JP4196740B2 - Method for applying adhesive to fuel cell separator - Google Patents

Method for applying adhesive to fuel cell separator Download PDF

Info

Publication number
JP4196740B2
JP4196740B2 JP2003164651A JP2003164651A JP4196740B2 JP 4196740 B2 JP4196740 B2 JP 4196740B2 JP 2003164651 A JP2003164651 A JP 2003164651A JP 2003164651 A JP2003164651 A JP 2003164651A JP 4196740 B2 JP4196740 B2 JP 4196740B2
Authority
JP
Japan
Prior art keywords
adhesive
separator
fuel cell
cell separator
inkjet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003164651A
Other languages
Japanese (ja)
Other versions
JP2005005012A (en
Inventor
信雄 吉年
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003164651A priority Critical patent/JP4196740B2/en
Publication of JP2005005012A publication Critical patent/JP2005005012A/en
Application granted granted Critical
Publication of JP4196740B2 publication Critical patent/JP4196740B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は燃料電池用セパレータへの接着剤塗布方法に関する。
【0002】
【従来の技術】
燃料電池、たとえば固体高分子電解質型燃料電池は、膜−電極アッセンブリ(MEA:Membrane-Electrode Assembly )とセパレータとの積層体からなる。MEAを挟んだセパレータ同士は、接着剤によりシールされ、接着される。
特開平11−57575号公報は、シートの所望の領域に接着剤を必要量コーティングする接着剤コーティング技術を開示している。基本原理は、ピエゾ振動板を振動させ液室内の圧力をコントロールし圧力により接着剤を噴射、塗布するインクジェット技術である。
【0003】
【特許文献1】
特開平11−57575号公報
【0004】
【発明が解決しようとする課題】
特開平11−57575号公報は、燃料電池用セパレータへの応用は開示していない。
従来の接着剤塗布方法を燃料電池用セパレータ間のシール、接着に適用するにはつぎの課題がある。
接着剤をセパレータの所望部位に、高精度に塗布でき、その塗布量も管理できなければならない。燃料電池セパレータの接着剤塗布部は、狭小、面の凹凸、膜による接着剤層厚さの変化等があるにかかわらず、リーク不良や接着不良が生じないように塗布し、また、接着剤がガス流路、冷却水流路や、基準となる端面にはみ出さないように塗布しなければならないからである。
また、つぎの条件を満足できることも望まれる。
塗布量による厚み管理だけでなく、多層塗りなどによって、さらに自在に塗布層の厚みを管理できること。
高精度塗布が可能になると、シール面に凹と凸を設けてその部位に高精度に接着剤を塗布してシール性の向上をはかること。
接着剤硬化速度も管理してセルやモジュールの作製時間を短縮すること。
【0005】
本発明の目的は、接着剤をセパレータの所望部位に、高精度に塗布でき、その塗布量も管理できる、燃料電池用セパレータへの接着剤塗布方法を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成する本発明はつぎの通りである。
(1) 膜−電極アッセンブリを挟むセパレータ間、および該セパレータと膜−電極アッセンブリ間が接着剤によりシールされる燃料電池用セパレータへ接着剤を塗布する燃料電池用セパレータへの接着剤塗布方法であって、粘度が5〜50cp、表面張力が20〜55Nm/mの接着剤溶液を、ドットのピッチが3ミクロン以下でかつ1つのドット径が1ミクロン以下のインクジェット装置である超微細インクジェット装置を用いて、前記接着剤溶液をセパレータの表面にインクジェット方式で塗布する燃料電池用セパレータへの接着剤塗布方法。
) 接着剤を多層に塗布し部位によって変わる接着剤層厚さに応じて接着剤層厚さを制御した(1)記載の燃料電池用セパレータへの接着剤塗布方法。
) シール部に、接着されるセパレータの一方に凸部を、他方に凹部を形成し、前記凸部と前記凹部の少なくとも一方の表面に前記接着剤溶液を塗布し、前記凸部を前記凹部に突入させて前記凸部と前記凹部との間を前記接着剤で埋めた(1)記載の燃料電池用セパレータへの接着剤塗布方法。
複数種類の接着剤溶液のそれぞれに超微細インクジェット装置を設け、前記複数種類の接着剤溶液を、それぞれに設けた超微細インクジェット装置から前記セパレータの表面に吐出し、前記セパレータの表面上で混合させて硬化させた(1)記載の燃料電池用セパレータへの接着剤塗布方法。
【0007】
上記(1)〜()の燃料電池用セパレータへの接着剤塗布方法では、ドットのピッチが3ミクロン以下でかつ1つのドット径が1ミクロン以下のインクジェット装置である超微細インクジェット装置を用いて、接着剤層をインクジェット方式で塗布形成するため、ドット間隔、液滴のサイズ等を適宜に制御することにより、燃料電池セパレータの接着剤塗布部に、狭小、面の凹凸、膜による接着剤層厚さの変化等があるにかかわらず、接着剤をセパレータの所望部位に、高精度に塗布でき、その塗布量も管理できる。その結果、リーク不良や接着不良を防止でき、また、接着剤がガス流路、冷却水流路や、基準となる端面にはみ出すことを抑制できる。また、電解質膜に余分な接着剤が付着せず、膜へ悪影響(縮み、変形、変質劣化、膜破れ)を及ぼさず、電極性能への悪影響がないか、または抑制される。
記()の燃料電池用セパレータへの接着剤塗布方法では、接着剤溶液の粘度を5〜50cp、表面張力を20〜55Nm/mに選定したので、円滑なインクジェット塗布が可能になる。
上記()の燃料電池用セパレータへの接着剤塗布方法では、接着剤を多層に塗布したので、塗布層数を適宜に選定することにより塗布層の厚さを自在に管理できる。
上記()の燃料電池用セパレータへの接着剤塗布方法では、シール部に、接着されるセパレータの一方に凸部を、他方に凹部を形成したので、シール部のシール性を向上させることができる。
上記()の燃料電池用セパレータへの接着剤塗布方法では、接着剤層を複数種類の接着剤塗布液の混合により硬化させたので、接着剤硬化速度を早めかつ管理することができる。
【0008】
【発明の実施の形態】
以下に、本発明の燃料電池用セパレータへの接着剤塗布方法を図1〜図6を参照して説明する。
本発明のセパレータが組付けられる燃料電池は、たとえば、固体高分子電解質型燃料電池10である。該燃料電池10は、たとえば燃料電池自動車に搭載される。ただし、自動車以外に用いられてもよい。
【0009】
固体高分子電解質型燃料電池10は、図5、図6に示すように、膜−電極アッセンブリ(MEA:Membrane-Electrode Assembly )とセパレータ18との積層体からなる。膜−電極アッセンブリは、イオン交換膜からなる電解質膜11と、この電解質膜の一面に配置された触媒層12を有する電極(アノード、燃料極)14および電解質膜11の他面に配置された触媒層15を有する電極(カソード、空気極)17とからなる。触媒層12、15とセパレータ18との間には、アノード側、カソード側にそれぞれ拡散層13、16が設けられる。
【0010】
各セルの、アノード側では、水素を水素イオン(プロトン)と電子にする反応が行われ、水素イオンは電解質膜中をカソード側に移動し、カソード側では酸素と水素イオンおよび電子(隣りのMEAのアノードで生成した電子がセパレータを通してくる、またはセル積層方向一端のセルのアノードで生成した電子が外部回路を通して他端のセルのカソードにくる)から水を生成するつぎの反応が行われる。
アノード側:H2 →2H+ +2e-
カソード側:2H+ +2e- +(1/2)O2 →H2
【0011】
図5に示すように、膜−電極アッセンブリとセパレータ18を重ねてセル19を構成し、少なくとも1つのセルからモジュールを構成し、モジュールを積層してセル積層体とし、セル積層体のセル積層方向両端に、ターミナル20、インシュレータ21、エンドプレート22を配置し、セル積層体をセル積層方向に締め付け、セル積層体の外側でセル積層方向に延びる締結部材(たとえば、テンションプレート24)、ボルト・ナット25にて固定して、スタック23を構成する。
【0012】
上記反応を行うために、セパレータ18には、アノード14に燃料ガス(水素)を供給するための燃料ガス流路27が形成され、カソード17に酸化ガス(酸素、通常は空気)を供給するための酸化ガス流路28が形成されている。また、上記反応で生じる熱をとるために、セパレータには冷媒(通常、冷却水)を流すための冷媒流路26も形成されている。
図6において、MEAを挟むセパレータ18間、およびセパレータ18とMEA間は接着剤33により接着されるとともにシールされ、セル19間はゴムガスケット40によりシールされる。
【0013】
セパレータ18は、カーボン、または金属、または金属と樹脂(メタルセパレータと樹脂フレーム)、または導電性を付与された樹脂、の何れか、またはその組合わせ、からなる。図6は、メタルセパレータ(たとえば、ステンレスセパレータ)の場合を示す。ただし、セパレータ18は、メタルセパレータに限るものではない。
