JP2008304200A - Method for adjusting height position of eccentricity measuring head - Google Patents

Method for adjusting height position of eccentricity measuring head Download PDF

Info

Publication number
JP2008304200A
JP2008304200A JP2007148993A JP2007148993A JP2008304200A JP 2008304200 A JP2008304200 A JP 2008304200A JP 2007148993 A JP2007148993 A JP 2007148993A JP 2007148993 A JP2007148993 A JP 2007148993A JP 2008304200 A JP2008304200 A JP 2008304200A
Authority
JP
Japan
Prior art keywords
measuring head
eccentricity measuring
head
eccentricity
lens surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007148993A
Other languages
Japanese (ja)
Inventor
Hei Son
萍 孫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujinon Corp
Original Assignee
Fujinon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujinon Corp filed Critical Fujinon Corp
Priority to JP2007148993A priority Critical patent/JP2008304200A/en
Publication of JP2008304200A publication Critical patent/JP2008304200A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for adjusting the height position of an eccentricity measuring head and also easily and highly accurately adjusting the height position of a second eccentricity measuring head arranged below a base at which an optical element to be inspected is mounted and held in an eccentric amount measuring apparatus provided with two eccentricity measuring heads. <P>SOLUTION: An original position O<SB>2</SB>of the second measuring head 10B is computed on the basis of: the amount ΔH<SB>1</SB>of positional changes of a first measuring head 10A from an initial position O<SB>P1</SB>when the focal planes of the first and second measuring heads 10A and 10B are superposed on each other to an original position O<SB>1</SB>when the foal plane of the first measuring head 10A is superposed on a paraxial region of a lens surface 51a; an initial position O<SB>P2</SB>of the second measuring head 10B; and the overall length D<SB>L</SB>of a lens body 5. The height position O<SB>m2</SB>of the second measuring head 10B at the time of measurement is computed on the basis of the origin position O<SB>2</SB>, and a design value D<SB>R</SB>of the distance from the paraxial center C<SB>3</SB>of curvature of a lens surface 52a to a lens surface 52b so as to move the second measuring head 10B to the height position O<SB>m2</SB>. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、被検光学素子が載置保持される基台を挟んで、基台の一方の側(例えば、上方)に位置する第1の偏芯測定用ヘッドと基台の他方の側(例えば、下方)に位置する第2の偏芯測定用ヘッドとが互いに対向するように配置された偏芯量測定装置において、測定時における第2の偏芯測定用ヘッドの高さ位置を調整するための偏芯測定用ヘッドの高さ位置調整方法に関する。   The present invention provides a first eccentricity measuring head positioned on one side (for example, above) of the base and the other side of the base (on the upper side) with the base on which the test optical element is placed and held ( For example, in the eccentricity measuring device arranged so that the second eccentricity measuring head located in the lower side is opposed to each other, the height position of the second eccentricity measuring head at the time of measurement is adjusted. The present invention relates to a method for adjusting the height position of an eccentricity measuring head.

従来の偏芯量測定装置としては、偏芯測定用ヘッドを1つだけ有しているもの(例えば、特許文献1参照)と、上述のように互いに対向配置された2つの偏芯測定用ヘッドを有しているもの(例えば、特許文献2参照)とが知られているが、どちらもオートコリメーション法と称される測定手法が適用されているのが一般的である。   As a conventional eccentricity measuring device, one having only one eccentricity measuring head (see, for example, Patent Document 1) and two eccentricity measuring heads arranged to face each other as described above. (For example, see Patent Document 2), both of which generally employ a measurement technique called an autocollimation method.

オートコリメーション法では、偏芯測定用ヘッドの焦点面に被検光学素子の被検面の近軸曲率中心が位置するように高さ調整を行った後、被検面を所定の回転軸回りに回転させながら、上記焦点面に所定形状の指標の像を結像させる。この指標の像は、被検面を介してリレーされ、上記焦点面と共役な位置関係にある撮像面上に結像されるが、このとき被検面が偏芯していると、被検面の回転に伴って指標の像が円形の軌跡を描くように移動するので、この円の半径を計測することで被検面の偏芯量を求めることができる。   In the autocollimation method, the height is adjusted so that the paraxial center of curvature of the test surface of the test optical element is located at the focal plane of the eccentricity measuring head, and then the test surface is rotated about a predetermined rotation axis. While rotating, an index image of a predetermined shape is formed on the focal plane. This index image is relayed through the test surface and imaged on the imaging surface that is conjugated with the focal plane. At this time, if the test surface is eccentric, Since the index image moves so as to draw a circular trajectory as the surface rotates, the eccentricity of the surface to be measured can be obtained by measuring the radius of this circle.

2つの偏芯測定用ヘッドを有している偏芯量測定装置では、通常は、上方に配置された偏芯測定用ヘッド(以下、「上側測定ヘッド」と称する)を用いて測定を行い、上側測定ヘッドでは測定し得ない被検面(基台に設置された状態では、上側測定ヘッドから離れた位置に近軸曲率中心が位置するため、上側測定ヘッドの焦点面に近軸曲率中心を位置させることができないような被検面)については、下方に配置された偏芯測定用ヘッド(以下、「下側測定ヘッド」と称する)を用いて測定することができるという利点がある。   In an eccentricity measuring device having two eccentricity measuring heads, measurement is usually performed using an eccentricity measuring head (hereinafter referred to as “upper measurement head”) disposed above, Test surface that cannot be measured by the upper measurement head (when installed on the base, the paraxial curvature center is located at a position away from the upper measurement head, so the paraxial curvature center is located at the focal plane of the upper measurement head. The test surface that cannot be positioned has an advantage that it can be measured using an eccentric measurement head (hereinafter referred to as “lower measurement head”) disposed below.

特開2007−17431号公報JP 2007-17431 A 特開2005−55202号公報JP-A-2005-55202

しかしながら、2つの偏芯測定用ヘッドを有している偏芯量測定装置は、下側測定ヘッドの高さ位置調整(下側測定ヘッドの焦点面に、被検面の近軸曲率中心を位置させるための調整)が難しいという問題がある。   However, the eccentricity measuring apparatus having two eccentricity measuring heads adjusts the height position of the lower measuring head (the paraxial center of curvature of the test surface is positioned on the focal plane of the lower measuring head). Adjustment) is difficult.

その要因としては、下側測定ヘッドの場合、被検光学素子との間に基台が介在するため、被検光学素子との距離を実測することが難しく、高さ調整の際の基準となる位置(以下「原点位置」と称する)を設定し難いことが挙げられる。   The reason for this is that in the case of the lower measurement head, since the base is interposed between the optical head and the optical element to be measured, it is difficult to actually measure the distance to the optical element to be measured, which is a reference for height adjustment. It is difficult to set a position (hereinafter referred to as “origin position”).

