JP2017220307A - Method of manufacturing fuel cell - Google Patents

Method of manufacturing fuel cell Download PDF

Info

Publication number
JP2017220307A
JP2017220307A JP2016111991A JP2016111991A JP2017220307A JP 2017220307 A JP2017220307 A JP 2017220307A JP 2016111991 A JP2016111991 A JP 2016111991A JP 2016111991 A JP2016111991 A JP 2016111991A JP 2017220307 A JP2017220307 A JP 2017220307A
Authority
JP
Japan
Prior art keywords
resin
fuel cell
thermoplastic resin
electrode assembly
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016111991A
Other languages
Japanese (ja)
Other versions
JP6777429B2 (en
Inventor
良輔 堀
Ryosuke Hori
良輔 堀
孝直 外村
Takanao Tonomura
孝直 外村
俊明 草刈
Toshiaki Kusakari
俊明 草刈
卓也 栗原
Takuya Kurihara
卓也 栗原
祥夫 岡田
Yoshio Okada
祥夫 岡田
文成 雫
Fuminari Shizuku
文成 雫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Toyota Motor Corp
Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Soken Inc filed Critical Toyota Motor Corp
Priority to JP2016111991A priority Critical patent/JP6777429B2/en
Publication of JP2017220307A publication Critical patent/JP2017220307A/en
Application granted granted Critical
Publication of JP6777429B2 publication Critical patent/JP6777429B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique capable of suppressing a fuel cell from being damaged due to thermal adhesion using a thermoplastic resin.SOLUTION: In a method of manufacturing a fuel cell, a reinforcing resin is flatly coated on a membrane electrode assembly in which an electrode catalyst layer is formed on both sides of an electrolyte membrane; the reinforcing resin is cured; a gas diffusion layer and a resin frame having a thermoplastic resin on both sides thereof are arranged side by side on the reinforcing resin having been cured, and a separator is arranged on the gas diffusion layer and the resin frame; and the separator and the membrane electrode assembly are thermally bonded to the resin frame with the thermoplastic resin, respectively.SELECTED DRAWING: Figure 1

Description

本発明は、燃料電池の製造方法に関する。   The present invention relates to a method for manufacturing a fuel cell.

燃料電池の製造方法として、例えば、特許文献1に記載された技術が知られている。特許文献1に記載された技術では、膜電極ガス拡散層接合体の周縁部に形成された段差部分に接着剤を塗布して、両面が熱可塑性樹脂で覆われたフレーム(シール部材ともいう)の段差部分と接着させている。また、接着剤を紫外線硬化樹脂とすることができることが記載されている。   As a method for manufacturing a fuel cell, for example, a technique described in Patent Document 1 is known. In the technique described in Patent Document 1, an adhesive is applied to the stepped portion formed at the peripheral edge of the membrane electrode gas diffusion layer assembly, and a frame in which both surfaces are covered with a thermoplastic resin (also referred to as a seal member). It is glued to the step part. It is also described that the adhesive can be an ultraviolet curable resin.

特開2013−251253号公報JP 2013-251253 A

このような燃料電池では、製造誤差などによりフレームとガス拡散層の間に隙間ができる場合がある。この隙間に接着剤が入り込むと、フレームとセパレータの熱接着時に押し出された熱可塑性樹脂が、硬化した接着剤を押し出して剥離させ、燃料電池を破損させるおそれがある。そのため、熱可塑性樹脂を用いた熱接着に起因して燃料電池が破損することを抑制できる技術が望まれていた。   In such a fuel cell, a gap may be formed between the frame and the gas diffusion layer due to a manufacturing error or the like. If the adhesive enters the gap, the thermoplastic resin extruded during the thermal bonding between the frame and the separator may extrude the cured adhesive and cause the fuel cell to be damaged. Therefore, a technique that can prevent the fuel cell from being damaged due to thermal adhesion using a thermoplastic resin has been desired.

本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態として実現することが可能である。   SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following forms.