【0014】
図1〜図4に示すように、MEAを挟むセパレータ18のMEAに接する方の面(冷媒に接する側の面と反対側の面)には、外周部およびその近傍に、接着剤33が塗布され、セパレータ18同士間、およびセパレータ18とMEAとの間、をシール、接着している。
通常、セパレータ18の接着剤33が塗布される部位は、凹凸があったり、電解質膜11があったりして、接着剤層の厚さは一定ではない。また、図2に示すように、接着剤層の幅はセパレータ18の全周にわたって一定とは限らず、たとば狭幅の部位もあり、狭幅の部位では接着剤層の幅がたとえば50ミクロン程度である場合もある。
このように凹凸、厚さ変化、幅変化、幅狭小の部位があるにもかかわらず、所定のシール性、接着性を確保するために、本発明では、つぎの如く接着剤33が塗布される。
【0015】
すなわち、本発明の燃料電池用セパレータへの接着剤塗布方法は、超微細インクジェット装置50を用いて、接着剤溶液(接着剤33を含む溶液52)をセパレータ18の表面にインクジェット方式で塗布する塗布方法である。
超微細インクジェットでは、ドット34のピッチ(図3のP)は、3ミクロン以下、1つのドット径は1ミクロン以下である。この超微細インクジェットを用いて、各種の接着剤溶液をインクとして吐出することにより、任意の部位に、任意の幅(50ミクロン以下の幅でもよい)のまたは任意の形状の、接着剤層を高精度に形成することができる。接着部以外は接着剤33を塗布しない。
その結果、電解質膜11に余分な接着剤33が付着せず、膜11への悪影響(縮み、変形、変質劣化、膜破れ)を及ぼさず、電極性能への悪影響がないか、または抑制される。また、接着部以外には接着剤を塗布しないので、流路へのはみ出しやセパレータの基準面へのはみ出しが抑制される。
【0016】
これに対し、通常インクジェット装置50を用いて、接着剤溶液(接着剤33を含む溶液52)をセパレータ18の表面にインクジェット方式で塗布する通常インクジェット(本発明に含まず)では、ドット34のピッチ(図3のP)は、20ミクロン以下、1つのドット径は20ミクロン以下である
【0017】
接着剤溶液52は、接着剤溶液52を入れた容器に設けられたヒータにより温度調整されてインクジェット塗布に適する粘度に調整される。さらに詳しくは、接着剤溶液52は、粘度が5〜50cp、表面張力が20〜55Nm/mである。これは、インクジェット塗布を可能とするためである。すなわち、粘度が高すぎるとインクジェットが不可能になり、表面張力が低すぎると滲みを生じたり、表面張力が高すぎるとセパレータ面への塗布が円滑にできなくなったりするので、それらを抑制するためである。ヒータで溶液を加熱して、上記の粘度範囲、表面張力範囲に収まるものも含む。
【0018】
接着剤33を多層に塗布して接着剤塗布厚さを制御してもよい。そうすることによって、部位によって接着剤層厚さが変わる場合、それに容易に対応することができる。
また、シール部(接着剤33が塗布される部分)に、接着されるセパレータ18の一方に凸部35を、他方に凹部36を形成し、凸部35を凹部36に突入させ、凸部35を凹部36との間を接着剤33で埋めるようにしてもよい(ただし、凸部35、凹部36は形成しなくてもよい)。そうすることによって、シール部のシール性が向上される。
【0019】
また、接着剤33が複数種類の接着剤塗布液の混合により硬化するものであってもよい。その場合は、接着剤溶液52が複数種類あり、それぞれにインクジェット装置50、51が設けられる。したがって、接着剤溶液の種類の数だけインクジェット装置が設けられる。そして、セパレータ上に吐出された後、接着剤溶液が互いに混合して硬化する。混合する前は硬化しておらず、したがってインクジェットが可能であり、混合した後化学反応により速やかに硬化する。これによって、接着剤の硬化速度が早められ、セル製造の生産性が向上する。
【0020】
【実施例】
セパレータの接着剤の塗布に、超微細インクジェット方式を採用した。ドットのピッチは3ミクロン以下で、1つのドット径は1ミクロン以下であった。セパレータの接着剤層の幅が50ミクロン以下の狭幅の部分にも、塗布が可能であり、シール部以外へのはみ出しはなかった。その結果、電解質膜に余分な接着剤が付着せず、膜への悪影響(縮み、変形、変質劣化、膜破れなど)が見られなかった。接着剤の種類は2液性(2液混合により硬化するもの)を使用した。すなわち、各ノズルから1種類の液を吐出させ、吐出位置で合わせて2液を混合させ、硬化させた。接着剤層塗布後、もう一方の合わせ用セパレータをセットして、圧着して、接着、シールした。
【0021】
【発明の効果】
請求項1〜請求項の燃料電池用セパレータへの接着剤塗布方法によれば、ドットのピッチが3ミクロン以下でかつ1つのドット径が1ミクロン以下のインクジェット装置である超微細インクジェット装置を用いて、接着剤層をインクジェット方式で塗布形成するため、ドット間隔、液滴のサイズ等を適宜に制御することにより、燃料電池セパレータの接着剤塗布部に、狭小、面の凹凸、膜による接着剤層厚さの変化等があるにかかわらず、接着剤をセパレータの所望部位に、高精度に塗布でき、その塗布量も管理できる。その結果、リーク不良や接着不良を防止でき、また、接着剤がガス流路、冷却水流路や、基準となる端面にはみ出すことを抑制できる。また、電解質膜に余分な接着剤が付着せず、膜へ悪影響(縮み、変形、変質劣化、膜破れ)を及ぼさず、電極性能への悪影響がないか、または抑制される。
請求項の燃料電池用セパレータへの接着剤塗布方法によれば、塗布時の接着剤溶液の粘度を5〜50cp、表面張力を20〜55Nm/mに選定するので、円滑なインクジェット塗布が可能になる。
請求項の燃料電池用セパレータへの接着剤塗布方法によれば、接着剤を多層に塗布するので、塗布層数を適宜に選定することにより塗布層の厚さを自在に管理できる。
請求項の燃料電池用セパレータへの接着剤塗布方法によれば、シール部に、接着されるセパレータの一方に凸部を、他方に凹部を形成するので、シール部のシール性を向上させることができる。
請求項の燃料電池用セパレータへの接着剤塗布方法によれば、複数種類の接着剤塗布液の混合により硬化させるので、接着剤硬化速度を早めかつ管理することができる。
【図面の簡単な説明】
【図1】 本発明の燃料電池用セパレータへの接着剤塗布方法を実行する装置の側面図である。
【図2】 本発明の燃料電池用セパレータの接着剤塗布方法における接着剤塗布領域を斜線を施して示した燃料電池用セパレータの概略正面図である。
【図3】 図2の接着剤塗布領域の一部の拡大図である。
【図4】 凸部のあるシール面と凹部のあるシール面の間を接着剤が埋めている場合のシール部の断面図である。
【図5】 燃料電池スタックの側面図である。
【図6】 図5のスタックの一部の断面図である。
【符号の説明】
10 (固体高分子電解質型)燃料電池
11 電解質膜
12、15 触媒層
13、16 拡散層
14 電極(アノード、燃料極)
17 電極(カソード、空気極)
18 セパレータ
19 セル
20 ターミナル
21 インシュレータ
22 エンドプレート
23 スタック
24 締結部材(テンションプレート)
25 ボルト
26 冷媒流路(冷却水流路)
27 燃料ガス流路
28 酸化ガス流路
33 シール接着剤
34 ドット
35 凸部
36 凹部
40 ゴムガスケット
50 超微細インクジェット装置
51 通常インクジェット装置
52 接着剤溶液
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for applying an adhesive to a fuel cell separator.
[0002]
[Prior art]
2. Description of the Related Art A fuel cell, for example, a solid polymer electrolyte fuel cell includes a laminate of a membrane-electrode assembly (MEA) and a separator. The separators sandwiching the MEA are sealed with an adhesive and bonded.
Japanese Patent Application Laid-Open No. 11-57575 discloses an adhesive coating technique for coating a desired area of a sheet with a required amount of adhesive. The basic principle is an ink jet technique in which the piezoelectric diaphragm is vibrated to control the pressure in the liquid chamber, and the adhesive is jetted and applied by the pressure.
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-57575
[Problems to be solved by the invention]
Japanese Patent Application Laid-Open No. 11-57575 does not disclose application to a fuel cell separator.
There are the following problems in applying the conventional adhesive coating method to sealing and bonding between fuel cell separators.
