WO2004022665A1 - Two-photon absorption materials - Google Patents

Two-photon absorption materials Download PDF

Info

Publication number
WO2004022665A1
WO2004022665A1 PCT/JP2003/011186 JP0311186W WO2004022665A1 WO 2004022665 A1 WO2004022665 A1 WO 2004022665A1 JP 0311186 W JP0311186 W JP 0311186W WO 2004022665 A1 WO2004022665 A1 WO 2004022665A1
Authority
WO
WIPO (PCT)
Prior art keywords
photon
photon absorption
carbon atoms
general formula
compound
Prior art date
Application number
PCT/JP2003/011186
Other languages
French (fr)
Japanese (ja)
Inventor
Kenji Kamada
Yoichiro Iwase
Koji Ohta
Koichi Kondo
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to JP2004534133A priority Critical patent/JP4195937B2/en
Priority to AU2003261883A priority patent/AU2003261883A1/en
Publication of WO2004022665A1 publication Critical patent/WO2004022665A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/28Radicals substituted by singly-bound oxygen or sulphur atoms
    • C07D213/30Oxygen atoms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/72Photosensitive compositions not covered by the groups G03C1/005 - G03C1/705
    • G03C1/73Photosensitive compositions not covered by the groups G03C1/005 - G03C1/705 containing organic compounds
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B7/247Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes methine or polymethine dyes

Definitions

  • the present invention relates to a two-photon absorption material useful as a light limiting material, a curing material in two-photon absorption stereolithography, a three-dimensional memory material, a fluorescent dye material in a two-photon fluorescence microscope, and the like.
  • the two-photon absorption cross section when using a femtosecond pulsed laser is 200 ⁇ 10-50 cm 4 s ⁇ mo lecul e one 1 ⁇ photon "1 less than what is almost (Stephen Kershaw Pride goes, 'Two-Photon Absorpt i on in' Charac ter izat i on techniques and t abulat ions f or organi c nonl inear opt i cal materi al s ", ed. by Mark G. Kuzyk, Carl W. Dirk, chapter 7, pp. 515-654, Mercel Dekker, Inc. New York, 1988).
  • the two-photon absorption cross section of a compound When the two-photon absorption cross section of a compound is small, one option is to increase the compound concentration in order to improve the two-photon absorption characteristics as a material.
  • the solubility of the compounds is limited and significant improvements in properties are not possible.
  • increasing the concentration is not always an effective method because it may adversely affect other components in the two-photon absorption material.
  • the curability of the polymer may be impaired or the fluorescence intensity may be reduced due to concentration quenching. May affect the activity of living tissue.
  • the laser-peak intensity must be significantly increased if the two-photon absorption properties of the material cannot be improved.
  • the material is easily degraded or even destroyed because of the use of high-intensity energies close to the material. Disclosure of the invention
  • the present invention has been made in view of the above-mentioned state of the art, and its main purpose is to have a huge two-photon absorption cross-section and to exhibit high two-photon absorption characteristics at a low concentration. It is to provide a new material.
  • the present inventor has conducted research while paying attention to the current state of the technology as described above, and as a result, a specific acetylene-based compound has a huge two-photon absorption cross section near a one-photon absorption peak, It has been found that it exhibits excellent properties as a two-photon absorption material at low concentrations. That is, the present invention provides the following two-photon absorption material, and application materials and devices using the same for various uses.
  • One-photon ultraviolet of the compound comprising at least one compound selected from the group consisting of the compound represented by the general formula (1) and the compound represented by the general formula (2)
  • a two-photon absorption material that exhibits a two-photon absorption peak wavelength within a wavelength range of 250 nm or less from the visible and near-infrared absorption peak wavelengths;
  • R 2 are the same or different and represent a hydrogen atom or an alkoxy group having 1 to 4 carbon atoms, and n represents an integer of 1 to 3;
  • R 2 and eta the same R 3 in the above is an alkyl group having 1 to 3 carbon atoms, A one is RS0 3 -.
  • It is composed of at least one compound selected from the group consisting of the compound represented by the general formula (1) and the compound represented by the general formula (2), and has one-photon ultraviolet, visible, and near-infrared absorption. Two-photon absorption peak within a wavelength range within 250 nm from the peak wavelength A light limiting material comprising a two-photon absorbing material exhibiting a wavelength;
  • R 2 are the same or different and represent a hydrogen atom or an alkoxy group having 1 to 4 carbon atoms, and n represents an integer of 1 to 3;
  • R 3 is an alkyl group having 1 to 3 carbon atoms
  • A is RSCV (where R is CF 3 , phenyl, tolyl or 1 carbon atoms. To 3), halogenanion or C1 C.;).
  • Curing material of photocurable resin for stereolithography consisting of a two-photon absorption material that exhibits a two-photon absorption peak wavelength within a wavelength range of 250 nm or less from the peak wavelength;
  • R 2 are the same or different and represent a hydrogen atom or an alkoxy group having 1 to 4 carbon atoms, and n represents an integer of 1 to 3).
  • R 3 is an alkyl group having 1 to 3 carbon atoms
  • a one is, RS0 3 - (wherein R is, CF 3, phenyl, an alkyl group having a tolyl or carbon number 1-3), halogen ⁇ anion or cio 4 - a. ;).
  • a three-dimensional optical memory material comprising a two-photon absorption material exhibiting a two-photon absorption peak wavelength within a wavelength range of 250 nm or less from the peak wavelength;
  • R 2 are the same or different and each represent a hydrogen atom or an alkoxy group having 1 to 4 carbon atoms, and n represents an integer of 1 to 3.
  • R 3 is an alkyl group having 1 to 3 carbon atoms
  • A is RSO (where R is CF 3 , phenyl, tolyl or carbon An alkyl group having a number of 1 to 3), halogen anion or C10 4 —;).
  • a fluorescent dye material for a scanning two-photon fluorescence microscope comprising a two-photon absorption material having a peak wavelength of photon absorption and exhibiting fluorescence;
  • a light limiting device in which the light limiting material described in item 2 above is arranged between the light condensing device and the collimating device.
  • Pulse laser generating device pulse laser condensing device, three-dimensional optical memory material, mechanism for scanning a predetermined condensing position of the memory material with one laser beam, and three-dimensional optical memory device including an optical reading device
  • the three-dimensional memory material comprises at least one compound selected from the group consisting of compounds represented by the following general formula (1), and comprises one photon ultraviolet, visible, near infrared
  • a three-dimensional memory device having a two-photon absorption peak wavelength within a wavelength region within 250 nm from the absorption peak wavelength and exhibiting fluorescence;
  • R 2 are the same or different and represent a hydrogen atom or an alkoxy group having 1 to 4 carbon atoms, and n represents an integer of 1 to 3).
  • the two-photon absorption material of the present invention comprises at least one compound selected from the group consisting of a compound represented by the following general formula (1) and a compound represented by the following (2).
  • the compound shows a peak wavelength of two-photon absorption in a wavelength range within 250 nm from a peak wavelength of one-photon ultraviolet, visible, and near-infrared absorption.
  • R 2 are the same or different and each represent a hydrogen atom or an alkoxy group having 1 to 4 carbon atoms, and n represents an integer of 1 to 3).
  • R 2 and n are the same R 3 in the above is an alkyl group having 1 to 3 carbon atoms, A- is RS0 3 - (wherein R is, CF 3, phenyl, tolyl or An alkyl group having 1 to 3 carbon atoms), halogen anion or C10 4 —;
  • the alkoxy group having 1 to 4 carbon atoms includes methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, sec_butoxy, tert —A straight-chain or branched alkoxy group such as butoxy group, etc. can be exemplified.
  • the alkyl group having 1 to 3 carbon atoms a straight-chain or branched chain group such as methyl, ethyl, n-propyl, isopropyl, etc.
  • Examples of the halogen anion include F-, CBr ", and ⁇ .
  • the above compound can be produced, for example, by the methods described in the following known literatures 1 to 4 and the like. Other compounds can be produced by the same method.
  • the two-photon absorption material of the present invention may be used in the state of being dissolved in an organic solvent such as dimethyl sulfoxide or dimethylformamide, similarly to the compounds used in the above-mentioned known two-photon absorption material, or polymethacrylic acid. It may be used by doping it into a polymer such as methyl, or the compound itself may be used alone.
  • an organic solvent such as dimethyl sulfoxide or dimethylformamide
  • FIG. 1 is a graph showing an example of the characteristics of the two-photon absorption material according to the present invention. More specifically, the bis (2,5-dimethoxy) used in Example 1 is represented by the following formula (3). It is a graph which shows the result of having investigated the two-photon absorption cross section about -4- (N-methyl -4- pyridyl vinylene) phenyl) butadiin triflate.
  • Example 1 The solvent, concentration, measurement conditions for the two-photon extinction coefficient, etc. will be described in detail in Example 1.As is clear from FIG. 1, a remarkable increase in the two-photon absorption cross-sectional area at a wavelength shorter than 650 nm is obtained. giant two-photon absorption cross section of up to 2400 X 10- 5 ° cm 4 ⁇ sec ⁇ mo l ecu le one 1 ⁇ pho t on- 1 is obtained at a wavelength of 571 nm. This remarkable increase in the two-photon absorption cross section on the short wavelength side occurs near the peak wavelength of one-photon absorption in the visible region of 467 nm, and as shown in Examples 2 and 3 described later, the one-photon absorption always increases. A significant increase in the two-photon absorption cross section near the peak wavelength is obtained.
  • This property of a large two-photon absorption cross section is obtained in all compounds in the two-photon absorption material of the present invention comprising the compound represented by the general formula (1) and the compound represented by the general formula (2). Yes, all show peak wavelengths of two-photon absorption in a wavelength range within 250 nm from the peak wavelength of one-photon absorption. This is a new characteristic that has not been known before.
  • the two-photon absorption material of the present invention can be effectively used for various uses described later by utilizing such characteristics.
  • the compound represented by the general formula (1) and the compound represented by the general formula (2) can be used as a light-limiting material in a light-limiting device, a light-curing resin for stereolithography, It can be used effectively as an original optical memory material.
  • the compound represented by the general formula (1) is a compound exhibiting fluorescence, and in addition to the above-mentioned applications, for example, as a fluorescent dye material in a scanning two-photon fluorescence microscope. Useful. It can also be applied as a three-dimensional memory material using its fluorescence.
  • various devices using the two-photon absorption material according to the present invention will be described.
  • the use of the two-photon absorption material according to the present invention is not limited to these devices, and it goes without saying that excellent effects can be exhibited in other various devices. For simplicity of description, only the main components are shown in the illustrated device, but other known components (not shown) are used in a practical device.
  • FIG. 2 is a schematic view showing an outline of an example of a light limiting device using the two-photon absorbing material according to the present invention as a light limiting material.
  • the laser beam that enters from the outside is collected by the condensing device 1 (lens, concave mirror, etc.) and has extremely high light intensity in the light-limiting material 2, which induces two-photon absorption Then it is absorbed.
  • weak light such as ordinary light passes through the light limiting material without inducing two-photon absorption, and returns to the original optical path by the collimating device 3 (lens, concave mirror, etc.). Then, the light exits the device. Therefore, in this light limiting device, only the strong light is blocked by the device, so that the light detector on the emission side or the naked eye of the observer is protected from the laser beam.
  • FIG. 3 is a schematic view showing an outline of an example of an optical molding apparatus using the two-photon absorption material according to the present invention as a curing material.
  • the laser beam is condensed by a pulse laser condensing device 5 (such as an objective lens of a microscope) through a mirror 8 from a pulse laser generating device 4 and a light containing a two-photon absorbing material (hardening material). Focus in the curable monomer 6 resulting in high light intensity and inducing two-photon absorption. Due to this two-photon absorption, a reaction intermediate is generated, and the coexisting monomer is polymerized to form a polymer only near the focal point. As a result, a three-dimensional structure having an arbitrary shape can be formed. When performing fine control of one laser beam, a minute three-dimensional structure can be formed.
  • This stereolithography machine is equipped with a mechanism for scanning a predetermined focusing position with a laser beam, and the focal point of the laser beam in the monomer is moved by moving the stage 7 that supports the photocurable monomer 6.
  • the mirror 8 is of a fixed type, and when the stage 7 is of a fixed type, the mirror 8 may be of a movable type (such as a galvanometer mirror). Can be.
  • FIG. 4 is a schematic diagram showing an outline of an example of a three-dimensional memory device using the two-photon absorption material according to the present invention as a three-dimensional optical memory material.
  • This figure is an example of a three-dimensional memory device using the compound represented by the general formula (1) as a three-dimensional optical memory material and utilizing its fluorescence.
  • light from the pulse laser generator 4 is condensed by the pulse laser concentrator 5 through the dichroic mirror 10, and is collected in the two-photon absorption material (three-dimensional optical memory material) 9. Focus on the desired spot. At the focus, fluorescence is emitted, which is induced by two-photon absorption. When the laser light intensity is increased to a certain level or more, the two-photon absorbing material 9 in the focal portion is destroyed, and no fluorescence is generated in the portion. By repeatedly performing the light-collecting operation controlled in this manner, a portion that generates fluorescence by laser irradiation and a portion that does not generate fluorescence can be three-dimensionally formed at an arbitrary position. Thus, three-dimensional recording of information becomes possible.
  • the information is read out by irradiating a laser beam weaker than the destructive intensity to the destructive portion and the non-destructive portion, thereby inducing fluorescence by two-photon absorption, collecting the light by the condensing device 5, and collecting the dichroic mirror 10
  • the light can be separated from the laser light by using the optical detector 11 and detected by an optical reading device such as a photodetector 11.
  • the memory device includes a mechanism for scanning a desired condensing position with a laser beam. As the scanning mechanism, for example, a two-photon absorbing material 9 placed on a stage 7 is moved. Alternatively, one laser beam may be scanned using a movable mirror (such as a galvanometer mirror).
  • FIG. 5 is a schematic diagram showing an outline of an example of a three-dimensional optical memory device utilizing a change in the refractive index generated after two-photon absorption of the two-photon absorption material of the present invention.
  • this optical memory device at least one compound selected from the group consisting of the compound represented by the general formula (1) and the compound represented by the general formula (2) can be used as the optical memory material.
  • the method of three-dimensionally recording information may be the same as the apparatus of FIG. That is, the light from the pulse laser generator 4 passes through the dichroic mirror 10 and is condensed by the pulse laser concentrator 5 to focus on a desired location in the two-photon absorption material (three-dimensional optical memory material) 9. Let it tie.
  • a change in the refractive index of the two-photon absorbing material occurs due to a reaction or thermal transformation that occurs after the two-photon absorption. Controlled like this
  • a portion having a three-dimensionally different refractive index can be formed at an arbitrary portion.
  • Information can be read out by detecting a change in the refractive index in the optical memory material 9 using, for example, a confocal optical microscope 13.
  • a light condensing device such as a lens
  • the emitted light passes through a condenser 17 (a lens or the like) through a condenser device (a lens or the like) 5 and a condenser device (a lens or the like) 16 and then is condensed by a condenser device (a lens or the like) 18.
  • the change in the refractive index at the recording position can be detected by the photodetector 11 as a change in the amount of light.
  • this method by setting the aperture 17 at a focal point (confocal) position corresponding to the focal point in the optical memory material 9, a positional resolution in the depth direction is generated, and three-dimensional recording can be read out. .
  • horizontal two-dimensional scanning enables horizontal recording and reading.
  • reading in the depth direction becomes possible.
  • FIG. 6 is a schematic diagram showing an outline of an example of a two-photon fluorescence microscope using the two-photon absorption material represented by the general formula (1) as a fluorescent dye material.
  • the light from the pulse laser generator 4 passes through the dichroic mirror 10 and is condensed by the pulse laser condensing device 5 and is focused in the two-photon absorption material 12 to absorb two photons.
  • the two-photon absorption material 12 placed on the stage 7 is scanned with a laser beam, and the fluorescence intensity at each location is detected by a photodetector such as a photodetector 11, and based on the obtained positional information.
  • a three-dimensional fluorescence image can be obtained by plotting the combination.
  • the two-photon fluorescence microscope is provided with a mechanism for scanning a desired condensing position with a laser beam.
  • the scanning mechanism for example, a two-photon absorbing material placed on the stage 7
  • the laser beam may be scanned using a movable mirror (eg, a galvanometer mirror) or a movable mirror.
  • the two-photon absorption material according to the present invention has a large two-photon absorption cross-sectional area, and exhibits high two-photon absorption characteristics at a low concentration. Therefore, according to the present invention, not only can a high-sensitivity two-photon absorption material be obtained, but also the photo-breakdown strength of the material can be improved, and the adverse effect on the properties of other components in the material can be reduced.
  • FIG. 1 is a graph showing the relationship between the incident laser wavelength and the two-photon absorption cross-sectional area transmittance of the two-photon absorption material in Example 1
  • FIG. FIG. 4 is a schematic diagram showing an outline of a two-photon absorption stereolithography device according to the present invention
  • FIG. 4 is a schematic diagram showing an outline of a three-dimensional memory device utilizing the fluorescence of the two-photon absorption material
  • FIG. FIG. 6 is a schematic diagram showing an outline of a three-dimensional memory device using a change in rate
  • FIG. 6 is a schematic diagram showing an outline of a two-photon fluorescence microscope according to the present invention
  • FIG. 7 is an incident laser wavelength and a two-photon absorption material in Example 2.
  • FIG. 8 is a graph showing the relationship between one wavelength of the incident laser and the two-photon absorption cross section of the two-photon absorption material in Example 3.
  • 1 is a condensing device
  • 2 is a two-photon absorbing material
  • 3 is a collimating device
  • 4 is a pulse laser generator
  • 5 is a condensing device
  • 6 is a two-photon absorbing material
  • 7 is a movable or fixed stage.
  • , 8 is a fixed or movable mirror
  • 9 is a two-photon absorption material
  • 10 is a dichroic mirror
  • 11 is a photodetector
  • 12 is a two-photon absorption material
  • 13 is a confocal optical microscope
  • 14 is detection
  • Reference numeral 15 denotes a light collecting device
  • 16 denotes a light collecting device
  • 17 denotes an aperture
  • 18 denotes a light collecting device.
  • a pulse laser with a pulse width of 125 fs was irradiated at a repetition frequency of 1 kHz.
  • the two-photon extinction coefficient was measured by the open-aperture z-scan method, and the two-photon absorption cross section was calculated considering the concentration. the short wavelength side, an increase of significant two-photon absorption cross section is obtained at a wavelength of 571 nm, up to 2400X 10 one 50
  • the two-photon extinction coefficient was measured by the open aperture Z-scan method and the concentration was taken into account.
  • the two-photon absorption cross-section was calculated from 650 ⁇ , which is near the peak wavelength of one-photon absorption in the visible region of 400 nm. At the short wavelength side, a remarkable increase in the two-photon absorption cross section was obtained, and at a wavelength of 596 nm, a huge two-photon absorption cross section of up to 571 X10 " 50 cm 4 -sec-molecule" 1 -photon- 1 was obtained. (See Figure 7).
  • the two-photon extinction coefficient was measured by the open-aperture Z-scan method and the two-photon absorption cross-section was calculated taking into account the concentration.From the 650 nm, which is near the peak wavelength of one-photon absorption in the visible region of 421 nm At the short wavelength side, a remarkable increase in the two-photon absorption cross section was obtained, and at a wavelength of 579 nm, a huge two-photon absorption cross section of up to 600 XIO " 50 cm 4 -sec-molecule" 1 -photon " 1 was obtained. (See Figure 8).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Materials Engineering (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

A two-photon absorption material which consists of at least one member selected from the group consisting of compounds represented by the general formulae (1) and (2) and which exhibits a two-photon absorption peak wavelength in a wavelength region within 250nm from the one-photon absorption peak wavelength and has a great two-photon absorption cross-section: (1) (2) wherein R1 and R2 are each independently hydrogen or alkoxy of 1 to 4 carbon atoms; n is an integer of 1 to 3; R3 is alkyl of 1 to 3 carbon atoms; and A- is RSO3- (wherein R is CF3, phenyl, tolyl, or alkyl of 1 to 3 carbon atoms), a halide anion, or ClO4-.

Description

明 細 書  Specification
二光子吸収材料  Two-photon absorption material
技術分野  Technical field
本発明は、 光制限材料、 二光子吸収光造型における硬化材料、 三次元メモリ材 料、 二光子蛍光顕微鏡における蛍光色素材料などとして有用な二光子吸収材料に 関する。  The present invention relates to a two-photon absorption material useful as a light limiting material, a curing material in two-photon absorption stereolithography, a three-dimensional memory material, a fluorescent dye material in a two-photon fluorescence microscope, and the like.
背景技術  Background art
従来、 二光子吸収材料においては、 ローダミン、 クマリンなどの色素化合物、 ジチェノチォフエン誘導体、 オリゴフエ二レンビニレン誘導体などの化合物が使 用されている。 しかしながら、 これらは、 分子あたりの二光子吸収能を示す二光 子吸収断面積が小さく、 特にフエムト秒パルスレーザ一を用いた場合の二光子吸 収断面積は、 200 X 10-50cm4 · s■ mo lecul e一1 · photon"1未満のものが殆どである (Stephen Kershaw 奢、 'Two-Photon Absorpt i on in 'Charac ter izat i on techniques and t abulat ions f or organi c nonl inear opt i cal materi al s" , ed. by Mark G. Kuzyk, Car l W. Di rk, chapter 7, pp. 515-654, Merce l Dekker, Inc. New York, 1988)。 Conventionally, in the two-photon absorption material, dye compounds such as rhodamine and coumarin, and compounds such as dichenothiophene derivatives and oligophenylenevinylene derivatives have been used. However, these have a small two-photon absorption cross section indicating the two-photon absorption capacity per molecule, and particularly, the two-photon absorption cross section when using a femtosecond pulsed laser is 200 × 10-50 cm 4 s ■ mo lecul e one 1 · photon "1 less than what is almost (Stephen Kershaw Pride goes, 'Two-Photon Absorpt i on in' Charac ter izat i on techniques and t abulat ions f or organi c nonl inear opt i cal materi al s ", ed. by Mark G. Kuzyk, Carl W. Dirk, chapter 7, pp. 515-654, Mercel Dekker, Inc. New York, 1988).
化合物の二光子吸収断面積が小さい場合に、 材料としての二光子吸収特性を向 上させるためには、 化合物濃度を高めることが一つの選択肢である。 しかしなが ら、 化合物の溶解度には限度があり、 特性の著しい改善は不可能である。 また、 高濃度化は、 二光子吸収材料中の他の成分に悪影響を及ぼす危険性があるので、 必ずしも有効な方法ではない。 例えば、 二光子吸収光造型、 三次元メモリなどに おいては、 ポリマーの硬化能を阻害したり、 或いは濃度消光により蛍光強度の減 少を生じることがあり、 二光子蛍光顕微鏡においては、 観察対象である生体組織 の活動に影響することがある。  When the two-photon absorption cross section of a compound is small, one option is to increase the compound concentration in order to improve the two-photon absorption characteristics as a material. However, the solubility of the compounds is limited and significant improvements in properties are not possible. Also, increasing the concentration is not always an effective method because it may adversely affect other components in the two-photon absorption material. For example, in two-photon absorption stereolithography, three-dimensional memory, etc., the curability of the polymer may be impaired or the fluorescence intensity may be reduced due to concentration quenching. May affect the activity of living tissue.
化合物の二光子吸収断面積が小さく、 かつその濃度を上げることができないた め、 材料としての二光子吸収特性を向上させることができない場合には、 レーザ —ピーク強度を著しく高める必要がある。 その結果、 大規模なレーザ一装置が必 要となるだけではなく、 材料を破壊させるに近い高強度エネルギーを使用するの で、 材料が容易に劣化し、 或いは破壊されてしまうことすらある。 発明の開示 If the two-photon absorption cross section of the compound is small and its concentration cannot be increased, the laser-peak intensity must be significantly increased if the two-photon absorption properties of the material cannot be improved. As a result, not only is a large-scale laser device required, but the material is easily degraded or even destroyed because of the use of high-intensity energies close to the material. Disclosure of the invention
本発明は、 上記した従来技術の現状に鑑みてなされたものであり、 その主な目 的は、 巨大な二光子吸収断面積を有し、 低濃度で高い二光子吸収特性を発揮し得 る新規な材料を提供することである。  The present invention has been made in view of the above-mentioned state of the art, and its main purpose is to have a huge two-photon absorption cross-section and to exhibit high two-photon absorption characteristics at a low concentration. It is to provide a new material.
本発明者は、 上記の様な技術の現状に留意しつつ、 研究を進めた結果、 特定の アセチレン系化合物が、 一光子吸収ピークの近傍で巨大な二光子吸収断面積を有 しており、低濃度で二光子吸収材料として優れた特性を発揮することを見出した。 すなわち、 本発明は、 下記の二光子吸収材料とそれを種々の用途に使用する応 用材料および装置類を提供するものである。  The present inventor has conducted research while paying attention to the current state of the technology as described above, and as a result, a specific acetylene-based compound has a huge two-photon absorption cross section near a one-photon absorption peak, It has been found that it exhibits excellent properties as a two-photon absorption material at low concentrations. That is, the present invention provides the following two-photon absorption material, and application materials and devices using the same for various uses.
1 . 一般式 (1 ) で示される化合物および一般式 (2 ) で示される化合物から なる群から選ばれた少なくとも 1種の化合物からなり、 当該化合物の一光子紫外 1. One-photon ultraviolet of the compound comprising at least one compound selected from the group consisting of the compound represented by the general formula (1) and the compound represented by the general formula (2)
•可視 ·近赤外吸光のピーク波長から 250nm以内の波長域で二光子吸収のピーク 波長を示す二光子吸収材料; • A two-photon absorption material that exhibits a two-photon absorption peak wavelength within a wavelength range of 250 nm or less from the visible and near-infrared absorption peak wavelengths;
Figure imgf000004_0001
Figure imgf000004_0001
(式中、 および R2は、 同一或いは相異なって、水素原子又は炭素数 1〜4のアル コキシ基を表し、 nは 1〜3の整数を示す。 ;)、 (Wherein and R 2 are the same or different and represent a hydrogen atom or an alkoxy group having 1 to 4 carbon atoms, and n represents an integer of 1 to 3;),
Figure imgf000004_0002
Figure imgf000004_0002
(式中、 、 R2および ηは、上記に同じ。 R3は、炭素数 1〜3のアルキル基であり、 A一は、 RS03— (式中 R は、 CF3、 フエニル、 トリル又は炭素数 1〜3のアルキル基 である)、 ハロゲンァニオン又は C104—である。 ;)。 (Wherein, R 2 and eta, the same R 3 in the above is an alkyl group having 1 to 3 carbon atoms, A one is RS0 3 -. (Wherein R, CF 3, phenyl, tolyl or an alkyl group having 1 to 3 carbon atoms), halogen § anion or C10 4 - a;)..
2 . 一般式 (1 ) で示される化合物および一般式 (2 ) で示される化合物から なる群から選ばれた少なくとも 1種の化合物からなり、 当該化合物の一光子紫外 •可視 ·近赤外吸光のピーク波長から 250nm以内の波長域で二光子吸収のピーク 波長を示す二光子吸収材料からなる光制限材料; 2. It is composed of at least one compound selected from the group consisting of the compound represented by the general formula (1) and the compound represented by the general formula (2), and has one-photon ultraviolet, visible, and near-infrared absorption. Two-photon absorption peak within a wavelength range within 250 nm from the peak wavelength A light limiting material comprising a two-photon absorbing material exhibiting a wavelength;
Figure imgf000005_0001
Figure imgf000005_0001
(式中、 および R2は、 同一或いは相異なって、 水素原子又は炭素数 1〜4のァ ルコキシ基を表し、 nは 1〜3の整数を示す。 ;)、 (Wherein and R 2 are the same or different and represent a hydrogen atom or an alkoxy group having 1 to 4 carbon atoms, and n represents an integer of 1 to 3;),
Figure imgf000005_0002
Figure imgf000005_0002
(式中、 、 R2および nは、 上記に同じ。 R3は、 炭素数 1 ~3のアルキル基であり、 A は、 RSCV (式中 R は、 CF3、 フエニル、 トリル又は炭素数 1〜 3のアルキル基 である)、 ハロゲンァニオン又は C1 C である。 ;)。 (Wherein, R 2 and n are the same as above. R 3 is an alkyl group having 1 to 3 carbon atoms, A is RSCV (where R is CF 3 , phenyl, tolyl or 1 carbon atoms. To 3), halogenanion or C1 C.;).
3 . 一般式 (1 ) で示される化合物および一般式 (2 ) で示される化合物から なる群から選ばれた少なくとも 1種の化合物からなり、 当該化合物の一光子紫外 •可視 ·近赤外吸光のピーク波長から 250nm以内の波長域で二光子吸収のピーク 波長を示す二光子吸収材料からなる光造型用光硬化樹脂の硬化材料;  3. It comprises at least one compound selected from the group consisting of the compound represented by the general formula (1) and the compound represented by the general formula (2), and the compound has one-photon ultraviolet, visible, and near-infrared absorption. Curing material of photocurable resin for stereolithography consisting of a two-photon absorption material that exhibits a two-photon absorption peak wavelength within a wavelength range of 250 nm or less from the peak wavelength;
Figure imgf000005_0003
Figure imgf000005_0003
(式中、 および R2は、 同一或いは相異なって、 水素原子又は炭素数 1〜4のアル コキシ基を表し、 nは 1〜3の整数を示す。 )、 (Wherein and R 2 are the same or different and represent a hydrogen atom or an alkoxy group having 1 to 4 carbon atoms, and n represents an integer of 1 to 3).
Figure imgf000005_0004
Figure imgf000005_0004
(式中、 、 R2および nは、 上記に同じ。 R3は、 炭素数 1 ~3のアルキル基であり、 A一は、 RS03— (式中 Rは、 CF3、 フエニル、 トリル又は炭素数 1〜 3のアルキル基 である)、 ハロゲンァニオン又は cio4-である。 ;)。 (Wherein,, R 2 and n are the same as above. R 3 is an alkyl group having 1 to 3 carbon atoms, A one is, RS0 3 - (wherein R is, CF 3, phenyl, an alkyl group having a tolyl or carbon number 1-3), halogen § anion or cio 4 - a. ;).
4 . 一般式 (1 ) で示される化合物および一般式 (2 ) で示される化合物から なる群から選ばれた少なくとも 1種の化合物からなり、 当該化合物の一光子紫外 •可視 ·近赤外吸光のピーク波長から 250nm以内の波長域で二光子吸収のピーク 波長を示す二光子吸収材料からなる三次元光メモリ材料;  4. It is composed of at least one compound selected from the group consisting of the compound represented by the general formula (1) and the compound represented by the general formula (2), and has one-photon ultraviolet, visible, and near-infrared absorption. A three-dimensional optical memory material comprising a two-photon absorption material exhibiting a two-photon absorption peak wavelength within a wavelength range of 250 nm or less from the peak wavelength;
Figure imgf000006_0001
Figure imgf000006_0001
(式中、 および R2は、 同一或いは相異なって、 水素原子又は炭素数 1〜4のアル コキシ基を表し、 nは 1〜3の整数を示す。 、、 (Wherein, and R 2 are the same or different and each represent a hydrogen atom or an alkoxy group having 1 to 4 carbon atoms, and n represents an integer of 1 to 3.
/ 2 (2)
Figure imgf000006_0002
/ 2 (2)
Figure imgf000006_0002
(式中、 R1 ¾ R2および nは、上記に同じ。 R3は、炭素数 1〜3のアルキル基であり、 A は、 RSO (式中 Rは、 CF3、 フエニル、 トリル又は炭素数 1〜 3のアルキル基 である)、 ハロゲンァニオン又は C104—である。 ;)。 (Wherein, R 1 ¾ R 2 and n are the same as above. R 3 is an alkyl group having 1 to 3 carbon atoms, and A is RSO (where R is CF 3 , phenyl, tolyl or carbon An alkyl group having a number of 1 to 3), halogen anion or C10 4 —;).
5 . 一般式 (1 ) で示される化合物からなる群から選ばれた少なくとも 1種の 化合物からなり、 当該化合物の一光子紫外 ·可視 ·近赤外吸光のピーク波長から 250nm以内の波長域で二光子吸収のピーク波長を持ち、 且つ蛍光性を示す二光子 吸収材料からなる走査型二光子蛍光顕微鏡用蛍光色素材料;  5. It is composed of at least one compound selected from the group consisting of the compounds represented by the general formula (1), and has a wavelength within 250 nm from the peak wavelength of one-photon ultraviolet, visible, and near-infrared absorption of the compound. A fluorescent dye material for a scanning two-photon fluorescence microscope, comprising a two-photon absorption material having a peak wavelength of photon absorption and exhibiting fluorescence;
Figure imgf000006_0003
Figure imgf000006_0003
(式中、 および R2は、 同一或いは相異なって、 水素原子又は炭素数 1〜4のアル コキシ基を表し、 nは 1〜3の整数を示す。 )。 6 . 集光装置とコリメート装置との間に、 上記項 2に記載された光制限材料を 配置した光制限装置。 (Wherein and R 2 are the same or different and represent a hydrogen atom or an alkoxy group having 1 to 4 carbon atoms, and n represents an integer of 1 to 3). 6. A light limiting device in which the light limiting material described in item 2 above is arranged between the light condensing device and the collimating device.
7 . パルスレーザ一発生装置、 パルスレーザー集光装置、 光硬化性モノマ一収 容装置、 及び光硬化性モノマー中の所定の集光位置をレーザービームで走査する ための機構を備えた二光子吸収光造型装置であって、 上記項 3に記載された硬化 材料が光硬化性モノマー中に含まれていることを特徴とする光造型装置。  7. Two-photon absorption equipped with a pulse laser generator, a pulse laser collector, a photo-curable monomer collector, and a mechanism for scanning a predetermined focusing position in the photo-curable monomer with a laser beam An optical molding apparatus, wherein the curing material according to item 3 is contained in a photocurable monomer.
8 . パルスレーザー発生装置、 パルスレーザー集光装置、三次元光メモリ材料、 該メモリ材料の所定の集光位置をレーザ一ビームで走査するための機構、 および 光学的読出し装置を備えた三次元光メモリ装置であって、該三次元メモリ材料が、 下記一般式 (1 ) で示される化合物からなる群から選ばれた少なくとも 1種の化 合物からなり、 当該化合物の一光子紫外 ·可視 ·近赤外吸光のピーク波長から 250nm以内の波長域で二光子吸収のピーク波長を持ち、 且つ蛍光性を示す二光子 吸収材料であることを特徴とする三次元メモリ装置; 8. Pulse laser generating device, pulse laser condensing device, three-dimensional optical memory material, mechanism for scanning a predetermined condensing position of the memory material with one laser beam, and three-dimensional optical memory device including an optical reading device Wherein the three-dimensional memory material comprises at least one compound selected from the group consisting of compounds represented by the following general formula (1), and comprises one photon ultraviolet, visible, near infrared A three-dimensional memory device having a two-photon absorption peak wavelength within a wavelength region within 250 nm from the absorption peak wavelength and exhibiting fluorescence;
Figure imgf000007_0001
Figure imgf000007_0001
(式中、 および R2は、 同一或いは相異なって、 水素原子又は炭素数 1〜4のァ ルコキシ基を表し、 nは 1 ~3の整数を示す。 )。 (Wherein and R 2 are the same or different and represent a hydrogen atom or an alkoxy group having 1 to 4 carbon atoms, and n represents an integer of 1 to 3).
9 . パルスレーザー発生装置、 パルスレーザ一集光装置、 上記項 4に記載され た三次元光メモリ材料、 該メモリ材料の所定の集光位置をレーザービームで走査 するための機構、 および光メモリ材料中の屈折率変化を検出する機構を備えた三 次元光メモリ装置。  9. A pulse laser generator, a pulsed laser condensing device, the three-dimensional optical memory material described in the above item 4, a mechanism for scanning a predetermined condensing position of the memory material with a laser beam, and A three-dimensional optical memory device equipped with a mechanism for detecting a change in refractive index.
1 0 . パルスレーザ一発生装置、 パルスレーザ一集光装置、 上記項 5に記載さ れた蛍光色素材料、 該蛍光色素材料の所定の集光位置をレーザービームで走査す るための機構、 および光検出装置を備えた二光子蛍光顕微鏡。 本発明の二光子吸収材料は、 下記一般式 (1 ) で示される化合物および (2 ) で示される化合物からなる群から選ばれた少なくとも一種の化合物からなり、 当 該化合物の一光子紫外 ·可視 ·近赤外吸光のピーク波長から 250nm以内の波長域 で二光子吸収のピーク波長を示すものである。 10. A pulse laser generator, a pulse laser collector, the fluorescent dye material described in the above item 5, a mechanism for scanning a predetermined focusing position of the fluorescent dye material with a laser beam, and Two-photon fluorescence microscope equipped with a light detection device. The two-photon absorption material of the present invention comprises at least one compound selected from the group consisting of a compound represented by the following general formula (1) and a compound represented by the following (2). The compound shows a peak wavelength of two-photon absorption in a wavelength range within 250 nm from a peak wavelength of one-photon ultraviolet, visible, and near-infrared absorption.
Figure imgf000008_0001
Figure imgf000008_0001
(式中、 および R2は、 同一或いは相異なって、水素原子又は炭素数 1 ~4のアル コキシ基を表し、 nは 1〜3の整数を示す。 )、 (Wherein, and R 2 are the same or different and each represent a hydrogen atom or an alkoxy group having 1 to 4 carbon atoms, and n represents an integer of 1 to 3).
Figure imgf000008_0002
Figure imgf000008_0002
(式中、 、 R2および nは、 上記に同じ。 R3は、炭素数 1〜3のアルキル基であり、 A—は、 RS03— (式中 R は、 CF3、 フエニル、 トリル又は炭素数 1〜 3のアルキル基 である)、 ハロゲンァニオン又は C104—である。 ;)。 . (Wherein,, R 2 and n are the same R 3 in the above is an alkyl group having 1 to 3 carbon atoms, A- is RS0 3 - (wherein R is, CF 3, phenyl, tolyl or An alkyl group having 1 to 3 carbon atoms), halogen anion or C10 4 —;
上記一般式 (1 ) 及び(2 ) において、 炭素数 1〜4のアルコシキ基としては、 メ卜キシ、 エトキシ、 n—プロポキシ、 イソプロポキシ、 n—ブ卜キシ、 イソブ トキシ、 s e c _ブトキシ、 t e r t —ブトキシ基等の直鎖状又は分枝鎖状のァ ルコシキ基を例示でき、 炭素数 1〜3のアルキル基としては、 メチル、 ェチル、 n—プロピル、イソプロピル等の直鎖状又は分枝鎖状のアルキル基を例示できる。 また、 ハロゲンァニオンとしては、 F -, C Br", Γ等を例示できる。  In the above general formulas (1) and (2), the alkoxy group having 1 to 4 carbon atoms includes methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, sec_butoxy, tert —A straight-chain or branched alkoxy group such as butoxy group, etc. can be exemplified. As the alkyl group having 1 to 3 carbon atoms, a straight-chain or branched chain group such as methyl, ethyl, n-propyl, isopropyl, etc. Can be exemplified. Examples of the halogen anion include F-, CBr ", and Γ.
上記一般式 (1 ) で表される化合物及び一般式 (2 ) で表される化合物の具体 例としては、 下記式 (3 ) 、 (4 ) 及び (5 ) で表される化合物を挙げることが できる。  Specific examples of the compound represented by the general formula (1) and the compound represented by the general formula (2) include compounds represented by the following formulas (3), (4) and (5). it can.
(3)(3)
Figure imgf000008_0003
Figure imgf000009_0001
Figure imgf000008_0003
Figure imgf000009_0001
Figure imgf000009_0002
上記化合物は、 例えば、 下記 1〜4の公知文献などに記載された方法により製 造することができる。 その他の化合物も、 同様の手法により、 製造することがで ぎる。
Figure imgf000009_0002
The above compound can be produced, for example, by the methods described in the following known literatures 1 to 4 and the like. Other compounds can be produced by the same method.
1 . St i lbazol ium基を有するジアセチレンの合成とフエムト秒 Z-scan法を用い た三次元非線形光学特性の評価(第 50 回高分子学会年次大会、 要旨集 vol . 50、 p. 728)  1. Synthesis of diacetylene having St lbazolium group and evaluation of three-dimensional nonlinear optical properties using femtosecond Z-scan method (The 50th Annual Meeting of the Society of Polymer Science, Abstracts vol. 50, p. 728 )
2 . スチリルピリジン誘導体を有するジアセチレンの合成とフエムト秒 Z-scan 法を用いた二光子吸収特性 (第 50回高分子討論会、 要旨集 vol . 50、 p. 3318) 2. Synthesis of diacetylenes containing styrylpyridine derivatives and two-photon absorption properties using the femtosecond Z-scan method (The 50th Symposium on Polymers, Abstracts vol. 50, p. 3318)
3 . スチリルピリジル基を有するアセチレン誘導体の合成とフェムト秒 Z-s c an 法を用いた二光子吸収特性の評価とその考察 (第 51 回高分子学会年次大会子学 会、 要旨集 vol . 51、 p. 696) 3. Synthesis of acetylene derivatives with styrylpyridyl groups and evaluation of two-photon absorption characteristics using the femtosecond Zscan method (Symposium of the 51st Annual Meeting of the Society of Polymer Science, vol. 51, (p. 696)
4. Two-photon absorpt i on proper ty of bi s (pyr idyl vinyl enephenylene) di acetyl ene der ivat ives (6lh Internat ional Conference of Organi c Nonl inear Opt ics (IC0N06);要旨集、 講演番号: Poster Session I, PS182001. ) 4. Two-photon absorpt i on proper ty of bis (pyridyl vinyl enephenylene) diacetyl ene der ivat ives (6 lh International Conference of Organized Non-inear Ear Optics (IC0N06); Abstracts; Lecture No .: Poster Session I, PS182001.)
本発明の二光子吸収材料は、 前述の公知の二光子吸収材料において使用されて いる化合物と同様に、 ジメチルスルホキシド、 ジメチルホルムアミドなどの有機 溶媒に溶解した状態で使用しても良く、 或いはポリメタクリルメチルなどのポリ マー中にドープして使用しても良く、 或いは化合物そのものを単独で使用しても 良い。 以下、 図面を参照しつつ、 本発明をさらに詳細に説明する。 The two-photon absorption material of the present invention may be used in the state of being dissolved in an organic solvent such as dimethyl sulfoxide or dimethylformamide, similarly to the compounds used in the above-mentioned known two-photon absorption material, or polymethacrylic acid. It may be used by doping it into a polymer such as methyl, or the compound itself may be used alone. Hereinafter, the present invention will be described in more detail with reference to the drawings.
図 1は、 本発明による二光子吸収材料の特性の一例を示すグラフであり、 より 具体的には、 下記式 (3 ) で示され、 .実施例 1で使用するビス(2, 5-ジメトキシ -4- (N-メチル -4-ピリジルビ二レン)フエニル)ブタジイントリフレートについて、 二光子吸収断面積を調べた結果を示すグラフである。  FIG. 1 is a graph showing an example of the characteristics of the two-photon absorption material according to the present invention. More specifically, the bis (2,5-dimethoxy) used in Example 1 is represented by the following formula (3). It is a graph which shows the result of having investigated the two-photon absorption cross section about -4- (N-methyl -4- pyridyl vinylene) phenyl) butadiin triflate.
Figure imgf000010_0001
Figure imgf000010_0001
溶媒、 濃度、 二光子吸光係数の測定条件などについては、 実施例 1において詳 述するが、 図 1から明らかな様に、 650nm よりも短波長側で著しい二光子吸収断 面積の増大が得られ、 波長 571nmにおいて最大 2400 X 10—5°cm4 · sec · mo l ecu l e一1 · pho t on—1の巨大な二光子吸収断面積が得られている。 この短波長側での二光子 吸収断面積の著しい増大は、 467nm の可視域にある一光子吸収のピーク波長近傍 で生じ、 後述の実施例 2および 3でも示される様に、 常に一光子吸収のピーク波 長近傍で二光子吸収断面積の著しい増大が得られる。 The solvent, concentration, measurement conditions for the two-photon extinction coefficient, etc. will be described in detail in Example 1.As is clear from FIG. 1, a remarkable increase in the two-photon absorption cross-sectional area at a wavelength shorter than 650 nm is obtained. giant two-photon absorption cross section of up to 2400 X 10- 5 ° cm 4 · sec · mo l ecu le one 1 · pho t on- 1 is obtained at a wavelength of 571 nm. This remarkable increase in the two-photon absorption cross section on the short wavelength side occurs near the peak wavelength of one-photon absorption in the visible region of 467 nm, and as shown in Examples 2 and 3 described later, the one-photon absorption always increases. A significant increase in the two-photon absorption cross section near the peak wavelength is obtained.
この巨大な二光子吸収断面積という特性は、 一般式 (1 ) で示される化合物お よび一般式 (2 ) で示される化合物からなる本発明二光子吸収材料では、 全ての 化合物において得られるものであり、 いずれも、 一光子吸収のピーク波長から 2 5 0 n m以内の波長域で二光子吸収のピーク波長を示す。 これは、 従来知られて いない新規な特性である。 本発明二光子吸収材料は、 この様な特性を利用して後 述する各種の用途に有効に利用できる。  This property of a large two-photon absorption cross section is obtained in all compounds in the two-photon absorption material of the present invention comprising the compound represented by the general formula (1) and the compound represented by the general formula (2). Yes, all show peak wavelengths of two-photon absorption in a wavelength range within 250 nm from the peak wavelength of one-photon absorption. This is a new characteristic that has not been known before. The two-photon absorption material of the present invention can be effectively used for various uses described later by utilizing such characteristics.
例えば、 一般式 (1 ) で示される化合物および一般式 (2 ) で示される化合物 は、 上記した特性を利用して、 光制限装置における光制限材料、 光造型用光硬化 樹脂の硬化材料、 三次元光メモリ材料などとして有効に利用できる。  For example, the compound represented by the general formula (1) and the compound represented by the general formula (2) can be used as a light-limiting material in a light-limiting device, a light-curing resin for stereolithography, It can be used effectively as an original optical memory material.
また、 本発明で使用する化合物中で、 一般式 (1 ) で示される化合物は、 蛍光 性を示す化合物であり、 上記した用途以外に、 例えば、 走査型二光子蛍光顕微鏡 における蛍光色素材料などとして有用である。 また、 その蛍光性を利用した三次 元メモリ材料としての応用も可能である。 以下、本発明による二光子吸収材料を用いる各種装置につき、説明する。但し、 本発明による二光子吸収材料の使用は、これらの装置に限定されるものではなく、 その他の種々の装置においても、優れた効果を発揮することは、いうまでもない。 また、 説明を簡略化するために、 図示の装置においては、 主要な構成要素のみを 示しているが、 実用的な装置においては、 その他の公知の構成要素(図示せず)を 使用する。 Further, among the compounds used in the present invention, the compound represented by the general formula (1) is a compound exhibiting fluorescence, and in addition to the above-mentioned applications, for example, as a fluorescent dye material in a scanning two-photon fluorescence microscope. Useful. It can also be applied as a three-dimensional memory material using its fluorescence. Hereinafter, various devices using the two-photon absorption material according to the present invention will be described. However, the use of the two-photon absorption material according to the present invention is not limited to these devices, and it goes without saying that excellent effects can be exhibited in other various devices. For simplicity of description, only the main components are shown in the illustrated device, but other known components (not shown) are used in a practical device.
図 2は、 本発明による二光子吸収材料を光制限材料として用いる光制限装置の 一例の概要を示す模式図である。  FIG. 2 is a schematic view showing an outline of an example of a light limiting device using the two-photon absorbing material according to the present invention as a light limiting material.
外部から(図 2において、 左側から)入射してきたレーザービームは、 集光装置 1 (レンズ、 凹面鏡など)により集光され、 光制限材料 2中で極めて高い光強度と なり、 二光子吸収を誘起して、 吸収される。 これに対し、 通常光などの弱い光は、 光制限材料中で二光子吸収を誘起することなく、 そのままこれを通過し、 コリメ ート装置 3 (レンズ、 凹面鏡など)により、 当初の光路に戻されて、 装置を出射す る。 従って、 この光制限装置においては、 強度の強い光のみが装置により遮断さ れるので、 出射側にある光検出器或いは観察者の肉眼がレーザ一ビームから保護 される。  The laser beam that enters from the outside (from the left side in Fig. 2) is collected by the condensing device 1 (lens, concave mirror, etc.) and has extremely high light intensity in the light-limiting material 2, which induces two-photon absorption Then it is absorbed. On the other hand, weak light such as ordinary light passes through the light limiting material without inducing two-photon absorption, and returns to the original optical path by the collimating device 3 (lens, concave mirror, etc.). Then, the light exits the device. Therefore, in this light limiting device, only the strong light is blocked by the device, so that the light detector on the emission side or the naked eye of the observer is protected from the laser beam.
図 3は、 本発明による二光子吸収材料を硬化材料として用いる光造型装置の一 例の概要を示す模式図である。  FIG. 3 is a schematic view showing an outline of an example of an optical molding apparatus using the two-photon absorption material according to the present invention as a curing material.
レーザ一ビームは、 パルスレーザ一発生装置 4からミラ一 8を経て、 パルスレ 一ザ一集光装置 5 (顕微鏡の対物レンズなど)により集光され、二光子吸収材料 (硬 化材料) を含む光硬化性モノマー 6中で焦点を結び、 高い光強度となり、 二光子 吸収を誘起する。 この二光子吸収により、 反応中間体が生成され、 共存するモノ マーが重合して、 焦点近傍のみにポリマーが形成される。 その結果、 任意の形状 の三次元構造物を造型することができる。 レーザ一ビームの微細制御を行う場合 には、 微小な三次元構造物を造型することもできる。 この光造形装置は、 所定の 集光位置をレーザービームで走査するための機構を備えており、 モノマー中での レーザービーム焦点の移動は、 光硬化性モノマ一 6を支持するステージ 7を可動 形式とする場合には、 ミラ一 8を固定形式とし、 ステージ 7を固定形式とする場 合には、 ミラ一 8を可動形式(ガルバノミラーなど)とすることなどにより行うこ とができる。 The laser beam is condensed by a pulse laser condensing device 5 (such as an objective lens of a microscope) through a mirror 8 from a pulse laser generating device 4 and a light containing a two-photon absorbing material (hardening material). Focus in the curable monomer 6 resulting in high light intensity and inducing two-photon absorption. Due to this two-photon absorption, a reaction intermediate is generated, and the coexisting monomer is polymerized to form a polymer only near the focal point. As a result, a three-dimensional structure having an arbitrary shape can be formed. When performing fine control of one laser beam, a minute three-dimensional structure can be formed. This stereolithography machine is equipped with a mechanism for scanning a predetermined focusing position with a laser beam, and the focal point of the laser beam in the monomer is moved by moving the stage 7 that supports the photocurable monomer 6. When the mirror 8 is of a fixed type, and when the stage 7 is of a fixed type, the mirror 8 may be of a movable type (such as a galvanometer mirror). Can be.
図 4は、 本発明による二光子吸収材料を三次元光メモリ材料として用いる三次 元メモリ装置の一例の概要を示す模式図である。 この図は、 一般式 (1 ) で示さ れる化合物を三次元光メモリ材料として用い、 その蛍光性を利用する三次元メモ リ装置の例である。  FIG. 4 is a schematic diagram showing an outline of an example of a three-dimensional memory device using the two-photon absorption material according to the present invention as a three-dimensional optical memory material. This figure is an example of a three-dimensional memory device using the compound represented by the general formula (1) as a three-dimensional optical memory material and utilizing its fluorescence.
図 4の装置では、 パルスレーザ一発生装置 4からの光をダイクロイツクミラー 1 0を経て、 パルスレーザ一集光装置 5により集光して、 二光子吸収材料 (三次 元光メモリ材料) 9中で所望の箇所に焦点を結ばせる。 焦点では、 二光子吸収に より誘起された蛍光が発する。 レーザー光強度を一定以上に高くすると、 焦点部 分の二光子吸収材料 9が破壊されて、 当該部分では蛍光が発生しなくなる。 この 様に制御された集光操作を繰り返し行うことにより、 レーザー照射により蛍光を 発生する部分と蛍光を発生しない部分とを任意の箇所に三次元的に形成すること ができる。 かくして、 情報の三次元的記録が可能となる。 情報の読出しは、 破壊 強度よりも弱いレーザ一をこの破壊部分と非破壊部分とに照射することにより、 二光子吸収による蛍光を誘起し、 これを集光装置 5により集め、 ダイクロイツク ミラー 1 0でレーザ一光と分離して、 光検出器 1 1などの光読出し装置で検出す ることにより行うことができる。 この場合にも、 上記メモリ装置は、 所望の集光 位置をレーザービームで走査するための機構を備えており、 走査機構としては、 例えば、 ステージ 7上に置かれた二光子吸収材料 9を移動させても良く、 或いは 可動ミラー(ガルバノミラーなど)を用いてレーザ一ビームを走査しても良い。 図 5は、 本発明二光子吸収材料の二光子吸収後に生じる屈折率変化を利用する 三次元光メモリ装置の一例の概要を示す模式図である。 この光メモリ装置では、 一般式 (1 ) で示される化合物及び一般式 (2 ) で示される化合物からなる群か ら選ばれた少なくとも一種の化合物を光メモリ材料として用いることができる。 図 5の装置では、 情報の三次元的記録方法は、 図 4の装置と同様でよい。即ち、 パルスレーザー発生装置 4からの光をダイクロイツクミラー 1 0を経て、 パルス レーザー集光装置 5により集光して、 二光子吸収材料 (三次元光メモリ材料) 9 中で所望の箇所に焦点を結ばせる。 焦点近傍では、 二光子吸収後に生じる反応又 は熱による変成によつて二光子吸収材料に屈折率変化が生じる。 この様に制御さ れた集光操作を繰り返し行うことにより、 任意の箇所に三次元的に屈折率の異な る部分を形成することができる。 かくして、 情報の三次元的記録が可能となる。 情報の読出しは、 例えば、 共焦点光学顕微鏡 1 3を利用して、 光メモリ材料 9 中の屈折率変化を検出することによって行うことができる。 例えば、 検出用光源 1 4からの光を集光装置 (レンズなど) 1 5により集光して、 光メモリ材料 9中 に屈折率変化として記録されている部分を照射する。 照射された光は、 集光装置 (レンズなど) 5及び集光装置 (レンズなど) 1 6を経てアパーチャ一 1 7を通 過した後、 集光装置 (レンズなど) 1 8で集光されて、 光検出器 1 1で検出され る。 記録位置での屈折率変化は、 光検出器 1 1において、 光量の変化として検出 することができる。 この方法では、 光メモリ材料 9中の焦点に対応する焦点 (共 焦点)位置にアパーチャ一 1 7を設置することで、深さ方向の位置分解能が生じ、 三次元的な記録の読み出しが可能となる。 例えば、 ステージ 7を移動するか、 ァ パ一チヤ一 1 7の位置を移動することにより、 水平方向二次元的にスキャンして 水平方向の記録の読み出しが可能となる。 また、 ステージ 7を深さ方向に移動さ せることにより、 深さ方向の読み出しが可能となる。 In the apparatus shown in FIG. 4, light from the pulse laser generator 4 is condensed by the pulse laser concentrator 5 through the dichroic mirror 10, and is collected in the two-photon absorption material (three-dimensional optical memory material) 9. Focus on the desired spot. At the focus, fluorescence is emitted, which is induced by two-photon absorption. When the laser light intensity is increased to a certain level or more, the two-photon absorbing material 9 in the focal portion is destroyed, and no fluorescence is generated in the portion. By repeatedly performing the light-collecting operation controlled in this manner, a portion that generates fluorescence by laser irradiation and a portion that does not generate fluorescence can be three-dimensionally formed at an arbitrary position. Thus, three-dimensional recording of information becomes possible. The information is read out by irradiating a laser beam weaker than the destructive intensity to the destructive portion and the non-destructive portion, thereby inducing fluorescence by two-photon absorption, collecting the light by the condensing device 5, and collecting the dichroic mirror 10 The light can be separated from the laser light by using the optical detector 11 and detected by an optical reading device such as a photodetector 11. Also in this case, the memory device includes a mechanism for scanning a desired condensing position with a laser beam. As the scanning mechanism, for example, a two-photon absorbing material 9 placed on a stage 7 is moved. Alternatively, one laser beam may be scanned using a movable mirror (such as a galvanometer mirror). FIG. 5 is a schematic diagram showing an outline of an example of a three-dimensional optical memory device utilizing a change in the refractive index generated after two-photon absorption of the two-photon absorption material of the present invention. In this optical memory device, at least one compound selected from the group consisting of the compound represented by the general formula (1) and the compound represented by the general formula (2) can be used as the optical memory material. In the apparatus of FIG. 5, the method of three-dimensionally recording information may be the same as the apparatus of FIG. That is, the light from the pulse laser generator 4 passes through the dichroic mirror 10 and is condensed by the pulse laser concentrator 5 to focus on a desired location in the two-photon absorption material (three-dimensional optical memory material) 9. Let it tie. Near the focal point, a change in the refractive index of the two-photon absorbing material occurs due to a reaction or thermal transformation that occurs after the two-photon absorption. Controlled like this By repeatedly performing the focused light collection operation, a portion having a three-dimensionally different refractive index can be formed at an arbitrary portion. Thus, three-dimensional recording of information becomes possible. Information can be read out by detecting a change in the refractive index in the optical memory material 9 using, for example, a confocal optical microscope 13. For example, light from the detection light source 14 is condensed by a light condensing device (such as a lens) 15 to irradiate a portion recorded as a change in the refractive index in the optical memory material 9. The emitted light passes through a condenser 17 (a lens or the like) through a condenser device (a lens or the like) 5 and a condenser device (a lens or the like) 16 and then is condensed by a condenser device (a lens or the like) 18. Is detected by the photodetector 11. The change in the refractive index at the recording position can be detected by the photodetector 11 as a change in the amount of light. In this method, by setting the aperture 17 at a focal point (confocal) position corresponding to the focal point in the optical memory material 9, a positional resolution in the depth direction is generated, and three-dimensional recording can be read out. . For example, by moving the stage 7 or moving the aperture 17, horizontal two-dimensional scanning enables horizontal recording and reading. In addition, by moving the stage 7 in the depth direction, reading in the depth direction becomes possible.
図 6は、 一般式 (1 ) で示される二光子吸収材料を蛍光色素材料として用いる 二光子蛍光顕微鏡の一例の概要を示す模式図である。  FIG. 6 is a schematic diagram showing an outline of an example of a two-photon fluorescence microscope using the two-photon absorption material represented by the general formula (1) as a fluorescent dye material.
パルスレ一ザ一発生装置 4からの光をダイクロイツクミラー 1 0を経て、 パル スレーザー集光装置 5により集光して、 二光子吸収材料 1 2中で焦点を結ばせる ことにより、 二光子吸収により誘起された蛍光を生じさせる。 ステージ 7上に置 かれた二光子吸収材料 1 2をレーザービームで走査し、 各場所での蛍光強度を光 検出器 1 1などの光検出装置で検出して、 得られた位置情報に基づいて、 コンビ ユー夕でプロットすることにより、 三次元蛍光像が得られる。 この場合にも、 該 二光子蛍光顕微鏡は、 所望の集光位置をレーザービームで走査するための機構を 備えており、 走査機構としては、 例えば、 ステージ 7上に置かれた二光子吸収材 料 1 2を移動させても良く、 或いは可動ミラー(ガルバノミラーなど)を用いてレ —ザ一ビームを走査しても良い。  The light from the pulse laser generator 4 passes through the dichroic mirror 10 and is condensed by the pulse laser condensing device 5 and is focused in the two-photon absorption material 12 to absorb two photons. Causes the fluorescence induced by The two-photon absorption material 12 placed on the stage 7 is scanned with a laser beam, and the fluorescence intensity at each location is detected by a photodetector such as a photodetector 11, and based on the obtained positional information. A three-dimensional fluorescence image can be obtained by plotting the combination. Also in this case, the two-photon fluorescence microscope is provided with a mechanism for scanning a desired condensing position with a laser beam. As the scanning mechanism, for example, a two-photon absorbing material placed on the stage 7 The laser beam may be scanned using a movable mirror (eg, a galvanometer mirror) or a movable mirror.
以上の通り、 本発明による二光子吸収材料は、 巨大な二光子吸収断面積を有し ているので、 低濃度で高い二光子吸収特性を発揮する。 従って、 本発明によれば、 高感度な二光子吸収材料が得られるだけでなく、 材 料の光破壊強度耐性が向上し、 材料中の他成分の特性に対する悪影響も低下させ ることができる。 As described above, the two-photon absorption material according to the present invention has a large two-photon absorption cross-sectional area, and exhibits high two-photon absorption characteristics at a low concentration. Therefore, according to the present invention, not only can a high-sensitivity two-photon absorption material be obtained, but also the photo-breakdown strength of the material can be improved, and the adverse effect on the properties of other components in the material can be reduced.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
図 1は実施例 1における入射レーザー波長と二光子吸収材料の二光子吸収断面 積透過率との関係を示すグラフ、 図 2は本発明による光制限装置の概要を示す模 式図、 図 3は本発明による二光子吸収光造型装置の概要を示す模式図、 図 4は二 光子吸収材料の蛍光性を利用する三次元メモリ装置の概要を示す模式図、図 5は、 二光子吸収材料の屈折率変化を利用する三次元メモリ装置の概要を示す模式図、 図 6は、 本発明による二光子蛍光顕微鏡の概要を示す模式図、 図 7は実施例 2に おける入射レーザー波長と二光子吸収材料の二光子吸収断面積との関係を示すグ ラフ、 図 8は実施例 3における入射レーザ一波長と二光子吸収材料の二光子吸収 断面積との関係を示すグラフである。 図中、 1は集光装置、 2は二光子吸収材料、 3はコリメ一ト装置、 4はパルスレーザ一発生装置、 5は集光装置、 6は二光子 吸収材料、 7は可動または固定ステージ、 8は固定または可動ミラー、 9は二光 子吸収材料、 1 0はダイクロイツクミラー、 1 1は光検出器、 1 2は二光子吸収 材料、 1 3は共焦点光学顕微鏡、 1 4は検出用光源、 1 5は集光装置、 1 6は集 光装置、 1 7はアパーチャ一、 1 8は集光装置である。  FIG. 1 is a graph showing the relationship between the incident laser wavelength and the two-photon absorption cross-sectional area transmittance of the two-photon absorption material in Example 1, FIG. FIG. 4 is a schematic diagram showing an outline of a two-photon absorption stereolithography device according to the present invention, FIG. 4 is a schematic diagram showing an outline of a three-dimensional memory device utilizing the fluorescence of the two-photon absorption material, and FIG. FIG. 6 is a schematic diagram showing an outline of a three-dimensional memory device using a change in rate, FIG. 6 is a schematic diagram showing an outline of a two-photon fluorescence microscope according to the present invention, and FIG. 7 is an incident laser wavelength and a two-photon absorption material in Example 2. FIG. 8 is a graph showing the relationship between one wavelength of the incident laser and the two-photon absorption cross section of the two-photon absorption material in Example 3. In the figure, 1 is a condensing device, 2 is a two-photon absorbing material, 3 is a collimating device, 4 is a pulse laser generator, 5 is a condensing device, 6 is a two-photon absorbing material, and 7 is a movable or fixed stage. , 8 is a fixed or movable mirror, 9 is a two-photon absorption material, 10 is a dichroic mirror, 11 is a photodetector, 12 is a two-photon absorption material, 13 is a confocal optical microscope, and 14 is detection Reference numeral 15 denotes a light collecting device, 16 denotes a light collecting device, 17 denotes an aperture, and 18 denotes a light collecting device.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を実施例により、 詳細に説明するが、 本発明はこれら実施例に限 定されるものではない。  Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.
実施例 1 Example 1
式(3 )で示される(2, 5-ジメトキシ -4- (N-メチル -4-ピリジルビ二レン)フエ二 ル)ブタジイントリフレートを 2. 0〜3. 0mo l/l 含むジメチルスルホキシド溶液を 対象とし、波長範囲 570〜960nmにおいて、パルス巾 125f sのパルスレ一ザ一光を、 繰返し周波数 1kHzで照射した。
Figure imgf000015_0001
A dimethyl sulfoxide solution containing 2.0 to 3.0 mol / l of (2,5-dimethoxy-4- (N-methyl-4-pyridylvinylene) phenyl) butadiintriflate represented by the formula (3) In the wavelength range of 570 to 960 nm, a pulse laser with a pulse width of 125 fs was irradiated at a repetition frequency of 1 kHz.
Figure imgf000015_0001
オープンアパーチャ一 z-スキャン法により、二光子吸光係数を測定し、濃度を 考慮に入れて二光子吸収断面積を算出したところ、 467nm の可視域にある一光子 吸収のピーク波長近傍である 650nmより短波長側で、 著しい二光子吸収断面積の 増大が得られ、波長 571nmにおいて、最大 2400X 10一50
Figure imgf000015_0002
The two-photon extinction coefficient was measured by the open-aperture z-scan method, and the two-photon absorption cross section was calculated considering the concentration. the short wavelength side, an increase of significant two-photon absorption cross section is obtained at a wavelength of 571 nm, up to 2400X 10 one 50
Figure imgf000015_0002
の巨大な二光子吸収断面積が得られた。 A huge two-photon absorption cross section was obtained.
実施例 2 Example 2
式 (4) で示されるビス(N_メチル -4-ピリジルビ二レン- P-フエ二レン)ブ夕ジ イントリフレートを 2.0〜3, Omol/1含むジメチルスルホキシド溶液を対象とし、 波長範囲 596〜890nmにおいて、パルス巾 125fsのパルスレーザ一光を、繰返し周 波数 1kHzで照射した。  For a dimethyl sulfoxide solution containing bis (N_methyl-4-pyridylvinylene-P-phenylene) butane diintriflate represented by the formula (4) in the range of 2.0 to 3, Omol / 1, the wavelength range is 596. At 890890 nm, a single pulse laser with a pulse width of 125 fs was applied at a repetition frequency of 1 kHz.
(4)(Four)
Figure imgf000015_0003
Figure imgf000015_0003
オープンアパーチャ一 Z-スキャン法により、二光子吸光係数を測定し、濃度を 考慮に入れて二光子吸収断面積を算出したところ、 400nm の可視域にある一光子 吸収のピーク波長近傍である 650ηπιより短波長側で、 著しい二光子吸収断面積の 増大が得られ、波長 596nmにおいて、最大 571 X10"50 cm4- sec -molecule"1 -photon-1 の巨大な二光子吸収断面積が得られた(図 7参照)。 The two-photon extinction coefficient was measured by the open aperture Z-scan method and the concentration was taken into account.The two-photon absorption cross-section was calculated from 650ηπι, which is near the peak wavelength of one-photon absorption in the visible region of 400 nm. At the short wavelength side, a remarkable increase in the two-photon absorption cross section was obtained, and at a wavelength of 596 nm, a huge two-photon absorption cross section of up to 571 X10 " 50 cm 4 -sec-molecule" 1 -photon- 1 was obtained. (See Figure 7).
実施例 3 Example 3
式 (5) で示されるビス(2, 5-ジメトキシ -4- (4-ピリジルビ二レン)フエニル) ブタジインを 2.0〜3. Omol/1含むジメチルスルホキシド溶液を対象とし、 波長範 囲 579~907nmにおいて、 パルス巾 125fs のパルスレ一ザ一光を、 繰返し周波数 1kHzで照射した。
Figure imgf000016_0001
For a dimethylsulfoxide solution containing 2.0 to 3. Omol / 1 of bis (2,5-dimethoxy-4- (4-pyridylvinylene) phenyl) butadiyne represented by the formula (5), in a wavelength range of 579 to 907 nm. A pulse laser with a pulse width of 125 fs was irradiated at a repetition frequency of 1 kHz.
Figure imgf000016_0001
オープンアパーチャ一 Z-スキャン法により、二光子吸光係数を測定し、濃度を 考慮に入れて二光子吸収断面積を算出したところ、 421nm の可視域にある一光子 吸収のピーク波長近傍である 650nmより短波長側で、 著しい二光子吸収断面積の 増大が得られ、波長 579nmにおいて、最大 600 XIO"50 cm4- sec -molecule"1 -photon"1 の巨大な二光子吸収断面積が得られた(図 8参照)。 The two-photon extinction coefficient was measured by the open-aperture Z-scan method and the two-photon absorption cross-section was calculated taking into account the concentration.From the 650 nm, which is near the peak wavelength of one-photon absorption in the visible region of 421 nm At the short wavelength side, a remarkable increase in the two-photon absorption cross section was obtained, and at a wavelength of 579 nm, a huge two-photon absorption cross section of up to 600 XIO " 50 cm 4 -sec-molecule" 1 -photon " 1 was obtained. (See Figure 8).

Claims

請 求 の 範 囲 The scope of the claims
1 . 一般式 (1 ) で示される化合物および一般式 (2 ) で示される化合物から なる群から選ばれた少なくとも 1種の化合物からなり、 当該化合物の一光子紫外 1. One-photon ultraviolet of the compound comprising at least one compound selected from the group consisting of the compound represented by the general formula (1) and the compound represented by the general formula (2)
•可視 ·近赤外吸光のピーク波長から 250nm以内の波長域で二光子吸収のピーク 波長を示す二光子吸収材料; • A two-photon absorption material that exhibits a two-photon absorption peak wavelength within a wavelength range of 250 nm or less from the visible and near-infrared absorption peak wavelengths;
Figure imgf000017_0001
Figure imgf000017_0001
(式中、 および R2は、 同一或いは相異なって、 水素原子又は炭素数 1〜4のアル コキシ基を表し、 nは 1〜3の整数を示す。 )、 (Wherein and R 2 are the same or different and represent a hydrogen atom or an alkoxy group having 1 to 4 carbon atoms, and n represents an integer of 1 to 3).
Figure imgf000017_0002
Figure imgf000017_0002
(式中、 、 R2および nは、上記に同じ。 R3は、 炭素数 1〜3のアルキル基であり、 A一は、 RS03— (式中 R は、 CF3、 フエニル、 トリル又は炭素数 1〜3のアルキル基 である)、 ハロゲンァニオン又は C104—である。 ;)。 . (Wherein,, R 2 and n are the same R 3 in the above is an alkyl group having 1 to 3 carbon atoms, A one is RS0 3 - (wherein R is, CF 3, phenyl, tolyl or an alkyl group having 1 to 3 carbon atoms), halogen § anion or C10 4 - a;)..
2 . 一般式 (1 ) で示される化合物および一般式 (2 ) で示される化合物から なる群から選ばれた少なくとも 1種の化合物からなり、 当該化合物の一光子紫外 ·可視 ·近赤外吸光のピーク波長から 250nm以内の波長域で二光子吸収のピーク 波長を示す二光子吸収材料からなる光制限材料;  2. It is composed of at least one compound selected from the group consisting of a compound represented by the general formula (1) and a compound represented by the general formula (2), and the compound has one-photon ultraviolet, visible, and near-infrared absorption. A light-limiting material consisting of a two-photon absorption material that exhibits a two-photon absorption peak wavelength within a wavelength range of 250 nm or less from the peak wavelength;
Figure imgf000017_0003
Figure imgf000017_0003
(式中、 および R2は、 同一或いは相異なって、 水素原子又は炭素数 1〜4のァ ルコキシ基を表し、 nは 1〜3の整数を示す。 )、 (2)
Figure imgf000018_0001
(Wherein and R 2 are the same or different and each represent a hydrogen atom or an alkoxy group having 1 to 4 carbon atoms, and n represents an integer of 1 to 3). (2)
Figure imgf000018_0001
(式中、 、 R2および nは、上記に同じ。 R3は、炭素数 1〜3のアルキル基であり、 A一は、 RS03—(式中 R は、 CF3、 フエニル、 トリル又は炭素数 1〜3のアルキル基 である)、 ハロゲンァニオン又は C1( である。 ;)。 . (Wherein,, R 2 and n are the same R 3 in the above is an alkyl group having 1 to 3 carbon atoms, A one is RS0 3 - (wherein R is, CF 3, phenyl, tolyl or An alkyl group having 1 to 3 carbon atoms), halogen anion or C1 (;
3 . 一般式 (1 ) で示される化合物および一般式 (2 ) で示される化合物から なる群から選ばれた少なくとも 1種の化合物からなり、 当該化合物の一光子紫外 •可視 ·近赤外吸光のピーク波長から 250nm以内の波長域で二光子吸収のピーク 波長を示す二光子吸収材料からなる光造型用光硬化樹脂の硬化材料;  3. It comprises at least one compound selected from the group consisting of the compound represented by the general formula (1) and the compound represented by the general formula (2), and the compound has one-photon ultraviolet, visible, and near-infrared absorption. Curing material of photocurable resin for stereolithography consisting of a two-photon absorption material that exhibits a two-photon absorption peak wavelength within a wavelength range of 250 nm or less from the peak wavelength;
Figure imgf000018_0002
Figure imgf000018_0002
(式中、 および R2は、 同一或いは相異なって、水素原子又は炭素数 1〜4のアル コキシ基を表し、 nは!〜 3の整数を示す。 :)、 (Wherein, and R 2 are the same or different and represent a hydrogen atom or an alkoxy group having 1 to 4 carbon atoms, and n represents an integer of 3 to 3).
Figure imgf000018_0003
Figure imgf000018_0003
(式中、 、 R2および nは、上記に同じ。 R3は、炭素数 1 ~3のアルキル基であり、 A一は、 RS03— (式中 R は、 CF3、 フエニル、 トリル又は炭素数 1〜3のアルキル基 である)、 ハロゲンァニオン又は C104—である。 ;)。 (Wherein,, R 2 and n are the same R 3 in the above is an alkyl group having 1 to 3 carbon atoms, A one is RS0 3 -. (Wherein R is, CF 3, phenyl, tolyl or an alkyl group having 1 to 3 carbon atoms), halogen § anion or C10 4 - a;)..
4 . —般式 (1 ) で示される化合物および一般式 (2 ) で示される化合物から なる群から選ばれた少なくとも 1種の化合物からなり、 当該化合物の一光子紫外 •可視 ·近赤外吸光のピーク波長から 250nm以内の波長域で二光子吸収のピーク 波長を示す二光子吸収材料からなる三次元光メモリ材料;
Figure imgf000019_0001
4. —Consisting of at least one compound selected from the group consisting of the compound represented by the general formula (1) and the compound represented by the general formula (2), and one-photon ultraviolet • visible / near infrared absorption of the compound Three-dimensional optical memory material consisting of a two-photon absorption material exhibiting a two-photon absorption peak wavelength within a wavelength range of 250 nm from the peak wavelength of
Figure imgf000019_0001
(式中、 および R2は、 同一或いは相異なって、 水素原子又は炭素数 1〜4のアル コキシ基を表し、 nは 1〜3の整数を示す。 )、 (Wherein and R 2 are the same or different and represent a hydrogen atom or an alkoxy group having 1 to 4 carbon atoms, and n represents an integer of 1 to 3).
Figure imgf000019_0002
Figure imgf000019_0002
(式中、 、 R2および nは、上記に同じ。 R3は、炭素数 1〜3のアルキル基であり、 A一は、 RS03— (式中 Rは、 CF3、 フエニル、 トリル又は炭素数 1〜3のアルキル基 である)、 ハロゲンァニオン又は C104—である。 ;)。 . (Wherein,, R 2 and n are the same R 3 in the above is an alkyl group having 1 to 3 carbon atoms, A one is RS0 3 - (wherein R is, CF 3, phenyl, tolyl or an alkyl group having 1 to 3 carbon atoms), halogen § anion or C10 4 - a;)..
5 . 一般式 (1 ) で示される化合物からなる群から選ばれた少なくとも 1種の 化合物からなり、 当該化合物の一光子紫外 ·可視 ·近赤外吸光のピーク波長から 250nm以内の波長域で二光子吸収のピーク波長を持ち、 且つ蛍光性を示す二光子 吸収材料からなる走査型二光子蛍光顕微鏡用蛍光色素材料;  5. It is composed of at least one compound selected from the group consisting of the compounds represented by the general formula (1), and has a wavelength within 250 nm from the peak wavelength of one-photon ultraviolet, visible, and near-infrared absorption of the compound. A fluorescent dye material for a scanning two-photon fluorescence microscope, comprising a two-photon absorption material having a peak wavelength of photon absorption and exhibiting fluorescence;
Figure imgf000019_0003
Figure imgf000019_0003
(式中、 および R2は、 同一或いは相異なって、水素原子又は炭素数 1 ~4のアル コキシ基を表し、 nは 1〜3の整数を示す。 )。 (Wherein and R 2 are the same or different and represent a hydrogen atom or an alkoxy group having 1 to 4 carbon atoms, and n represents an integer of 1 to 3).
6 . 集光装置とコリメ一卜装置との間に、 請求項 2に記載された光制限材料を 配置した光制限装置。 6. A light restricting device in which the light restricting material according to claim 2 is disposed between a light collecting device and a collimating device.
7 . パルスレーザー発生装置、 パルスレーザー集光装置、 光硬化性モノマー収 容装置、 及び光硬化性モノマー中の所定の集光位置をレーザービームで走査する ための機構を備えた二光子吸収光造型装置であって、 請求項 3に記載された硬化 材料が光硬化性モノマー中に含まれていることを特徴とする光造型装置。 7. Two-photon absorption stereolithography equipped with a pulsed laser generator, a pulsed laser concentrator, a photocurable monomer storage device, and a mechanism for scanning a predetermined condensing position in the photocurable monomer with a laser beam. An optical molding apparatus, wherein the curing material according to claim 3 is contained in a photocurable monomer.
8 . パルスレーザ一発生装置、パルスレーザ一集光装置、 三次元光メモリ材料、 該メモリ材料の所定の集光位置をレーザービームで走査するための機構、 および 光学的読出し装置を備えた三次元光メモリ装置であって、該三次元メモリ材料が、 下記一般式 (1 ) で示される化合物からなる群から選ばれた少なくとも 1種の化 合物からなり、 当該化合物の一光子紫外 ·可視 ·近赤外吸光のピーク波長から 250nm以内の波長域で二光子吸収のピーク波長を持ち、 且つ蛍光性を示す二光子 吸収材料であることを特徴とする三次元メモリ装置; 8. Pulse laser generator, pulse laser collector, three-dimensional optical memory material, mechanism for scanning a predetermined focusing position of the memory material with a laser beam, and three-dimensional optical memory including an optical reading device An apparatus, wherein the three-dimensional memory material comprises at least one compound selected from the group consisting of compounds represented by the following general formula (1), and comprises one-photon ultraviolet, visible, near-red light of the compound. A three-dimensional memory device having a two-photon absorption peak wavelength within a wavelength range of 250 nm or less from the external absorption peak wavelength, and being a fluorescent two-photon absorption material;
Figure imgf000020_0001
Figure imgf000020_0001
(式中、 および R2は、 同一或いは相異なって、 水素原子又は炭素数 〜 4のァ ルコキシ基を表し、 nは 1〜3の整数を示す。 )。 (In the formula, and R 2 are the same or different and represent a hydrogen atom or an alkoxy group having 4 to 4 carbon atoms, and n represents an integer of 1 to 3.).
9 . パルスレーザー発生装置、 パルスレーザ一集光装置、 請求項 4に記載され た三次元光メモリ材料、 該メモリ材料の所定の集光位置をレーザービームで走査 するための機構、 および光メモリ材料中の屈折率変化を検出する機構を備えた三 次元光メモリ装置。  9. A pulsed laser generator, a pulsed laser concentrator, the three-dimensional optical memory material according to claim 4, a mechanism for scanning a predetermined converging position of the memory material with a laser beam, and A three-dimensional optical memory device equipped with a mechanism for detecting a change in refractive index.
1 0 . パルスレーザー発生装置、 パルスレーザ一集光装置、 請求項 5に記載さ れた蛍光色素材料、 該蛍光色素材料の所定の集光位置をレーザービームで走査す るための機構、 および光検出装置を備えた二光子蛍光顕微鏡。  10. A pulsed laser generator, a pulsed laser collector, a fluorescent dye material according to claim 5, a mechanism for scanning a predetermined focusing position of the fluorescent dye material with a laser beam, and light. Two-photon fluorescence microscope equipped with a detection device.
PCT/JP2003/011186 2002-09-09 2003-09-02 Two-photon absorption materials WO2004022665A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004534133A JP4195937B2 (en) 2002-09-09 2003-09-02 Two-photon absorption material
AU2003261883A AU2003261883A1 (en) 2002-09-09 2003-09-02 Two-photon absorption materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002262312 2002-09-09
JP2002-262312 2002-09-09

Publications (1)

Publication Number Publication Date
WO2004022665A1 true WO2004022665A1 (en) 2004-03-18

Family

ID=31973156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011186 WO2004022665A1 (en) 2002-09-09 2003-09-02 Two-photon absorption materials

Country Status (3)

Country Link
JP (1) JP4195937B2 (en)
AU (1) AU2003261883A1 (en)
WO (1) WO2004022665A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006022025A (en) * 2004-07-07 2006-01-26 National Institute Of Advanced Industrial & Technology Two-photon absorption material
WO2006078941A2 (en) * 2005-01-20 2006-07-27 Sirtris Pharmaceuticals, Inc. Novel sirtuin activating compounds and methods of use thereof
WO2006118311A1 (en) * 2005-04-27 2006-11-09 Ricoh Company, Ltd. Dye material, dye solution and multiphoton absorption reaction material using the same, reaction product, multiphoton absorption reaction material, gold nanorods and manufacturing method of gold nanorods
JP2007246463A (en) * 2006-03-17 2007-09-27 Ricoh Co Ltd Two-photon-absorbing material and its application
JP2007246422A (en) * 2006-03-15 2007-09-27 Ricoh Co Ltd Two-photon absorbing material and application of the same
JP2007328149A (en) * 2006-06-08 2007-12-20 Toshiba Corp Optical recording medium and recording method for the same
WO2009139479A1 (en) * 2008-05-12 2009-11-19 ソニー株式会社 Optical information recording medium, and two-photon absorbing material
JP2013006041A (en) * 2005-02-04 2013-01-10 Biodefense Corp Article processing apparatus and related method
JP2013139571A (en) * 2013-02-01 2013-07-18 Ricoh Co Ltd π-CONJUGATED COMPOUND AND USE THEREOF, AND ELEMENT AND DEVICE USING THE SAME

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5037916A (en) * 1990-03-16 1991-08-06 University Of Lowell Substituted extensively conjugated ionic polyacetylenes
JPH06214279A (en) * 1992-06-30 1994-08-05 Canon Inc Device and method for optical echo memory recording and reproduction
JP2000095762A (en) * 1998-09-25 2000-04-04 Ritsumeikan Dipyridyldicetylene derivative and polydipyridydiacetylene derivative, and production thereof
JP2000338405A (en) * 1999-05-28 2000-12-08 Yokogawa Electric Corp Two-photon absorption fluorescence microscope
US20010001005A1 (en) * 1998-09-08 2001-05-10 Min Jiang Resonant fabry-perot semiconductor saturable absorbers and two photon absorption power limiters
JP2001158050A (en) * 1999-12-02 2001-06-12 Japan Science & Technology Corp Two-photon optical micro-shaping method, apparatus adapted thereto, part molded by two-photon optical micro-shaping method, and movable mechanism
JP2002172864A (en) * 2000-09-28 2002-06-18 Fuji Photo Film Co Ltd 2,2'-crosslinking biphenyl compound, optical information recording medium and method for recording

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5037916A (en) * 1990-03-16 1991-08-06 University Of Lowell Substituted extensively conjugated ionic polyacetylenes
JPH06214279A (en) * 1992-06-30 1994-08-05 Canon Inc Device and method for optical echo memory recording and reproduction
US20010001005A1 (en) * 1998-09-08 2001-05-10 Min Jiang Resonant fabry-perot semiconductor saturable absorbers and two photon absorption power limiters
JP2000095762A (en) * 1998-09-25 2000-04-04 Ritsumeikan Dipyridyldicetylene derivative and polydipyridydiacetylene derivative, and production thereof
JP2000338405A (en) * 1999-05-28 2000-12-08 Yokogawa Electric Corp Two-photon absorption fluorescence microscope
JP2001158050A (en) * 1999-12-02 2001-06-12 Japan Science & Technology Corp Two-photon optical micro-shaping method, apparatus adapted thereto, part molded by two-photon optical micro-shaping method, and movable mechanism
JP2002172864A (en) * 2000-09-28 2002-06-18 Fuji Photo Film Co Ltd 2,2'-crosslinking biphenyl compound, optical information recording medium and method for recording

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 55, 1961, Columbus, Ohio, US; abstract no. 23518C-23519I, DREFAHL G. ET AL.: "Investigation on stilbenes. XL. Conjugated stilbazoles" XP002973876 *
CHEMISCHE BERICHTE, vol. 94, 1961, pages 1824 - 1833 *
YOICHIRO IWASE ET AL., DAI 50 KAI KOBUNSHI TORON KAI, YOSHISHU, vol. 50, no. 13, 2001, pages 3318 - 3319, XP002973875 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4627158B2 (en) * 2004-07-07 2011-02-09 独立行政法人産業技術総合研究所 Two-photon absorption material
JP2006022025A (en) * 2004-07-07 2006-01-26 National Institute Of Advanced Industrial & Technology Two-photon absorption material
WO2006078941A2 (en) * 2005-01-20 2006-07-27 Sirtris Pharmaceuticals, Inc. Novel sirtuin activating compounds and methods of use thereof
WO2006078941A3 (en) * 2005-01-20 2007-02-22 Sirtris Pharmaceuticals Inc Novel sirtuin activating compounds and methods of use thereof
JP2013006041A (en) * 2005-02-04 2013-01-10 Biodefense Corp Article processing apparatus and related method
JP2006330683A (en) * 2005-04-27 2006-12-07 Ricoh Co Ltd Dye material using multiphoton absorbing material, dye solution, gold nanorod constituting multiphoton absorbing material, and manufacturing method of the gold nanorod
WO2006118311A1 (en) * 2005-04-27 2006-11-09 Ricoh Company, Ltd. Dye material, dye solution and multiphoton absorption reaction material using the same, reaction product, multiphoton absorption reaction material, gold nanorods and manufacturing method of gold nanorods
JP2007246422A (en) * 2006-03-15 2007-09-27 Ricoh Co Ltd Two-photon absorbing material and application of the same
JP2007246463A (en) * 2006-03-17 2007-09-27 Ricoh Co Ltd Two-photon-absorbing material and its application
JP2007328149A (en) * 2006-06-08 2007-12-20 Toshiba Corp Optical recording medium and recording method for the same
WO2009139479A1 (en) * 2008-05-12 2009-11-19 ソニー株式会社 Optical information recording medium, and two-photon absorbing material
EP2287007A1 (en) * 2008-05-12 2011-02-23 Sony Corporation Optical information recording medium, and two-photon absorbing material
EP2287007A4 (en) * 2008-05-12 2012-08-15 Sony Corp Optical information recording medium, and two-photon absorbing material
JP2013139571A (en) * 2013-02-01 2013-07-18 Ricoh Co Ltd π-CONJUGATED COMPOUND AND USE THEREOF, AND ELEMENT AND DEVICE USING THE SAME

Also Published As

Publication number Publication date
JP4195937B2 (en) 2008-12-17
AU2003261883A1 (en) 2004-03-29
JPWO2004022665A1 (en) 2005-12-22

Similar Documents

Publication Publication Date Title
WO2004022665A1 (en) Two-photon absorption materials
US8980530B2 (en) Optical information recording medium and method for recording information in optical information recording medium
US20080125317A1 (en) Heating Additive for Three Dimensional Optical Memory
EP2159227B1 (en) Two-photon absorption material and application thereof
JP5819934B2 (en) Reversible recording medium by optical recording of information and reversible recording method on such medium
JP5769151B2 (en) Two-photon absorbing material and use thereof
US7964333B1 (en) FRET-based two photon three dimensional optical data storage
JP2004534849A (en) Phthalide compounds useful for optical recording
JP4328856B2 (en) Two-photon absorption material
Varapnickas et al. Processes of laser direct writing 3D nanolithography
JP2010217579A (en) Two-photon absorbing material and application therefor
JP5229521B2 (en) π-conjugated compounds and their uses, and elements and devices using them
JP5986437B2 (en) Data recording method for optical data storage medium and optical data storage medium
JP5343479B2 (en) Two-photon absorbing organic materials and their applications
Durko-Maciag et al. Two is better than one: ESIPT dyes as photoinitiators in two-photon polymerization
JP2007241168A (en) Two-photon absorption material
JP5339242B2 (en) Two-photon absorption materials and their applications
JP5047651B2 (en) Two-photon absorption materials and their applications
JP2013241415A (en) Two-photon absorption material and application thereof
JP5105808B2 (en) Distyrylbenzene derivative and three-dimensional memory material, light limiting material, photocuring resin curing material for stereolithography, and fluorescent dye material for two-photon fluorescence microscope using the same.
JP2006022025A (en) Two-photon absorption material
CN1329391C (en) Organic photochromic diaryl ethylene compound and its preparation process and application
JP5505748B2 (en) π-conjugated compounds and their uses, and elements and devices using them
JP5578455B2 (en) π-conjugated compounds and their uses, and elements and devices using them
JP5453818B2 (en) Two-photon absorption materials and their applications

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004534133

Country of ref document: JP

122 Ep: pct application non-entry in european phase