JP4195937B2 - Two-photon absorption material - Google Patents

Two-photon absorption material Download PDF

Info

Publication number
JP4195937B2
JP4195937B2 JP2004534133A JP2004534133A JP4195937B2 JP 4195937 B2 JP4195937 B2 JP 4195937B2 JP 2004534133 A JP2004534133 A JP 2004534133A JP 2004534133 A JP2004534133 A JP 2004534133A JP 4195937 B2 JP4195937 B2 JP 4195937B2
Authority
JP
Japan
Prior art keywords
photon
photon absorption
carbon atoms
general formula
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004534133A
Other languages
Japanese (ja)
Other versions
JPWO2004022665A1 (en
Inventor
賢司 鎌田
陽一郎 岩瀬
浩二 太田
紘一 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Publication of JPWO2004022665A1 publication Critical patent/JPWO2004022665A1/en
Application granted granted Critical
Publication of JP4195937B2 publication Critical patent/JP4195937B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/28Radicals substituted by singly-bound oxygen or sulphur atoms
    • C07D213/30Oxygen atoms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/72Photosensitive compositions not covered by the groups G03C1/005 - G03C1/705
    • G03C1/73Photosensitive compositions not covered by the groups G03C1/005 - G03C1/705 containing organic compounds
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B7/247Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes methine or polymethine dyes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

本発明は、光制限材料、二光子吸収光造型における硬化材料、三次元メモリ材料、二光子蛍光顕微鏡における蛍光色素材料などとして有用な二光子吸収材料に関する。  The present invention relates to a two-photon absorption material useful as a light-limiting material, a curable material in two-photon absorption photoforming, a three-dimensional memory material, a fluorescent dye material in a two-photon fluorescence microscope, and the like.

従来、二光子吸収材料においては、ローダミン、クマリンなどの色素化合物、ジチエノチオフェン誘導体、オリゴフェニレンビニレン誘導体などの化合物が使用されている。しかしながら、これらは、分子あたりの二光子吸収能を示す二光子吸収断面積が小さく、特にフェムト秒パルスレーザーを用いた場合の二光子吸収断面積は、200×10−50cm・s・molecule−1・photon−1未満のものが殆どである(Stephen Kershaw著、“Two−Photon Absorption”in“Characterization techniques and tabulations for organic nonlinear optical materials”,ed.by Mark G.Kuzyk,Carl W.Dirk,chapter 7,pp.515−654,Mercel Dekker,Inc.New York,1988)。
化合物の二光子吸収断面積が小さい場合に、材料としての二光子吸収特性を向上させるためには、化合物濃度を高めることが一つの選択肢である。しかしながら、化合物の溶解度には限度があり、特性の著しい改善は不可能である。また、高濃度化は、二光子吸収材料中の他の成分に悪影響を及ぼす危険性があるので、必ずしも有効な方法ではない。例えば、二光子吸収光造型、三次元メモリなどにおいては、ポリマーの硬化能を阻害したり、或いは濃度消光により蛍光強度の減少を生じることがあり、二光子蛍光顕微鏡においては、観察対象である生体組織の活動に影響することがある。
化合物の二光子吸収断面積が小さく、かつその濃度を上げることができないため、材料としての二光子吸収特性を向上させることができない場合には、レーザーピーク強度を著しく高める必要がある。その結果、大規模なレーザー装置が必要となるだけではなく、材料を破壊させるに近い高強度エネルギーを使用するので、材料が容易に劣化し、或いは破壊されてしまうことすらある。
Conventionally, in two-photon absorption materials, compounds such as dye compounds such as rhodamine and coumarin, dithienothiophene derivatives and oligophenylene vinylene derivatives have been used. However, these have a small two-photon absorption cross-section showing a two-photon absorption capacity per molecule, and the two-photon absorption cross-section particularly when a femtosecond pulse laser is used is 200 × 10 −50 cm 4 · s · molecule. Mostly less than −1 · photon −1 (Stephen Kersshaw, “Two-Photon Absorption” in “Characterization techniques and tactics for organic kn irk. chapter 7, pp. 515-654, Mercel Dekker, Inc. New York, 1988).
In order to improve the two-photon absorption characteristics as a material when the two-photon absorption cross-sectional area of the compound is small, increasing the compound concentration is one option. However, the solubility of the compound is limited and no significant improvement in properties is possible. Further, increasing the concentration is not necessarily an effective method because there is a risk of adversely affecting other components in the two-photon absorption material. For example, in two-photon absorption photomolding, three-dimensional memory, etc., the curing ability of the polymer may be hindered or the fluorescence intensity may decrease due to concentration quenching. May affect organizational activities.
Since the two-photon absorption cross-sectional area of the compound is small and its concentration cannot be increased, if the two-photon absorption characteristics as a material cannot be improved, the laser peak intensity must be remarkably increased. As a result, not only a large-scale laser device is required, but also high-intensity energy that is close to destroying the material is used, so that the material can easily deteriorate or even be destroyed.

本発明は、上記した従来技術の現状に鑑みてなされたものであり、その主な目的は、巨大な二光子吸収断面積を有し、低濃度で高い二光子吸収特性を発揮し得る新規な材料を提供することである。
本発明者は、上記の様な技術の現状に留意しつつ、研究を進めた結果、特定のアセチレン系化合物が、一光子吸収ピークの近傍で巨大な二光子吸収断面積を有しており、低濃度で二光子吸収材料として優れた特性を発揮することを見出した。
すなわち、本発明は、下記の二光子吸収材料とそれを種々の用途に使用する応用材料および装置類を提供するものである。
1. 一般式(1)で示される化合物および一般式(2)で示される化合物からなる群から選ばれた少なくとも1種の化合物からなり、当該化合物の一光子紫外・可視・近赤外吸光のピーク波長から250nm以内の波長域で二光子吸収のピーク波長を示す二光子吸収材料;

Figure 0004195937
(式中、RおよびRは、同一或いは相異なって、水素原子又は炭素数1〜4のアルコキシ基を表し、nは1〜3の整数を示す。)、
Figure 0004195937
(式中、R、Rおよびnは、上記に同じ。Rは、炭素数1〜3のアルキル基であり、Aは、RSO (式中Rは、CF、フェニル、トリル又は炭素数1〜3のアルキル基である)、ハロゲンアニオン又はClO である。)。
2. 一般式(1)で示される化合物および一般式(2)で示される化合物からなる群から選ばれた少なくとも1種の化合物からなり、当該化合物の一光子紫外・可視・近赤外吸光のピーク波長から250nm以内の波長域で二光子吸収のピーク波長を示す二光子吸収材料からなる光制限材料;
Figure 0004195937
(式中、RおよびRは、同一或いは相異なって、水素原子又は炭素数1〜4のアルコキシ基を表し、nは1〜3の整数を示す。)、
Figure 0004195937
(式中、R、Rおよびnは、上記に同じ。Rは、炭素数1〜3のアルキル基であり、Aは、RSO (式中Rは、CF、フェニル、トリル又は炭素数1〜3のアルキル基である)、ハロゲンアニオン又はClO である。)。
3. 一般式(1)で示される化合物および一般式(2)で示される化合物からなる群から選ばれた少なくとも1種の化合物からなり、当該化合物の一光子紫外・可視・近赤外吸光のピーク波長から250nm以内の波長域で二光子吸収のピーク波長を示す二光子吸収材料からなる光造型用光硬化樹脂の硬化材料;
Figure 0004195937
(式中、RおよびRは、同一或いは相異なって、水素原子又は炭素数1〜4のアルコキシ基を表し、nは1〜3の整数を示す。)、
Figure 0004195937
(式中、R、Rおよびnは、上記に同じ。Rは、炭素数1〜3のアルキル基であり、Aは、RSO (式中Rは、CF、フェニル、トリル又は炭素数1〜3のアルキル基である)、ハロゲンアニオン又はClO である。)。
4. 一般式(1)で示される化合物および一般式(2)で示される化合物からなる群から選ばれた少なくとも1種の化合物からなり、当該化合物の一光子紫外・可視・近赤外吸光のピーク波長から250nm以内の波長域で二光子吸収のピーク波長を示す二光子吸収材料からなる三次元光メモリ材料;
Figure 0004195937
(式中、RおよびRは、同一或いは相異なって、水素原子又は炭素数1〜4のアルコキシ基を表し、nは1〜3の整数を示す。)、
Figure 0004195937
(式中、R、Rおよびnは、上記に同じ。Rは、炭素数1〜3のアルキル基であり、Aは、RSO (式中Rは、CF、フェニル、トリル又は炭素数1〜3のアルキル基である)、ハロゲンアニオン又はClO である。)。
5. 一般式(1)で示される化合物からなる群から選ばれた少なくとも1種の化合物からなり、当該化合物の一光子紫外・可視・近赤外吸光のピーク波長から250nm以内の波長域で二光子吸収のピーク波長を持ち、且つ蛍光性を示す二光子吸収材料からなる走査型二光子蛍光顕微鏡用蛍光色素材料;
Figure 0004195937
(式中、RおよびRは、同一或いは相異なって、水素原子又は炭素数1〜4のアルコキシ基を表し、nは1〜3の整数を示す。)。
6. 集光装置とコリメート装置との間に、上記項2に記載された光制限材料を配置した光制限装置。
7. パルスレーザー発生装置、パルスレーザー集光装置、光硬化性モノマー収容装置、及び光硬化性モノマー中の所定の集光位置をレーザービームで走査するための機構を備えた二光子吸収光造型装置であって、上記項3に記載された硬化材料が光硬化性モノマー中に含まれていることを特徴とする光造型装置。
8. パルスレーザー発生装置、パルスレーザー集光装置、三次元光メモリ材料、該メモリ材料の所定の集光位置をレーザービームで走査するための機構、および光学的読出し装置を備えた三次元光メモリ装置であって、該三次元メモリ材料が、下記一般式(1)で示される化合物からなる群から選ばれた少なくとも1種の化合物からなり、当該化合物の一光子紫外・可視・近赤外吸光のピーク波長から250nm以内の波長域で二光子吸収のピーク波長を持ち、且つ蛍光性を示す二光子吸収材料であることを特徴とする三次元メモリ装置;
Figure 0004195937
(式中、RおよびRは、同一或いは相異なって、水素原子又は炭素数1〜4のアルコキシ基を表し、nは1〜3の整数を示す。)。
9. パルスレーザー発生装置、パルスレーザー集光装置、上記項4に記載された三次元光メモリ材料、該メモリ材料の所定の集光位置をレーザービームで走査するための機構、および光メモリ材料中の屈折率変化を検出する機構を備えた三次元光メモリ装置。
10. パルスレーザー発生装置、パルスレーザー集光装置、上記項5に記載された蛍光色素材料、該蛍光色素材料の所定の集光位置をレーザービームで走査するための機構、および光検出装置を備えた二光子蛍光顕微鏡。
本発明の二光子吸収材料は、下記一般式(1)で示される化合物および(2)で示される化合物からなる群から選ばれた少なくとも一種の化合物からなり、当該化合物の一光子紫外・可視・近赤外吸光のピーク波長から250nm以内の波長域で二光子吸収のピーク波長を示すものである。
Figure 0004195937
(式中、RおよびRは、同一或いは相異なって、水素原子又は炭素数1〜4のアルコキシ基を表し、nは1〜3の整数を示す。)、
Figure 0004195937
(式中、R、Rおよびnは、上記に同じ。Rは、炭素数1〜3のアルキル基であり、Aは、RSO (式中Rは、CF、フェニル、トリル又は炭素数1〜3のアルキル基である)、ハロゲンアニオン又はClO である。)。
上記一般式(1)及び(2)において、炭素数1〜4のアルコシキ基としては、メトキシ、エトキシ、n−プロポキシ、イソプロポキシ、n−ブトキシ、イソブトキシ、sec−ブトキシ、tert−ブトキシ基等の直鎖状又は分枝鎖状のアルコシキ基を例示でき、炭素数1〜3のアルキル基としては、メチル、エチル、n−プロピル、イソプロピル等の直鎖状又は分枝鎖状のアルキル基を例示できる。また、ハロゲンアニオンとしては、F,Cl,Br,I等を例示できる。
上記一般式(1)で表される化合物及び一般式(2)で表される化合物の具体例としては、下記式(3)、(4)及び(5)で表される化合物を挙げることができる。
Figure 0004195937
Figure 0004195937
上記化合物は、例えば、下記1〜4の公知文献などに記載された方法により製造することができる。その他の化合物も、同様の手法により、製造することができる。
1.Stilbazolium基を有するジアセチレンの合成とフェムト秒Z−scan法を用いた三次元非線形光学特性の評価(第50回高分子学会年次大会、要旨集vol.50、p.728)
2. スチリルピリジン誘導体を有するジアセチレンの合成とフェムト秒Z−scan法を用いた二光子吸収特性(第50回高分子討論会、要旨集vol.50、p.3318)
3. スチリルピリジル基を有するアセチレン誘導体の合成とフェムト秒Z−scan法を用いた二光子吸収特性の評価とその考察(第51回高分子学会年次大会子学会、要旨集vol.51、p.696)
4. Two−photon absorption property of bis(pyridylvinylenephenylene)diacetylene derivatives(6th International Conference of Organic Nonlinear Optics(ICONO6);要旨集、講演番号:Poster Session I,PS182001.)
本発明の二光子吸収材料は、前述の公知の二光子吸収材料において使用されている化合物と同様に、ジメチルスルホキシド、ジメチルホルムアミドなどの有機溶媒に溶解した状態で使用しても良く、或いはポリメタクリルメチルなどのポリマー中にドープして使用しても良く、或いは化合物そのものを単独で使用しても良い。
以下、図面を参照しつつ、本発明をさらに詳細に説明する。
図1は、本発明による二光子吸収材料の特性の一例を示すグラフであり、より具体的には、下記式(3)で示され、実施例1で使用するビス(2,5−ジメトキシ−4−(N−メチル−4−ピリジルビニレン)フェニル)ブタジイントリフレートについて、二光子吸収断面積を調べた結果を示すグラフである。
Figure 0004195937
溶媒、濃度、二光子吸光係数の測定条件などについては、実施例1において詳述するが、図1から明らかな様に、650nmよりも短波長側で著しい二光子吸収断面積の増大が得られ、波長571nmにおいて最大2400×10−50cm・sec・molecule−1・photon−1の巨大な二光子吸収断面積が得られている。この短波長側での二光子吸収断面積の著しい増大は、467nmの可視城にある一光子吸収のピーク波長近傍で生じ、後述の実施例2および3でも示される様に、常に一光子吸収のピーク波長近傍で二光子吸収断面積の著しい増大が得られる。
この巨大な二光子吸収断面積という特性は、一般式(1)で示される化合物および一般式(2)で示される化合物からなる本発明二光子吸収材料では、全ての化合物において得られるものであり、いずれも、一光子吸収のピーク波長から250nm以内の波長域で二光子吸収のピーク波長を示す。これは、従来知られていない新規な特性である。本発明二光子吸収材料は、この様な特性を利用して後述する各種の用途に有効に利用できる。
例えば、一般式(1)で示される化合物および一般式(2)で示される化合物は、上記した特性を利用して、光制限装置における光制限材料、光造型用光硬化樹脂の硬化材料、三次元光メモリ材料などとして有効に利用できる。
また、本発明で使用する化合物中で、一般式(1)で示される化合物は、蛍光性を示す化合物であり、上記した用途以外に、例えば、走査型二光子蛍光顕微鏡における蛍光色素材料などとして有用である。また、その蛍光性を利用した三次元メモリ材料としての応用も可能である。
以下、本発明による二光子吸収材料を用いる各種装置につき、説明する。但し、本発明による二光子吸収材料の使用は、これらの装置に限定されるものではなく、その他の種々の装置においても、優れた効果を発揮することは、いうまでもない。また、説明を簡略化するために、図示の装置においては、主要な構成要素のみを示しているが、実用的な装置においては、その他の公知の構成要素(図示せず)を使用する。
図2は、本発明による二光子吸収材料を光制限材料として用いる光制限装置の一例の概要を示す模式図である。
外部から(図2において、左側から)入射してきたレーザービームは、集光装置1(レンズ、凹面鏡など)により集光され、光制限材料2中で極めて高い光強度となり、二光子吸収を誘起して、吸収される。これに対し、通常光などの弱い光は、光制限材料中で二光子吸収を誘起することなく、そのままこれを通過し、コリメート装置3(レンズ、凹面鏡など)により、当初の光路に戻されて、装置を出射する。従って、この光制限装置においては、強度の強い光のみが装置により遮断されるので、出射側にある光検出器或いは観察者の肉眼がレーザービームから保護される。
図3は、本発明による二光子吸収材料を硬化材料として用いる光造型装置の一例の概要を示す模式図である。
レーザービームは、パルスレーザー発生装置4からミラー8を経て、パルスレーザー集光装置5(顕微鏡の対物レンズなど)により集光され、二光子吸収材料(硬化材料)を含む光硬化性モノマー6中で焦点を結び、高い光強度となり、二光子吸収を誘起する。この二光子吸収により、反応中間体が生成され、共存するモノマーが重合して、焦点近傍のみにポリマーが形成される。その結果、任意の形状の三次元構造物を造型することができる。レーザービームの微細制御を行う場合には、微小な三次元構造物を造型することもできる。この光造形装置は、所定の集光位置をレーザービームで走査するための機構を備えており、モノマー中でのレーザービーム焦点の移動は、光硬化性モノマー6を支持するステージ7を可動形式とする場合には、ミラー8を固定形式とし、ステージ7を固定形式とする場合には、ミラー8を可動形式(ガルバノミラーなど)とすることなどにより行うことができる。
図4は、本発明による二光子吸収材料を三次元光メモリ材料として用いる三次元メモリ装置の一例の概要を示す模式図である。この図は、一般式(1)で示される化合物を三次元光メモリ材料として用い、その蛍光性を利用する三次元メモリ装置の例である。
図4の装置では、パルスレーザー発生装置4からの光をダイクロイックミラー10を経て、パルスレーザー集光装置5により集光して、二光子吸収材料(三次元光メモリ材料)9中で所望の箇所に焦点を結ばせる。焦点では、二光子吸収により誘起された蛍光が発する。レーザー光強度を一定以上に高くすると、焦点部分の二光子吸収材料9が破壊されて、当該部分では蛍光が発生しなくなる。この様に制御された集光操作を繰り返し行うことにより、レーザー照射により蛍光を発生する部分と蛍光を発生しない部分とを任意の箇所に三次元的に形成することができる。かくして、情報の三次元的記録が可能となる。情報の読出しは、破壊強度よりも弱いレーザーをこの破壊部分と非破壊部分とに照射することにより、二光子吸収による蛍光を誘起し、これを集光装置5により集め、ダイクロイックミラー10でレーザー光と分離して、光検出器11などの光読出し装置で検出することにより行うことができる。この場合にも、上記メモリ装置は、所望の集光位置をレーザービームで走査するための機構を備えており、走査機構としては、例えば、ステージ7上に置かれた二光子吸収材料9を移動させても良く、或いは可動ミラー(ガルバノミラーなど)を用いてレーザービームを走査しても良い。
図5は、本発明二光子吸収材料の二光子吸収後に生じる屈折率変化を利用する三次元光メモリ装置の一例の概要を示す模式図である。この光メモリ装置では、一般式(1)で示される化合物及び一般式(2)で示される化合物からなる群から選ばれた少なくとも一種の化合物を光メモリ材料として用いることができる。
図5の装置では、情報の三次元的記録方法は、図4の装置と同様でよい。即ち、パルスレーザー発生装置4からの光をダイクロイックミラー10を経て、パルスレーザー集光装置5により集光して、二光子吸収材料(三次元光メモリ材料)9中で所望の箇所に焦点を結ばせる。焦点近傍では、二光子吸収後に生じる反応又は熱による変成によって二光子吸収材料に屈折率変化が生じる。この様に制御された集光操作を繰り返し行うことにより、任意の箇所に三次元的に屈折率の異なる部分を形成することができる。かくして、情報の三次元的記録が可能となる。
情報の読出しは、例えば、共焦点光学顕微鏡13を利用して、光メモリ材料9中の屈折率変化を検出することによって行うことができる。例えば、検出用光源14からの光を集光装置(レンズなど)15により集光して、光メモリ材料9中に屈折率変化として記録されている部分を照射する。照射された光は、集光装置(レンズなど)5及び集光装置(レンズなど)16を経てアパーチャー17を通過した後、集光装置(レンズなど)18で集光されて、光検出器11で検出される。記録位置での屈折率変化は、光検出器11において、光量の変化として検出することができる。この方法では、光メモリ材料9中の焦点に対応する焦点(共焦点)位置にアパーチャー17を設置することで、深さ方向の位置分解能が生じ、三次元的な記録の読み出しが可能となる。例えば、ステージ7を移動するか、アパーチャー17の位置を移動することにより、水平方向二次元的にスキャンして水平方向の記録の読み出しが可能となる。また、ステージ7を深さ方向に移動させることにより、深さ方向の読み出しが可能となる。
図6は、一般式(1)で示される二光子吸収材料を蛍光色素材料として用いる二光子蛍光顕微鏡の一例の概要を示す模式図である。
パルスレーザー発生装置4からの光をダイクロイックミラー10を経て、パルスレーザー集光装置5により集光して、二光子吸収材料12中で焦点を結ばせることにより、二光子吸収により誘起された蛍光を生じさせる。ステージ7上に置かれた二光子吸収材料12をレーザービームで走査し、各場所での蛍光強度を光検出器11などの光検出装置で検出して、得られた位置情報に基づいて、コンピュータでプロットすることにより、三次元蛍光像が得られる。この場合にも、該二光子蛍光顕微鏡は、所望の集光位置をレーザービームで走査するための機構を備えており、走査機構としては、例えば、ステージ7上に置かれた二光子吸収材料12を移動させても良く、或いは可動ミラー(ガルバノミラーなど)を用いてレーザービームを走査しても良い。
以上の通り、本発明による二光子吸収材料は、巨大な二光子吸収断面積を有しているので、低濃度で高い二光子吸収特性を発揮する。
従って、本発明によれば、高感度な二光子吸収材料が得られるだけでなく、材料の光破壊強度耐性が向上し、材料中の他成分の特性に対する悪影響も低下させることができる。The present invention has been made in view of the current state of the prior art described above, and its main purpose is a novel that has a huge two-photon absorption cross-sectional area and can exhibit high two-photon absorption characteristics at a low concentration. Is to provide materials.
As a result of conducting research while paying attention to the current state of the technology as described above, the present inventor has a specific two-photon absorption cross section in the vicinity of the one-photon absorption peak, It has been found that it exhibits excellent properties as a two-photon absorption material at low concentrations.
That is, the present invention provides the following two-photon absorption materials and applied materials and devices that use them for various purposes.
1. It consists of at least one compound selected from the group consisting of the compound represented by the general formula (1) and the compound represented by the general formula (2), and the peak wavelength of one-photon ultraviolet / visible / near infrared absorption of the compound A two-photon absorption material exhibiting a peak wavelength of two-photon absorption in a wavelength region within 250 nm from 250 nm;
Figure 0004195937
(Wherein, R 1 and R 2 are the same or different and each represents a hydrogen atom or an alkoxy group having 1 to 4 carbon atoms, and n represents an integer of 1 to 3).
Figure 0004195937
(In the formula, R 1 , R 2 and n are the same as above. R 3 is an alkyl group having 1 to 3 carbon atoms, A is RSO 3 (wherein R is CF 3 , phenyl, A tolyl or an alkyl group having 1 to 3 carbon atoms), a halogen anion or ClO 4 ).
2. It consists of at least one compound selected from the group consisting of the compound represented by the general formula (1) and the compound represented by the general formula (2), and the peak wavelength of one-photon ultraviolet / visible / near infrared absorption of the compound A light-limiting material comprising a two-photon absorption material exhibiting a peak wavelength of two-photon absorption in a wavelength range of 250 nm to 250 nm;
Figure 0004195937
(Wherein, R 1 and R 2 are the same or different and each represents a hydrogen atom or an alkoxy group having 1 to 4 carbon atoms, and n represents an integer of 1 to 3).
Figure 0004195937
(In the formula, R 1 , R 2 and n are the same as above. R 3 is an alkyl group having 1 to 3 carbon atoms, A is RSO 3 (wherein R is CF 3 , phenyl, A tolyl or an alkyl group having 1 to 3 carbon atoms), a halogen anion or ClO 4 ).
3. It consists of at least one compound selected from the group consisting of the compound represented by the general formula (1) and the compound represented by the general formula (2), and the peak wavelength of one-photon ultraviolet / visible / near infrared absorption of the compound Curing material of photo-curing resin for photo molding, comprising a two-photon absorption material exhibiting a peak wavelength of two-photon absorption in a wavelength region within 250 nm to 250 nm;
Figure 0004195937
(Wherein, R 1 and R 2 are the same or different and each represents a hydrogen atom or an alkoxy group having 1 to 4 carbon atoms, and n represents an integer of 1 to 3).
Figure 0004195937
(In the formula, R 1 , R 2 and n are the same as above. R 3 is an alkyl group having 1 to 3 carbon atoms, A is RSO 3 (wherein R is CF 3 , phenyl, A tolyl or an alkyl group having 1 to 3 carbon atoms), a halogen anion or ClO 4 ).
4). It consists of at least one compound selected from the group consisting of the compound represented by the general formula (1) and the compound represented by the general formula (2), and the peak wavelength of one-photon ultraviolet / visible / near infrared absorption of the compound A three-dimensional optical memory material comprising a two-photon absorption material exhibiting a peak wavelength of two-photon absorption in a wavelength region within 250 nm to 250 nm;
Figure 0004195937
(Wherein, R 1 and R 2 are the same or different and each represents a hydrogen atom or an alkoxy group having 1 to 4 carbon atoms, and n represents an integer of 1 to 3).
Figure 0004195937
(In the formula, R 1 , R 2 and n are the same as above. R 3 is an alkyl group having 1 to 3 carbon atoms, A is RSO 3 (wherein R is CF 3 , phenyl, A tolyl or an alkyl group having 1 to 3 carbon atoms), a halogen anion or ClO 4 ).
5. It consists of at least one compound selected from the group consisting of the compounds represented by the general formula (1), and two-photon absorption in a wavelength region within 250 nm from the peak wavelength of one-photon ultraviolet / visible / near infrared absorption of the compound A fluorescent dye material for a scanning two-photon fluorescence microscope, comprising a two-photon absorption material having a peak wavelength of
Figure 0004195937
(In the formula, R 1 and R 2 are the same or different and represent a hydrogen atom or an alkoxy group having 1 to 4 carbon atoms, n represents an integer of 1-3.).
6). A light limiting device in which the light limiting material described in the above item 2 is disposed between the light collecting device and the collimating device.
7). A two-photon absorption photomolding device equipped with a pulse laser generator, a pulse laser condensing device, a photocurable monomer container, and a mechanism for scanning a predetermined condensing position in the photocurable monomer with a laser beam. An optical molding apparatus, wherein the curing material according to item 3 is contained in a photocurable monomer.
8). A three-dimensional optical memory device comprising a pulse laser generator, a pulse laser condensing device, a three-dimensional optical memory material, a mechanism for scanning a predetermined condensing position of the memory material with a laser beam, and an optical readout device. The three-dimensional memory material is composed of at least one compound selected from the group consisting of compounds represented by the following general formula (1), and from the peak wavelength of one-photon ultraviolet / visible / near infrared absorption of the compound. A three-dimensional memory device characterized by being a two-photon absorption material having a peak wavelength of two-photon absorption in a wavelength region within 250 nm and exhibiting fluorescence;
Figure 0004195937
(In the formula, R 1 and R 2 are the same or different and represent a hydrogen atom or an alkoxy group having 1 to 4 carbon atoms, n represents an integer of 1-3.).
9. Pulse laser generator, pulse laser condensing device, three-dimensional optical memory material according to item 4, mechanism for scanning a predetermined condensing position of the memory material with a laser beam, and refractive index change in optical memory material Three-dimensional optical memory device provided with a mechanism for detecting the above.
10. A pulse laser generator, a pulse laser condensing device, a fluorescent dye material described in the above item 5, a mechanism for scanning a predetermined condensing position of the fluorescent dye material with a laser beam, and a photodetection device Photon fluorescence microscope.
The two-photon absorption material of the present invention comprises at least one compound selected from the group consisting of a compound represented by the following general formula (1) and a compound represented by (2). It shows the peak wavelength of two-photon absorption in the wavelength region within 250 nm from the peak wavelength of near infrared absorption.
Figure 0004195937
(Wherein, R 1 and R 2 are the same or different and each represents a hydrogen atom or an alkoxy group having 1 to 4 carbon atoms, and n represents an integer of 1 to 3).
Figure 0004195937
(In the formula, R 1 , R 2 and n are the same as above. R 3 is an alkyl group having 1 to 3 carbon atoms, A is RSO 3 (wherein R is CF 3 , phenyl, A tolyl or an alkyl group having 1 to 3 carbon atoms), a halogen anion or ClO 4 ).
In the general formulas (1) and (2), examples of the alkoxy group having 1 to 4 carbon atoms include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy, tert-butoxy group and the like. Examples include straight-chain or branched alkoxy groups, and examples of the alkyl group having 1 to 3 carbon atoms include straight-chain or branched alkyl groups such as methyl, ethyl, n-propyl, and isopropyl. it can. Examples of the halogen anion include F , Cl , Br , I − and the like.
Specific examples of the compound represented by the general formula (1) and the compound represented by the general formula (2) include compounds represented by the following formulas (3), (4) and (5). it can.
Figure 0004195937
Figure 0004195937
The said compound can be manufactured by the method described in the well-known literature of the following 1-4, for example. Other compounds can also be produced by the same method.
1. Synthesis of diacetylene having stilbazolium group and evaluation of three-dimensional nonlinear optical properties using femtosecond Z-scan method (The 50th Annual Meeting of the Society of Polymer Science, Abstracts vol.50, p.728)
2. Synthesis of diacetylene having styrylpyridine derivatives and two-photon absorption characteristics using femtosecond Z-scan method (The 50th Polymer Symposium, Abstracts vol.50, p.3318)
3. Synthesis of acetylene derivatives having a styrylpyridyl group, evaluation of two-photon absorption characteristics using femtosecond Z-scan method, and discussion thereof (The 51st Annual Meeting of the Society of Polymer Science, Abstracts vol.51, p.696) )
4). Two-photon absorption property of bis (pyridyl vinylene phenylene), Diacetylene derivatives (6 th International Conference of Organics I), No.
The two-photon absorption material of the present invention may be used in a state dissolved in an organic solvent such as dimethyl sulfoxide and dimethylformamide, as well as the compound used in the above-mentioned known two-photon absorption material. A polymer such as methyl may be used by doping, or the compound itself may be used alone.
Hereinafter, the present invention will be described in more detail with reference to the drawings.
FIG. 1 is a graph showing an example of the characteristics of the two-photon absorption material according to the present invention. More specifically, bis (2,5-dimethoxy-) represented by the following formula (3) and used in Example 1 is shown. It is a graph which shows the result of having investigated the two-photon absorption cross section about 4- (N-methyl-4-pyridyl vinylene) phenyl) butadiyne triflate.
Figure 0004195937
The measurement conditions of the solvent, concentration, two-photon extinction coefficient, etc. will be described in detail in Example 1. As is clear from FIG. 1, a significant increase in the two-photon absorption cross section is obtained on the shorter wavelength side than 650 nm. At a wavelength of 571 nm, a maximum two-photon absorption cross section of 2400 × 10 −50 cm 4 · sec · molecule −1 · photon −1 is obtained. This significant increase in the two-photon absorption cross section on the short wavelength side occurs near the peak wavelength of one-photon absorption in the visible castle at 467 nm, and as shown in Examples 2 and 3 to be described later, the one-photon absorption always increases. A significant increase in the two-photon absorption cross section is obtained near the peak wavelength.
This huge two-photon absorption cross-sectional property is obtained in all compounds in the two-photon absorption material of the present invention comprising the compound represented by the general formula (1) and the compound represented by the general formula (2). Both show the peak wavelength of two-photon absorption in a wavelength region within 250 nm from the peak wavelength of one-photon absorption. This is a novel characteristic that has not been known so far. The two-photon absorption material of the present invention can be effectively used for various applications to be described later using such characteristics.
For example, the compound represented by the general formula (1) and the compound represented by the general formula (2) use the above-described properties to make a light-limiting material in a light-limiting device, a curing material for a photo-setting resin for photoforming, a tertiary It can be used effectively as an original optical memory material.
Moreover, in the compound used by this invention, the compound shown by General formula (1) is a compound which shows fluorescence, For example, as a fluorescent pigment material in a scanning two-photon fluorescence microscope other than the above-mentioned use, etc. Useful. Moreover, the application as a three-dimensional memory material using the fluorescence is also possible.
Hereinafter, various apparatuses using the two-photon absorption material according to the present invention will be described. However, the use of the two-photon absorption material according to the present invention is not limited to these apparatuses, and it goes without saying that excellent effects are exhibited in various other apparatuses. In order to simplify the explanation, only the main components are shown in the illustrated apparatus, but other known components (not shown) are used in a practical apparatus.
FIG. 2 is a schematic diagram showing an outline of an example of an optical limiting device using the two-photon absorption material according to the present invention as an optical limiting material.
The laser beam incident from the outside (from the left side in FIG. 2) is condensed by the condensing device 1 (lens, concave mirror, etc.), becomes extremely high light intensity in the light limiting material 2, and induces two-photon absorption. And absorbed. On the other hand, weak light such as normal light passes through the light-limiting material without inducing two-photon absorption, and is returned to the original optical path by the collimating device 3 (lens, concave mirror, etc.). , Exit the device. Therefore, in this light limiting device, only strong light is blocked by the device, so that the photodetector on the emission side or the naked eye of the observer is protected from the laser beam.
FIG. 3 is a schematic view showing an outline of an example of an optical molding apparatus using the two-photon absorption material according to the present invention as a curing material.
The laser beam is condensed from the pulse laser generator 4 through the mirror 8 and by a pulse laser condensing device 5 (such as an objective lens of a microscope), and in a photocurable monomer 6 containing a two-photon absorption material (curing material). Focus is achieved, high light intensity, and induces two-photon absorption. By this two-photon absorption, a reaction intermediate is generated, the coexisting monomers are polymerized, and a polymer is formed only in the vicinity of the focal point. As a result, a three-dimensional structure having an arbitrary shape can be formed. When fine control of the laser beam is performed, a minute three-dimensional structure can be formed. This stereolithography apparatus is provided with a mechanism for scanning a predetermined condensing position with a laser beam, and the movement of the laser beam focus in the monomer is such that the stage 7 supporting the photocurable monomer 6 is movable. In this case, when the mirror 8 is a fixed type and the stage 7 is a fixed type, the mirror 8 can be a movable type (galvano mirror or the like).
FIG. 4 is a schematic diagram showing an outline of an example of a three-dimensional memory device using the two-photon absorption material according to the present invention as a three-dimensional optical memory material. This figure shows an example of a three-dimensional memory device using the compound represented by the general formula (1) as a three-dimensional optical memory material and utilizing the fluorescence.
In the apparatus of FIG. 4, the light from the pulse laser generator 4 is condensed by the pulse laser condensing device 5 through the dichroic mirror 10, and is collected at a desired location in the two-photon absorption material (three-dimensional optical memory material) 9. Focus. At the focal point, fluorescence induced by two-photon absorption is emitted. When the laser light intensity is increased above a certain level, the two-photon absorption material 9 in the focal portion is destroyed, and fluorescence is not generated in that portion. By repeating the condensing operation controlled in this manner, a portion that generates fluorescence and a portion that does not generate fluorescence by laser irradiation can be formed three-dimensionally at an arbitrary location. Thus, three-dimensional recording of information becomes possible. Information is read out by irradiating a laser beam weaker than the breakdown intensity to the destructive portion and the non-destructive portion, thereby inducing fluorescence by two-photon absorption, collecting the light by the condensing device 5, and laser light from the dichroic mirror 10. And can be detected by an optical reading device such as the photodetector 11. Also in this case, the memory device includes a mechanism for scanning a desired condensing position with a laser beam. As the scanning mechanism, for example, the two-photon absorption material 9 placed on the stage 7 is moved. Alternatively, the laser beam may be scanned using a movable mirror (such as a galvanometer mirror).
FIG. 5 is a schematic diagram showing an outline of an example of a three-dimensional optical memory device using a refractive index change that occurs after two-photon absorption of the two-photon absorption material of the present invention. In this optical memory device, at least one compound selected from the group consisting of the compound represented by the general formula (1) and the compound represented by the general formula (2) can be used as the optical memory material.
In the apparatus of FIG. 5, the three-dimensional information recording method may be the same as that of the apparatus of FIG. That is, the light from the pulse laser generator 4 is condensed by the pulse laser condensing device 5 through the dichroic mirror 10 and focused on a desired location in the two-photon absorption material (three-dimensional optical memory material) 9. . In the vicinity of the focal point, a refractive index change occurs in the two-photon absorbing material due to a reaction generated after two-photon absorption or due to thermal modification. By repeating the condensing operation controlled in this way, it is possible to form a portion having a three-dimensionally different refractive index at an arbitrary position. Thus, three-dimensional recording of information becomes possible.
Information can be read out by detecting a change in the refractive index in the optical memory material 9 using the confocal optical microscope 13, for example. For example, the light from the light source for detection 14 is condensed by a condensing device (such as a lens) 15 and a portion recorded as a change in refractive index in the optical memory material 9 is irradiated. The irradiated light passes through the aperture 17 through the light collecting device (lens etc.) 5 and the light collecting device (lens etc.) 16, and is then condensed by the light collecting device (lens etc.) 18, and the photodetector 11. Is detected. A change in refractive index at the recording position can be detected as a change in the amount of light by the photodetector 11. In this method, by installing the aperture 17 at a focal point (confocal) position corresponding to the focal point in the optical memory material 9, position resolution in the depth direction is generated, and three-dimensional recording can be read out. For example, by moving the stage 7 or moving the position of the aperture 17, the horizontal recording can be read by scanning in the horizontal direction two-dimensionally. Further, by moving the stage 7 in the depth direction, reading in the depth direction becomes possible.
FIG. 6 is a schematic diagram showing an outline of an example of a two-photon fluorescence microscope using the two-photon absorption material represented by the general formula (1) as a fluorescent dye material.
The light from the pulse laser generator 4 is condensed by the pulse laser condensing device 5 through the dichroic mirror 10 and focused in the two-photon absorption material 12, thereby causing fluorescence induced by two-photon absorption. Cause it to occur. The two-photon absorption material 12 placed on the stage 7 is scanned with a laser beam, the fluorescence intensity at each location is detected by a light detection device such as the photodetector 11, and the computer is based on the obtained positional information. A three-dimensional fluorescence image is obtained by plotting with. Also in this case, the two-photon fluorescence microscope includes a mechanism for scanning a desired condensing position with a laser beam. As the scanning mechanism, for example, the two-photon absorption material 12 placed on the stage 7 is used. May be moved, or the laser beam may be scanned using a movable mirror (galvano mirror or the like).
As described above, since the two-photon absorption material according to the present invention has a huge two-photon absorption cross section, it exhibits high two-photon absorption characteristics at a low concentration.
Therefore, according to the present invention, not only a high-sensitivity two-photon absorption material can be obtained, but also the resistance to photodestructive strength of the material can be improved, and adverse effects on the properties of other components in the material can be reduced.

図1は実施例1における入射レーザー波長と二光子吸収材料の二光子吸収断面積透過率との関係を示すグラフ、図2は本発明による光制限装置の概要を示す模式図、図3は本発明による二光子吸収光造型装置の概要を示す模式図、図4は二光子吸収材料の蛍光性を利用する三次元メモリ装置の概要を示す模式図、図5は、二光子吸収材料の屈折率変化を利用する三次元メモリ装置の概要を示す模式図、図6は、本発明による二光子蛍光顕微鏡の概要を示す模式図、図7は実施例2における入射レーザー波長と二光子吸収材料の二光子吸収断面積との関係を示すグラフ、図8は実施例3における入射レーザー波長と二光子吸収材料の二光子吸収断面積との関係を示すグラフである。図中、1は集光装置、2は二光子吸収材料、3はコリメート装置、4はパルスレーザー発生装置、5は集光装置、6は二光子吸収材料、7は可動または固定ステージ、8は固定または可動ミラー、9は二光子吸収材料、10はダイクロイックミラー、11は光検出器、12は二光子吸収材料、13は共焦点光学顕微鏡、14は検出用光源、15は集光装置、16は集光装置、17はアパーチャー、18は集光装置である。  1 is a graph showing the relationship between the incident laser wavelength and the two-photon absorption cross-sectional transmittance of the two-photon absorbing material in Example 1, FIG. 2 is a schematic diagram showing an outline of the light limiting device according to the present invention, and FIG. FIG. 4 is a schematic diagram showing an outline of a three-dimensional memory device using the fluorescence of a two-photon absorbing material, and FIG. 5 is a refractive index of the two-photon absorbing material. FIG. 6 is a schematic diagram showing an outline of a two-photon fluorescence microscope according to the present invention, and FIG. 7 is a schematic diagram showing an incident laser wavelength and two-photon absorption materials in Example 2. FIG. 8 is a graph showing the relationship between the incident laser wavelength and the two-photon absorption cross-section of the two-photon absorption material in Example 3. In the figure, 1 is a condensing device, 2 is a two-photon absorbing material, 3 is a collimating device, 4 is a pulse laser generator, 5 is a condensing device, 6 is a two-photon absorbing material, 7 is a movable or fixed stage, 8 is Fixed or movable mirror, 9 is a two-photon absorbing material, 10 is a dichroic mirror, 11 is a photodetector, 12 is a two-photon absorbing material, 13 is a confocal optical microscope, 14 is a light source for detection, 15 is a condensing device, 16 Is a condenser, 17 is an aperture, and 18 is a condenser.

以下、本発明を実施例により、詳細に説明するが、本発明はこれら実施例に限定されるものではない。  EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these Examples.

式(3)で示される(2,5−ジメトキシ−4−(N−メチル−4−ピリジルビニレン)フェニル)ブタジイントリフレートを2.0〜3.0mol/l含むジメチルスルホキシド溶液を対象とし、波長範囲570〜960nmにおいて、パルス巾125fsのパルスレーザー光を、繰返し周波数1kHzで照射した。

Figure 0004195937
オープンアパーチャーZ−スキャン法により、二光子吸光係数を測定し、濃度を考慮に入れて二光子吸収断面積を算出したところ、467nmの可視域にある一光子吸収のピーク波長近傍である650nmより短波長側で、著しい二光子吸収断面積の増大が得られ、波長571nmにおいて、最大2400×10−50cm・sec・molecule−1・photon−1の巨大な二光子吸収断面積が得られた。For a dimethyl sulfoxide solution containing 2.0-3.0 mol / l of (2,5-dimethoxy-4- (N-methyl-4-pyridylvinylene) phenyl) butadiyne triflate represented by the formula (3), In a wavelength range of 570 to 960 nm, a pulse laser beam having a pulse width of 125 fs was irradiated at a repetition frequency of 1 kHz.
Figure 0004195937
The two-photon extinction coefficient was measured by the open aperture Z-scan method, and the two-photon absorption cross-section was calculated in consideration of the concentration. As a result, it was shorter than 650 nm, which is near the peak wavelength of one-photon absorption in the visible range of 467 nm. On the wavelength side, a significant increase in the two-photon absorption cross section was obtained. At the wavelength of 571 nm, a huge two-photon absorption cross section of 2400 × 10 −50 cm 4 · sec · molecule −1 · photon −1 was obtained. .

式(4)で示されるビス(N−メチル−4−ピリジルビニレン−p−フェニレン)ブタジイントリフレートを2.0〜3.0mol/l含むジメチルスルホキシド溶液を対象とし、波長範囲596〜890nmにおいて、パルス巾125fsのパルスレーザー光を、繰返し周波数1kHzで照射した。

Figure 0004195937
オープンアパーチャーZ−スキャン法により、二光子吸光係数を測定し、濃度を考慮に入れて二光子吸収断面積を算出したところ、400nmの可視域にある一光子吸収のピーク波長近傍である650nmより短波長側で、著しい二光子吸収断面積の増大が得られ、波長596nmにおいて、最大571×10−50cm・sec・molecule−1・photon−1の巨大な二光子吸収断面積が得られた(図7参照)。A dimethyl sulfoxide solution containing 2.0 to 3.0 mol / l of bis (N-methyl-4-pyridylvinylene-p-phenylene) butadiyne triflate represented by the formula (4) is used in a wavelength range of 596 to 890 nm. A pulse laser beam having a pulse width of 125 fs was irradiated at a repetition frequency of 1 kHz.
Figure 0004195937
The two-photon extinction coefficient was measured by open aperture Z-scan method, and the two-photon absorption cross section was calculated taking the concentration into consideration, and it was shorter than the peak wavelength of one-photon absorption in the visible region of 400 nm, which was shorter than 650 nm. On the wavelength side, a significant increase in the two-photon absorption cross-section was obtained, and at the wavelength of 596 nm, a huge two-photon absorption cross-section of 571 × 10 −50 cm 4 · sec · molecule −1 · photon −1 was obtained. (See FIG. 7).

式(5)で示されるビス(2,5−ジメトキシ−4−(4−ピリジルビニレン)フェニル)ブタジインを2.0〜3.0mol/l含むジメチルスルホキシド溶液を対象とし、波長範囲579〜907nmにおいて、パルス巾125fsのパルスレーザー光を、繰返し周波数1kHzで照射した。

Figure 0004195937
オープンアパーチャーZ−スキャン法により、二光子吸光係数を測定し、濃度を考慮に入れて二光子吸収断面積を算出したところ、421nmの可視域にある一光子吸収のピーク波長近傍である650nmより短波長側で、著しい二光子吸収断面積の増大が得られ、波長579nmにおいて、最大600×10−50cm・sec・molecule−1・photon−1の巨大な二光子吸収断面積が得られた(図8参照)。A dimethyl sulfoxide solution containing 2.0 to 3.0 mol / l of bis (2,5-dimethoxy-4- (4-pyridylvinylene) phenyl) butadiine represented by the formula (5) is used in a wavelength range of 579 to 907 nm. A pulse laser beam having a pulse width of 125 fs was irradiated at a repetition frequency of 1 kHz.
Figure 0004195937
The two-photon absorption coefficient was measured by the open aperture Z-scan method, and the two-photon absorption cross-section was calculated taking the concentration into consideration, and was shorter than the peak wavelength of one-photon absorption in the visible region of 421 nm, which was shorter than 650 nm. On the wavelength side, a significant increase in the two-photon absorption cross section was obtained, and at the wavelength of 579 nm, a huge two-photon absorption cross section of up to 600 × 10 −50 cm 4 · sec · molecule −1 · photon −1 was obtained. (See FIG. 8).

Claims (5)

一般式(1)で示される化合物および一般式(2)で示される化合物からなる群から選ばれた少なくとも1種の化合物からなる二光子吸収材料に、当該化合物の一光子紫外・可視・近赤外吸光のピーク波長から250nm以内の波長域にある光を照射して、二光子吸収を生じさせることを特徴とする二光子吸収方法
Figure 0004195937
(式中、RおよびRは、同一或いは相異なって、水素原子又は炭素数1〜4のアルコキシ基を表し、nは1〜3の整数を示す。)、
Figure 0004195937
(式中、R、Rおよびnは、上記に同じ。Rは、炭素数1〜3のアルキル基であり、Aは、RSO (式中Rは、CF、フェニル、トリル又は炭素数1〜3のアルキル基である)、ハロゲンアニオン又はClO である。)。
A two-photon absorption material comprising at least one compound selected from the group consisting of the compound represented by the general formula (1) and the compound represented by the general formula (2) is applied to a one-photon ultraviolet / visible / near red of the compound. A two-photon absorption method characterized by irradiating light in a wavelength region within 250 nm from the peak wavelength of external absorption to cause two-photon absorption ;
Figure 0004195937
(Wherein, R 1 and R 2 are the same or different and each represents a hydrogen atom or an alkoxy group having 1 to 4 carbon atoms, and n represents an integer of 1 to 3).
Figure 0004195937
(In the formula, R 1 , R 2 and n are the same as above. R 3 is an alkyl group having 1 to 3 carbon atoms, A is RSO 3 (wherein R is CF 3 , phenyl, A tolyl or an alkyl group having 1 to 3 carbon atoms), a halogen anion or ClO 4 ).
一般式(1)で示される化合物および一般式(2)で示される化合物からなる群から選ばれた少なくとも1種の化合物からなる二光子吸収材料を集光装置とコリメート装置との間に配置して当該化合物の一光子紫外・可視・近赤外吸光のピーク波長から250nm以内の波長域にある二光子吸収を生じる光を照射することを特徴とする光制限方法
Figure 0004195937
(式中、RおよびRは、同一或いは相異なって、水素原子又は炭素数1〜4のアルコキシ基を表し、nは1〜3の整数を示す。)、
Figure 0004195937
(式中、R、Rおよびnは、上記に同じ。Rは、炭素数1〜3のアルキル基であり、Aは、RSO (式中Rは、CF、フェニル、トリル又は炭素数1〜3のアルキル基である)、ハロゲンアニオン又はClO である。)。
A two-photon absorption material composed of at least one compound selected from the group consisting of the compound represented by the general formula (1) and the compound represented by the general formula (2) is disposed between the light collecting device and the collimating device. Te, light restricting wherein the irradiating light resulting two-photon absorption from a peak wavelength of one-photon ultraviolet-visible-near-infrared absorption in a wavelength range within 250nm of the compound;
Figure 0004195937
(Wherein, R 1 and R 2 are the same or different and each represents a hydrogen atom or an alkoxy group having 1 to 4 carbon atoms, and n represents an integer of 1 to 3).
Figure 0004195937
(In the formula, R 1 , R 2 and n are the same as above. R 3 is an alkyl group having 1 to 3 carbon atoms, A is RSO 3 (wherein R is CF 3 , phenyl, A tolyl or an alkyl group having 1 to 3 carbon atoms), a halogen anion or ClO 4 ).
一般式(1)で示される化合物および一般式(2)で示される化合物からなる群から選ばれた少なくとも1種の化合物からなる二光子吸収材料を含む光造型用光硬化樹脂に、当該化合物の一光子紫外・可視・近赤外吸光のピーク波長から250nm以内の波長域にある二光子吸収を生じる光を照射して、該樹脂を硬化させることを特徴とする光造型方法
Figure 0004195937
(式中、RおよびRは、同一或いは相異なって、水素原子又は炭素数1〜4のアルコキシ基を表し、nは1〜3の整数を示す。)、
Figure 0004195937
(式中、R、Rおよびnは、上記に同じ。Rは、炭素数1〜3のアルキル基であり、Aは、RSO (式中Rは、CF、フェニル、トリル又は炭素数1〜3のアルキル基である)、ハロゲンアニオン又はClO である。)。
A photocurable resin for photomolding comprising a two-photon absorbing material comprising at least one compound selected from the group consisting of a compound represented by the general formula (1) and a compound represented by the general formula (2), A photomolding method characterized by irradiating light that causes two-photon absorption in a wavelength region within 250 nm from a peak wavelength of one-photon ultraviolet / visible / near-infrared absorption to cure the resin :
Figure 0004195937
(Wherein, R 1 and R 2 are the same or different and each represents a hydrogen atom or an alkoxy group having 1 to 4 carbon atoms, and n represents an integer of 1 to 3).
Figure 0004195937
(In the formula, R 1 , R 2 and n are the same as above. R 3 is an alkyl group having 1 to 3 carbon atoms, A is RSO 3 (wherein R is CF 3 , phenyl, A tolyl or an alkyl group having 1 to 3 carbon atoms), a halogen anion or ClO 4 ).
一般式(1)で示される化合物および一般式(2)で示される化合物からなる群から選ばれた少なくとも1種の化合物からなる二光子吸収材料に、当該化合物の一光子紫外・可視・近赤外吸光のピーク波長から250nm以内の波長域にある光を照射して、二光子吸収を生じさせることを特徴とする三次元光メモリ方法
Figure 0004195937
(式中、RおよびRは、同一或いは相異なって、水素原子又は炭素数1〜4のアルコキシ基を表し、nは1〜3の整数を示す。)、
Figure 0004195937
(式中、R、Rおよびnは、上記に同じ。Rは、炭素数1〜3のアルキル基であり、Aは、RSO (式中Rは、CF、フェニル、トリル又は炭素数1〜3のアルキル基である)、ハロゲンアニオン又はClO である。)。
Compounds and two-photon absorption material ing at least one compound selected from the group consisting of compounds represented by the general formula (2) represented by the general formula (1), one-photon UV-visible and near of the compound A three-dimensional optical memory method characterized by irradiating light in a wavelength region within 250 nm from a peak wavelength of infrared absorption to cause two-photon absorption ;
Figure 0004195937
(Wherein, R 1 and R 2 are the same or different and each represents a hydrogen atom or an alkoxy group having 1 to 4 carbon atoms, and n represents an integer of 1 to 3).
Figure 0004195937
(In the formula, R 1 , R 2 and n are the same as above. R 3 is an alkyl group having 1 to 3 carbon atoms, A is RSO 3 (wherein R is CF 3 , phenyl, A tolyl or an alkyl group having 1 to 3 carbon atoms), a halogen anion or ClO 4 ).
一般式(1)で示される化合物からなる群から選ばれた少なくとも1種の化合物からなる蛍光性を示す二光子吸収材料に、当該化合物の一光子紫外・可視・近赤外吸光のピーク波長から250nm以内の波長域にある光を照射して、二光子吸収により誘起された蛍光を生じさせることを特徴とする三次元蛍光像の形成方法
Figure 0004195937
(式中、RおよびRは、同一或いは相異なって、水素原子又は炭素数1〜4のアルコキシ基を表し、nは1〜3の整数を示す。)。
From the peak wavelength of the one-photon ultraviolet / visible / near-infrared absorption of the compound to the two-photon absorbing material having fluorescence composed of at least one compound selected from the group consisting of the compound represented by the general formula (1) A method for forming a three-dimensional fluorescent image, characterized by irradiating light in a wavelength region of 250 nm or less to generate fluorescence induced by two-photon absorption :
Figure 0004195937
(In the formula, R 1 and R 2 are the same or different and represent a hydrogen atom or an alkoxy group having 1 to 4 carbon atoms, n represents an integer of 1-3.).
JP2004534133A 2002-09-09 2003-09-02 Two-photon absorption material Expired - Lifetime JP4195937B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002262312 2002-09-09
JP2002262312 2002-09-09
PCT/JP2003/011186 WO2004022665A1 (en) 2002-09-09 2003-09-02 Two-photon absorption materials

Publications (2)

Publication Number Publication Date
JPWO2004022665A1 JPWO2004022665A1 (en) 2005-12-22
JP4195937B2 true JP4195937B2 (en) 2008-12-17

Family

ID=31973156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004534133A Expired - Lifetime JP4195937B2 (en) 2002-09-09 2003-09-02 Two-photon absorption material

Country Status (3)

Country Link
JP (1) JP4195937B2 (en)
AU (1) AU2003261883A1 (en)
WO (1) WO2004022665A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7507369B2 (en) * 2001-11-26 2009-03-24 Biodefense Corporation Article processing apparatus and related methods
JP4627158B2 (en) * 2004-07-07 2011-02-09 独立行政法人産業技術総合研究所 Two-photon absorption material
WO2006078941A2 (en) * 2005-01-20 2006-07-27 Sirtris Pharmaceuticals, Inc. Novel sirtuin activating compounds and methods of use thereof
JP5117679B2 (en) * 2005-04-27 2013-01-16 株式会社リコー Dye material using multiphoton absorption material, method for producing dye material, multiphoton absorption reaction material, reaction product of multiphoton absorption reaction material, multiphoton absorption reaction aid, and dye solution
JP4996115B2 (en) * 2006-03-15 2012-08-08 株式会社リコー Two-photon absorption materials and their applications
JP4969881B2 (en) * 2006-03-17 2012-07-04 株式会社リコー Two-photon absorption materials and their applications
JP2007328149A (en) * 2006-06-08 2007-12-20 Toshiba Corp Optical recording medium and recording method for the same
JP5104532B2 (en) * 2008-05-12 2012-12-19 ソニー株式会社 Optical information recording medium and two-photon absorption material
JP5578455B2 (en) * 2013-02-01 2014-08-27 株式会社リコー π-conjugated compounds and their uses, and elements and devices using them

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5037916A (en) * 1990-03-16 1991-08-06 University Of Lowell Substituted extensively conjugated ionic polyacetylenes
JP3246677B2 (en) * 1992-06-30 2002-01-15 キヤノン株式会社 Optical echo memory recording and reproducing apparatus and method
US6252892B1 (en) * 1998-09-08 2001-06-26 Imra America, Inc. Resonant fabry-perot semiconductor saturable absorbers and two photon absorption power limiters
JP3530918B2 (en) * 1998-09-25 2004-05-24 学校法人立命館 Polydipyridyl diacetylene derivative and method for producing the same
JP3629696B2 (en) * 1999-05-28 2005-03-16 横河電機株式会社 Nipkow disk type two-photon absorption fluorescence microscope
JP3815652B2 (en) * 1999-12-02 2006-08-30 独立行政法人科学技術振興機構 Two-photon micro-stereolithography method and apparatus thereof, parts formed by two-photon micro-stereolithography and movable mechanism
JP4235372B2 (en) * 2000-09-28 2009-03-11 富士フイルム株式会社 2,2'-Bridged Biphenyl Compound, Optical Information Recording Medium, and Recording Method

Also Published As

Publication number Publication date
AU2003261883A1 (en) 2004-03-29
WO2004022665A1 (en) 2004-03-18
JPWO2004022665A1 (en) 2005-12-22

Similar Documents

Publication Publication Date Title
US6322931B1 (en) Method and apparatus for optical data storage using non-linear heating by excited state absorption for the alteration of pre-formatted holographic gratings
Cumpston et al. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication
JP4195937B2 (en) Two-photon absorption material
US20080125317A1 (en) Heating Additive for Three Dimensional Optical Memory
EP2159227B1 (en) Two-photon absorption material and application thereof
TW201237860A (en) Optical data storage media and methods for using the same
US7964333B1 (en) FRET-based two photon three dimensional optical data storage
JP5769151B2 (en) Two-photon absorbing material and use thereof
JP2013524398A (en) Reversible recording medium by optical recording of information and reversible recording method on such medium
Ferri et al. Near-field optical addressing of luminescent photoswitchable supramolecular systems embedded in inert polymer matrices
JP4328856B2 (en) Two-photon absorption material
Dallari et al. Three-dimensional optical data storage through multi-photon confocal microscopy and imaging
Zhao et al. A 3D nanoscale optical disk memory with petabit capacity
JP2010217579A (en) Two-photon absorbing material and application therefor
CN100387680C (en) Photon type diaryl alkene photochromatic material and its prepn and application in double photon light memory
Que et al. Space-selective creation of photonics functions in a new organic material: Femtosecond laser direct writing in Zeonex glass of refractive index change and photoluminescence
JP5343479B2 (en) Two-photon absorbing organic materials and their applications
JP2009256485A (en) Amorphous polymer of dianthracene and optical information recording thin film material using it
JP5339242B2 (en) Two-photon absorption materials and their applications
EP2538410B1 (en) Method of recording data in an optical data storage medium and an optical data storage medium
Wang et al. Optical storage properties of novel azo dye‐in‐polymer (PMMA) thin films
JP5105808B2 (en) Distyrylbenzene derivative and three-dimensional memory material, light limiting material, photocuring resin curing material for stereolithography, and fluorescent dye material for two-photon fluorescence microscope using the same.
JP2013241415A (en) Two-photon absorption material and application thereof
CN1329391C (en) Organic photochromic diaryl ethylene compound and its preparation process and application
JP5047651B2 (en) Two-photon absorption materials and their applications

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4195937

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term