上側測定ヘッドの場合は、被検光学素子との間に基台が介しないので、例えば、基台に設置された被検光学素子において最も上方に位置するレンズ面(以下「最上レンズ面」と称する)の近軸領域と、上側測定ヘッドの焦点面とが互いに重なるような高さ位置に、上側測定ヘッドを移動させ、このときの高さ位置を上側測定ヘッドの原点位置として設定することが可能となる。このような設定方法は、上記最上レンズ面から反射されて、上側測定ヘッドの撮像面に結像される指標の像を観察しながら行うことが可能であり、設定精度が高い。   In the case of the upper measuring head, since the base is not interposed between the optical head and the test optical element, for example, the uppermost lens surface of the test optical element installed on the base (hereinafter referred to as the “uppermost lens surface”). The upper measuring head is moved to a height position where the paraxial region of the upper measuring head and the focal plane of the upper measuring head overlap each other, and the height position at this time is set as the origin position of the upper measuring head. It becomes possible. Such a setting method can be performed while observing the index image reflected from the uppermost lens surface and formed on the imaging surface of the upper measurement head, and the setting accuracy is high.

このような設定方法を下側測定ヘッドに適用し、例えば、基台に設置された被検光学素子において最も下方に位置するレンズ面(以下「最下レンズ面」と称する)の近軸領域と、下側測定ヘッドの焦点面とが互いに重なるような高さ位置に、下側測定ヘッドを移動させようとしても、基台が障害となってできないことがある。このため従来は、上記最下レンズ面と下側測定ヘッドとの距離を別の測定手段を用いて測定し、その測定値に基づき、下側測定ヘッドの原点位置を設定するといった手法が採られているが、このような手法は手順が煩雑であり、また高精度に高さ調整を行うことが難しい。   Applying such a setting method to the lower measurement head, for example, a paraxial region of a lens surface (hereinafter referred to as “lowermost lens surface”) positioned at the lowermost position in the optical element to be tested installed on the base; Even if the lower measurement head is moved to a height position where the focal planes of the lower measurement head overlap with each other, the base may not be an obstacle. For this reason, conventionally, a method has been adopted in which the distance between the lowermost lens surface and the lower measurement head is measured using another measurement means, and the origin position of the lower measurement head is set based on the measured value. However, such a method has a complicated procedure, and it is difficult to adjust the height with high accuracy.

本発明は、このような事情に鑑みなされたものであり、2つの偏芯測定用ヘッドを有している偏芯量測定装置において、被検光学素子が載置保持される基台の他方の側に配置された第2の偏芯測定用ヘッドの測定時における高さ位置を、容易かつ高精度に調整することが可能な偏芯測定用ヘッドの高さ位置調整方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and in an eccentricity measuring apparatus having two eccentricity measuring heads, the other of the bases on which the optical element to be tested is placed and held. It is an object to provide a method for adjusting the height position of an eccentricity measuring head capable of easily and accurately adjusting the height position during measurement of the second eccentricity measuring head arranged on the side. And

本発明に係る偏芯測定用ヘッドの高さ位置調整方法は、複数のレンズ面を有してなる被検光学素子が載置保持される基台を挟んで、該基台の一方の側に位置する第1の偏芯測定用ヘッドと、該基台の他方の側に位置する第2の偏芯測定用ヘッドとが、互いに対向するように配置されてなり、
前記第1の偏芯測定用ヘッドおよび前記第2の偏芯測定用ヘッドは、前記基台に載置保持された前記被検光学素子に対し、光源からの光を所定形状の指標を介して照射し、該指標の像を焦点面に結像させる照射用光学系と、近軸曲率中心が前記焦点面に位置するレンズ面からの反射光または透過光を撮像面上に導き該反射光または透過光により形成される前記指標の像を撮像面上に結像させる結像用光学系と、をそれぞれ備えてなる偏芯量測定装置において、
前記第2の偏芯測定用ヘッドの測定対象となる所定の被検レンズ面の近軸曲率中心と、該第2の偏芯測定用ヘッドの前記焦点面とが互いに重なるように、該第2の偏芯測定用ヘッドを測定時高さ位置に移動する偏芯測定用ヘッドの高さ位置調整方法であって、
前記被検光学素子が前記基台に載置保持されていない状態において、前記第1の偏芯測定用ヘッドの前記焦点面と、前記第2の偏芯測定用ヘッドの前記焦点面とが互いに重なるように、これら第1および第2の偏芯測定用ヘッドの相対的な高さ調整を行い、この高さ調整が完了した時点における該第1および第2の偏芯測定用ヘッドの各高さ位置を第1および第2初期位置としてそれぞれ記録する両ヘッド初期位置記録ステップと、
前記被検光学素子が前記基台に載置保持された状態において、前記第1の偏芯測定用ヘッドの前記焦点面が、前記被検光学素子の所定の第1レンズ面の近軸領域と重なるように、該第1の偏芯測定用ヘッドの高さ調整を行い、この高さ調整が完了した時点における該第1の偏芯測定用ヘッドの高さ位置を第1原点位置として記録する第1ヘッド原点位置記録ステップと、
前記第1の偏芯測定用ヘッドの前記第1初期位置と前記第1原点位置との距離の差分値、前記被検光学素子の所定の第2レンズ面から前記第1レンズ面までの距離の設計値、および前記第2の偏芯測定用ヘッドの前記第2初期位置に基づき、前記第2の偏芯測定用ヘッドの前記焦点面が前記第2レンズ面の近軸領域と重なるときの該第2の偏芯測定用ヘッドの高さ位置を算定し、これを第2原点位置として記録する第2ヘッド原点位置算定記録ステップと、
前記第2の偏芯測定用ヘッドの前記第2原点位置と、前記被検レンズ面の前記近軸曲率中心から前記第2レンズ面までの距離の設計値とに基づき、前記第2の偏芯測定用ヘッドの前記測定時高さ位置を算定し、この算定された測定時高さ位置に前記第2の偏芯測定用ヘッドを移動する第2ヘッド測定時位置調整ステップと、をこの順に行うことを特徴とする。
The method of adjusting the height position of the eccentricity measuring head according to the present invention includes a base on which a test optical element having a plurality of lens surfaces is placed and held on one side of the base. The first eccentricity measuring head located and the second eccentricity measuring head located on the other side of the base are arranged to face each other,
The first eccentricity measuring head and the second eccentricity measuring head transmit light from a light source to the test optical element placed and held on the base via an index of a predetermined shape. Irradiation optical system that irradiates and forms an image of the index on the focal plane, and the reflected light or transmitted light from the lens surface whose paraxial curvature center is located on the focal plane is guided onto the imaging surface. In an eccentricity measuring device each comprising an imaging optical system that forms an image of the index formed by transmitted light on an imaging surface,
The second paraxial curvature center of a predetermined lens surface to be measured by the second eccentricity measuring head and the focal plane of the second eccentricity measuring head overlap each other. A method for adjusting the height position of the eccentricity measuring head, wherein the eccentricity measuring head is moved to a height position during measurement,
In a state where the test optical element is not placed and held on the base, the focal plane of the first eccentricity measuring head and the focal plane of the second eccentricity measuring head are mutually The relative height adjustments of the first and second eccentricity measuring heads are performed so as to overlap, and the heights of the first and second eccentricity measuring heads at the time when the height adjustment is completed. Both head initial position recording steps for recording the position as the first and second initial positions respectively;
In a state where the test optical element is placed and held on the base, the focal plane of the first decentering measurement head is a paraxial region of a predetermined first lens surface of the test optical element. The height of the first eccentricity measuring head is adjusted so as to overlap, and the height position of the first eccentricity measuring head when the height adjustment is completed is recorded as the first origin position. A first head origin position recording step;
The difference value of the distance between the first initial position of the first eccentricity measuring head and the first origin position, and the distance from the predetermined second lens surface of the optical element to be tested to the first lens surface. Based on a design value and the second initial position of the second eccentricity measuring head, the focal plane of the second eccentricity measuring head overlaps with a paraxial region of the second lens surface. A second head origin position calculation recording step of calculating a height position of the second eccentricity measuring head and recording this as a second origin position;
Based on the second origin position of the second eccentricity measuring head and the design value of the distance from the paraxial center of curvature of the lens surface to be examined to the second lens surface, the second eccentricity The measurement head height position of the measurement head is calculated, and the second head measurement position adjustment step for moving the second eccentric measurement head to the calculated measurement height position is performed in this order. It is characterized by that.