(1)本発明の一形態によれば、燃料電池の製造方法が提供される。この燃料電池の製造方法は、(a)電解質膜の両面に電極触媒層が形成された膜電極接合体上に補強用樹脂を平坦に塗布し、(b)前記工程(a)の後、前記補強用樹脂を硬化し、(c)前記工程(b)の後、硬化した前記補強用樹脂の上にガス拡散層と、両面に熱可塑性樹脂を有する樹脂フレームと、を並べて配置するとともに、前記ガス拡散層及び前記樹脂フレーム上にセパレータを配置し、(d)前記工程(c)の後、前記セパレータと前記膜電極接合体とをそれぞれ前記熱可塑性樹脂で前記樹脂フレームに熱接着する。この形態の燃料電池の製造方法によれば、膜電極接合体上の補強用樹脂を予め平坦に塗布して硬化させるため、ガス拡散層と樹脂フレームとの間に隙間ができたとしても、その隙間においての補強用樹脂が盛り上がり、熱可塑性樹脂との間に段差が生じることがない。そのため、熱可塑性樹脂による熱接着時に補強用樹脂が剥がれる方向に力が加えられることを抑制できる。そのため、熱可塑性樹脂を用いた熱接着に起因して燃料電池が破損することを抑制できる。 (1) According to one form of this invention, the manufacturing method of a fuel cell is provided. In this fuel cell manufacturing method, (a) a reinforcing resin is applied flatly on a membrane electrode assembly in which electrode catalyst layers are formed on both surfaces of an electrolyte membrane, and (b) after the step (a), (C) After the step (b), the reinforcing resin is cured, and a gas diffusion layer and a resin frame having a thermoplastic resin on both sides are disposed side by side on the cured reinforcing resin, and A separator is disposed on the gas diffusion layer and the resin frame. (D) After the step (c), the separator and the membrane electrode assembly are each thermally bonded to the resin frame with the thermoplastic resin. According to the method of manufacturing a fuel cell of this embodiment, the reinforcing resin on the membrane electrode assembly is applied in a flat manner and cured in advance, so even if there is a gap between the gas diffusion layer and the resin frame, The reinforcing resin rises in the gap, and no step is generated between the gap and the thermoplastic resin. Therefore, it can suppress that force is applied in the direction in which the reinforcing resin is peeled off at the time of thermal bonding with the thermoplastic resin. Therefore, it is possible to suppress the fuel cell from being damaged due to the thermal bonding using the thermoplastic resin.

なお、本発明は、種々の形態で実現することが可能であり、例えば、この形態の製造方法で製造された燃料電池や、この燃料電池を含んで構成される燃料電池システム、この燃料電池を搭載する車両等の形態で実現することができる。   The present invention can be realized in various forms. For example, a fuel cell manufactured by the manufacturing method of this form, a fuel cell system including the fuel cell, and the fuel cell It can be realized in the form of a mounted vehicle or the like.

本発明の一実施形態における製造方法で製造された燃料電池の概略構造を示す断面図である。It is sectional drawing which shows schematic structure of the fuel cell manufactured with the manufacturing method in one Embodiment of this invention. 本実施形態の燃料電池の製造方法の概要を表わす工程図である。It is process drawing showing the outline | summary of the manufacturing method of the fuel cell of this embodiment. 比較例としての燃料電池の概略構造を示す断面図である。It is sectional drawing which shows schematic structure of the fuel cell as a comparative example. 第1変形例における燃料電池の断面図である。It is sectional drawing of the fuel cell in a 1st modification. 第2変形例における燃料電池の断面図である。It is sectional drawing of the fuel cell in a 2nd modification. 第3変形例における燃料電池の断面図である。It is sectional drawing of the fuel cell in a 3rd modification. 第4変形例における燃料電池の断面図である。It is sectional drawing of the fuel cell in a 4th modification. 第5変形例における燃料電池の断面図である。It is sectional drawing of the fuel cell in a 5th modification. 第6変形例における燃料電池の断面図である。It is sectional drawing of the fuel cell in a 6th modification. 図9をA−Aラインで切断した断面図である。It is sectional drawing which cut | disconnected FIG. 9 by the AA line. 第7変形例における燃料電池の断面図である。It is sectional drawing of the fuel cell in a 7th modification.

A.実施形態:
図1は、本発明の一実施形態における製造方法で製造された燃料電池100の概略構造を示す断面図である。燃料電池100は、反応ガスとして水素と酸素の供給を受けて発電する固体高分子型の燃料電池である。燃料電池100は、膜電極接合体10と、補強用樹脂20と、一対のガス拡散層30と、セパレータ40と、樹脂フレーム50と、を備える。
A. Embodiment:
FIG. 1 is a cross-sectional view showing a schematic structure of a fuel cell 100 manufactured by a manufacturing method according to an embodiment of the present invention. The fuel cell 100 is a solid polymer fuel cell that generates power by receiving supply of hydrogen and oxygen as reaction gases. The fuel cell 100 includes a membrane electrode assembly 10, a reinforcing resin 20, a pair of gas diffusion layers 30, a separator 40, and a resin frame 50.