It is necessary to be able to apply the adhesive to the desired part of the separator with high accuracy and to control the application amount. The adhesive application part of the fuel cell separator is applied so that there is no leakage failure or adhesion failure regardless of narrowness, unevenness of the surface, changes in the adhesive layer thickness due to the film, etc. This is because it must be applied so as not to protrude into the gas flow path, the cooling water flow path, and the reference end face.
It is also desirable that the following conditions be satisfied.
The thickness of the coating layer can be managed more freely by multilayer coating as well as the thickness control by the coating amount.
When high-precision application is possible, provide a concave and convex surface on the seal surface, and apply adhesive with high precision to improve the sealing performance.
Control the adhesive curing speed to shorten the time for cell and module production.
[0005]
An object of the present invention is to provide a method for applying an adhesive to a separator for a fuel cell, which can apply the adhesive to a desired portion of the separator with high accuracy and manage the amount of the adhesive applied.
[0006]
[Means for Solving the Problems]
The present invention for achieving the above object is as follows.
(1) A method of applying an adhesive to a fuel cell separator, in which an adhesive is applied to a separator for a fuel cell in which the membrane-electrode assembly is sandwiched and between the separator and the membrane-electrode assembly is sealed with an adhesive. Then, using an ultrafine ink jet device that is an ink jet device having a viscosity of 5 to 50 cp and a surface tension of 20 to 55 Nm / m, a dot pitch of 3 microns or less and a dot diameter of 1 micron or less. A method of applying an adhesive to a separator for a fuel cell, wherein the adhesive solution is applied to the surface of the separator by an inkjet method.
(2) the adhesive coating method of the fuel cell separator of the adhesive was controlled adhesive layer thickness depending on the adhesive layer thickness vary depending applied site multilayer (1) Symbol placement.
( 3 ) A convex portion is formed on one side of the separator to be bonded to the seal portion, and a concave portion is formed on the other. The adhesive solution is applied to at least one surface of the convex portion and the concave portion, and the convex portion is adhesive application method to a fuel cell separator which is plunged into the recess filled between the concave and the convex portion in the adhesive (1) Symbol placement.
( 4 ) An ultra-fine inkjet device is provided for each of a plurality of types of adhesive solutions, and the plurality of types of adhesive solutions are discharged from the ultra-fine inkjet device provided for each to the surface of the separator, adhesive application methods in cured by mixing (1) SL to the mounting of a fuel cell separator.
[0007]
In the method of applying an adhesive to the fuel cell separator according to the above (1) to ( 3 ) , an ultrafine inkjet device that is an inkjet device having a dot pitch of 3 microns or less and a dot diameter of 1 micron or less is used. In order to apply and form the adhesive layer by the ink jet method , the adhesive layer of the narrow, surface irregularity, film is formed in the adhesive application part of the fuel cell separator by appropriately controlling the dot interval, the size of the droplet, etc. Regardless of the thickness change or the like, the adhesive can be applied to a desired portion of the separator with high accuracy, and the amount of application can be controlled. As a result, leakage failure and adhesion failure can be prevented, and the adhesive can be prevented from protruding to the gas flow path, the cooling water flow path, and the reference end face. In addition, no excessive adhesive is attached to the electrolyte membrane, and the membrane is not adversely affected (shrinkage, deformation, alteration, deterioration of the membrane), and the electrode performance is not adversely affected or suppressed.
The adhesive application method to a fuel cell separator of the upper SL (1), 5~50cp the viscosity of the adhesive solution, since the selected surface tension 20~55Nm / m, it is possible to smooth ink jet coating.
