (the subject 4 in FIG. 1) held by the first holding means 3A and the second holding means 3B are held by the setup procedure shown below. Alignment is performed so that the central axis of the subject 4 or 5 or 6 (subject 5 in FIG. 1) and the rotation axis R substantially coincide with the optical axis L. Moreover, in order to confirm the state where the alignment is completed, the punch pins 34 are used. The extraction pins 34, 34 are the frame bodies 7A, 7B, or 7C respectively held by the first and second holding means 3A, 3B only when the alignment is completed (the frame bodies 7A, 7B in FIG. 1). And it is comprised so that it can communicate with each extraction pin hole 43 each formed in the predetermined position of the fixing plate 38 of the said 3rd biaxial inclination adjustment mechanism 33. As shown in FIG. The movable plate 35 and the support 36 of the second biaxial inclination adjusting mechanism 31 and the holding body 37 of the third biaxial inclination adjusting mechanism 33 are allowed to pass through the extraction pin 34. An insertion hole 44 having a diameter larger than that of the punch pin hole 43 is provided.

〈セットアップ手順〉
以下、3面合せ方法を実施するための装置のセットアップ手順について、手順番号を付して説明する。なお、以下の説明では、3面合せ方法における3回の選択操作の1回目に被検体4,5が選択され、2回目に被検体6,5が選択され、3回目に被検体6,4が選択される場合を例にとって説明する。また、セットアップの各段階において実施される3面合せ方法による測定手順については、後述する。
<Setup procedure>
Hereinafter, the setup procedure of the apparatus for carrying out the three-plane alignment method will be described with a procedure number attached. In the following description, the subjects 4 and 5 are selected in the first selection operation of the three times in the three-surface alignment method, the subjects 6 and 5 are selected in the second time, and the subjects 6 and 4 are selected in the third time. A case where is selected will be described as an example. In addition, the measurement procedure by the three-plane matching method performed at each stage of the setup will be described later.

(1)まず、枠体7Aに収納された被検体4を第1の保持手段3A側に取り付ける。このとき、枠体7Aの2つのピン孔42,42と第1の保持手段3A側の枠体ホルダ26の鍔部27に設けられた2つのピン41,41とを互いに係合させ、かつ被検体4の被測定面4aが、第2の保持手段3B側を向くようにする。   (1) First, the subject 4 accommodated in the frame 7A is attached to the first holding means 3A side. At this time, the two pin holes 42, 42 of the frame 7A and the two pins 41, 41 provided on the flange portion 27 of the frame holder 26 on the first holding means 3A side are engaged with each other, and The measurement surface 4a of the specimen 4 is set to face the second holding means 3B side.

(2)次に、上記第1の2軸傾き調整機構24により、被検体4の中心軸Cと光軸Lとが互いに略一致するようにアライメントする。なお、このアライメントに際しては、光軸Lの延長線上(例えば図1において第2の保持手段3Bの左側)に配置したコーナーキューブ(図示略)を利用する方法を用いることができる。すなわち、まず干渉計本体部2のアライメント光学系(図示略)を用いてコーナーキューブのアライメントスポットに被測定面4aのアライメントスポットを合わせ、その後、干渉画像を見ながらコーナーキューブの干渉画像がヌル状態となるように、第1の2軸傾き調整機構24による調整を行なう。 (2) Next, by the first 2-axis tilt adjustment mechanism 24, aligned to the center axis C 1 and the optical axis L of the specimen 4 are substantially coincident with each other. In this alignment, a method using a corner cube (not shown) arranged on an extension line of the optical axis L (for example, on the left side of the second holding means 3B in FIG. 1) can be used. That is, first, the alignment optical system (not shown) of the interferometer body 2 is used to align the alignment spot of the measurement surface 4a with the alignment spot of the corner cube, and then the corner cube interference image is null while viewing the interference image. Adjustment by the first biaxial tilt adjustment mechanism 24 is performed so that

(3)次いで、枠体7Bに収納された被検体5を第2の保持手段3B側に取り付ける。このとき、枠体7Bの2つのピン孔42,42と第2の保持手段3B側の保持体37の2つのピン41,41とを互いに係合させ、かつ被検体5の被測定面5aが、第1の保持手段3A側の被検体4の被測定面4aと対向するようにする。   (3) Next, the subject 5 accommodated in the frame 7B is attached to the second holding means 3B side. At this time, the two pin holes 42 and 42 of the frame 7B and the two pins 41 and 41 of the holding body 37 on the second holding means 3B side are engaged with each other, and the measurement surface 5a of the subject 5 is Then, it is made to face the measurement surface 4a of the subject 4 on the first holding means 3A side.