膜電極接合体10は、電解質膜11と、電解質膜11の両面にそれぞれ隣接して形成された電極触媒層であるカソード側触媒層12a及びアノード側触媒層12bと、を備える。電解質膜11は湿潤状態において良好なプロトン伝導性を示す固体高分子薄膜である。電解質膜11はフッ素系樹脂のイオン交換膜によって構成される。カソード側触媒層12a及びアノード側触媒層12bは水素と酸素の化学反応を促進する触媒と、触媒を担持したカーボン粒子とを備える。   The membrane electrode assembly 10 includes an electrolyte membrane 11 and a cathode side catalyst layer 12a and an anode side catalyst layer 12b, which are electrode catalyst layers formed adjacent to both surfaces of the electrolyte membrane 11, respectively. The electrolyte membrane 11 is a solid polymer thin film that exhibits good proton conductivity in a wet state. The electrolyte membrane 11 is composed of an ion exchange membrane made of a fluororesin. The cathode side catalyst layer 12a and the anode side catalyst layer 12b include a catalyst that promotes a chemical reaction between hydrogen and oxygen, and carbon particles that support the catalyst.

補強用樹脂20は、膜電極接合体10のカソード側触媒層12a側の面の端部全周に隣接して設けられている。補強用樹脂20は、例えば、ポリイソブチレンのような紫外線硬化性樹脂を用いることができる。   The reinforcing resin 20 is provided adjacent to the entire periphery of the end of the surface of the membrane electrode assembly 10 on the cathode side catalyst layer 12a side. As the reinforcing resin 20, for example, an ultraviolet curable resin such as polyisobutylene can be used.

ガス拡散層30は、補強用樹脂20の膜電極接合体10側とは反対側の面と膜電極接合体10のアノード側触媒層12b側の面とにそれぞれ隣接して設けられている。ガス拡散層30は、電極反応に用いられる反応ガスを電解質膜11の面方向に沿って拡散させる層であり、多孔質の拡散層用基材により構成されている。拡散層用基材としては、炭素繊維基材や黒鉛繊維基材、発砲金属など、導電性及びガス拡散性を有する多孔質の基材が用いられる。   The gas diffusion layer 30 is provided adjacent to the surface of the reinforcing resin 20 opposite to the membrane electrode assembly 10 side and the surface of the membrane electrode assembly 10 on the anode catalyst layer 12b side. The gas diffusion layer 30 is a layer for diffusing a reaction gas used for the electrode reaction along the surface direction of the electrolyte membrane 11, and is composed of a porous diffusion layer substrate. As the base material for the diffusion layer, a porous base material having conductivity and gas diffusibility, such as a carbon fiber base material, a graphite fiber base material, and a foam metal, is used.

セパレータ40は、ガス拡散層30の膜電極接合体10側とは反対側の面に隣接して設けられている。セパレータ40は例えば、ステンレスやチタン、あるいはそれらの合金からなる金属板をプレス成型することによって形成されている。   The separator 40 is provided adjacent to the surface of the gas diffusion layer 30 opposite to the membrane electrode assembly 10 side. The separator 40 is formed, for example, by press molding a metal plate made of stainless steel, titanium, or an alloy thereof.

樹脂フレーム50は、膜電極接合体10のカソード側触媒層12aの周縁部に設けられている。樹脂フレーム50としては、例えば、ポリプロピレンやポリエチレン等の樹脂からなる絶縁性のフィルム状の部材を用いることができる。樹脂フレーム50の両面には、熱可塑性樹脂51が塗布又は接合されている。熱可塑性樹脂51として、例えば、シランカップリング剤を配合されたポリプロピレンやポリエチレン、ポリオレフィンに官能基を導入した変性ポリオレフィンを用いることができる。なお、熱可塑性樹脂51としてはシランカップリング剤を用いていない物や、熱可塑熱硬化エポキシ樹脂等を用いることも可能である。   The resin frame 50 is provided on the periphery of the cathode side catalyst layer 12a of the membrane electrode assembly 10. As the resin frame 50, for example, an insulating film-like member made of a resin such as polypropylene or polyethylene can be used. A thermoplastic resin 51 is applied or bonded to both surfaces of the resin frame 50. As the thermoplastic resin 51, for example, polypropylene or polyethylene blended with a silane coupling agent, or modified polyolefin having a functional group introduced into polyolefin can be used. As the thermoplastic resin 51, it is possible to use a material that does not use a silane coupling agent, a thermoplastic thermosetting epoxy resin, or the like.