In the method for applying an adhesive to the fuel cell separator of ( 2 ) above, since the adhesive is applied in multiple layers, the thickness of the applied layer can be freely controlled by appropriately selecting the number of applied layers.
In the method of applying an adhesive to the fuel cell separator of ( 3 ) above, since the convex portion is formed on one side of the separator to be bonded and the concave portion is formed on the other side, the sealing property of the sealing portion can be improved. it can.
In the above method ( 4 ) of applying an adhesive to a fuel cell separator, the adhesive layer is cured by mixing a plurality of types of adhesive application liquids, so that the adhesive curing rate can be accelerated and managed.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Below, the adhesive-application method to the separator for fuel cells of this invention is demonstrated with reference to FIGS.
The fuel cell to which the separator of the present invention is assembled is, for example, a solid polymer electrolyte fuel cell 10. The fuel cell 10 is mounted on, for example, a fuel cell vehicle. However, it may be used other than an automobile.
[0009]
As shown in FIGS. 5 and 6, the solid polymer electrolyte fuel cell 10 includes a laminate of a membrane-electrode assembly (MEA) and a separator 18. The membrane-electrode assembly includes an electrolyte membrane 11 made of an ion exchange membrane, an electrode (anode, fuel electrode) 14 having a catalyst layer 12 disposed on one surface of the electrolyte membrane, and a catalyst disposed on the other surface of the electrolyte membrane 11. It comprises an electrode (cathode, air electrode) 17 having a layer 15. Between the catalyst layers 12 and 15 and the separator 18, diffusion layers 13 and 16 are provided on the anode side and the cathode side, respectively.
[0010]
In each cell, a reaction for converting hydrogen into hydrogen ions (protons) and electrons is performed on the anode side, and the hydrogen ions move through the electrolyte membrane to the cathode side. On the cathode side, oxygen, hydrogen ions, and electrons (neighboring MEA) Next, the following reaction is performed to generate water from electrons generated at the anode of the first electrode through the separator or electrons generated at the anode of the cell at one end in the cell stacking direction through the external circuit to the cathode of the other cell.
Anode side: H 2 → 2H + + 2e
Cathode side: 2H + + 2e + (1/2) O 2 → H 2 O
[0011]
As shown in FIG. 5, a cell 19 is formed by stacking a membrane-electrode assembly and a separator 18, a module is formed from at least one cell, the modules are stacked to form a cell stack, and the cell stack direction of the cell stack Terminals 20, insulators 21 and end plates 22 are arranged at both ends, the cell stack is clamped in the cell stacking direction, a fastening member (for example, tension plate 24) extending in the cell stacking direction outside the cell stack, bolts and nuts, etc. The stack 23 is configured by fixing at 25.
[0012]
In order to perform the above reaction, the separator 18 is formed with a fuel gas flow path 27 for supplying fuel gas (hydrogen) to the anode 14, and for supplying oxidizing gas (oxygen, usually air) to the cathode 17. The oxidizing gas flow path 28 is formed. Further, in order to take heat generated by the above reaction, the separator is also formed with a refrigerant flow path 26 for flowing a refrigerant (usually cooling water).
In FIG. 6, the separators 18 that sandwich the MEA and between the separators 18 and the MEA are bonded and sealed with an adhesive 33, and the cells 19 are sealed with a rubber gasket 40.
[0013]
The separator 18 is made of carbon, metal, metal and resin (metal separator and resin frame), resin imparted with conductivity, or a combination thereof. FIG. 6 shows the case of a metal separator (for example, a stainless steel separator). However, the separator 18 is not limited to a metal separator.
[0014]
As shown in FIGS. 1 to 4, the adhesive 33 is applied to the outer peripheral portion and the vicinity thereof on the surface of the separator 18 sandwiching the MEA that is in contact with the MEA (the surface opposite to the surface in contact with the refrigerant). The separators 18 and between the separators 18 and the MEA are sealed and bonded.