本発明に係る偏芯測定用ヘッドの高さ位置調整方法において、前記両ヘッド初期位置記録ステップにおける前記第1および第2の偏芯測定用ヘッドの相対的な高さ調整は、前記第1の偏芯測定用ヘッドにより該第1の偏芯測定用ヘッドの前記焦点面に結像された前記指標の像が、前記第2の偏芯測定用ヘッドの前記結像光学系を介して該第2の偏芯測定用ヘッドの前記撮像面上に結像されるようにして行うことができる。   In the method for adjusting the height position of the eccentricity measuring head according to the present invention, the relative height adjustment of the first and second eccentricity measuring heads in the initial position recording step of both the heads is performed by the first method. An image of the index imaged on the focal plane of the first eccentricity measuring head by the eccentricity measuring head is transmitted through the imaging optical system of the second eccentricity measuring head. The image can be formed on the imaging surface of the eccentricity measuring head 2.

また、前記第1ヘッド原点位置記録ステップにおける前記第1の偏芯測定用ヘッドの高さ調整は、該第1の偏芯測定用ヘッドから前記第1レンズ面に照射され該第1レンズ面から前記第1の偏芯測定用ヘッドに戻る反射光によって、該第1の偏芯測定用ヘッドの前記撮像面に前記指標の像が結像されるようにして行うことができる。   In addition, the height adjustment of the first eccentricity measuring head in the first head origin position recording step is performed by irradiating the first lens surface from the first eccentricity measuring head. The reflected image returning to the first eccentricity measuring head can be performed so that the index image is formed on the imaging surface of the first eccentricity measuring head.

本発明においては、第1の偏芯測定用ヘッドが基台の上方に配置され、第2の偏芯測定用ヘッドが基台の下方に配置される場合を主に想定しているが、そのような態様に限定するものではない。第1の偏芯測定用ヘッドが基台の下方に配置され、第2の偏芯測定用ヘッドが基台の上方に配置される態様や、第1および第2の偏芯測定用ヘッドが基台を挟んで、基台の左右両側にそれぞれ配置される態様も含むものである。なお、第1および第2の偏芯測定用ヘッドが基台の左右両側にそれぞれ配置される態様における高さ調整とは、左右方向の位置調整を意味する。   In the present invention, it is mainly assumed that the first eccentricity measuring head is disposed above the base and the second eccentricity measuring head is disposed below the base. It is not limited to such an embodiment. A mode in which the first eccentricity measuring head is arranged below the base and the second eccentricity measuring head is arranged above the base, and the first and second eccentricity measuring heads are based on A mode in which the base is arranged on both the left and right sides of the base is also included. In addition, the height adjustment in the aspect in which the first and second eccentricity measuring heads are respectively arranged on the left and right sides of the base means position adjustment in the left-right direction.

本発明に係る偏芯測定用ヘッドの高さ位置調整方法によれば、第2の偏芯測定用ヘッドにおいて高さ位置調整の基準となる原点位置(第2原点位置)を、第1の偏芯測定用ヘッドの移動量に基づいて算定することができるので、基台が障害となって、このような原点位置に第2の偏芯測定用ヘッドの焦点面を合わせることができないような場合でも、第2の偏芯測定用ヘッドの測定時の高さ位置調整を、容易かつ高精度に行うことが可能となる。   According to the height position adjusting method for the eccentricity measuring head according to the present invention, the origin position (second origin position) that serves as a reference for height position adjustment in the second eccentricity measuring head is set to the first deviation measuring position. Since it can be calculated based on the amount of movement of the center measurement head, the base becomes an obstacle, and the focal plane of the second eccentric measurement head cannot be adjusted to such an origin position. However, it is possible to easily and accurately adjust the height position during measurement of the second eccentricity measuring head.

以下、本発明に係る偏芯測定用ヘッドの高さ位置調整方法の実施形態について、図面を参照しながら詳細に説明する。
まず、本発明を適用する偏芯量測定装置の構成について説明する。図3は本発明を適用する偏芯量測定装置の概略構成図である。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a method for adjusting the height position of an eccentricity measuring head according to the present invention will be described in detail with reference to the drawings.
First, the configuration of an eccentricity measuring device to which the present invention is applied will be described. FIG. 3 is a schematic configuration diagram of an eccentricity measuring apparatus to which the present invention is applied.

図3に示す偏芯量測定装置1は、被検光学素子としてのレンズ体5の各レンズ面の偏芯量を、オートコリメーション法を適用して測定するものであり、第1の偏芯測定用ヘッド(以下「第1測定ヘッド」と称する)10Aおよび第2の偏芯測定用ヘッド(以下「第2測定ヘッド」と称する)10Bと、レンズ体5を回転可能に保持する基台20と、偏芯量を算定するための各種演算等を行う解析演算部30と、第1測定ヘッド10Aおよび第2測定ヘッド10Bを図中上下方向に移動可能に保持するZ軸ステージ40とを備えてなる。   A decentering amount measuring apparatus 1 shown in FIG. 3 measures the decentering amount of each lens surface of a lens body 5 as a test optical element by applying an autocollimation method. Head (hereinafter referred to as “first measurement head”) 10A and second eccentricity measurement head (hereinafter referred to as “second measurement head”) 10B, and a base 20 that rotatably holds the lens body 5; And an analysis calculation unit 30 that performs various calculations for calculating the amount of eccentricity, and a Z-axis stage 40 that holds the first measurement head 10A and the second measurement head 10B movably in the vertical direction in the figure. Become.

上記第1測定ヘッド10Aおよび上記第2測定ヘッド10Bは、上記基台20を挟んで互いに対向するように、第1測定ヘッド10Aが基台20の上方に、第2測定ヘッド10Bが基台20の下方にそれぞれ配置されている。これら第1測定ヘッド10Aおよび第2測定ヘッド10Bは、レンズ体5に照射される光束を出力する光源11と、光源11から出力された光束を通過させる、指標としての十字形状のスリット(以下「レチクル」と称する)を有するレチクル板12と、レチクル板12からの光束を直角に反射するビームスプリッタ13と、入射された光束を平行光束とするコリメータレンズ14と、平行光束を各々の光収束点P,Pに収束せしめる対物レンズ15と、CCDやCMOS等の撮像素子16を搭載した撮像カメラ17とを、それぞれ備えている。 The first measurement head 10 </ b> A and the second measurement head 10 </ b> B are positioned above the base 20 and the second measurement head 10 </ b> B is at the base 20 so that they face each other across the base 20. Are arranged below each. The first measurement head 10A and the second measurement head 10B include a light source 11 that outputs a light beam applied to the lens body 5 and a cross-shaped slit (hereinafter referred to as “an index”) that allows the light beam output from the light source 11 to pass therethrough. Reticle plate 12 having a "reticle"), a beam splitter 13 for reflecting the light beam from the reticle plate 12 at a right angle, a collimator lens 14 for making the incident light beam a parallel light beam, and the parallel light beam for each light convergence point. An objective lens 15 that converges on P 1 and P 2 and an imaging camera 17 equipped with an imaging element 16 such as a CCD or CMOS are provided.