樹脂フレーム50は、熱可塑性樹脂51を介して補強用樹脂20に接着されている。樹脂フレーム50は、反応ガスが燃料電池100外部へ漏れ出ることがないようにシール部材としての役割を果たす。本実施形態では、樹脂フレーム50は、ガス拡散層30と所定の隙間Gを空けて並べて補強用樹脂20上に設置されている。   The resin frame 50 is bonded to the reinforcing resin 20 via a thermoplastic resin 51. The resin frame 50 serves as a sealing member so that the reaction gas does not leak out of the fuel cell 100. In the present embodiment, the resin frame 50 is installed on the reinforcing resin 20 side by side with a predetermined gap G from the gas diffusion layer 30.

図2は、本実施形態の燃料電池100の製造方法の概要を表わす工程図である。まず、カソード側触媒層12aの電解質膜11側とは反対側の面の端部全周に補強用樹脂20を塗布する(ステップS200)。続いて、補強用樹脂20を硬化する(ステップS210)。   FIG. 2 is a process diagram showing an outline of a method for manufacturing the fuel cell 100 of the present embodiment. First, the reinforcing resin 20 is applied to the entire periphery of the end of the cathode-side catalyst layer 12a opposite to the electrolyte membrane 11 (step S200). Subsequently, the reinforcing resin 20 is cured (step S210).

次に、ガス拡散層30と樹脂フレーム50とセパレータ40の配置を行なう(ステップS220)。ガス拡散層30は、硬化した補強用樹脂20上と膜電極接合体10のアノード側触媒層12b側の面とにそれぞれ隣接して配置される。樹脂フレーム50は、膜電極接合体10の周縁部において熱可塑性樹脂51を介して補強用樹脂20上に配置される。本実施形態では、ガス拡散層30と樹脂フレーム50とは、硬化した補強用樹脂20の上に並べて配置される。セパレータ40は、ガス拡散層30及び樹脂フレーム50上に配置される。このとき、セパレータ40は、樹脂フレーム50上に熱可塑性樹脂51を介して配置される。   Next, the gas diffusion layer 30, the resin frame 50, and the separator 40 are arranged (step S220). The gas diffusion layer 30 is disposed adjacent to the cured reinforcing resin 20 and the surface of the membrane electrode assembly 10 on the anode catalyst layer 12b side. The resin frame 50 is disposed on the reinforcing resin 20 via the thermoplastic resin 51 at the peripheral edge of the membrane electrode assembly 10. In the present embodiment, the gas diffusion layer 30 and the resin frame 50 are arranged side by side on the cured reinforcing resin 20. The separator 40 is disposed on the gas diffusion layer 30 and the resin frame 50. At this time, the separator 40 is disposed on the resin frame 50 via the thermoplastic resin 51.

なお、補強用樹脂20は、膜電極接合体10のカソード側触媒層12aの側の面の端部に設けられているため、膜電極接合体10の中央部においては、ガス拡散層30は補強用樹脂20上ではなくカソード側触媒層12aの上に配置される。   Since the reinforcing resin 20 is provided at the end of the surface of the membrane electrode assembly 10 on the cathode side catalyst layer 12a side, the gas diffusion layer 30 is reinforced at the center of the membrane electrode assembly 10. It is disposed not on the resin 20 but on the cathode side catalyst layer 12a.

次に膜電極接合体10とセパレータ40とを、それぞれ熱可塑性樹脂51で樹脂フレーム50に熱接着する(ステップS230)。図3は、比較例としての燃料電池100Aの概略構造を示す断面図である。本実施形態では、上記ステップS210により、補強用樹脂20を先に硬化することで、図3に示すように、表面張力により樹脂フレーム50の内側の側面に補強用樹脂20が付着することを防いでいる。そのため、熱接着の際に熱可塑性樹脂51が隙間Gに流れ出た際も、補強用樹脂20に応力がかからない。   Next, the membrane electrode assembly 10 and the separator 40 are thermally bonded to the resin frame 50 with the thermoplastic resin 51, respectively (step S230). FIG. 3 is a cross-sectional view showing a schematic structure of a fuel cell 100A as a comparative example. In the present embodiment, the reinforcing resin 20 is first cured in step S210, thereby preventing the reinforcing resin 20 from adhering to the inner side surface of the resin frame 50 due to surface tension as shown in FIG. It is out. Therefore, even when the thermoplastic resin 51 flows into the gap G during the thermal bonding, no stress is applied to the reinforcing resin 20.

以上で説明した本実施形態の燃料電池100の製造方法によれば、膜電極接合体10上の補強用樹脂20を予め平坦に塗布して硬化させる事で、ガス拡散層30と樹脂フレーム50との間に隙間Gができたとしても、その隙間Gにおいて補強用樹脂20が盛り上がり、熱可塑性樹脂51との間に段差が生じることがない。そのため、熱可塑性樹脂51による熱接着時に補強用樹脂20が剥がれる方向に力が加えられることを抑制できる。そのため、熱可塑性樹脂51を用いた熱接着に起因して燃料電池100が破損することを抑制できる。   According to the method of manufacturing the fuel cell 100 of the present embodiment described above, the gas diffusion layer 30 and the resin frame 50 are obtained by applying the reinforcing resin 20 on the membrane electrode assembly 10 flatly in advance and curing it. Even if a gap G is formed between them, the reinforcing resin 20 rises in the gap G, and no step is generated between the thermoplastic resin 51 and the thermoplastic resin 51. Therefore, it can suppress that force is applied in the direction in which the reinforcing resin 20 is peeled off at the time of thermal bonding with the thermoplastic resin 51. Therefore, it is possible to suppress the fuel cell 100 from being damaged due to the thermal adhesion using the thermoplastic resin 51.

B.変形例:
<第1変形例>
図4は、第1変形例における燃料電池100Bの断面図である。本変形例では、ガス拡散層30と樹脂フレーム50との隙間Gを、補強用樹脂20bによって埋めている。これにより、補強用樹脂20bを剥離させず、膜電極接合体10を補強した状態を保つことができる。そのため、熱可塑性樹脂51を用いた熱接着に起因して燃料電池100Bが破損することを抑制できる。
B. Variations:
<First Modification>
FIG. 4 is a cross-sectional view of the fuel cell 100B in the first modification. In this modification, the gap G between the gas diffusion layer 30 and the resin frame 50 is filled with the reinforcing resin 20b. Thereby, the state which reinforced the membrane electrode assembly 10 can be maintained, without peeling the resin 20b for reinforcement. Therefore, damage to the fuel cell 100B due to thermal bonding using the thermoplastic resin 51 can be suppressed.

<第2変形例>
図5は、第2変形例における燃料電池100Cの断面図である。本変形例では、セパレータ40は、発電に影響のない部位に融けた熱可塑性樹脂51を収納する空間60を備えている。補強用樹脂20が樹脂フレーム50の側面に付着したとしても、この空間に熱可塑性樹脂51が流れ込むことにより、補強用樹脂20に応力が加わることを防ぐことができる。そのため、熱可塑性樹脂51を用いた熱接着に起因して燃料電池100Cが破損することを抑制できる。
<Second Modification>
FIG. 5 is a cross-sectional view of a fuel cell 100C according to the second modification. In this modification, the separator 40 includes a space 60 for storing the melted thermoplastic resin 51 in a portion that does not affect power generation. Even if the reinforcing resin 20 adheres to the side surface of the resin frame 50, it is possible to prevent stress from being applied to the reinforcing resin 20 due to the thermoplastic resin 51 flowing into this space. Therefore, it is possible to suppress the fuel cell 100C from being damaged due to thermal bonding using the thermoplastic resin 51.

<第3変形例>
図6は、第3変形例における燃料電池100Dの断面図である。本変形例では、樹脂フレーム50及び熱可塑性樹脂51の内側側面に高融点の樹脂材料である流出防止材70を接合又は塗布している。これにより、熱可塑性樹脂51を熱接着する際に、融けた熱可塑性樹脂51が隙間G側に流れ出ることを防ぐことができる。そのため、図6に示すように、隙間Gに補強用樹脂20が盛り上がった場合でも、熱可塑性樹脂51を用いた熱接着に起因して燃料電池100Dが破損することを抑制できる。
<Third Modification>
FIG. 6 is a cross-sectional view of a fuel cell 100D in the third modification. In this modification, an outflow prevention material 70, which is a high melting point resin material, is bonded or applied to the inner side surfaces of the resin frame 50 and the thermoplastic resin 51. Thereby, when the thermoplastic resin 51 is thermally bonded, the melted thermoplastic resin 51 can be prevented from flowing out to the gap G side. Therefore, as shown in FIG. 6, even when the reinforcing resin 20 rises in the gap G, the fuel cell 100 </ b> D can be prevented from being damaged due to thermal bonding using the thermoplastic resin 51.

<第4変形例>
図7は、第4変形例における燃料電池100Eの断面図である。本変形例では、膜電極接合体10側の熱可塑性樹脂51の端部に高融点の樹脂材料である流出防止材70eを設けている。これにより、熱可塑性樹脂51を熱接着する際に、融けた熱可塑性樹脂51が隙間G側に流れ出ることを防ぐことができる。そのため、熱可塑性樹脂51を用いた熱接着に起因して燃料電池100Eが破損することを抑制できる。
<Fourth Modification>
FIG. 7 is a cross-sectional view of a fuel cell 100E according to a fourth modification. In this modification, an outflow prevention material 70e, which is a high melting point resin material, is provided at the end of the thermoplastic resin 51 on the membrane electrode assembly 10 side. Thereby, when the thermoplastic resin 51 is thermally bonded, the melted thermoplastic resin 51 can be prevented from flowing out to the gap G side. Therefore, it is possible to suppress the fuel cell 100E from being damaged due to the thermal adhesion using the thermoplastic resin 51.

<第5変形例>
図8は、第5変形例における燃料電池100Fの断面図である。本変形例では、樹脂フレーム50の内側の端部に膜電極接合体10側に突き出す突出部80を設けている。これにより、熱可塑性樹脂51を熱接着する際に、融けた熱可塑性樹脂51が隙間G側に流れ出ることを防ぐことができる。そのため、熱可塑性樹脂51を用いた熱接着に起因して燃料電池100Fが破損することを抑制できる。
<Fifth Modification>
FIG. 8 is a cross-sectional view of a fuel cell 100F in the fifth modification. In the present modification, a protruding portion 80 protruding toward the membrane electrode assembly 10 side is provided at the inner end of the resin frame 50. Thereby, when the thermoplastic resin 51 is thermally bonded, the melted thermoplastic resin 51 can be prevented from flowing out to the gap G side. Therefore, it is possible to suppress the fuel cell 100F from being damaged due to the thermal bonding using the thermoplastic resin 51.

<第6変形例>
図9は、第6変形例における燃料電池100Gの断面図であり、図10は、図9をA−Aラインで切断した断面図である。本変形例では、樹脂フレーム50のカソード側触媒層12a側の面に、熱可塑性樹脂51とともに複数の厚み保持用のシム90を設けている。シム90は熱可塑性樹脂51より高融点の樹脂である。このように、厚み保持用のシム90が設けられていれば、熱接着時に熱可塑性樹脂51の厚みが保持されるので、融けた熱可塑性樹脂51が隙間G側に押し出されることを防ぐことができる。そのため、熱可塑性樹脂51を用いた熱接着に起因して燃料電池100Gが破損することを抑制できる。
<Sixth Modification>
FIG. 9 is a cross-sectional view of a fuel cell 100G according to a sixth modification, and FIG. 10 is a cross-sectional view taken along line AA in FIG. In this modification, a plurality of shims 90 for maintaining thickness are provided on the surface of the resin frame 50 on the cathode side catalyst layer 12 a side together with the thermoplastic resin 51. The shim 90 is a resin having a higher melting point than the thermoplastic resin 51. As described above, if the thickness maintaining shim 90 is provided, the thickness of the thermoplastic resin 51 is maintained at the time of thermal bonding, so that the melted thermoplastic resin 51 is prevented from being pushed out to the gap G side. it can. Therefore, it is possible to suppress the fuel cell 100G from being damaged due to the thermal adhesion using the thermoplastic resin 51.

<第7変形例>
図11は、第7変形例における燃料電池100Hの断面図である。本変形例では、燃料電池100Hは、第3変形例と同様に流出防止材70を備えており、更に第6変形例と同様に厚み保持用のシム90を備えている。このような構造であれば、融けた熱可塑性樹脂51が隙間G側に押し出されることをより効果的に防ぐことができる。そのため、熱可塑性樹脂51を用いた熱接着に起因して燃料電池100Hが破損することを抑制できる。
<Seventh Modification>
FIG. 11 is a cross-sectional view of a fuel cell 100H according to a seventh modification. In the present modification, the fuel cell 100H includes the outflow prevention material 70 as in the third modification, and further includes a thickness retaining shim 90 as in the sixth modification. Such a structure can more effectively prevent the melted thermoplastic resin 51 from being pushed out toward the gap G. Therefore, damage to the fuel cell 100H due to thermal bonding using the thermoplastic resin 51 can be suppressed.

<第8変形例>
上記実施形態では、補強用樹脂20は膜電極接合体10の端部全周に設けられている。これに対して、補強用樹脂20は、端部全周に限らず膜電極接合体10の補強が必要な任意の場所に設けられていてもよい。また、樹脂フレーム50も、膜電極接合体10の周縁部に限らず、シールが必要な任意の場所に設けられていてもよい。
<Eighth Modification>
In the above embodiment, the reinforcing resin 20 is provided on the entire periphery of the end portion of the membrane electrode assembly 10. On the other hand, the reinforcing resin 20 is not limited to the entire circumference of the end portion, and may be provided in any place where the membrane electrode assembly 10 needs to be reinforced. Further, the resin frame 50 is not limited to the peripheral portion of the membrane electrode assembly 10 and may be provided at any place where sealing is required.

本発明は、上述の実施形態や変形例に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態、変形例中の技術的特徴は、上述した課題を解決するために、あるいは上述の効果の一部又は全部を達成するために、適宜、差し替えや組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜削除することが可能である。   The present invention is not limited to the above-described embodiments and modifications, and can be realized with various configurations without departing from the spirit thereof. For example, the technical features in the embodiments and the modifications corresponding to the technical features in each embodiment described in the column of the summary of the invention are intended to solve the above-described problems or to achieve a part or all of the above-described effects. In order to achieve, it is possible to replace and combine as appropriate. Further, if the technical feature is not described as essential in the present specification, it can be deleted as appropriate.

10…膜電極接合体
11…電解質膜
12a…カソード側触媒層
12b…アノード側触媒層
20、20b…補強用樹脂
30…ガス拡散層
40…セパレータ
50…樹脂フレーム
51…熱可塑性樹脂
60…空間
70、70e…流出防止材
80…突出部
90…シム
100、100A、100B、100C、100D、100E、100F、100G、100H…燃料電池
G…隙間
DESCRIPTION OF SYMBOLS 10 ... Membrane electrode assembly 11 ... Electrolyte membrane 12a ... Cathode side catalyst layer 12b ... Anode side catalyst layer 20, 20b ... Reinforcing resin 30 ... Gas diffusion layer 40 ... Separator 50 ... Resin frame 51 ... Thermoplastic resin 60 ... Space 70 70e ... Outflow prevention material 80 ... Projection 90 ... Shim 100, 100A, 100B, 100C, 100D, 100E, 100F, 100G, 100H ... Fuel cell G ... Gap

Claims (1)

燃料電池の製造方法であって、
(a)電解質膜の両面に電極触媒層が形成された膜電極接合体上に補強用樹脂を平坦に塗布する工程と、
(b)前記工程(a)の後、前記補強用樹脂を硬化する工程と、
(c)前記工程(b)の後、硬化した前記補強用樹脂の上にガス拡散層と、両面に熱可塑性樹脂を有する樹脂フレームと、を並べて配置するとともに、前記ガス拡散層及び前記樹脂フレーム上にセパレータを配置する工程と、
(d)前記工程(c)の後、前記セパレータと前記膜電極接合体とをそれぞれ前記熱可塑性樹脂で前記樹脂フレームに熱接着する工程と、を備える製造方法。
A fuel cell manufacturing method comprising:
(A) a step of flatly applying a reinforcing resin on the membrane electrode assembly in which the electrode catalyst layers are formed on both surfaces of the electrolyte membrane;
(B) After the step (a), a step of curing the reinforcing resin;
(C) After the step (b), a gas diffusion layer and a resin frame having a thermoplastic resin on both sides are arranged side by side on the cured reinforcing resin, and the gas diffusion layer and the resin frame are arranged. Placing a separator on top;
(D) After the step (c), the step of thermally bonding the separator and the membrane electrode assembly to the resin frame with the thermoplastic resin, respectively.
JP2016111991A 2016-06-03 2016-06-03 How to make a fuel cell Active JP6777429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016111991A JP6777429B2 (en) 2016-06-03 2016-06-03 How to make a fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016111991A JP6777429B2 (en) 2016-06-03 2016-06-03 How to make a fuel cell

Publications (2)

Publication Number Publication Date
JP2017220307A true JP2017220307A (en) 2017-12-14
JP6777429B2 JP6777429B2 (en) 2020-10-28

Family

ID=60656199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016111991A Active JP6777429B2 (en) 2016-06-03 2016-06-03 How to make a fuel cell

Country Status (1)

Country Link
JP (1) JP6777429B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114068973A (en) * 2020-08-03 2022-02-18 丰田自动车株式会社 Method for manufacturing fuel cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013251253A (en) * 2012-05-01 2013-12-12 Toyota Motor Corp Fuel cell unit cell and method for manufacturing fuel cell unit cell
JP2014053118A (en) * 2012-09-06 2014-03-20 Toyota Motor Corp Fuel cell and manufacturing method of the same
JP2015144112A (en) * 2013-12-27 2015-08-06 トヨタ自動車株式会社 Manufacturing method and manufacturing apparatus of electrode frame assembly for fuel cell
JP2015195189A (en) * 2014-03-18 2015-11-05 トヨタ自動車株式会社 Fuel cell and method of manufacturing fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013251253A (en) * 2012-05-01 2013-12-12 Toyota Motor Corp Fuel cell unit cell and method for manufacturing fuel cell unit cell
JP2014053118A (en) * 2012-09-06 2014-03-20 Toyota Motor Corp Fuel cell and manufacturing method of the same
JP2015144112A (en) * 2013-12-27 2015-08-06 トヨタ自動車株式会社 Manufacturing method and manufacturing apparatus of electrode frame assembly for fuel cell
JP2015195189A (en) * 2014-03-18 2015-11-05 トヨタ自動車株式会社 Fuel cell and method of manufacturing fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114068973A (en) * 2020-08-03 2022-02-18 丰田自动车株式会社 Method for manufacturing fuel cell

Also Published As

Publication number Publication date
JP6777429B2 (en) 2020-10-28

Similar Documents

Publication Publication Date Title
JP5681792B2 (en) ELECTROLYTE MEMBRANE / ELECTRODE STRUCTURE FOR FUEL CELL AND METHOD FOR PRODUCING THE SAME
JP6064884B2 (en) Power generator
US6159628A (en) Use of thermoplastic films to create seals and bond PEM cell components
US6399234B2 (en) Fuel cell stack assembly with edge seal
US10797325B2 (en) Fuel cell and method of manufacturing same
US10044047B2 (en) Electrode-membrane-frame assembly, method for producing the same, and fuel cell
JP6493185B2 (en) Fuel cell
JP2013098155A (en) Electrolyte film and electrode structure with resin frame for fuel cell and fuel cell stack
JP2014053118A (en) Fuel cell and manufacturing method of the same
JP2015215958A (en) Method for manufacturing fuel cell
JP2008226722A (en) Gasket integration type membrane-electrode assembly, fuel cell including it, membrane protecting structure, and manufacturing method of gasket integration type membrane-electrode assembly
US20120077110A1 (en) Fuel cell separator with gasket and method for manufacturing the same
JP2016126911A (en) Fuel battery single cell
JP6777429B2 (en) How to make a fuel cell
JP2015232937A (en) Separator for fuel cell and fuel cell
JP6432398B2 (en) Fuel cell single cell
KR101481354B1 (en) Mea for fuel cell
JP5900034B2 (en) Fuel cell and fuel cell manufacturing method
JP7272901B2 (en) Fuel cell manufacturing method and fuel cell
US11705572B2 (en) Fuel cell and manufacturing method of the same
JP2014067689A (en) Fuel battery
JP2017117759A (en) Polymer electrolyte type fuel battery
JP2018073523A (en) Fuel cell
JP2020061250A (en) Fuel battery cell
JP5273369B2 (en) Method for manufacturing seal structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201008

R150 Certificate of patent or registration of utility model

Ref document number: 6777429

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250