Usually, the portion of the separator 18 to which the adhesive 33 is applied is uneven or the electrolyte membrane 11 is present, and the thickness of the adhesive layer is not constant. Further, as shown in FIG. 2, the width of the adhesive layer is not necessarily constant over the entire circumference of the separator 18, and there are, for example, narrow portions, where the width of the adhesive layer is 50 microns, for example. It can be a degree.
In order to ensure a predetermined sealing property and adhesiveness in spite of the unevenness, thickness change, width change, and narrow part as described above, in the present invention, the adhesive 33 is applied as follows. .
[0015]
That is, the method of applying an adhesive to the fuel cell separator of the present invention is an application in which an ultrafine inkjet device 50 is used to apply an adhesive solution (solution 52 containing adhesive 33) to the surface of the separator 18 by an inkjet method. Is the method.
In the ultrafine inkjet, the pitch of the dots 34 (P in FIG. 3) is 3 microns or less, and the dot diameter is 1 micron or less. By using this ultra-fine ink jet, various adhesive solutions are ejected as inks, and an adhesive layer having an arbitrary width (which may be a width of 50 microns or less) or an arbitrary shape is formed at an arbitrary position. It can be formed with high accuracy. The adhesive 33 is not applied except for the bonded portion.
As a result, the excess adhesive 33 does not adhere to the electrolyte membrane 11, does not adversely affect the membrane 11 (shrinkage, deformation, alteration deterioration, membrane breakage), and does not adversely affect or suppress the electrode performance. . Further, since the adhesive is not applied to the portion other than the adhesive portion, the protrusion to the flow path and the protrusion to the reference surface of the separator are suppressed.
[0016]
In contrast, using a normal inkjet device 50, the adhesive solution (not included in the present invention) usually jet of coating by an ink jet method on the surface of the (a solution 52 containing an adhesive 33) separator 18, a dot 34 The pitch (P in FIG. 3) is 20 microns or less, and one dot diameter is 20 microns or less .
[0017]
The temperature of the adhesive solution 52 is adjusted by a heater provided in a container in which the adhesive solution 52 is placed, and is adjusted to have a viscosity suitable for inkjet application. More specifically, the adhesive solution 52 has a viscosity of 5 to 50 cp and a surface tension of 20 to 55 Nm / m. This is to enable inkjet coating. In other words, if the viscosity is too high, inkjet will be impossible, and if the surface tension is too low, bleeding will occur, and if the surface tension is too high, it will not be possible to smoothly apply to the separator surface. It is. Also included are solutions that heat the solution with a heater and fall within the above viscosity range and surface tension range.
[0018]
The adhesive 33 may be applied in multiple layers to control the adhesive application thickness. By doing so, when the thickness of the adhesive layer varies depending on the site, it can be easily accommodated.
Further, a convex portion 35 is formed on one side of the separator 18 to be bonded, and a concave portion 36 is formed on the other side of the separator 18 to be adhered to the seal portion (a portion to which the adhesive 33 is applied). May be filled with the adhesive 33 between the concave portions 36 (however, the convex portions 35 and the concave portions 36 may not be formed). By doing so, the sealing performance of the seal portion is improved.
[0019]
Alternatively, the adhesive 33 may be cured by mixing a plurality of types of adhesive application liquids. In that case, there are a plurality of types of adhesive solutions 52, and ink jet devices 50 and 51 are provided respectively. Therefore, as many inkjet devices as the types of adhesive solutions are provided. Then, after being discharged onto the separator, the adhesive solutions are mixed and cured. It is not cured before mixing, and therefore ink jetting is possible, and after mixing it cures quickly by chemical reaction. This speeds up the cure of the adhesive and improves cell manufacturing productivity.
[0020]
【Example】