なお、本実施形態においては、上記レチクル板12、上記ビームスプリッタ13、上記コリメータレンズ14、および上記対物レンズ15等により照射用光学系が構成されており、上記対物レンズ15、上記コリメータレンズ14、上記ビームスプリッタ13等により結像用光学系が構成されている。また、上記光収束点Pは、上記第1測定ヘッド10Aの(対物レンズ15の)焦点と一致し、上記光収束点Pは、上記第2測定ヘッド10Bの(対物レンズ15の)焦点と一致しており、第1測定ヘッド10Aおよび第2測定ヘッド10Bは、各々の焦点面(光収束点P,Pがそれぞれ位置する面;図示略)に、上記レチクルの像を結像し得るように構成されている。 In the present embodiment, the reticle plate 12, the beam splitter 13, the collimator lens 14, the objective lens 15 and the like constitute an irradiation optical system. The objective lens 15, the collimator lens 14, The beam splitter 13 and the like constitute an imaging optical system. Further, the light converging point P 1, the first match (the objective lens 15) the focus of the measurement head 10A, the light converging point P 2, the above second measuring head 10B (the objective lens 15) focus The first measurement head 10A and the second measurement head 10B form the image of the reticle on each focal plane (surface on which the light convergence points P 1 and P 2 are respectively located; not shown). It is configured to be able to.

一方、上記レンズ体5は、2枚のレンズ51,52を鏡筒53内に保持してなる。また、被検面としての各レンズ面51a,51b,52a,52bのうち、図中上方から3番目に位置するレンズ面52aについては、その近軸曲率中心Cがかなり下方に位置するため、図3に示すようにレンズ体5が設置された状態では、上記第1測定ヘッド10Aの焦点面にレンズ面52aの近軸曲率中心Cを位置せしめることができない。このため、レンズ面52aの偏芯量については、上記第2測定ヘッド10Bを用いて測定が行われる。ただし、基台20の高さ方向の長さは、第2測定ヘッド10Bの焦点距離よりも長く構成されており、このため、基台20にレンズ体5が設置された状態において、第2測定ヘッド10Bの焦点面にレンズ面52aの近軸曲率中心Cが位置するように第2測定ヘッド10Bを移動しようとしても、基台20が障害となってできないようになっている。 On the other hand, the lens body 5 is formed by holding two lenses 51 and 52 in a lens barrel 53. Furthermore, each lens surface 51a of the object surface, 51b, 52a, among the 52 b, for the lens surface 52a located third from the top in the figure, since its paraxial curvature center C 3 is located considerably below, in a state where the lens body 5 is installed as shown in FIG. 3, it can not be allowed to position the paraxial curvature center C 3 of the focal plane on the lens surface 52a of the first measurement head 10A. Therefore, the amount of eccentricity of the lens surface 52a is measured using the second measurement head 10B. However, the length in the height direction of the base 20 is configured to be longer than the focal length of the second measurement head 10B. For this reason, in the state where the lens body 5 is installed on the base 20, the second measurement is performed. if you try to move the second measuring head 10B so as to position the paraxial curvature center C 3 of the lens surface 52a on the focal plane of the head 10B, base 20 is prevented Deki an obstacle.

上記基台20は、上記レンズ体5が載置される載置部材21と、この載置部材21を支持するXY軸ステージ22および回転ステージ23とを備えてなり、支持部24を介して上記Z軸ステージ40に支持されている。XY軸ステージ22は、載置部材21に載置されたレンズ体5の光軸Bと、第1測定ヘッド10Aおよび第2測定ヘッド10Bの各光軸Z,Zとの位置調整を行う際に用いられるものであり、載置部材21に載置されたレンズ体5を、上記第1測定ヘッド10Aおよび上記第2測定ヘッド10Bの各光軸Z,Zと略直交する面内において移動し得るように構成されている。また、回転ステージ23は、載置部材21に載置されたレンズ体5を、図示した回転軸Aを中心として回転させ得るように構成されている。さらに、XY軸ステージ22および回転ステージ23には、載置部材21に載置されたレンズ体5を図中下方(第2測定ヘッド10B側)より観察し得るようにするための窓部25が設けられている。 The base 20 includes a mounting member 21 on which the lens body 5 is mounted, and an XY axis stage 22 and a rotary stage 23 that support the mounting member 21. Supported by the Z-axis stage 40. The XY axis stage 22 adjusts the position of the optical axis B of the lens body 5 placed on the placement member 21 and the optical axes Z 1 and Z 2 of the first measurement head 10A and the second measurement head 10B. The lens body 5 mounted on the mounting member 21 is used in the case of the in-plane substantially orthogonal to the optical axes Z 1 and Z 2 of the first measurement head 10A and the second measurement head 10B. It is comprised so that it can move in. Further, the rotary stage 23 is configured to be able to rotate the lens body 5 placed on the placement member 21 around the illustrated rotation axis A. Further, the XY axis stage 22 and the rotary stage 23 have a window portion 25 for allowing the lens body 5 placed on the placement member 21 to be observed from below (the second measurement head 10B side) in the figure. Is provided.

なお、上記載置部材21としては、その上方端面縁部においてレンズ体5を支持する円筒形状のものを用いてもよいが、本願出願人により既に特許庁に対し開示されている特願2006−157198号明細書(以下「特許文献3」と称する)の図3に示すような、Vブロックと回転円板よりなるチャック機構を用いてもよい。   The mounting member 21 may be a cylindrical member that supports the lens body 5 at the upper end surface edge, but Japanese Patent Application No. 2006 already disclosed to the Patent Office by the applicant of the present application. A chuck mechanism composed of a V block and a rotating disk as shown in FIG. 3 of the specification of 157198 (hereinafter referred to as “Patent Document 3”) may be used.

上記解析演算部30は、測定の際に撮像された各画像の解析等を行う、コンピュータ等からなる解析手段としての解析装置31と、解析結果や各画像等を表示する画像表示装置32と、解析装置31に対する各種入力を行うための入力装置33とを備えてなる。   The analysis operation unit 30 performs analysis of each image captured at the time of measurement, an analysis device 31 as an analysis unit including a computer, an image display device 32 that displays an analysis result, each image, and the like, An input device 33 for performing various inputs to the analysis device 31 is provided.