(4)取り付け後、第1の保持手段3A側の1軸傾斜ステージ21,第1の回転ステージ22と、第2の保持手段3B側の第3の2軸傾き調整機構33により、上述した干渉計本体部2のアライメント光学系を用いて、被検体4の被測定面4aのアライメントスポットに被検体5の被測定面5aのアライメントスポットが合致するようにして、被検体4の中心軸Cと被検体5の中心軸Cとが互いに略平行となるように傾き調整する。なお、この調整の際、干渉計本体部2の撮像光学系をアライメント光学系から干渉画像撮影光学系に切り替え、その画面を見ながら、Xステージ23により第1の保持手段3A側の上部(干渉計本体部2を含む)を図1の紙面に垂直な方向に移動させ、上記第2の保持手段3B側のZステージ39により第2の保持手段3B側を上下方向に移動させることによって、被検体4の中心軸Cと被検体5の中心軸Cとの位置合せについても、概略的に行なう。 (4) After the attachment, the above-described interference is caused by the uniaxial tilt stage 21 and the first rotary stage 22 on the first holding means 3A side and the third biaxial tilt adjusting mechanism 33 on the second holding means 3B side. Using the alignment optical system of the meter body 2, the alignment spot of the measurement surface 5 a of the subject 5 matches the alignment spot of the measurement surface 4 a of the subject 4, and the central axis C 1 of the subject 4. to tilt adjustment so that the central axis C 2 of the object 5 is substantially parallel to each other and. In this adjustment, the imaging optical system of the interferometer body 2 is switched from the alignment optical system to the interference image photographing optical system, and the upper part of the first holding means 3A side (interference) is viewed by the X stage 23 while viewing the screen. 1) is moved in a direction perpendicular to the paper surface of FIG. 1, and the second holding means 3B side is moved up and down by the Z stage 39 on the second holding means 3B side. for even aligned with the central axis C 1 of the sample 4 and the central axis C 2 of the object 5, schematically performed.

(5)次に、上記第2の2軸傾き調整機構31を用いて、上記第2の回転ステージ32の回転軸Rと被検体4の中心軸Cとが互いに略平行となるように調整する。具体的には、以下のように行なう。まず、干渉計本体部2の撮像光学系をアライメント光学系に戻して、被検体5を上記第2の回転ステージ32により回転する。この時、被測定面5aは回転ステージ32の回転軸Rを中心として回転するから、第2の回転ステージ32の回転軸Rに対して被検体4の中心軸Cが傾いていた場合は、被測定面5aのアライメントスポットは一点で静止することなく傾きに応じた径の円を描くことになる。この円の径が最小となるように、上記第2の2軸傾き調整機構31の調整ネジを操作すればよい。 (5) Next, the second with a biaxial inclination adjustment mechanism 31, adjusted to the center axis C 1 of the rotation axis R and the object 4 of the second rotary stage 32 is substantially parallel to each other To do. Specifically, this is performed as follows. First, the imaging optical system of the interferometer body 2 is returned to the alignment optical system, and the subject 5 is rotated by the second rotary stage 32. At this time, since the measuring surface 5a is rotated about an axis of rotation R of the rotary stage 32, when the center axis C 1 of the subject 4 is inclined to the rotational axis R of the second rotation stage 32, The alignment spot on the surface to be measured 5a draws a circle having a diameter corresponding to the inclination without stopping at one point. The adjustment screw of the second biaxial tilt adjustment mechanism 31 may be operated so that the diameter of this circle is minimized.