An ultra-fine inkjet method was used for the application of the separator adhesive. The dot pitch was 3 microns or less, and one dot diameter was 1 micron or less. The separator could be applied to a narrow portion where the width of the adhesive layer was 50 microns or less, and there was no protrusion beyond the seal portion. As a result, excess adhesive did not adhere to the electrolyte membrane, and no adverse effects on the membrane (shrinkage, deformation, degradation, membrane breakage, etc.) were not observed. The type of adhesive used was two-component (one that cures by mixing two components). That is, one type of liquid was discharged from each nozzle, and the two liquids were mixed together at the discharge position and cured. After the adhesive layer was applied, the other separator for alignment was set, and was pressure-bonded to be bonded and sealed.
[0021]
【The invention's effect】
According to the method of applying an adhesive to the fuel cell separator according to any one of claims 1 to 3 , an ultrafine ink jet device that is an ink jet device having a dot pitch of 3 microns or less and a dot diameter of 1 micron or less is used. Since the adhesive layer is applied and formed by an ink jet method , the adhesive between the narrow, surface irregularities, and the film is formed on the adhesive application portion of the fuel cell separator by appropriately controlling the dot interval, the size of the droplets, and the like. Regardless of the change in the layer thickness, the adhesive can be applied to the desired portion of the separator with high accuracy, and the amount applied can be controlled. As a result, leakage failure and adhesion failure can be prevented, and the adhesive can be prevented from protruding to the gas flow path, the cooling water flow path, and the reference end face. In addition, no excessive adhesive is attached to the electrolyte membrane, and the membrane is not adversely affected (shrinkage, deformation, alteration, deterioration of the membrane), and the electrode performance is not adversely affected or suppressed.
According to the method for applying an adhesive to the fuel cell separator according to claim 1 , the viscosity of the adhesive solution at the time of application is selected to be 5 to 50 cp and the surface tension is set to 20 to 55 Nm / m, so that smooth ink jet application is possible. become.
According to the method of applying the adhesive to the fuel cell separator of claim 2 , since the adhesive is applied in multiple layers, the thickness of the applied layer can be freely controlled by appropriately selecting the number of applied layers.
According to the method for applying an adhesive to the fuel cell separator according to claim 3 , since the convex portion is formed on one side of the separator to be bonded and the concave portion is formed on the other side, the sealing property of the sealing portion is improved. Can do.
According to the method for applying an adhesive to the fuel cell separator according to the fourth aspect of the invention, the adhesive is cured by mixing a plurality of types of adhesive application liquids, so that the adhesive curing speed can be increased and managed.
[Brief description of the drawings]
FIG. 1 is a side view of an apparatus for executing an adhesive coating method on a fuel cell separator according to the present invention.
FIG. 2 is a schematic front view of a fuel cell separator in which an adhesive application region in the fuel cell separator adhesive application method of the present invention is indicated by hatching.
FIG. 3 is an enlarged view of a part of the adhesive application region of FIG. 2;
FIG. 4 is a cross-sectional view of a seal portion when an adhesive fills between a seal surface with a convex portion and a seal surface with a concave portion.
FIG. 5 is a side view of a fuel cell stack.
6 is a cross-sectional view of a portion of the stack of FIG.
[Explanation of symbols]
10 (Solid Polymer Electrolyte Type) Fuel Cell 11 Electrolyte Membrane 12, 15 Catalyst Layer 13, 16 Diffusion Layer 14 Electrode (Anode, Fuel Electrode)
17 electrodes (cathode, air electrode)
18 Separator 19 Cell 20 Terminal 21 Insulator 22 End plate 23 Stack 24 Fastening member (tension plate)
25 Bolt 26 Refrigerant flow path (cooling water flow path)
27 Fuel gas channel 28 Oxidizing gas channel 33 Sealing adhesive 34 Dot 35 Convex part 36 Concave part 40 Rubber gasket 50 Ultra fine ink jet apparatus 51 Normal ink jet apparatus 52 Adhesive solution