上記Z軸ステージ40は、基部41と、この基部41に立設されたガイド部42と、このガイド部42に沿って図中上下方向に移動可能に設けられ、上記第1測定ヘッド10Aおよび上記第2測定ヘッド10Bそれぞれを保持する可動部43Aおよび43Bとを備えてなる。このZ軸ステージ40は、上記レンズ体5の偏芯量を測定する際に、上記第1測定ヘッド10Aまたは上記第2測定ヘッド10Bの焦点面に、上記各レンズ面51a,51b,52a,52bのうち測定対象となる被検レンズ面の近軸曲率中心が位置するように(例えば、レンズ面52aの偏芯量を測定する場合には、第2測定ヘッド10Bの焦点面に近軸曲率中心Cが位置するように)、第1測定ヘッド10Aおよび第2測定ヘッド10Bの高さ位置(第1測定ヘッド10Aおよび第2測定ヘッド10Bの各光軸Z,Z方向の位置)を調整するようになっている。 The Z-axis stage 40 is provided with a base 41, a guide part 42 standing on the base part 41, and movable along the guide part 42 in the vertical direction in the figure. It comprises movable parts 43A and 43B for holding the second measuring head 10B. The Z-axis stage 40 has the lens surfaces 51a, 51b, 52a, 52b on the focal plane of the first measurement head 10A or the second measurement head 10B when measuring the amount of eccentricity of the lens body 5. The paraxial curvature center of the lens surface to be measured is located (for example, when measuring the amount of eccentricity of the lens surface 52a, the paraxial curvature center on the focal plane of the second measuring head 10B). C 3 as is located), the height position of the first measurement head 10A and the second measuring head 10B (the optical axis Z 1 of the first measurement head 10A and the second measuring head 10B, Z 2 direction position) It comes to adjust.

なお、偏芯量の測定に際しては、上記第1測定ヘッド10Aおよび上記第2測定ヘッド10Bの各光軸Z,Zと、上記レンズ体5の光軸Bと、上記基台20(回転ステージ23の)の回転軸Aとが互いに一致するように調整されることが好ましいが、これらが互いに一致しない場合でも測定は可能である。各軸が一致しない場合の測定手法については、前掲の特許文献2に詳述されている。 In measuring the eccentricity, the optical axes Z 1 and Z 2 of the first measurement head 10A and the second measurement head 10B, the optical axis B of the lens body 5, and the base 20 (rotation) It is preferable to adjust the rotation axis A of the stage 23 so that they coincide with each other, but measurement is possible even when they do not coincide with each other. The measurement technique used when the axes do not match is described in detail in the above-mentioned Patent Document 2.

次に、本発明の一実施形態に係る偏芯測定用ヘッドの高さ位置調整方法について説明する。図1は本発明の一実施形態に係る偏芯測定用ヘッドの高さ位置調整方法の概要を示す模式図であり、図2はその手順を示すフローチャートである。   Next, a method for adjusting the height position of the eccentricity measuring head according to an embodiment of the present invention will be described. FIG. 1 is a schematic diagram showing an outline of a height position adjusting method for an eccentricity measuring head according to an embodiment of the present invention, and FIG. 2 is a flowchart showing the procedure thereof.

なお、上記基台20に上記レンズ体5を設置した際に行われる、上記第1測定ヘッド10Aおよび上記第2測定ヘッド10Bの各光軸Z,Z、上記レンズ体5の光軸B、および上記基台20の回転軸Aの相互間の位置調整については説明を省略する。また、以下では、上記レンズ面52aを被検レンズ面としてその偏芯量を、上記第2測定ヘッド10Bを用いて測定する場合の、該第2測定ヘッド10Bの高さ位置調整を例にとって説明する。 The optical axes Z 1 and Z 2 of the first measurement head 10A and the second measurement head 10B, and the optical axis B of the lens body 5, which are performed when the lens body 5 is installed on the base 20, respectively. The description of the positional adjustment between the rotation axes A of the base 20 is omitted. In the following description, the height position adjustment of the second measurement head 10B in the case where the lens surface 52a is the test lens surface and the amount of decentering is measured using the second measurement head 10B will be described as an example. To do.

〈1〉レンズ体5が基台20に載置保持されていない状態(図1の左側に示す状態)において、第1測定ヘッド10Aの焦点面と、第2測定ヘッド10Bの焦点面とが互いに重なるように、第1および第2測定ヘッド10A,10Bの相対的な高さ調整を行い、この高さ調整が完了した時点における第1および第2測定ヘッド10A,10Bの各高さ位置を、それぞれの初期位置(第1初期位置および第2初期位置)として記録する(両ヘッド初期位置記録ステップ)。   <1> In a state where the lens body 5 is not placed and held on the base 20 (a state shown on the left side of FIG. 1), the focal plane of the first measurement head 10A and the focal plane of the second measurement head 10B are mutually The relative height adjustment of the first and second measurement heads 10A and 10B is performed so as to overlap, and the height positions of the first and second measurement heads 10A and 10B at the time when the height adjustment is completed are Recording is performed as respective initial positions (first initial position and second initial position) (both head initial position recording step).

具体的には、まず、第1測定ヘッド10Aを最下点まで下げ(図2のステップS1)、このときの第1測定ヘッド10Aの高さ位置を、その初期位置(第1初期位置)OP1として記録する(図2のステップS2)。次いで、第1および第2測定ヘッド10A,10Bの各焦点面が互いに重なるように第2測定ヘッド10Bの高さを調整し(図2のステップS3)、このときの第2測定ヘッド10Bの高さ位置を、その初期位置(第2初期位置)OP2として記録する(図2のステップS4)。 Specifically, first, the first measurement head 10A is lowered to the lowest point (step S1 in FIG. 2), and the height position of the first measurement head 10A at this time is set to its initial position (first initial position) O. Recorded as P1 (step S2 in FIG. 2). Next, the height of the second measurement head 10B is adjusted so that the focal planes of the first and second measurement heads 10A and 10B overlap each other (step S3 in FIG. 2), and the height of the second measurement head 10B at this time is adjusted. The position is recorded as its initial position (second initial position) OP2 (step S4 in FIG. 2).

なお、第1初期位置OP1に設置された第1測定ヘッド10Aに対する第2測定ヘッド10Bの高さ調整は、第1測定ヘッド10Aによりその焦点面に結像されたレチクル像を、第2測定ヘッド10Bを介して観察し、このレチクル像が第2測定ヘッド10Bの撮像面上に結像されるように、第2測定ヘッド10Bを移動させながら行うことができる。 Note that the height adjustment of the second measurement head 10B with respect to the first measurement head 10A installed at the first initial position OP1 is performed by using the second measurement for the reticle image formed on the focal plane by the first measurement head 10A. Observation can be performed through the head 10B, and the second measurement head 10B can be moved so that the reticle image is formed on the imaging surface of the second measurement head 10B.

〈2〉次に、レンズ体5が基台20に載置保持された状態(図1の右側に示す状態)において、第1測定ヘッド10Aの焦点面が、レンズ体5の第1レンズ面(本実施形態では、レンズ面51a)の近軸領域(以下「レンズ体5の表面」と称することがある)と重なるように、該第1測定ヘッド10Aの高さ調整を行い、この高さ調整が完了した時点における該第1測定ヘッド10Aの高さ位置をその原点位置(第1原点位置)Oとして記録する(第1ヘッド原点位置記録ステップ)。 <2> Next, in a state where the lens body 5 is placed and held on the base 20 (a state shown on the right side of FIG. 1), the focal plane of the first measurement head 10A is the first lens surface of the lens body 5 ( In the present embodiment, the height of the first measurement head 10A is adjusted so as to overlap with the paraxial region of the lens surface 51a) (hereinafter sometimes referred to as “the surface of the lens body 5”), and this height adjustment is performed. Is recorded as the origin position (first origin position) O 1 (first head origin position recording step).