(6)この調整後、上記第3の2軸傾き調整機構33により、被検体5の中心軸Cの第2の回転ステージ32に対する傾きを調整して、被検体5の中心軸Cと第2の回転ステージ32の回転軸Rとが互いに略一致するようにアライメントする。具体的には、上記(5)の手順で最小の径を描くように調整された被測定面5aのアライメントスポットが、被検体4の被測定面4aのアライメントスポットに重なり、被検体5を回転させても、略1点に静止するように上記第3の2軸傾き調整機構33の調整ネジを操作すればよい。 (6) After the adjustment, the third biaxial tilt adjusting mechanism 33 adjusts the tilt of the central axis C 2 of the subject 5 with respect to the second rotary stage 32, so that the central axis C 2 of the subject 5 Alignment is performed so that the rotation axis R of the second rotation stage 32 substantially coincides with each other. Specifically, the alignment spot of the measurement surface 5a adjusted to draw the minimum diameter in the procedure of (5) above overlaps the alignment spot of the measurement surface 4a of the subject 4, and the subject 5 is rotated. Even so, the adjustment screw of the third biaxial tilt adjustment mechanism 33 may be operated so that it stops at approximately one point.

(7)上記(5)および(6)の操作を繰り返し行ない、被検体5の中心軸Cと第2の回転ステージ32の回転軸Rとが互いに略一致するとともに、これら中心軸Cおよび回転軸Rが被検体4の中心軸Cと略平行となるように調整する。 (7) above (5) and performs repeated operations (6), with the central axis C 2 of the object 5 and the rotation axis R of the second rotary stage 32 is substantially coincide with each other, these central axes C 2 and Adjustment is made so that the rotation axis R is substantially parallel to the central axis C 1 of the subject 4.

(8)この調整後、図示しない角度読み取り機構により回転角度を読み取りながら、第2の回転ステージ32を初期角度位置に調整する。   (8) After this adjustment, the second rotary stage 32 is adjusted to the initial angular position while reading the rotation angle by an angle reading mechanism (not shown).

(9)次に、2つの抜きピン34,34を用いて、枠体7A,7Bおよび固定板38の相互間の位置を確認しながら、Xステージ23およびZステージ39により、被検体4の中心軸C,第2の回転ステージ32の回転軸Rおよび被検体5の中心軸Cが互いに略一致するように位置決め調整する。これら中心軸C、中心軸Cおよび回転軸Rが互いに略一致した状態において、2つの抜きピン34,34は、枠体7A,7Bおよび固定板38の所定位置にそれぞれ形成されている各抜きピン孔43と、可動板35,支持体36および保持体37にそれぞれ形成されている各挿通孔44内に連通される。 (9) Next, the center of the subject 4 is detected by the X stage 23 and the Z stage 39 while confirming the positions of the frame bodies 7A, 7B and the fixing plate 38 using the two extraction pins 34, 34. Positioning adjustment is performed so that the axis C 1 , the rotation axis R of the second rotation stage 32, and the center axis C 2 of the subject 5 substantially coincide with each other. In a state where the central axis C 1 , the central axis C 2 and the rotation axis R are substantially coincident with each other, the two extraction pins 34 and 34 are respectively formed at predetermined positions on the frame bodies 7A and 7B and the fixing plate 38. The extraction pin hole 43 is communicated with each insertion hole 44 formed in the movable plate 35, the support 36 and the holding body 37.

(10)位置決め調整の完了後、2つの抜きピン34,34を抜くことにより、セットアップの第1段階が終了する。このセットアップの第1段階が終了後、3面合せ方法による1回目の測定が行なわれる。   (10) After the positioning adjustment is completed, the first stage of setup is completed by removing the two extraction pins 34 and 34. After the first stage of the setup is completed, the first measurement is performed by the three-plane alignment method.

(11)1回目の測定終了後、Xステージ23により第1の保持手段3A側の枠体ホルダ26を干渉計本体部2と共に紙面と垂直な方向に移動させ、被検体4を枠体7Aに収納したまま枠体ホルダ26の鍔部27から取り外す。   (11) After the first measurement is completed, the X stage 23 moves the frame holder 26 on the first holding means 3A side together with the interferometer main body 2 in a direction perpendicular to the paper surface, and the subject 4 is moved to the frame 7A. It removes from the collar part 27 of the frame holder 26, storing.

(12)次に、枠体7Cに収納された被検体6を第1の保持手段3A側に取り付ける。このとき、枠体7Cの2つのピン孔42,42と枠体ホルダ26の鍔部27の2つのピン41,41とを互いに係合させ、かつ被検体6の被測定面6aが、第2の保持手段3B側を向くようにする。なお、鍔部27側の2つのピン41,41と枠体7C側の2つのピン孔42,42とを互いに係合させることにより、鍔部27に対する交換後の被検体6の中心軸Cの位置は、交換前の被検体4の中心軸Cの位置に略一致する。 (12) Next, the subject 6 accommodated in the frame 7C is attached to the first holding means 3A side. At this time, the two pin holes 42, 42 of the frame body 7C and the two pins 41, 41 of the flange portion 27 of the frame body holder 26 are engaged with each other, and the measurement surface 6a of the subject 6 is the second surface. Facing the holding means 3B side. In addition, by engaging the two pins 41 and 41 on the collar part 27 side and the two pin holes 42 and 42 on the frame body 7C side, the central axis C 3 of the subject 6 after the exchange with respect to the collar part 27 is performed. position, substantially coincides with the position of the center axis C 1 of the subject 4 before exchange.

(13)取り付け後、上記第1の2軸傾き調整機構24により、被検体6の中心軸Cと光軸Lとが互いに平行となるようにアライメントする。このとき、Xステージ23により第1の保持手段3A側を概ね元の位置に移動させることによって、被検体5の中心軸Cと被検体6の中心軸Cとの位置合せについても、概略的に行なう。 (13) after mounting, by the first 2-axis tilt adjustment mechanism 24, aligned to the center axis C 3 and the optical axis L of the subject 6 are parallel to each other. At this time, by moving the first holding means 3A side substantially to its original position by the X stage 23, for the alignment of the central axis C 2 and the center axis C 3 of the object 6 of the object 5, schematically To do.

(14)次に、2つの抜きピン34,34を用いて、枠体7B,7Cおよび固定板38の相互間の位置を確認しながら、Xステージ23およびZステージ39により、被検体5の中心軸C,第2の回転ステージ32の回転軸Rおよび被検体6の中心軸Cが互いに略一致するように位置決め調整する。これら中心軸C、中心軸Cおよび回転軸Rが互いに略一致した状態において、2つの抜きピン34,34は、枠体7B,7Cおよび固定板38の所定位置にそれぞれ形成されている各抜きピン孔43と、可動板35,支持体36および保持体37にそれぞれ形成されている各挿通孔44内に連通される。 (14) Next, the center of the subject 5 is detected by the X stage 23 and the Z stage 39 while confirming the position between the frame bodies 7B and 7C and the fixing plate 38 using the two extraction pins 34 and 34. Positioning adjustment is performed so that the axis C 2 , the rotation axis R of the second rotation stage 32, and the center axis C 3 of the subject 6 are substantially coincident with each other. In a state where the central axis C 2 , the central axis C 3 and the rotation axis R are substantially coincident with each other, the two extraction pins 34 and 34 are respectively formed at predetermined positions of the frame bodies 7B and 7C and the fixing plate 38. The extraction pin hole 43 is communicated with each insertion hole 44 formed in the movable plate 35, the support 36 and the holding body 37.

(15)位置決め調整の完了後、2つの抜きピン34,34を抜くことにより、セットアップの第2段階が終了する。このセットアップの第2段階が終了後、3面合せ方法による2回目の測定が行なわれる。   (15) After the positioning adjustment is completed, the second stage of setup is completed by removing the two extraction pins 34 and 34. After the second stage of this setup is completed, the second measurement is performed by the three-plane alignment method.

(16)2回目の測定終了後、被検体5を枠体7Bに収納したまま第2の保持手段3B側から取り外す。   (16) After completion of the second measurement, the subject 5 is removed from the second holding means 3B side while being stored in the frame 7B.

(17)次に、1回目の測定終了後に取り外した被検体4を枠体7Aに収納したまま第2の保持手段3B側に取り付ける。このとき、枠体7Aの2つのピン孔42,42と第2の保持手段3B側の保持体37の2つのピン41,41とを互いに係合させ、かつ被検体4の被測定面4aが被検体6の被測定面6aと対向するようにする。すなわち、被検体4を、第1の保持手段3A側に保持されていた状態に対して表裏反転させた状態となるようにして、保持体37に取り付ける。なお、保持体37側の2つのピン41,41と、枠体7A側の2つのピン孔42,42とを互いに係合させることにより、保持体37に対する交換後の被検体4の中心軸Cの位置は、交換前の被検体5の中心軸Cの位置に略一致する。したがって、枠体7Aを表裏反転させた状態で保持体37に取り付けた段階で、被検体4の中心軸Cは、第2の回転ステージ32の回転軸Rおよび被検体6の中心軸Cに略一致する。 (17) Next, the subject 4 removed after the first measurement is completed is attached to the second holding means 3B side while being accommodated in the frame body 7A. At this time, the two pin holes 42, 42 of the frame 7A and the two pins 41, 41 of the holding body 37 on the second holding means 3B side are engaged with each other, and the measurement surface 4a of the subject 4 is It is made to oppose the to-be-measured surface 6a of the subject 6. That is, the subject 4 is attached to the holding body 37 such that the subject 4 is reversed with respect to the state held on the first holding means 3A side. In addition, by engaging the two pins 41 and 41 on the holding body 37 side and the two pin holes 42 and 42 on the frame body 7A side, the central axis C of the subject 4 after the exchange with respect to the holding body 37 is performed. 1 position, substantially coincides with the position of the center axis C 2 before replacement of the object 5. Accordingly, at the stage when attached to the holding member 37 in a state where the frame member 7A was reversed, the central axis C 1 of the subject 4, the center axis C 3 axis of rotation R and the subject 6 in the second rotary stage 32 It almost matches.

(18)取り付け後、上記第3の2軸傾き調整機構33により、被検体4の中心軸Cの傾きを微調整して、セットアップの第3段階が終了する。このセットアップ第3段階が終了後、3面合せ方法による3回目の測定が行なわれる。 (18) after mounting, by the third two-axis inclination adjustment mechanism 33, by finely adjusting the inclination of the central axis C 1 of the subject 4, third stage set-up is completed. After the third stage of setup, the third measurement is performed by the three-plane alignment method.

〈3面合せ方法による測定手順〉
以下、上記セットアップの各段階において実施される3面合せ方法による測定手順について、簡単に説明する。なお、以下に説明する測定手順は、上記特許文献2に記載された3面合せ方法の手順に準じている。
<Measurement procedure by three-plane alignment method>
Hereinafter, the measurement procedure by the three-surface alignment method performed at each stage of the setup will be briefly described. In addition, the measurement procedure demonstrated below is based on the procedure of the 3 surface alignment method described in the said patent document 2. FIG.

上記セットアップの第1段階終了時点における1回目の測定では、第2の回転ステージ32により被検体5を回転軸R回りに所定角度ずつ回転させ、回転ごとに、被測定面4aからの反射光と被測定面5aからの反射光との光干渉により生じる干渉縞のフリンジスキャン測定を行ない、この測定結果を平均化することにより、被測定面5aの回転対称成分と被測定面4aとの相対的形状データAを得る。   In the first measurement at the end of the first stage of the setup, the subject 5 is rotated around the rotation axis R by a predetermined angle by the second rotary stage 32, and the reflected light from the measurement surface 4a is By performing fringe scan measurement of interference fringes caused by optical interference with reflected light from the surface to be measured 5a and averaging the measurement results, the rotationally symmetric component of the surface to be measured 5a is relative to the surface to be measured 4a. Shape data A is obtained.

上記セットアップの第2段階終了時点における2回目の測定では、第2の回転ステージ32により被検体5を回転軸R回りに所定角度ずつ回転させ、回転ごとに、被測定面6aからの反射光と被測定面5aからの反射光との光干渉により生じる干渉縞のフリンジスキャン測定を行ない、この測定結果を平均化することにより、被測定面5aの回転対称成分と被測定面6aとの相対的形状データBを得る。   In the second measurement at the end of the second stage of the setup, the subject 5 is rotated around the rotation axis R by a predetermined angle by the second rotary stage 32, and the reflected light from the measurement surface 6a is By performing fringe scan measurement of interference fringes caused by optical interference with reflected light from the surface to be measured 5a and averaging the measurement results, the rotationally symmetric component of the surface to be measured 5a and the surface to be measured 6a are relative to each other. Shape data B is obtained.

上記セットアップの第3段階終了時点における3回目の測定では、反転された被測定面4aからの反射光と被測定面6aからの反射光との光干渉により生じる干渉縞のフリンジスキャン測定を行ない、被測定面6aと反転された被測定面4aとの相対的形状データCを得る。   In the third measurement at the end of the third stage of the setup, fringe scan measurement of interference fringes caused by optical interference between the reflected light from the measured surface 4a and the reflected light from the measured surface 6a is performed. Relative shape data C between the measured surface 6a and the inverted measured surface 4a is obtained.

次に、演算部において、上記1回目の測定で得られた被測定面5aの回転対称成分と被測定面4aとの相対的形状のデータAに対して、被測定面4aが表裏反転されたように座標変換する座標変換処理を施して、被測定面5aの回転対称成分とソフト的に反転された被測定面4aとの相対的形状データA´を得る。   Next, the measurement surface 4a was inverted in the arithmetic unit with respect to the data A of the relative shape between the rotationally symmetric component of the measurement surface 5a and the measurement surface 4a obtained in the first measurement. In this way, the coordinate conversion process for converting the coordinates is performed to obtain the relative shape data A ′ between the rotationally symmetric component of the surface to be measured 5a and the surface to be measured 4a that is inverted in software.

この後、(データA´−データC+データB)/2を演算することにより、被測定面5aの回転対称成分の形状データを得る。そして、この被測定面5aの回転対称成分の形状データに基づき被測定面4aおよび6aの絶対形状データを得、そのデータにより被測定面5aの絶対形状データを得る。   Thereafter, (data A′−data C + data B) / 2 is calculated to obtain shape data of the rotationally symmetric component of the measured surface 5a. The absolute shape data of the measured surfaces 4a and 6a is obtained based on the shape data of the rotationally symmetric component of the measured surface 5a, and the absolute shape data of the measured surface 5a is obtained from the data.

なお、上記実施形態では、平面基準板が被検体とされているが、曲面形状を光干渉計測するための基準レンズを被検体とした場合においても、上記第1の保持手段3Aと上記第2の保持手段3Bのいずれか一方、あるいはその両方に、被検面を光軸Lに沿って移動可能な1軸移動ステージを付加することにより、同様に本発明を適用することが可能である。   In the above embodiment, the plane reference plate is the subject. However, even when the reference lens for optical interference measurement of the curved surface shape is the subject, the first holding means 3A and the second holding unit 3A are used. The present invention can be similarly applied by adding a one-axis moving stage capable of moving the test surface along the optical axis L to one or both of the holding means 3B.

本発明の一実施形態に係る被検体設置装置を備えた干渉計装置の概略構成図1 is a schematic configuration diagram of an interferometer apparatus provided with a subject installation apparatus according to an embodiment of the present invention.

符号の説明Explanation of symbols

1 干渉計装置
2 干渉計本体部
3 被検体設置装置
3A 第1の保持手段
3B 第2の保持手段
4,5,6 被検体
4a,5a,6a 被測定面
7A〜7C 枠体
21 1軸傾斜ステージ
22 第1の回転ステージ
23 Xステージ
24 第1の2軸傾き調整機構
25 フリンジスキャンアダプタ
26 枠体ホルダ
27 鍔部
31 第2の2軸傾き調整機構
32 第2の回転ステージ
33 第3の2軸傾き調整機構
34 抜きピン
35 可動板
36 支持体
37 保持体
38 固定板
39 Zステージ
41 ピン
42 ピン孔
43 抜きピン孔
44 挿通孔
L 光軸
R 回転軸
〜C 中心軸
DESCRIPTION OF SYMBOLS 1 Interferometer apparatus 2 Interferometer main-body part 3 Object installation apparatus 3A 1st holding means 3B 2nd holding means 4, 5, 6 Subject 4a, 5a, 6a Measuring surface 7A-7C Frame 21 Uniaxial inclination Stage 22 First rotary stage 23 X stage 24 First biaxial tilt adjusting mechanism 25 Fringe scan adapter 26 Frame holder 27 Hook 31 Second biaxial tilt adjusting mechanism 32 Second rotary stage 33 Third 2 axis tilt adjustment mechanism 34 core pin 35 movable plate 36 support 37 support frame 38 fixed plate 39 Z stage 41 pin 42 pin holes 43 discharge pin hole 44 through hole L optical axis R rotational axis C 1 -C 3 central axis

Claims (3)

互いに略同一形状の被測定面を有する3つの被検体のうちの所定の2つを、組み合わせを変えて順次3回選択し、この選択操作を行なう度に、選択された2つの被検体を、干渉光学系の光軸上の所定の2位置において各々の前記被測定面が互いに所定の間隔をおいて対向するように配置して、これら対向する被測定面の相対変位を2次元的に測定し、3回の測定結果を演算して前記各被検体の前記被測定面の形状を求める3面合せ方法を実施するための被検体設置装置において、
前記選択操作により選択された前記2つの被検体のうちの一方を、前記2位置のうちの一方において保持する第1の保持手段と、
前記選択操作により選択された前記2つの被検体のうちの他方を、前記2位置のうちの他方において所定の回転軸を中心に回転可能に保持する第2の保持手段と、
前記第1および/または第2の保持手段に保持されていた前記被検体が他の被検体に交換される際、該保持手段に対する交換前後の該各被検体の各中心軸の位置を互いに略一致させる位置合せ手段と、
前記第1の保持手段に保持された前記被検体の中心軸、前記第2の保持手段に保持された前記被検体の中心軸、および前記回転軸を、前記光軸に略一致させるアライメント手段とを備え
前記アライメント手段は、前記第1の保持手段に保持された前記被検体の中心軸を前記光軸と略平行にする第1の2軸傾き調整機構と、前記回転軸を前記光軸と略平行にする第2の2軸傾き調整機構と、前記第2の保持手段に保持された前記被検体の中心軸を前記回転軸と略平行にする第3の2軸傾き調整機構と、前記回転軸の位置を前記光軸の位置に略一致させる軸位置調整機構とを備え
前記3つの被検体は、これらの被検体にそれぞれ取り付けられた各枠体を介して、前記第1および第2の保持手段に保持されるように構成され、
前記各枠体および前記第3の2軸傾き調整機構の固定板の所定の各2位置には、位置決め調整用の2つの抜きピンがそれぞれ連通される各抜きピン孔が形成されており、
前記第1の保持手段に保持された前記被検体と前記第2の保持手段に保持された前記被検体とのアライメントが完了した状態の場合のみ、これらの被検体にそれぞれ取り付けられた前記各枠体および前記第3の2軸傾き調整機構の固定板の各抜きピン孔に、前記2つの抜きピンを連通し得るように構成されてなることを特徴とする被検体設置装置。
A predetermined two of three subjects having measurement surfaces having substantially the same shape as each other are sequentially selected three times by changing the combination, and each time the selection operation is performed, the two selected subjects are The measurement surfaces are arranged so as to oppose each other at a predetermined interval at two predetermined positions on the optical axis of the interference optical system, and the relative displacements of these opposing measurement surfaces are measured two-dimensionally. In the subject placement apparatus for performing a three-surface alignment method for calculating the measurement result of three times to obtain the shape of the measurement surface of each subject,
First holding means for holding one of the two subjects selected by the selection operation at one of the two positions;
Second holding means for holding the other of the two subjects selected by the selection operation so as to be rotatable around a predetermined rotation axis in the other of the two positions;
When the subject held by the first and / or second holding means is exchanged with another subject, the positions of the central axes of the subjects before and after the exchange with respect to the holding means are substantially the same. Alignment means for matching;
Alignment means for causing the central axis of the subject held by the first holding means, the central axis of the subject held by the second holding means, and the rotation axis to substantially coincide with the optical axis; equipped with a,
The alignment means includes a first biaxial tilt adjustment mechanism that makes the central axis of the subject held by the first holding means substantially parallel to the optical axis, and the rotation axis substantially parallel to the optical axis. A second biaxial tilt adjusting mechanism that makes the center axis of the subject held by the second holding means substantially parallel to the rotating shaft, and the rotating shaft An axis position adjusting mechanism that substantially matches the position of the optical axis with the position of the optical axis ,
The three subjects are configured to be held by the first and second holding means via the respective frames attached to these subjects,
In each of the two predetermined positions of the frame and the fixing plate of the third biaxial inclination adjusting mechanism, each extraction pin hole through which two extraction pins for positioning adjustment are respectively communicated is formed.
Each frame attached to each of these subjects only when the alignment between the subject held by the first holding means and the subject held by the second holding means is completed. A subject placement apparatus characterized in that the two extraction pins can be communicated with each extraction pin hole of the body and the fixing plate of the third biaxial tilt adjustment mechanism .
記位置合せ手段は、前記被検体が前記他の被検体に交換される際の前記第1および/または第2の保持手段と前記枠体との位置合せ用として、これら保持手段および枠体にそれぞれ設けられた位置合せ指標を備えてなることを特徴とする請求項1記載の被検体設置装置。 Before Symbol alignment means, wherein for the positioning of the frame member and the first and / or second retaining means when the subject is exchanged to the other object, these retaining means and the frame claim 1 Symbol placement subject installed device is characterized in that it comprises an alignment indicator respectively provided. 前記干渉光学系を備えた干渉計本体部と、請求項1または2に記載された被検体設置装置と、前記3面合せ方法における所定の演算を実施する演算部とを備えてなることを特徴とする干渉計装置。 Wherein an interferometer body portion having said interference optical system, and the object placing device according to claim 1 or 2, to become an arithmetic unit for implementing a predetermined operation in the three planes combined method Interferometer device.
JP2003346997A 2003-10-06 2003-10-06 Subject setting device and interferometer device provided with the subject setting device Expired - Lifetime JP4197640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003346997A JP4197640B2 (en) 2003-10-06 2003-10-06 Subject setting device and interferometer device provided with the subject setting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003346997A JP4197640B2 (en) 2003-10-06 2003-10-06 Subject setting device and interferometer device provided with the subject setting device

Publications (2)

Publication Number Publication Date
JP2005114470A JP2005114470A (en) 2005-04-28
JP4197640B2 true JP4197640B2 (en) 2008-12-17

Family

ID=34539737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003346997A Expired - Lifetime JP4197640B2 (en) 2003-10-06 2003-10-06 Subject setting device and interferometer device provided with the subject setting device

Country Status (1)

Country Link
JP (1) JP4197640B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117804519A (en) * 2024-01-03 2024-04-02 重庆日联科技有限公司 X-ray detection equipment repeated positioning precision adjusting equipment and method

Also Published As

Publication number Publication date
JP2005114470A (en) 2005-04-28

Similar Documents

Publication Publication Date Title
JP4732362B2 (en) Method for calibrating the geometry of a multi-axis measurement system
TWI292033B (en)
EP2138803B1 (en) Jig for measuring an object shape and method for measuring a three-dimensional shape
JP2016076611A (en) Substrate inspection device and control method therefor
JP2012078330A (en) Method for adjusting movement of camera unit in lens inspection apparatus and focus check tool
JP5211904B2 (en) Single crystal material plane alignment apparatus and plane alignment method
JP2003057026A (en) Alignment adjusting apparatus for probe, measuring machine equipped therewith and alignment adjusting method for probe
US6476979B1 (en) Focusing systems for perspective dimensional measurements and optical metrology
US20040001205A1 (en) Sample inclination measuring method
JP4197640B2 (en) Subject setting device and interferometer device provided with the subject setting device
JP3354675B2 (en) Circumferential surface shape measurement method
WO2013065418A1 (en) Light source unit adjustment device calibration method and standard
JP4718208B2 (en) Eccentricity measurement method
JP6758343B2 (en) Surveying equipment inspection system, equipment adjustment method using surveying equipment inspection system
JP2008304200A (en) Method for adjusting height position of eccentricity measuring head
JP2012242085A (en) Measured object holding position correction method of curvature radius measuring instrument and curvature radius measuring instrument
CN111238422A (en) Three-plane reference mirror flatness absolute measurement method based on small deflection
JP4093564B2 (en) Clamp device tilt adjustment method
JP4922905B2 (en) Method and apparatus for measuring position variation of rotation center line
JP4061175B2 (en) Interferometer device
CN117760336B (en) Calibration method and medium of five-axis interference measurement system and electronic equipment
JPH11211611A (en) Eccentricity measuring apparatus
JP5317619B2 (en) Eccentricity measurement method
KR102028699B1 (en) Method of measuring three dimensional shape of lens and system for measuring the same
JP2006292458A (en) Method and device for inspecting spherical eccentricity of inclined spherically polished ferrule

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080929

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4