Claims (4)

膜−電極アッセンブリを挟むセパレータ間、および該セパレータと膜−電極アッセンブリ間が接着剤によりシールされる燃料電池用セパレータへ接着剤を塗布する燃料電池用セパレータへの接着剤塗布方法であって、粘度が5〜50cp、表面張力が20〜55Nm/mの接着剤溶液を、ドットのピッチが3ミクロン以下でかつ1つのドット径が1ミクロン以下のインクジェット装置である超微細インクジェット装置を用いて、前記接着剤溶液をセパレータの表面にインクジェット方式で塗布する燃料電池用セパレータへの接着剤塗布方法。 Film - between the separators sandwiching the electrodes assembly, and the separator and the membrane - an adhesive coating method between the electrode assembly is the fuel cell separator of applying an adhesive to the fuel cell separator is sealed by an adhesive, the viscosity there 5~50Cp, the adhesive solution surface tension 20~55Nm / m, pitch and one dot diameter is 3 microns or less dots using an ultra-fine inkjet apparatus are the following ink jet apparatus 1 micron, wherein A method of applying an adhesive to a separator for a fuel cell, wherein an adhesive solution is applied to the surface of the separator by an inkjet method. 接着剤を多層に塗布し部位によって変わる接着剤層厚さに応じて接着剤層厚さを制御した請求項1記載の燃料電池用セパレータへの接着剤塗布方法。Adhesive application method of the adhesive to the fuel cell separator of claim 1 Symbol placement with controlled adhesive layer thickness depending on the adhesive layer thickness vary depending applied site multilayer. シール部に、接着されるセパレータの一方に凸部を、他方に凹部を形成し、前記凸部と前記凹部の少なくとも一方の表面に前記接着剤溶液を塗布し、前記凸部を前記凹部に突入させて前記凸部と前記凹部との間を前記接着剤で埋めた請求項1記載の燃料電池用セパレータへの接着剤塗布方法。A convex portion is formed on one side of the separator to be bonded to the seal portion, and a concave portion is formed on the other. The adhesive solution is applied to at least one surface of the convex portion and the concave portion, and the convex portion enters the concave portion. It is allowed to adhesive application method to a fuel cell separator according to claim 1 Symbol placement was filled with the adhesive between the recesses and the protrusions. 複数種類の接着剤溶液のそれぞれに超微細インクジェット装置を設け、前記複数種類の接着剤溶液を、それぞれに設けた超微細インクジェット装置から前記セパレータの表面に吐出し、前記セパレータの表面上で混合させて硬化させた請求項1記載の燃料電池用セパレータへの接着剤塗布方法。 Each of the plurality of types of adhesive solutions is provided with an ultrafine inkjet device, and the plurality of types of adhesive solutions are discharged from the provided ultrafine inkjet devices onto the surface of the separator and mixed on the surface of the separator. adhesive application method to a fuel cell separator according to claim 1 Symbol placement cured Te.
JP2003164651A 2003-06-10 2003-06-10 Method for applying adhesive to fuel cell separator Expired - Fee Related JP4196740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003164651A JP4196740B2 (en) 2003-06-10 2003-06-10 Method for applying adhesive to fuel cell separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003164651A JP4196740B2 (en) 2003-06-10 2003-06-10 Method for applying adhesive to fuel cell separator