具体的には、レンズ体5を基台20に載置保持した後(図2のステップS5)、レンズ体5の全長D(図1参照)を設計値より算定する(図2のステップS6)。そして、第1測定ヘッド10Aを移動させてその焦点面をレンズ体5の表面に合わせ、このときの第1測定ヘッド10Aの高さ位置を、その原点位置Oとして記録する(図2のステップS7)。 Specifically, after the lens body 5 is placed and held on the base 20 (step S5 in FIG. 2), the total length D L (see FIG. 1) of the lens body 5 is calculated from the design value (step S6 in FIG. 2). ). Then, the first measurement head 10A is moved so that its focal plane is aligned with the surface of the lens body 5, and the height position of the first measurement head 10A at this time is recorded as the origin position O 1 (step in FIG. 2). S7).

なお、このときの第1測定ヘッド10Aの高さ調整は、以下のようにして行うことができる。まず、第1測定ヘッド10Aからレンズ面51aに測定光束を照射し、レンズ面51aからの反射光を第1測定ヘッド10Aにより取り込む。次に、第1測定ヘッド10Aの撮像カメラ17により撮像される画像の状態を観察しながら、第1測定ヘッド10Aの高さを調整する。第1測定ヘッド10Aの焦点面がレンズ面51aの近軸領域と重なると、レンズ面51aからの反射光によって第1測定ヘッド10Aの撮像面に、通常観察されるレチクル像よりも明るく大きなレチクル像(測定時には不要となる像)が結像されるので、このレチクル像が観察されるように第1測定ヘッド10Aの高さ位置を調整することができる。   The height adjustment of the first measurement head 10A at this time can be performed as follows. First, the measurement light beam is irradiated from the first measurement head 10A to the lens surface 51a, and the reflected light from the lens surface 51a is captured by the first measurement head 10A. Next, the height of the first measurement head 10A is adjusted while observing the state of the image captured by the imaging camera 17 of the first measurement head 10A. When the focal plane of the first measurement head 10A overlaps the paraxial region of the lens surface 51a, the reticle image brighter and larger than the reticle image normally observed on the imaging surface of the first measurement head 10A by the reflected light from the lens surface 51a. Since an image that is unnecessary during measurement is formed, the height position of the first measurement head 10A can be adjusted so that the reticle image is observed.

〈3〉次いで、第1測定ヘッド10Aの上記初期位置OP1と上記原点位置Oとの距離の差分値、レンズ体5の所定の第2レンズ面(本実施形態では、レンズ面52bとする)からレンズ面51aまでの距離の設計値(本実施形態では、レンズ体5の全長Dと一致する)、および第2測定ヘッド10Bの上記初期位置OP2に基づき、第2測定ヘッド10Bの焦点面がレンズ面52bの近軸領域(以下「レンズ体5の裏面」と称することがある)と重なるときの第2測定ヘッド10Bの高さ位置を算定し、これを第2測定ヘッド10Bの原点位置(第2原点位置)Oとして記録する(第2ヘッド原点位置算定記録ステップ)。 <3> Next, in the initial position O P1 and the origin position difference value of the distance between O 1, the predetermined second lens surface of the lens body 5 (embodiment of the first measuring head 10A, a lens surface 52b design value of the distance to the lens surface 51a of) (in this embodiment, coincides with the total length D L of the lens body 5), and on the basis of the initial position O P2 of the second measuring head 10B, the second measuring head 10B The height position of the second measuring head 10B when the focal plane overlaps the paraxial region of the lens surface 52b (hereinafter sometimes referred to as “the back surface of the lens body 5”) is calculated, and this is calculated for the second measuring head 10B. Recording is performed as an origin position (second origin position) O 2 (second head origin position calculation recording step).

具体的には、まず、第1測定ヘッド10Aの初期位置OP1と原点位置Oとの距離の差分値、すなわち、初期位置OP1から原点位置Oまでの第1測定ヘッド10Aの位置変化量ΔH(=O−OP1)を算定し(図2のステップS8)、次に、この位置変化量ΔH、第2測定ヘッド10Bの初期位置OP2、レンズ体5の全長Dに基づき、第2測定ヘッド10Bの原点位置O(=OP1+ΔH−D)を算定する(図2のステップS9)。 Specifically, first, the difference value of the distance and the initial position O P1 of the first measuring head 10A as an origin position O 1, i.e., the position change of the first measurement head 10A from the initial position O P1 to the origin position O 1 the amount ΔH 1 (= O 1 -O P1 ) was calculated (step S8 in FIG. 2), then the change in position [Delta] H 1, the total length of the initial position O P2, the lens body 5 of the second measuring head 10B D L the basis, calculates the origin position O 2 of the second measuring head 10B (= O P1 + ΔH 1 -D L) ( step S9 in FIG. 2).

〈4〉次に、第2測定ヘッド10Bの原点位置Oと、被検レンズ面(本実施形態では、レンズ面52a)の近軸曲率中心Cからレンズ面52bまでの距離の設計値D(図1参照)とに基づき、第2測定ヘッド10Bの測定時高さ位置Om2(=O−D)を算定し、この算定された測定時高さ位置に第2測定ヘッド10Bを移動する(図2のステップS10;第2ヘッド測定時位置調整ステップ)。 <4> Next, the origin position O 2 of the second measuring head 10B, (in the present embodiment, the lens surface 52a) subject lens surface design value D of the distance from the paraxial curvature center C 3 to the lens surface 52b Based on R (see FIG. 1), the measurement height position O m2 (= O 2 −D R ) of the second measurement head 10B is calculated, and the second measurement head 10B is calculated at the calculated measurement height position. (Step S10 in FIG. 2; second head measurement position adjustment step).

以上の手順により、レンズ面52aを被検面とする際の第2測定ヘッド10Bの高さ位置調整が終了し、以下、第2測定ヘッド10Bを用いてレンズ面52aの偏芯量の測定が行われる。なお、測定手順については、前掲の特許文献3に詳述されており、説明は省略する。   With the above procedure, the height position adjustment of the second measurement head 10B when the lens surface 52a is used as the test surface is completed. Hereinafter, the eccentricity of the lens surface 52a is measured using the second measurement head 10B. Done. The measurement procedure is described in detail in the above-mentioned Patent Document 3, and the description is omitted.

このように本実施形態に係る偏芯測定用ヘッドの高さ位置調整方法によれば、第2測定ヘッド10Bの原点位置Oを、第1測定ヘッド10Aの移動量に基づいて算定することができるので、基台20が障害となって、このような原点位置Oに第2測定ヘッド10Bの焦点面を合わせることができないような場合でも、第2測定ヘッド10Bの測定時の高さ位置調整を、容易かつ高精度に行うことが可能となる。 According to the height adjustment method of the eccentricity measuring head according to the present embodiment, the origin position O 2 of the second measuring head 10B, be calculated based on the amount of movement of the first measuring head 10A Therefore, even when the base 20 becomes an obstacle and the focal plane of the second measurement head 10B cannot be aligned with the origin position O 2 , the height position at the time of measurement of the second measurement head 10B. Adjustment can be performed easily and with high accuracy.

なお、本発明の偏芯量測定装置としては、上記実施形態のものに限られるものではなく、種々の態様の変更が可能である。   The eccentricity measuring device of the present invention is not limited to the above embodiment, and various modifications can be made.

例えば、上記実施形態では、指標として十字形状のレチクルを用いているが、これに替えて、ピンホール等の他の形状のものを指標として用いることも可能である。   For example, in the above-described embodiment, a cross-shaped reticle is used as an index. However, instead of this, another shape such as a pinhole can be used as an index.

また、上記実施形態においては、第1測定ヘッド10Aの原点位置Oを求める際に反射面として利用する第1レンズ面をレンズ面51aとし、第2測定ヘッド10Bの原点位置Oを求める際の基準となる第2レンズ面をレンズ面52bとしているが、第1レンズ面をレンズ面51a以外の他の面(例えば、レンズ面51b)とすることや、第2レンズ面をレンズ面52bの以外の他の面(例えば、レンズ面52a)することも可能である。 In the above embodiment, the first lens surface to use as a reflective surface when obtaining the origin position O 1 of the first measuring head 10A and the lens surface 51a, when determining the origin position O 2 of the second measuring head 10B The lens surface 52b is used as a reference for the second lens surface. However, the first lens surface is a surface other than the lens surface 51a (for example, the lens surface 51b), or the second lens surface is the lens surface 52b. Other surfaces (for example, the lens surface 52a) may be used.

一実施形態に係る高さ位置調整方法の概要を示す模式図The schematic diagram which shows the outline | summary of the height position adjustment method which concerns on one Embodiment. 一実施形態に係る高さ位置調整方法の手順を示すフローチャートThe flowchart which shows the procedure of the height position adjustment method which concerns on one Embodiment. 本発明を適用した偏芯量測定装置の概略構成図Schematic configuration diagram of an eccentricity measuring device to which the present invention is applied

符号の説明Explanation of symbols

1 偏芯量測定装置
5 レンズ体(被検光学素子)
10A 第1の偏芯測定用ヘッド(第1測定ヘッド)
10B 第2の偏芯測定用ヘッド(第2測定ヘッド)
11 光源
12 レチクル板
13 ビームスプリッタ
14 コリメータレンズ
15 対物レンズ
16 撮像素子
17 撮像カメラ
20 基台
21 載置部材
22 XY軸ステージ
23 回転ステージ
24 支持部
25 窓部
30 解析演算部
31 解析装置
32 画像表示装置
33 入力装置
40 Z軸ステージ
41 基部
42 ガイド部
43A,43B 可動部
51,52 レンズ
51a,51b,52a,52b レンズ面
53 鏡筒
P1 初期位置(第1初期位置)
原点位置(第1原点位置)
P2 初期位置(第2初期位置)
原点位置(第2原点位置)
m2 測定時高さ位置
,P 光収束点
,Z,B 光軸
A 回転軸
近軸曲率中心
DESCRIPTION OF SYMBOLS 1 Eccentricity measuring apparatus 5 Lens body (test optical element)
10A First eccentricity measuring head (first measuring head)
10B Second eccentric measurement head (second measurement head)
DESCRIPTION OF SYMBOLS 11 Light source 12 Reticle plate 13 Beam splitter 14 Collimator lens 15 Objective lens 16 Imaging element 17 Imaging camera 20 Base 21 Mounting member 22 XY axis stage 23 Rotation stage 24 Support part 25 Window part 30 Analytical calculation part 31 Analysis apparatus 32 Image display Device 33 Input device 40 Z-axis stage 41 Base portion 42 Guide portion 43A, 43B Movable portion 51, 52 Lens 51a, 51b, 52a, 52b Lens surface 53 Lens barrel OP1 initial position (first initial position)
O 1 origin position (first origin position)
OP2 initial position (second initial position)
O 2 origin position (second origin position)
Om2 measurement height position P 1 , P 2 Light convergence point Z 1 , Z 2 , B Optical axis A Rotation axis C 3 Paraxial center of curvature

Claims (3)

複数のレンズ面を有してなる被検光学素子が載置保持される基台を挟んで、該基台の一方の側に位置する第1の偏芯測定用ヘッドと、該基台の他方の側に位置する第2の偏芯測定用ヘッドとが、互いに対向するように配置されてなり、
前記第1の偏芯測定用ヘッドおよび前記第2の偏芯測定用ヘッドは、前記基台に載置保持された前記被検光学素子に対し、光源からの光を所定形状の指標を介して照射し、該指標の像を焦点面に結像させる照射用光学系と、近軸曲率中心が前記焦点面に位置するレンズ面からの反射光または透過光を撮像面上に導き該反射光または透過光により形成される前記指標の像を撮像面上に結像させる結像用光学系と、をそれぞれ備えてなる偏芯量測定装置において、
前記第2の偏芯測定用ヘッドの測定対象となる所定の被検レンズ面の近軸曲率中心と、該第2の偏芯測定用ヘッドの前記焦点面とが互いに重なるように、該第2の偏芯測定用ヘッドを測定時高さ位置に移動する偏芯測定用ヘッドの高さ位置調整方法であって、
前記被検光学素子が前記基台に載置保持されていない状態において、前記第1の偏芯測定用ヘッドの前記焦点面と、前記第2の偏芯測定用ヘッドの前記焦点面とが互いに重なるように、これら第1および第2の偏芯測定用ヘッドの相対的な高さ調整を行い、この高さ調整が完了した時点における該第1および第2の偏芯測定用ヘッドの各高さ位置を第1および第2初期位置としてそれぞれ記録する両ヘッド初期位置記録ステップと、
前記被検光学素子が前記基台に載置保持された状態において、前記第1の偏芯測定用ヘッドの前記焦点面が、前記被検光学素子の所定の第1レンズ面の近軸領域と重なるように、該第1の偏芯測定用ヘッドの高さ調整を行い、この高さ調整が完了した時点における該第1の偏芯測定用ヘッドの高さ位置を第1原点位置として記録する第1ヘッド原点位置記録ステップと、
前記第1の偏芯測定用ヘッドの前記第1初期位置と前記第1原点位置との距離の差分値、前記被検光学素子の所定の第2レンズ面から前記第1レンズ面までの距離の設計値、および前記第2の偏芯測定用ヘッドの前記第2初期位置に基づき、前記第2の偏芯測定用ヘッドの前記焦点面が前記第2レンズ面の近軸領域と重なるときの該第2の偏芯測定用ヘッドの高さ位置を算定し、これを第2原点位置として記録する第2ヘッド原点位置算定記録ステップと、
前記第2の偏芯測定用ヘッドの前記第2原点位置と、前記被検レンズ面の前記近軸曲率中心から前記第2レンズ面までの距離の設計値とに基づき、前記第2の偏芯測定用ヘッドの前記測定時高さ位置を算定し、この算定された測定時高さ位置に前記第2の偏芯測定用ヘッドを移動する第2ヘッド測定時位置調整ステップと、
をこの順に行うことを特徴とする偏芯測定用ヘッドの高さ位置調整方法。
A first eccentricity measuring head located on one side of the base, with the base on which the optical element to be tested having a plurality of lens surfaces is placed and held, and the other of the base And the second eccentricity measuring head located on the side of the
The first eccentricity measuring head and the second eccentricity measuring head transmit light from a light source to the test optical element placed and held on the base via an index of a predetermined shape. Irradiation optical system that irradiates and forms an image of the index on the focal plane, and the reflected light or transmitted light from the lens surface whose paraxial curvature center is located on the focal plane is guided onto the imaging surface. In an eccentricity measuring device each comprising an imaging optical system that forms an image of the index formed by transmitted light on an imaging surface,
The second paraxial curvature center of a predetermined lens surface to be measured by the second eccentricity measuring head and the focal plane of the second eccentricity measuring head overlap each other. A method for adjusting the height position of the eccentricity measuring head, wherein the eccentricity measuring head is moved to a height position during measurement,
In a state where the test optical element is not placed and held on the base, the focal plane of the first eccentricity measuring head and the focal plane of the second eccentricity measuring head are mutually The relative height adjustments of the first and second eccentricity measuring heads are performed so as to overlap, and the heights of the first and second eccentricity measuring heads at the time when the height adjustment is completed. Both head initial position recording steps for recording the position as the first and second initial positions respectively;
In a state where the test optical element is placed and held on the base, the focal plane of the first decentering measurement head is a paraxial region of a predetermined first lens surface of the test optical element. The height of the first eccentricity measuring head is adjusted so as to overlap, and the height position of the first eccentricity measuring head when the height adjustment is completed is recorded as the first origin position. A first head origin position recording step;
The difference value of the distance between the first initial position of the first eccentricity measuring head and the first origin position, and the distance from the predetermined second lens surface of the optical element to be tested to the first lens surface. Based on a design value and the second initial position of the second eccentricity measuring head, the focal plane of the second eccentricity measuring head overlaps with a paraxial region of the second lens surface. A second head origin position calculation recording step of calculating a height position of the second eccentricity measuring head and recording this as a second origin position;
Based on the second origin position of the second eccentricity measuring head and the design value of the distance from the paraxial center of curvature of the lens surface to be examined to the second lens surface, the second eccentricity A second head measurement position adjustment step of calculating the measurement height position of the measurement head and moving the second eccentricity measurement head to the calculated measurement height position;
A method for adjusting the height position of the eccentricity measuring head, characterized in that:
前記両ヘッド初期位置記録ステップにおける前記第1および第2の偏芯測定用ヘッドの相対的な高さ調整は、前記第1の偏芯測定用ヘッドにより該第1の偏芯測定用ヘッドの前記焦点面に結像された前記指標の像が、前記第2の偏芯測定用ヘッドの前記結像光学系を介して該第2の偏芯測定用ヘッドの前記撮像面上に結像されるようにして行われることを特徴とする請求項1記載の偏芯測定用ヘッドの高さ位置調整方法。   The relative height adjustment of the first and second eccentricity measuring heads in the both head initial position recording steps is performed by the first eccentricity measuring head using the first eccentricity measuring head. The index image formed on the focal plane is formed on the imaging surface of the second eccentricity measuring head via the imaging optical system of the second eccentricity measuring head. The method for adjusting the height position of the eccentricity measuring head according to claim 1, wherein the method is performed as described above. 前記第1ヘッド原点位置記録ステップにおける前記第1の偏芯測定用ヘッドの高さ調整は、該第1の偏芯測定用ヘッドから前記第1レンズ面に照射され該第1レンズ面から前記第1の偏芯測定用ヘッドに戻る反射光によって、該第1の偏芯測定用ヘッドの前記撮像面に前記指標の像が結像されるようにして行われることを特徴とする請求項1または2記載の偏芯測定用ヘッドの高さ位置調整方法。
The height adjustment of the first eccentricity measuring head in the first head origin position recording step is performed by irradiating the first lens surface from the first eccentricity measuring head to the first lens surface from the first lens surface. 2. The method according to claim 1, wherein the index image is formed on the imaging surface of the first eccentricity measuring head by reflected light returning to the first eccentricity measuring head. 3. A method for adjusting the height position of the eccentricity measuring head according to 2.
JP2007148993A 2007-06-05 2007-06-05 Method for adjusting height position of eccentricity measuring head Withdrawn JP2008304200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007148993A JP2008304200A (en) 2007-06-05 2007-06-05 Method for adjusting height position of eccentricity measuring head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007148993A JP2008304200A (en) 2007-06-05 2007-06-05 Method for adjusting height position of eccentricity measuring head

Publications (1)

Publication Number Publication Date
JP2008304200A true JP2008304200A (en) 2008-12-18

Family

ID=40233066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007148993A Withdrawn JP2008304200A (en) 2007-06-05 2007-06-05 Method for adjusting height position of eccentricity measuring head

Country Status (1)

Country Link
JP (1) JP2008304200A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010019832A (en) * 2008-06-10 2010-01-28 Fujinon Corp Eccentricity amount measuring method
JP2010282151A (en) * 2009-06-08 2010-12-16 Fujifilm Corp Method and device for eccentricity adjustment and assembly of optical element
CN109855844A (en) * 2019-03-12 2019-06-07 苏州大学 A kind of optical lens centre deviation measuring device and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010019832A (en) * 2008-06-10 2010-01-28 Fujinon Corp Eccentricity amount measuring method
JP2010282151A (en) * 2009-06-08 2010-12-16 Fujifilm Corp Method and device for eccentricity adjustment and assembly of optical element
CN109855844A (en) * 2019-03-12 2019-06-07 苏州大学 A kind of optical lens centre deviation measuring device and method

Similar Documents

Publication Publication Date Title
JP4943946B2 (en) Eccentricity measuring device
JP4774332B2 (en) Eccentricity measurement method
US7688453B2 (en) Interferometry testing of lenses, and systems and devices for same
JP4947774B2 (en) Light wave interference measuring apparatus and light wave interference measuring method
EP2177870B1 (en) Optical wave interference measuring apparatus
CN102305596B (en) Device and method for controlling rotation error in interference detection of surface shape of spherical surface
JP2007078593A (en) Light wave interference device
JP2010281792A (en) Method and apparatus for measuring aspherical surface object
JP2010117345A (en) Optical wave interference measuring apparatus
JP5798823B2 (en) Abscissa calibration jig and abscissa calibration method for laser interference measuring apparatus
JP6232207B2 (en) Surface shape measuring device
JP3598983B2 (en) Ultra-precision shape measuring method and device
JP2008304200A (en) Method for adjusting height position of eccentricity measuring head
TWI396837B (en) Method for determination of eccentricity
JP3352298B2 (en) Lens performance measuring method and lens performance measuring device using the same
JP2735104B2 (en) Aspherical lens eccentricity measuring apparatus and measuring method
JP2012242085A (en) Measured object holding position correction method of curvature radius measuring instrument and curvature radius measuring instrument
JP2005024505A (en) Device for measuring eccentricity
JP5317619B2 (en) Eccentricity measurement method
JPH11211611A (en) Eccentricity measuring apparatus
JP2005024504A (en) Eccentricity measuring method, eccentricity measuring instrument, and object measured thereby
JP2002005619A (en) Method and device for measuring interference, and object measured thereby
JPH1194700A (en) Measuring device and method for lens
JP2016136120A (en) Shape measurement method and shape measurement apparatus
JP3410902B2 (en) Lens surface eccentricity measuring method and lens surface eccentricity measuring device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100907