Publications (2)

Publication Number Publication Date
JP2005005012A JP2005005012A (en) 2005-01-06
JP4196740B2 true JP4196740B2 (en) 2008-12-17

Family

ID=34091365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003164651A Expired - Fee Related JP4196740B2 (en) 2003-06-10 2003-06-10 Method for applying adhesive to fuel cell separator

Country Status (1)

Country Link
JP (1) JP4196740B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8349409B2 (en) 2006-01-31 2013-01-08 Brother Kogyo Kabushiki Kaisha Pattern forming method, method for forming composite-metal oxide film and method for coating two-liquid reaction curing type adhesive
JP4911349B2 (en) * 2006-01-31 2012-04-04 ブラザー工業株式会社 Method for forming composite metal oxide film
JP2010116531A (en) * 2008-10-15 2010-05-27 Hitachi Chem Co Ltd Adhesive composition, adhesive layer, and multilayer package
JP2016186327A (en) * 2015-03-27 2016-10-27 Nok株式会社 Method of molding gasket integrated with plate
JP2016186328A (en) * 2015-03-27 2016-10-27 Nok株式会社 Method of applying adhesive of gasket integrated with plate
DE102015013505A1 (en) 2015-10-16 2016-04-14 Daimler Ag A method of manufacturing a fuel cell, fuel cell stack and vehicle
CA3024080A1 (en) * 2016-06-10 2017-12-14 Nok Corporation Gasket manufacturing method
JP7382258B2 (en) * 2020-03-04 2023-11-16 本田技研工業株式会社 Metal separator, fuel cell and metal separator manufacturing method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1157575A (en) * 1997-08-20 1999-03-02 Olympus Optical Co Ltd Adhesive coating device
JP2000285930A (en) * 1999-03-31 2000-10-13 Mitsubishi Heavy Ind Ltd Separator for fuel cell and manufacture thereof
JP2001307756A (en) * 2000-04-24 2001-11-02 Uchiyama Mfg Corp Gasket for frames of fuel cell
CA2412426C (en) * 2000-06-08 2007-09-04 Superior Micropowders, Llc Electrocatalyst powders, methods for producing powders and devices fabricated from same
JP2002228001A (en) * 2001-02-05 2002-08-14 Uchiyama Mfg Corp Manufacturing method for gasket
JP4682453B2 (en) * 2001-06-08 2011-05-11 トヨタ自動車株式会社 Method and apparatus for applying solid component-containing liquid composition
JP2003031234A (en) * 2001-07-11 2003-01-31 Honda Motor Co Ltd Sealing material coating method of separator for fuel cell
JP3999960B2 (en) * 2001-10-30 2007-10-31 松下電器産業株式会社 Method for producing electrode for fuel cell

Also Published As

Publication number Publication date
JP2005005012A (en) 2005-01-06

Similar Documents

Publication Publication Date Title
US20040028983A1 (en) Seal structure of fuel cell unit and manufacturing method of the same
US8114555B2 (en) Hardware system for high pressure electrochemical cell
US6730426B2 (en) Integral sealing method for fuel cell separator plates
KR101632092B1 (en) Preventing migration of liquid electrolyte out of a fuel cell
JP2013131417A (en) Manufacturing method of electrolyte membrane/electrode structure with resin frame for fuel cell
US10615433B2 (en) Fuel cell stack seal structure and production method therefor
JP4196740B2 (en) Method for applying adhesive to fuel cell separator
US20120077110A1 (en) Fuel cell separator with gasket and method for manufacturing the same
JP2002083614A (en) Fuel cell and its manufacturing method
JP6666664B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP3712592B2 (en) Manufacturing method of fuel cell
JP2001319676A (en) Fuel cell and its manufacturing method
US7686854B2 (en) Silicone seal for bipolar plates in a PEM fuel cell
JP4239695B2 (en) Fuel cell separator and method of manufacturing the same
JP2007287608A (en) Fuel cell, manufacturing method of fuel cell, and fuel cell sealing plate
JP6144650B2 (en) Manufacturing method of fuel cell
JP5615794B2 (en) Manufacturing method of electrolyte membrane / electrode structure for fuel cell
JP6553499B2 (en) Step MEA with resin frame for fuel cells
JP6126049B2 (en) Manufacturing method of fuel cell
JP2007280615A (en) Seal structure for fuel cell and manufacturing method of seal
JP2006032041A (en) Fuel cell, manufacturing method therefor, and separator
JP4701648B2 (en) Manufacturing method and manufacturing apparatus for metal separator for fuel cell
EP4084162A1 (en) Method for producing a membrane-electrode assembly
JP2006351342A (en) Fuel cell stack, seal member of fuel cell stack, and manufacturing method of fuel cell stack
JP2017220307A (en) Method of manufacturing fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080922

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees