JP4195306B2 - Electrochemical element - Google Patents

Electrochemical element Download PDF

Info

Publication number
JP4195306B2
JP4195306B2 JP2003003479A JP2003003479A JP4195306B2 JP 4195306 B2 JP4195306 B2 JP 4195306B2 JP 2003003479 A JP2003003479 A JP 2003003479A JP 2003003479 A JP2003003479 A JP 2003003479A JP 4195306 B2 JP4195306 B2 JP 4195306B2
Authority
JP
Japan
Prior art keywords
foil strip
gas
electrochemical element
gas permeable
metal foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003003479A
Other languages
Japanese (ja)
Other versions
JP2004221129A (en
Inventor
精鎮 絹田
西野  敦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Optnics Precision Co Ltd
Original Assignee
Optnics Precision Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optnics Precision Co Ltd filed Critical Optnics Precision Co Ltd
Priority to JP2003003479A priority Critical patent/JP4195306B2/en
Publication of JP2004221129A publication Critical patent/JP2004221129A/en
Application granted granted Critical
Publication of JP4195306B2 publication Critical patent/JP4195306B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Gas Exhaust Devices For Batteries (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リチウム電池、ニッケル水素電池のような電池、アルミ電解コンデンサ、電気二重層キャパシタのようなコンデンサおよび電気量記憶素子のようなセンサ等の電気化学素子に関し、より具体的には、電気光学素子の使用時に発生する種々のガスのみを常時容器外に逸散させ、電解質は容器内に残し、内部圧力が設定圧に到達すると壊裂することの可能なガス透過性調圧弁として用いる金属箔帯と有機物箔帯からなる箔状複合材の材料、構成およびその設置方法に関するものである。
【0002】
【従来の技術】
従来、主に、電池やコンデンサには防爆安全弁が用いられていた。その代表的な構造として、アルミ電解コンデンサや電気二重層キャパシタの場合には、図9に示すように、アルミニュウムケース91の底面93に十字の段押し加工94を施し、他の部分よりもケース厚みを薄くして、安全限界に達すると段押し部分が破壊する安全弁が用いられている。
【0003】
また、従来の電池用防爆安全装置は、図8に示すような構造を有する。電池の容器81の内部圧力が加熱や過電流によつて異常に高くなったときに、電池の爆発による事故を防ぐ目的で所定の圧力で破損し、ガス抜きをする安全弁83が取り付けられている。
【0004】
その他、電池の場合には、ステンレス鋼板を用いるもの(例えば、特許文献1参照。)や、ニッケルの箔板を用いるもの(例えば、特許文献2参照。)がある。
【0005】
【特許文献1】
特開昭59−79965号公報
【特許文献2】
特願平8−328368号公報
【0006】
また、大型の据え置き型密閉鉛蓄電池には、電池周辺部の酸霧による腐食を防止するため触媒栓を用いて、充放電時に発生する水素ガスと酸素ガスを触媒を用いて水に戻し、電池内部のガス圧の上昇を防止しているが触媒栓だけで小型電池以上に体積を要する。
【0007】
また、フッ素樹脂(PTFE)のフイルムを延伸して製造した連続気泡を有する多孔質膜が用いられているもの(例えば、特許文献3参照。)では、多孔度の均一化が困難で液が流失したり、歩留まりが悪く、実用化の上で課題が多い。
【0008】
【特許文献3】
特開平5−159765号公報
【0009】
また、本発明者らの先願(特願2002−013271)では、微細孔を有するガス透過性複合材を弁に用いて、ガスを外部へ散逸させる技術を提案した。
【0010】
【発明が解決しようとする課題】
しかしながら、前記の図9に示すアルミ金属ケースに段押し部を設ける方法は、低コストであるが破壊時の圧力にバラツキが大きく、信頼性が悪い。
【0011】
また、特許文献1や特許文献2等に記載されている金属の箔帯を用いる安全弁は、安全弁が作動すると爆発は防止されるものの、電池やコンデンサのような電気化学素子は安楽死し、以後使用できなくなってしまう。
【0012】
また、触媒栓は安全であるが、高価で、形状が大きく、小型の電気化学素子に応用することが不可能である。
【0013】
また、フッ素樹脂の多孔質フイルムは、機械的強度、信頼性、歩留まりに課題を有し、実用時にガスだけでなく、ガスの逸散時に電解液を同時に噴出する課題を有していた。
【0014】
また、本発明者らの先願(特願2002−13271)では、ガス透過性複合材が微細孔を有するため、所定圧力(例えば、内圧力が2kg/cm2以上)に到達するとガスと電解液を同時に逸散させることが判明した。また、ガス透過膜を電気化学素子の底部に設置するとガス逸散よりも先に電解液を放出することが判明した。そのため、前記先願技術に対しては、常時ガスを透過させ、内圧力を調圧し、所定圧力以上に到達すると壊裂機能有するように改善する必要がある。
【0015】
また、近年、携帯電話、パソコン、PDA等の電子機器が小型化され、これらの電気化学素子が超小型化され、さらに、製造時のハンダリフロー時の耐熱特性や携帯機器の使用環境条件が厳しくなり、これらに使用される電気化学素子のガス発生問題が深刻化しつつある。
【0016】
また、HEV車(ハイブリットカー)の実用化に伴い、HEV車が寒冷地で使用されるようになり、HEV車の低温対策として、ニッケル水素電池と併用に大容量の電気二重層キャパシタが実用化され、+60〜−30℃の温度サイクル試験が要請され、これらの電気化学素子のガス発生対策が急務である。この対策として、公知の安全弁だけの機能では、実用上で問題になってきた。
【0017】
そこで、本発明は、これらの従来の課題を解決し、1)電気化学化学素子の使用時に常にガスのみを容器外に逸散させ、調圧機能を有する。2)超小型から大型電気化学素子にまで応用可能。3)電気化学素子の実用電圧を、一素子当たり100mv以上に上昇させる。4)所定圧力以上では、壊裂機能を有する。5)極めて信頼性が高い。等の特性改善を目的としている。
【0018】
そのため、本発明では、電気化学素子の内部に発生するガスを常に容器外に定常的に逸散させる手法として、以下のような概要の技術を採用した。(1)ガス透過性で、耐熱性で、無孔性のゴム系有機物箔帯を用い、常時、ガスを透過させる。(2)ニッケル基合金からなる超微細孔を有する箔帯を用いて、ガスを容器外に逸散させ、所定圧力以上に達すると壊裂する。(3)ニッケル、またはニッケル基合金の15〜60μmの箔帯に3μm以下の微細孔の貫通孔を設け、ガス所定圧力以上で壊裂させる。(4)無孔性のゴム系有機物箔帯と超微細孔金属箔帯を複合化させたガス透過性調圧弁複合材として一体化させて用いる。(5)この透過性調圧弁複合材を有するガス透過性調圧ユニットを電気化学素子の中心部より上部に設ける。
【0019】
【課題を解決するための手段】
請求項1に係る発明は、ガス透過性を有する無孔性の有機物箔帯と、少なくとも前記有機物箔帯を透過するガスを透過させ得る微細な貫通孔である微細孔を、所定圧力以上で壊裂し得る所定密度で形成した金属箔帯と、を有するガス透過性調圧弁を装備し、常時はガス透過性調圧弁よりガスを逸散させて内部圧力を調整すると共に、内部圧力が所定圧力に達すると金属箔帯が壊裂してガス透過性調圧弁が自壊するようにしたことを特徴とする。
【0020】
また、請求項2に係る発明は、前記請求項1に記載の電気化学素子において、前記金属箔帯にニッケル基合金を用いることを特徴とする。
【0021】
また、請求項3に係る発明は、前記請求項1に記載の電気化学素子において、前記金属箔帯に電解析出ニッケル基合金を用いることを特徴とする。
【0022】
また、請求項に係る発明は、前記請求項1〜請求項3の何れか1項に記載の電気化学素子において、前記金属箔帯の微細孔の孔径が6〜0.1μmで、アスペクト比が3以上であることを特徴とする。
【0023】
また、請求項に係る発明は、前記請求項1〜請求項の何れか1項に記載の電気化学素子において、前記金属箔帯の厚みが15〜150μmで有ることを特徴とする。
【0024】
また、請求項に係る発明は、前記請求項1〜請求項の何れか1項に記載の電気化学素子において、前記有機物箔帯には、ウレタン系、シリコーン系、フッ素系、アクリル系、SBR系、NBR系などのゴム系樹脂を用いることを特徴とする。
【0025】
また、請求項に係る発明は、前記請求項1〜請求項6の何れか1項に記載の電気化学素子において、前記有機物箔帯の厚みが20〜100μmであることを特徴とする。
【0026】
また、請求項に係る発明は、前記請求項1〜請求項の何れか1項に記載の電気化学素子において、ガス透過機能と壊裂機能を有するガス透過性調圧弁を設ける貫通孔が電解液の注入口を兼ねることを特徴とする。
【0027】
【発明の実施の形態】
次に、添付図面および表に基づいて、本発明に係る電気化学素子の実施形態を説明する。
【0028】
〔実施例1〕
本発明に係る電気化学素子の内圧力調整箔帯の基本構成を説明をする。電気化学素子6の容器は、ニッケル水素電池の場合は、ニッケルメッキ鋼板を用い、アルミ電解コンデンサ、電気二重層キャパシタ、リチウム電池の場合は、アルミ材または、アルミ/ステンレスクラッドメタルを用いる。ガス透過性調圧ユニット9は、ガス透過性調圧弁複合材(内圧力調整複合材)3、圧着リング4および気密リングから構成され、これが電気化学素子の上蓋の貫通孔に設けられている。図1は、内圧力調整装置9の組立後の構成図である。この実施例は主に内圧力調整箔帯が金属から構成されている場合の実施例である。
【0029】
この組立方法を図2で説明する。電気化学素子の上蓋22には、ガス透過性調圧ユニット29が装着される貫通孔28と内圧力調整箔帯の受け部26と圧着リングの逃げ部27が加工、形成されている。これに外径15mmのテフロン(登録商標)気密リング(O−リング)25,外径15mmの有孔性金属箔帯と無孔性有機物箔帯から成る内圧力調整複合材23と外径16mmのAlの圧着リング24を順番に挿入する。圧着リング24が挿入される貫通孔28の内径寸法公差は、0.2mmと緩くてよい。配列後は、圧着リング24が上蓋22の上面より約0.3mm突出した設計にし、圧着リング24を平行に加重して圧着すると各部品も変形するがAlの圧着リング24は圧着リングの逃げ部27を埋める如く塑性変形し上蓋22に固定される。
【0030】
〔実施例2〕
内圧力調整複合材が柔軟性を有する箔帯の場合の本発明の実施例を図3で説明する。電気化学素子の容器の上蓋32には、ガス透過性調圧ユニット39が装着される貫通孔38と内圧力調整箔帯の受け部36と圧着リングの逃げ部37が加工、形成されている。第1の実施例と異なるところは圧着リングの逃げ部37と圧着リング34の形状だけである。圧着リングの逃げ部37の形状は図のようにテーパ形であり、圧着後の機密性と耐圧の確保が充分に配慮されている構造である。圧着リング34の形状はテーパが付いても良い。両者を圧着した後は圧着リングの逃げ部37のテーパ形状に沿って圧着リング34が変形し、圧着後の密着面積が大きく取れる構造が特徴である。ガス透過性調圧ユニット39はAlの気密リング35と柔軟性を有する内圧力調整複合材33を圧着リング34で圧着されることで構成される。図3では気密リング35を用いているが、圧着後、密着面積が大きいのでこれを省略することも可能である。また、貫通孔38のテーパ方向は天地を入れ替えてもよい。
【0031】
〔実施例3〕
実施例3で、本発明のゴム系の内圧力調整複合材100の構成(図4、図5)を述べる。内圧力調整複合材については、後に詳述するため、ここでは、内圧力調整箔帯の構成を述べる。内圧力調整複合材100は、基本的には、15〜150μmから成る図4に示すような多孔性金属箔帯と20〜100μmからなる耐熱性で、ゴム系のガス透過性で無孔性有機物箔帯で構成される。
【0032】
金属箔帯の細孔径105は、図5に示すように貫通孔106で、多孔質に構成されている。この細孔径105の大きさは、0.1〜6μm程度が好ましい。細孔径と細孔密度は、用いられる電池、電気二重層キャパシタなどの電気化学素子の種類、大きさ、使用方法により、決定される。
【0033】
本発明の基本構想は、先願(特願2002−013271)を改良し、常時の調圧とガス透過を無孔性有機物箔帯が分担し、機械的強度と壊裂機能を超微細孔を有する金属箔帯が分担するように意図した。
【0034】
ここでゴム系有機物箔帯の膜圧は、20〜100μmが好ましく、20μm以下では、有機物箔帯の加工が難しく、信頼性が得られなく、100μm以上では、ガス透過性が悪くなる。好ましい実用範囲は、20〜40μmが実用的である。
【0035】
〔実施例4:電気化学素子の構成とその特性〕
本発明の実施例を代表的な電気化学素子の応用例として、電池では、ニッケル水素電池(10.5Φ*44.5l)、リチウム電池(18.3Φ*64.7l)およびコンデンサとして電気二重層キャパシタ(18Φ*40l)を用いて本発明の構成とその効果を詳述する。これらの電気化学化学素子の構成条件とその特性を表1に網羅し、各代表的な内圧力調整複合材の調製条件を以下の実施例5,6,7,8に詳述する。
【0036】
【表1】

Figure 0004195306
【0037】
なお、電気化学化学素子の評価方法として、45℃の相対湿度90%で、500時間の加速劣化試験を行い各電気化学化学素子を各20個を漏液試験を行い、光学顕微鏡による漏液評価判定を行い、また、500時間経過後の20℃での充電試験後の電圧測定を表示した。また、漏液、ガス拡散試験のさらに加速するために電池、電気二重層キャパシタをガス透過性複合材ユニット部を下部に(逆さの姿勢で)70℃で200時間の加速試験を行った結果も表示した。
【0038】
〔実施例5〕
実施例5で本発明で用いる内圧力調整複合材の調整方法と構成方法を述べる。図4に本発明の内圧力調整複合材の超微細孔を有する金属箔帯と無孔性で、ゴム系の有機物箔帯の構成法を示した。a)は、多孔性金属箔帯101とガス透過性ゴム系多孔性ガス透過箔帯102を単純に積層した標準的な構成方法である。e)は前記a)の応用で、ガス透過性ゴム系多孔性ガス透過箔帯102の上下両面に多孔性金属箔帯101を配した構成であり、圧力が高い場合に応用するが通常では、a)の構成で充分である。
【0039】
図4のc)、d)e)は、多孔性金属箔帯101を樹脂箔帯(ガス透過性ゴム系多孔性ガス透過箔帯102)の内部に埋め込んだ事例であるが、c)、d)e)は、ガス透過に抵抗を有し、また、ガス透過複合体を生産する時にコスト高となる。表1のNO12、NO15〜NO18にこれら構成方法による効果の比較を行った。
【0040】
〔実施例6:電析ニッケル箔帯〕
本発明で使用する電析ニッケルの超微細孔の多孔箔帯は電析(デポジト法)法で調製した。エッチング法では、高精度の1μmΦの細孔を加工することができず、信頼性を確保できないためである。細孔密度は、箔帯の厚みに依存し、箔帯の加工コストにも関係する。単三型電池からコイン型電池の電気化学素子では約20μmが好ましく、単一型の大きさでは30〜40μmが好ましい。また、角型電池、500〜4000Fの電気二重層キャパシタ、500〜5000μFのアルミ電解コンデンサでは、30〜100μmの箔帯を用いることが好ましい。
【0041】
1μmΦの細孔密度は50〜120個/cm2が好ましく、本発明では100個/cm2の細孔密度を用いた。なお、細孔径の直径をXとして、箔帯の厚みをYとして、Y/Xの比をアスペクト比と呼び、本発明では、アスペクト比は、3以上が好ましいが、150以上になると製造コストが高くつく。なお、1μmΦの細孔径を用いた理由は、1μmΦ以上では、無孔性有機物被膜の膜強度が心配で、1μmΦ以下の細孔径は、加工が困難で、信頼性が低下し、コスト高のためである。また、1μmΦの細孔径は、メタルスクリーンの量産などで、産業的実績が有り、コスト的に有利である。表1のNO2〜26で標準メタルスクリーンとして使用した。
【0042】
〔実施例7:有機フイルム箔帯〕
本発明で用いる従来法の有機フイルムは、市販のPTFE(テトラフルオロエチレン)製の延伸法で制作された100μmの箔帯フイルムを従来法として比較対照させた。表1でNO1,NO9,NO24で実施した。
【0043】
また、本発明で用いる無孔性で、ゴム系のガス透過性有機物箔帯の材質は、シリコーンゴム系、ウレタンゴム系、フッ素ゴム系、NBR系、SBR系、アクリルニトリル系等のゴム系の無孔性有機物箔帯が本発明で使用可能であるが、耐熱性を考慮すると、シリコーンゴム系、ウレタンゴム系、フッ素ゴム系、SBR系が効果的である。
【0044】
耐熱性で、ガス透過性のゴム系有機物箔帯の膜圧は、20〜100μmが好ましい。20μm以下では、加工の精度と作業性が悪く、コスト高となる。また、100μm以上では、ガス透過性が困難になる。(表1のNO15〜NO20で実施した)
【0045】
〔実施例8:ガス透過性複合材ユニットの構成方法〕
図6に本発明のガス透過性内圧力調整ユニットの電気化学素子への装備方法を示している。図6のa)は、底部xy面と高さz面の長さが等しい電気化学素子の場合に上部にガス透過性内圧力調整ユニット61が装備されていることを示している。図6のb)は、底部xy面の長さが異なる場合の電気化学素子も上部にガス透過性内圧力調整ユニット61が設置されることを示している。図6のc)は、電気化学素子が並列、直列に連結された場合にも上部にガス透過性内圧力調整ユニット61が装備されることを示している。本発明を効果的に実用化するには、電気化学素子の高さ方向zの中心部より上部に、好ましくは、電気化学素子の上蓋部にガス透過性内圧力調整ユニットを設けることが必要である。
【0046】
〔実施例9:電解液注入口とガス透過性複合材ユニットを同一の貫通口に設ける構成〕
本発明の電気化学素子は、ガス透過性複合材ユニットを上蓋部に設けると上蓋部には、陰極、陽極も同一平面内に設けられるため上蓋の面積が足らなくなる。また、上蓋部には、電気化学素子の個別のBMS(Battery Management System)回路を配線するため上蓋部に空間が必要である。このため電解液口とガス透過性複合材ユニットを別々に設けると電気化学素子の密閉性も課題を生じる。この対策として、図7に示すように電解液注入口とガス透過性複合材ユニットを同一の貫通口に設け、上蓋の空間部を効率的に利用することを目的としている。
【0047】
先ず、図7のa)に示す実施例では、電気化学素子の上ブタ72に設けられた開孔部から電解液を注入し、ガス透過性調圧ユニット(金属メッシュ、有機透過性箔帯、Oリングより構成)を圧着リング74に設着し、このガス透過性調圧ユニットを、シーリング膜78をパッキングとして介圧させ、図中の矢印方向へかしめ加工をする。また、図7のb)に示す類似の実施例としては、ガス透過性調圧ユニット(多孔性金属箔帯、無孔性有機箔帯、Oリングより構成)を上ブタ72′に設置し、スクリュータイプの圧着リング74′を接着剤とともにネジ込み圧着する。このような実施例9の方法によると、電気化学素子の上ブタ部の部品が少なくなり漏液対策がより完全で、また上ブタ部の空間部にBMS(Battery management System)に関連する回路を設置できる空間部を設けることが可能となる。
【0048】
〔比較例〕
本発明の内圧力調整箔帯を従来例と比較するために金属箔帯には、市販のSUS304の60μmの箔帯を用いた(NO8)。また、有機フイルムの従来例として、ジャパンゴアテックス社の電池用電解液漏れ防止膜(特願平3−320538)を比較対象させた。表1で、NO:1,24で本発名品と比較のために使用した。
【0049】
〔実施例の結果と本発明の効果〕
〔ニッケル水素電池の場合〕
ニッケル水素電池の場合は、特に、水素ガスの発生が電池のサイクル特性を劣化させたり、50℃以上の耐熱性に弱いために電池の爆発の危険がある。表1のNO3〜4は、ガス透過性箔帯材料にシリコーンゴム系を、NO5〜7は、ウレタンゴム系の有機物箔帯を使用した。NO1の市販品とNO2は本発明者らの先願(特願2002−013271)との比較を行つた。電極、電解液は、ニッケル水素電池の標準条件で行つた。その結果、従来品は、内圧が上昇し、漏液するものが有り、充電電圧も内圧の関係で低い値を示した。また、本発明者の先願方法では、電圧は高いが、逆漏液試験で漏液を示した。
【0050】
これに対して、本発明品は、相対的に優れた結果を示し、シリコーン系、ウレタン系ゴムのいずれも電池電圧が高く、漏液試験、逆姿勢による漏液加速試験にも極めて優れた特性を示し、また、壊裂破壊(ラプチャー特性)も8〜12Kg/cm2の優れたラプチャー特性を示した。
【0051】
〔電気二重層キャパシタの場合〕
電気二重層キャパシタの場合には、電極として、陰陽極共に2000m2/gのフェノール系活性炭から成るシート電極を用い、50F/セルの容量で、電解液としてNO8〜22は、溶剤:PC(プロピレンカーボネート)と電解質として、1mol/lのTEABF4(テトラエチルアンモンテトラフルオロボレート)を用いた。また、NO23は、最近注目の高電圧が可能な溶媒のAN(アセトニトリル)を用い、電解質は、TEA−BF4 1.5mol/lを用いた。ゴム系の内圧力調整複合材は、シリコーンゴム系とウレタンゴム系を用いた。また、超微細孔の多孔質金属箔帯の厚みは、10〜100μmを変化させ、また、アスペクト比は、表1に示すように実用的な範囲の3〜50に変化させた。
【0052】
実験結果として、市販の材料を用いたNO8,9は、電気二重層キャパシタの内部圧力も上昇し、電圧も2.3Vと低く、アルミケースのフクレや変形が生じ、漏液も多く、壊裂圧力も低いものであつた。
【0053】
一方、本発明のガス透過性複合体ユニットを用いたNO10〜23は、従来法のNO8,9に比較して、充電電圧も高く、漏液が極めて優れ、且つ、優れた壊裂機能を示すことが認められた。
【0054】
NO10〜14は、多孔質金属箔帯の細孔のアスペクト比を比較したものであるが壊裂する圧力に影響を示し、漏液試験、逆姿勢漏液試験には、極めて優れた特性を示した。
【0055】
NO15〜NO18は、耐熱性で、ガス透過性複合体の構成方法(a、b、c、d)を比較したものである。d)が壊裂圧力の増加を示した他はいずれも良好な結果を示した。
〔リチウム電池の場合〕
リチウムイオン電池の場合をNO25,26に示した。リチウムイオン電池は、アルミケースやプラスチックスケースを使用するが、ガス透過性内圧力調整複合体として、シリコンゴム系とウレタンゴム系を検討したが、従来品のNO24に比較して、表1のように安定で、良好な結果を示した。
【0056】
【発明の効果】
本発明の実用上の効果を電気二重層キャパシタで、実用面から本発明の効果を表1の結果から説明すると、例えば、主な電子機器のLSIや電子回路の作動電圧は、通常5.5Vが標準である。従って、電源の充電電圧(OCV:Open Circuit Voltage)や負荷放電電圧(CCV:Close Circuit Voltage)が回路設計上極めて重要である。
【0057】
表1から従来方法のNO8,9の単セルの充電電圧が従来法が2.3Vに対して、本発明法のNO10,23は、それぞれ2.80V、2.95Vを示すと、電子機器に応用した場合に、2個直列か3個直列かの相違となる。これは、空間効率は言うまでもなく、コストダウンが−30%可能になり、容量は、大きい値で使用可能となり、工業的価値は、極めて大なるものである。
【0058】
また、近年、ニッケル水素電池を搭載したHEV車が日本、米国で好評であるが、更に近未来に向けて低温特性と、回生制動特性や電池寿命特性の改善に向けての取り組みで、ニッケル水素電池と電気二重層キャパシタとの組合せが注目を浴びている。
【0059】
この試作車には、3000F/セルの電気二重層キャパシタが42個/台必要となる。このような場合に、従来法では、43個必要であるが、本発明法のNO10,23では、それぞれ37,34個で十分である。このように本発明法では、−14%、−21%のコストダウンが可能と成るだけでなく、自動車の重量効率や空間効率、コストダウンに貢献することの可能な工業的価値は、極めて大なるものである。
【図面の簡単な説明】
【図1】 本発明の実施例の内圧力調整箔帯装置の主要構成図。
【図2】 本発明の内圧力調整箔帯の1組立における主要構成図。
【図3】 本発明の内圧力調整箔帯の他の組立における主要構成図。
【図4】 本発明の耐熱性ガス透過性内圧力調整複合体の主要構成図。
【図5】 本発明の多孔質金属箔帯の一部拡大構成図。
【図6】 本発明のガス透過性内圧力調整ユニットの電気化学素子への装備方法。
【図7】 本発明の一体型、電解液の注入口とガス透過性内圧力調整複合体の構成図。
【図8】 従来法の一構成図。
【図9】 従来法の安全弁の構成図。
【符号の説明】
1 アルミ外装ケース
3 ガス透過性調圧弁複合材
4 圧着リング
6 電気化学素子
9 ガス透過性調圧ユニット
22 上蓋
23 内圧調整複合材
24 圧着リング
25 O−リング
26 受け部
27 逃げ部
28 貫通孔
29 ガス透過性調圧ユニット
32 上蓋
33 内圧力調整複合材
34 圧着リング
35 気密リング
36 受け部
37 逃げ部
38 貫通孔
39 ガス透過性調圧ユニット
101 多孔性金属箔帯
102 ガス透過性ゴム系無孔性ガス透過箔帯[0001]
BACKGROUND OF THE INVENTION
The present invention relates to electrochemical elements such as batteries such as lithium batteries and nickel metal hydride batteries, aluminum electrolytic capacitors, capacitors such as electric double layer capacitors, and sensors such as electric quantity storage elements, and more specifically, Metal used as a gas-permeable pressure regulator that can dissipate only the various gases generated during the use of the optical element at all times, leave the electrolyte in the container, and can burst when the internal pressure reaches the set pressure. The present invention relates to a material and configuration of a foil-like composite material composed of a foil strip and an organic foil strip and a method for installing the same.
[0002]
[Prior art]
Conventionally, explosion-proof safety valves have been mainly used for batteries and capacitors. As a typical structure, in the case of an aluminum electrolytic capacitor or an electric double layer capacitor, as shown in FIG. 9, a cross stepping process 94 is applied to the bottom surface 93 of the aluminum case 91 so that the thickness of the case is larger than that of other portions. A safety valve is used in which the stepped portion is destroyed when the safety limit is reached.
[0003]
Further, the conventional battery explosion-proof safety device has a structure as shown in FIG. When the internal pressure of the battery container 81 becomes abnormally high due to heating or overcurrent, a safety valve 83 is attached that vents and degass at a predetermined pressure in order to prevent accidents caused by battery explosion. .
[0004]
In addition, in the case of a battery, there are one using a stainless steel plate (for example, see Patent Document 1) and one using a nickel foil plate (for example, see Patent Document 2).
[0005]
[Patent Document 1]
JP 59-79965 A [Patent Document 2]
Japanese Patent Application No. 8-328368 [0006]
For large stationary sealed lead-acid batteries, a catalyst plug is used to prevent corrosion due to acid mist around the battery, and the hydrogen gas and oxygen gas generated during charging and discharging are returned to water using the catalyst. Although the internal gas pressure is prevented from increasing, it requires more volume than a small battery with just a catalyst plug.
[0007]
Further, in the case of using a porous membrane having open cells produced by stretching a fluororesin (PTFE) film (for example, refer to Patent Document 3), it is difficult to make the porosity uniform, and the liquid is lost. And the yield is poor, and there are many problems in practical use.
[0008]
[Patent Document 3]
JP-A-5-159765 [0009]
In the prior application of the present inventors (Japanese Patent Application No. 2002-013271), a technique for dissipating gas to the outside by using a gas-permeable composite material having fine pores as a valve was proposed.
[0010]
[Problems to be solved by the invention]
However, the method of providing the stepped portion in the aluminum metal case shown in FIG. 9 is low in cost, but has a large variation in pressure at the time of destruction, and is not reliable.
[0011]
Moreover, although the safety valve using the metal foil strip described in Patent Document 1 or Patent Document 2 is prevented from exploding when the safety valve is activated, an electrochemical element such as a battery or a capacitor is euthanized. It can no longer be used.
[0012]
Further, the catalyst plug is safe, but expensive, large in shape, and cannot be applied to a small electrochemical device.
[0013]
In addition, the fluororesin porous film has problems in mechanical strength, reliability, and yield, and has a problem in that not only the gas is used in practical use but also the electrolyte is simultaneously ejected when the gas is diffused.
[0014]
In the prior application of the present inventors (Japanese Patent Application No. 2002-13271), since the gas-permeable composite material has micropores, gas and electrolysis are reached when a predetermined pressure is reached (for example, the internal pressure is 2 kg / cm 2 or more). It has been found that liquids can escape at the same time. It has also been found that when the gas permeable membrane is installed at the bottom of the electrochemical element, the electrolyte is released prior to gas dissipation. Therefore, it is necessary to improve the prior application technique so that the gas always permeates, the internal pressure is regulated, and when the pressure reaches a predetermined pressure or more, the rupture function is provided.
[0015]
In recent years, electronic devices such as mobile phones, personal computers and PDAs have been miniaturized, and these electrochemical elements have been miniaturized. Furthermore, the heat resistance characteristics during solder reflow during manufacturing and the environmental conditions for using portable devices have become severe. Therefore, the gas generation problem of the electrochemical elements used for these is becoming serious.
[0016]
In addition, with the commercialization of HEV vehicles (hybrid cars), HEV vehicles are used in cold regions, and large capacity electric double layer capacitors are put to practical use together with nickel metal hydride batteries as a countermeasure for the low temperature of HEV vehicles. Therefore, a temperature cycle test of +60 to −30 ° C. is required, and countermeasures for gas generation of these electrochemical elements are urgently needed. As a countermeasure, the function of only a known safety valve has become a practical problem.
[0017]
Therefore, the present invention solves these conventional problems, and 1) has a pressure adjusting function by always diffusing only gas out of the container when the electrochemical device is used. 2) Applicable from ultra-small to large electrochemical devices. 3) The practical voltage of the electrochemical device is increased to 100 mV or more per device. 4) At a predetermined pressure or higher, it has a rupture function. 5) Extremely reliable. The purpose is to improve characteristics.
[0018]
Therefore, in the present invention, the following general technique is adopted as a technique for constantly radiating the gas generated inside the electrochemical element to the outside constantly. (1) Gas permeation, heat resistance, non-porous rubber-based organic foil strip is used, and gas is always permeated. (2) Using a foil strip made of a nickel-based alloy and having ultrafine holes, the gas is dissipated out of the container and ruptures when it reaches a predetermined pressure or higher. (3) A fine hole of 3 μm or less is provided in a 15-60 μm foil strip of nickel or a nickel-based alloy, and is ruptured at a predetermined pressure or higher. (4) Used as a gas permeable pressure regulating valve composite material in which a nonporous rubber-based organic foil strip and an ultrafine porous metal foil strip are combined. (5) A gas permeable pressure regulating unit having this permeable pressure regulating valve composite material is provided above the center of the electrochemical element.
[0019]
[Means for Solving the Problems]
According to the first aspect of the present invention , a non-porous organic foil strip having gas permeability and a micro-hole that is a fine through-hole capable of transmitting at least the gas passing through the organic foil strip are broken at a predetermined pressure or more. Equipped with a gas permeable pressure regulating valve having a metal foil strip formed at a predetermined density that can be torn , and normally adjusts the internal pressure by dissipating gas from the gas permeable pressure regulating valve, and the internal pressure is a predetermined pressure. When the pressure reaches the value, the metal foil strip is ruptured and the gas permeable pressure regulating valve is self-destructed .
[0020]
The invention according to claim 2 is the electrochemical element according to claim 1, wherein a nickel-based alloy is used for the metal foil strip .
[0021]
The invention according to claim 3 is the electrochemical element according to claim 1, wherein an electrolytically deposited nickel-based alloy is used for the metal foil strip .
[0022]
The invention according to claim 4 is the electrochemical device according to any one of claims 1 to 3 , wherein the pore diameter of the fine holes of the metal foil strip is 6 to 0.1 μm, and the aspect ratio Is 3 or more.
[0023]
The invention according to claim 5 is the electrochemical element according to any one of claims 1 to 4 , wherein the metal foil strip has a thickness of 15 to 150 μm.
[0024]
The invention according to claim 6 is the electrochemical element according to any one of claims 1 to 5 , wherein the organic foil strip includes urethane, silicone, fluorine, acrylic, SBR system, characterized by using a rubber-based resins such as NBR systems.
[0025]
The invention according to claim 7, in the electrochemical device according to any one of the claims 1 to 6, the thickness of the organic material foil strip is characterized in that it is a 20 to 100 [mu] m.
[0026]
The invention according to claim 8, in the electrochemical device according to any one of the claims 1 to 7, the through-hole to provide a gas-permeable pressure regulating valve having a gas permeability function and壊裂function It also serves as an electrolyte inlet.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the electrochemical device according to the present invention will be described with reference to the accompanying drawings and tables.
[0028]
[Example 1]
The basic structure of the internal pressure adjusting foil strip of the electrochemical device according to the present invention will be described. The container of the electrochemical element 6 is a nickel-plated steel plate in the case of a nickel metal hydride battery, and an aluminum material or an aluminum / stainless clad metal in the case of an aluminum electrolytic capacitor, an electric double layer capacitor, or a lithium battery. The gas permeable pressure adjusting unit 9 is composed of a gas permeable pressure regulating valve composite material (internal pressure adjusting composite material) 3, a pressure-bonding ring 4 and an airtight ring, which are provided in a through hole in the upper lid of the electrochemical element. FIG. 1 is a configuration diagram of the internal pressure adjusting device 9 after assembly. This embodiment is an embodiment where the internal pressure adjusting foil strip is mainly made of metal.
[0029]
This assembly method will be described with reference to FIG. In the upper lid 22 of the electrochemical element, a through hole 28 in which the gas permeable pressure adjusting unit 29 is mounted, a receiving portion 26 of an internal pressure adjusting foil strip, and a relief portion 27 of a crimping ring are formed and processed. Further, an inner pressure adjusting composite material 23 composed of a Teflon (registered trademark) hermetic ring (O-ring) 25 having an outer diameter of 15 mm, a porous metal foil strip having an outer diameter of 15 mm and a nonporous organic foil strip, and an outer diameter of 16 mm. Insert the Al crimp ring 24 in order. The inner diameter dimensional tolerance of the through hole 28 into which the crimp ring 24 is inserted may be as loose as 0.2 mm. After the arrangement, the design is such that the crimp ring 24 protrudes about 0.3 mm from the upper surface of the upper lid 22, and when the crimp ring 24 is weighted in parallel and crimped, each part is also deformed, but the Al crimp ring 24 is the relief part of the crimp ring. It is plastically deformed so as to fill 27 and is fixed to the upper lid 22.
[0030]
[Example 2]
An embodiment of the present invention in the case where the internal pressure adjusting composite material is a flexible foil strip will be described with reference to FIG. On the upper lid 32 of the container of the electrochemical element, a through hole 38 in which the gas permeable pressure adjusting unit 39 is mounted, a receiving portion 36 of the internal pressure adjusting foil strip, and a relief portion 37 of the crimping ring are formed and processed. The only difference from the first embodiment is the shape of the crimp ring relief portion 37 and the crimp ring 34. The shape of the relief portion 37 of the crimping ring is a taper shape as shown in the figure, and has a structure in which the confidentiality and the pressure resistance after the crimping are sufficiently considered. The shape of the crimp ring 34 may be tapered. After crimping both, the crimping ring 34 is deformed along the taper shape of the relief portion 37 of the crimping ring, and the contact area after the crimping is large. The gas permeable pressure adjusting unit 39 is configured by press-bonding an Al airtight ring 35 and a flexible internal pressure adjusting composite material 33 with a pressure-bonding ring 34. Although the airtight ring 35 is used in FIG. 3, it can be omitted because the contact area is large after the pressure bonding. Moreover, the taper direction of the through-hole 38 may replace the top and bottom.
[0031]
Example 3
In Example 3, the configuration of the rubber-based internal pressure adjusting composite material 100 of the present invention (FIGS. 4 and 5) will be described. Since the internal pressure adjusting composite material will be described in detail later, the configuration of the internal pressure adjusting foil strip will be described here. The internal pressure adjusting composite material 100 is basically composed of a porous metal foil strip composed of 15 to 150 μm as shown in FIG. 4 and heat resistant composed of 20 to 100 μm, and is a rubber-based gas permeable nonporous organic substance. Consists of foil strips.
[0032]
As shown in FIG. 5, the metal foil strip has a through hole 106 and is formed to be porous. The pore diameter 105 is preferably about 0.1 to 6 μm. The pore diameter and the pore density are determined by the type, size, and usage method of the electrochemical element such as the battery and electric double layer capacitor used.
[0033]
The basic concept of the present invention is the improvement of the prior application (Japanese Patent Application No. 2002-013271), the non-porous organic foil strips sharing the regular pressure regulation and gas permeation, and the mechanical strength and rupturing function with ultrafine pores. It was intended that the metal foil strips possessed.
[0034]
Here, the film pressure of the rubber-based organic foil strip is preferably 20 to 100 μm, and if it is 20 μm or less, it is difficult to process the organic foil strip, and the reliability cannot be obtained, and if it is 100 μm or more, the gas permeability is deteriorated. A preferable practical range is 20 to 40 μm.
[0035]
[Example 4: Structure and characteristics of electrochemical device]
As an application example of a typical electrochemical device according to an embodiment of the present invention, a battery is a nickel metal hydride battery (10.5Φ * 44.5 l), a lithium battery (18.3Φ * 64.7 l), and an electric double layer as a capacitor. The configuration of the present invention and the effects thereof will be described in detail using a capacitor (18Φ * 40l). The constitutional conditions and characteristics of these electrochemical elements are covered in Table 1, and the preparation conditions of each representative internal pressure adjusting composite material are described in detail in Examples 5, 6, 7, and 8 below.
[0036]
[Table 1]
Figure 0004195306
[0037]
As an electrochemical element evaluation method, an accelerated deterioration test is performed for 500 hours at a relative humidity of 90% at 45 ° C., a liquid leakage test is performed for each of the 20 electrochemical elements, and a liquid leakage evaluation is performed using an optical microscope. The determination was made, and the voltage measurement after the charge test at 20 ° C. after 500 hours elapsed was displayed. In addition, in order to further accelerate the liquid leakage and gas diffusion test, the results of an accelerated test of 200 hours at 70 ° C. with the gas permeable composite unit unit at the bottom (inverted posture) for the battery and electric double layer capacitor displayed.
[0038]
Example 5
In Example 5, an adjustment method and a configuration method of the internal pressure adjustment composite material used in the present invention will be described. FIG. 4 shows a construction method of a non-porous, rubber-based organic foil strip and a metal foil strip having ultrafine pores of the internal pressure adjusting composite material of the present invention. a) is a standard construction method in which a porous metal foil strip 101 and a gas permeable rubber-based porous gas permeable foil strip 102 are simply laminated. e) is an application of the above a), which is a configuration in which the porous metal foil strips 101 are arranged on both upper and lower surfaces of the gas permeable rubber-based porous gas permeable foil strip 102, and is applied when the pressure is high. The configuration a) is sufficient.
[0039]
4) c) and d) e) are examples in which the porous metal foil strip 101 is embedded in the resin foil strip (gas permeable rubber-based porous gas permeable foil strip 102). E) has resistance to gas permeation and is expensive when producing gas permeable composites. The effects of these constituent methods were compared with NO12 and NO15 to NO18 in Table 1.
[0040]
[Example 6: Electrodeposited nickel foil strip]
The electrodeposited nickel ultrafine pore porous foil strip used in the present invention was prepared by the electrodeposition (deposit method). This is because the etching method cannot process high-precision 1 μmφ pores and cannot ensure reliability. The pore density depends on the thickness of the foil strip and is also related to the processing cost of the foil strip. About 20 μm is preferable for an AA type battery to coin type battery electrochemical element, and 30-40 μm is preferable for a single type size. Further, in a square battery, an electric double layer capacitor of 500 to 4000 F, and an aluminum electrolytic capacitor of 500 to 5000 μF, it is preferable to use a foil strip of 30 to 100 μm.
[0041]
The pore density of 1 μmΦ is preferably 50 to 120 / cm 2. In the present invention, a pore density of 100 / cm 2 was used. Note that the diameter of the pore diameter is X, the thickness of the foil strip is Y, and the ratio of Y / X is called the aspect ratio. In the present invention, the aspect ratio is preferably 3 or more. It is expensive. The reason for using a pore size of 1 μmΦ is that if it is 1 μmΦ or more, the film strength of the nonporous organic coating is concerned, and if it is 1 μmΦ or less, processing is difficult, reliability is reduced, and cost is high. It is. In addition, a pore diameter of 1 μmΦ has an industrial track record in mass production of metal screens and is advantageous in terms of cost. It was used as a standard metal screen with NO2 to 26 in Table 1.
[0042]
[Example 7: Organic film foil strip]
The organic film of the conventional method used in the present invention was compared and contrasted as a conventional method with a 100 μm foil strip film produced by a stretching method made of commercially available PTFE (tetrafluoroethylene). In Table 1, it implemented by NO1, NO9, NO24.
[0043]
Further, the material of the non-porous rubber-based gas permeable organic foil strip used in the present invention is a rubber type such as a silicone rubber type, a urethane rubber type, a fluoro rubber type, an NBR type, an SBR type, an acrylonitrile type, or the like. Nonporous organic foil strips can be used in the present invention, but considering heat resistance, silicone rubber, urethane rubber, fluororubber, and SBR are effective.
[0044]
The film pressure of the heat-resistant and gas-permeable rubber-based organic foil strip is preferably 20 to 100 μm. If it is 20 μm or less, the processing accuracy and workability are poor and the cost is high. Further, when the thickness is 100 μm or more, gas permeability becomes difficult. (Implemented with NO15 to NO20 in Table 1)
[0045]
[Example 8: Method for configuring gas permeable composite material unit]
FIG. 6 shows a method of mounting the gas permeable internal pressure adjustment unit of the present invention on an electrochemical element. FIG. 6A shows that the gas permeable internal pressure adjusting unit 61 is provided on the upper part in the case of an electrochemical element having the same length of the bottom xy plane and the height z plane. FIG. 6 b) shows that the gas permeable internal pressure adjusting unit 61 is also installed on the upper part of the electrochemical element when the lengths of the bottom xy planes are different. FIG. 6 c) shows that the gas permeable internal pressure adjusting unit 61 is provided on the upper part even when the electrochemical elements are connected in parallel and in series. In order to effectively put the present invention into practical use, it is necessary to provide a gas permeable internal pressure adjusting unit above the center part in the height direction z of the electrochemical element, preferably at the upper lid part of the electrochemical element. is there.
[0046]
[Example 9: Configuration in which electrolyte injection port and gas-permeable composite material unit are provided in the same through-hole]
In the electrochemical device of the present invention, when the gas permeable composite material unit is provided in the upper lid portion, the upper lid portion is provided with the cathode and the anode in the same plane, so that the area of the upper lid is insufficient. In addition, a space is required in the upper lid portion for wiring an individual BMS (Battery Management System) circuit of the electrochemical element. For this reason, when the electrolyte port and the gas-permeable composite material unit are provided separately, the sealing performance of the electrochemical element also causes a problem. As a countermeasure, as shown in FIG. 7, an electrolyte injection port and a gas permeable composite material unit are provided in the same through port, and the purpose is to efficiently use the space portion of the upper lid.
[0047]
First, in the embodiment shown in FIG. 7a), an electrolyte is injected from an opening provided in the upper lid 72 of the electrochemical element, and a gas permeable pressure adjusting unit (metal mesh, organic permeable foil strip, An O-ring) is attached to the pressure-bonding ring 74, and this gas-permeable pressure adjusting unit is pressed with the sealing film 78 as a packing, and is caulked in the direction of the arrow in the figure. Further, as a similar embodiment shown in FIG. 7 b), a gas permeable pressure adjusting unit (a porous metal foil strip, a non-porous organic foil strip, and an O-ring) is installed on the upper pig 72 ′. Screw type crimp ring 74 'is screwed together with adhesive. According to the method of Example 9 as described above, the number of parts in the upper lid portion of the electrochemical element is reduced and the leakage countermeasure is more complete, and a circuit related to BMS (Battery management System) is provided in the space portion of the upper lid portion. It is possible to provide a space that can be installed.
[0048]
[Comparative Example]
In order to compare the internal pressure adjusting foil strip of the present invention with a conventional example, a commercially available SUS304 60 µm foil strip was used as the metal foil strip (NO8). In addition, as a conventional example of an organic film, a battery electrolyte leakage prevention film (Japanese Patent Application No. 3-320538) manufactured by Japan Gore-Tex Co., Ltd. was compared. In Table 1, NO: 1 and 24 were used for comparison with the original product.
[0049]
[Results of Examples and Effects of the Present Invention]
[For nickel metal hydride batteries]
In the case of a nickel metal hydride battery, there is a risk of battery explosion, especially because the generation of hydrogen gas deteriorates the cycle characteristics of the battery or is weak in heat resistance at 50 ° C. or higher. NO3 to 4 in Table 1 used a silicone rubber-based gas permeable foil strip material, and NO5 to 7 used a urethane rubber-based organic foil strip. The commercial product of NO1 and NO2 were compared with the prior application of the present inventors (Japanese Patent Application No. 2002-013271). Electrodes and electrolytes were used under standard conditions for nickel metal hydride batteries. As a result, some of the conventional products increased in internal pressure and leaked, and the charging voltage was low due to the internal pressure. Further, in the method of the prior application of the present inventor, although the voltage was high, the reverse leak test showed a leak.
[0050]
On the other hand, the product of the present invention shows relatively excellent results, and both the silicone-based and urethane-based rubbers have high battery voltage, and extremely excellent characteristics for the leakage test and the leakage acceleration test by reverse posture. In addition, the fracture fracture (rupture characteristics) also showed excellent rupture characteristics of 8 to 12 kg / cm 2.
[0051]
[Electric double layer capacitor]
In the case of an electric double layer capacitor, a sheet electrode made of 2000 m 2 / g phenolic activated carbon is used as an electrode for both negative and positive electrodes, and the capacity is 50 F / cell, and NO8 to 22 as an electrolyte is a solvent: PC (propylene Carbonate) and 1 mol / l TEABF 4 (tetraethylammon tetrafluoroborate) were used as the electrolyte. Further, no23 uses a recent high voltage of interest is the solvent capable AN (acetonitrile), the electrolyte was used TEA-BF 4 1.5mol / l. As the rubber-based internal pressure adjusting composite material, a silicone rubber system and a urethane rubber system were used. Further, the thickness of the ultrafine porous metal foil strip was changed from 10 to 100 μm, and the aspect ratio was changed from 3 to 50 in a practical range as shown in Table 1.
[0052]
As a result of the experiment, NO8,9 using commercially available materials increased the internal pressure of the electric double layer capacitor, the voltage was as low as 2.3V, the aluminum case was blistered and deformed, there was a lot of liquid leakage, and the rupture The pressure was low.
[0053]
On the other hand, NO10-23 using the gas permeable composite unit of the present invention has a higher charging voltage, extremely excellent leakage, and an excellent rupture function as compared with conventional NO8,9. It was recognized that
[0054]
NO10-14, which compares the aspect ratios of the pores of the porous metal foil strip, has an effect on the pressure at which it bursts, and exhibits extremely excellent characteristics in the leak test and reverse posture leak test. It was.
[0055]
NO15 to NO18 are heat resistant and are comparisons of the construction methods (a, b, c, d) of the gas permeable composite. All showed good results except that d) showed an increase in burst pressure.
[For lithium batteries]
The case of a lithium ion battery is shown in NO25 and 26. The lithium-ion battery uses an aluminum case or a plastic case, but as a gas permeable internal pressure adjustment composite, silicon rubber and urethane rubber were examined. Was stable and showed good results.
[0056]
【The invention's effect】
The practical effect of the present invention will be described with the electric double layer capacitor, and the effect of the present invention will be explained from the results shown in Table 1 from the practical viewpoint. For example, the operating voltage of the LSI or electronic circuit of the main electronic equipment is usually 5.5V. Is the standard. Therefore, a charging voltage (OCV: Open Circuit Voltage) and a load discharge voltage (CCV: Close Circuit Voltage) of the power source are extremely important in circuit design.
[0057]
According to Table 1, the charging voltage of the conventional NO8,9 single cell is 2.3V for the conventional method, while the NO10,23 of the present invention shows 2.80V, 2.95V, respectively. When applied, it becomes a difference between two in series or three in series. This means that the cost can be reduced by -30%, not to mention the space efficiency, the capacity can be used at a large value, and the industrial value is extremely large.
[0058]
In recent years, HEV vehicles equipped with nickel metal hydride batteries have been well received in Japan and the United States. A combination of a battery and an electric double layer capacitor has attracted attention.
[0059]
This prototype requires 42 units / unit of 3000 F / cell electric double layer capacitor. In such a case, 43 are required in the conventional method, but 37 and 34 are sufficient for NO10 and 23 of the method of the present invention, respectively. Thus, according to the method of the present invention, not only can the cost be reduced by -14% and -21%, but also the industrial value that can contribute to the weight efficiency, space efficiency, and cost reduction of the automobile is extremely large. It will be.
[Brief description of the drawings]
FIG. 1 is a main configuration diagram of an internal pressure adjusting foil strip device according to an embodiment of the present invention.
FIG. 2 is a main configuration diagram in one assembly of an internal pressure adjusting foil strip of the present invention.
FIG. 3 is a main configuration diagram in another assembly of the internal pressure adjusting foil strip of the present invention.
FIG. 4 is a main configuration diagram of the heat-resistant gas-permeable internal pressure regulating composite of the present invention.
FIG. 5 is a partially enlarged configuration diagram of the porous metal foil strip of the present invention.
FIG. 6 shows a method for mounting the gas permeable internal pressure adjusting unit of the present invention on an electrochemical element.
FIG. 7 is a configuration diagram of an integrated type electrolyte inlet of the present invention and a gas permeable internal pressure regulating complex.
FIG. 8 is a configuration diagram of a conventional method.
FIG. 9 is a configuration diagram of a conventional safety valve.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Aluminum exterior case 3 Gas-permeable pressure regulation valve composite material 4 Crimp ring 6 Electrochemical element 9 Gas-permeable pressure regulation unit 22 Upper cover 23 Internal pressure adjustment composite material 24 Crimp ring 25 O-ring 26 Receiving part 27 Escape part 28 Through-hole 29 Gas permeable pressure adjusting unit 32 Upper lid 33 Internal pressure adjusting composite material 34 Crimp ring 35 Airtight ring 36 Receiving portion 37 Escape portion 38 Through hole 39 Gas permeable pressure adjusting unit 101 Porous metal foil strip 102 Gas permeable rubber-based non-hole Gas permeable foil strip

Claims (8)

ガス透過性を有する無孔性の有機物箔帯と、少なくとも前記有機物箔帯を透過するガスを透過させ得る微細な貫通孔である微細孔を、所定圧力以上で壊裂し得る所定密度で形成した金属箔帯と、を有するガス透過性調圧弁を装備し、常時はガス透過性調圧弁よりガスを逸散させて内部圧力を調整すると共に、内部圧力が所定圧力に達すると金属箔帯が壊裂してガス透過性調圧弁が自壊するようにしたことを特徴とする電気化学素子。 A non-porous organic foil strip having gas permeability and fine pores that are fine through-holes capable of transmitting at least the gas that permeates the organic foil strip are formed at a predetermined density that can be ruptured at a predetermined pressure or higher. Equipped with a gas permeable pressure regulating valve having a metal foil strip, the gas permeable pressure regulating valve is normally dissipated to adjust the internal pressure, and when the internal pressure reaches a predetermined pressure, the metal foil strip breaks. An electrochemical device characterized in that the gas-permeable pressure regulating valve is broken and self-destructs . 前記金属箔帯にニッケル基合金を用いることを特徴とする請求項1に記載の電気化学素子。The electrochemical element according to claim 1, wherein a nickel-based alloy is used for the metal foil strip . 前記金属箔帯に電解析出ニッケル基合金を用いることを特徴とする請求項1に記載の電気化学素子。The electrochemical element according to claim 1, wherein an electrolytically deposited nickel-based alloy is used for the metal foil strip . 前記金属箔帯の微細孔の孔径が6〜0.1μmで、アスペクト比が3以上であることを特徴とする請求項1〜請求項3の何れか1項に記載の電気化学素子。The electrochemical element according to any one of claims 1 to 3, wherein the fine diameter of the metal foil strip is 6 to 0.1 µm and the aspect ratio is 3 or more. 前記金属箔帯の厚みが15〜150μmで有ることを特徴とする請求項1〜請求項の何れか1項に記載の電気化学素子。The electrochemical element according to any one of claims 1 to 4 , wherein the metal foil strip has a thickness of 15 to 150 µm. 前記有機物箔帯には、ウレタン系、シリコーン系、フッ素系、アクリル系、SBR系、NBR系などのゴム系樹脂を用いることを特徴とする請求項1〜請求項の何れか1項に記載の電気化学素子。Wherein the organic foil strip is urethane, silicone, fluorine, acryl, SBR-based, to any one of claims 1 to 5, characterized by using a rubber-based resins such as NBR type The electrochemical element as described. 前記有機物箔帯の厚みが20〜100μmであることを特徴とする請求項1〜請求項6の何れか1項に記載の電気化学素子。The electrochemical element according to any one of claims 1 to 6, wherein the organic foil strip has a thickness of 20 to 100 µm. ガス透過機能と壊裂機能を有するガス透過性調圧弁を設ける貫通孔が電解液の注入口を兼ねることを特徴とする請求項1〜請求項の何れか1項に記載の電気化学素子。The electrochemical element according to any one of claims 1 to 7 , wherein a through hole provided with a gas permeable pressure regulating valve having a gas permeable function and a rupturing function also serves as an electrolyte inlet.
JP2003003479A 2003-01-09 2003-01-09 Electrochemical element Expired - Fee Related JP4195306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003003479A JP4195306B2 (en) 2003-01-09 2003-01-09 Electrochemical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003003479A JP4195306B2 (en) 2003-01-09 2003-01-09 Electrochemical element

Publications (2)

Publication Number Publication Date
JP2004221129A JP2004221129A (en) 2004-08-05
JP4195306B2 true JP4195306B2 (en) 2008-12-10

Family

ID=32894731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003003479A Expired - Fee Related JP4195306B2 (en) 2003-01-09 2003-01-09 Electrochemical element

Country Status (1)

Country Link
JP (1) JP4195306B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017073195A (en) * 2015-10-05 2017-04-13 日産自動車株式会社 Pressure release valve of battery pack

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5228274B2 (en) * 2005-12-27 2013-07-03 トヨタ自動車株式会社 Nickel metal hydride storage battery
JP4996857B2 (en) * 2006-01-24 2012-08-08 トヨタ自動車株式会社 battery
JP5127258B2 (en) * 2007-02-08 2013-01-23 株式会社オプトニクス精密 Gas permeable safety valve and electrochemical element
JP5355281B2 (en) * 2009-07-30 2013-11-27 日清紡ホールディングス株式会社 Electric double layer capacitor
JP5969368B2 (en) 2012-11-30 2016-08-17 昭和電工パッケージング株式会社 Exterior body for electrochemical element
US20150325380A1 (en) * 2012-12-17 2015-11-12 Nitto Denko Corporation Hydrogen-releasing film
JP6225499B2 (en) * 2013-05-28 2017-11-08 睦月電機株式会社 Explosion-proof device for sealed electrochemical devices
JP2015053475A (en) * 2013-08-06 2015-03-19 日東電工株式会社 Hydrogen discharge membrane
JP7034577B2 (en) * 2015-03-06 2022-03-14 日東電工株式会社 Hydrogen discharge membrane
JP7023170B2 (en) * 2018-04-26 2022-02-21 株式会社豊田自動織機 Battery module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017073195A (en) * 2015-10-05 2017-04-13 日産自動車株式会社 Pressure release valve of battery pack

Also Published As

Publication number Publication date
JP2004221129A (en) 2004-08-05

Similar Documents

Publication Publication Date Title
JP5127258B2 (en) Gas permeable safety valve and electrochemical element
CN107768559B (en) Bipolar battery
RU2193927C2 (en) Methods for manufacture of improved energy accumulating apparatus
CN1330039C (en) Electrode package and secondary battery using the same
JP4195306B2 (en) Electrochemical element
JP4280014B2 (en) Electrochemical device equipped with a pressure control film
KR101037042B1 (en) Pouch type secondary battery with enhanced stability
CN100372164C (en) Secondary battery, cap assembly thereof and method of mounting safety valve therefor
JP4154888B2 (en) Battery module and vehicle equipped with battery module
EP2416404A2 (en) Electrochemical cell with a gas permeable membrane
KR101735511B1 (en) Battery cell with patterned shape and Method for manufacturing the same
CN105470577A (en) Three-electrode assembly method of soft package lithium ion battery
JP6680644B2 (en) Method for manufacturing bipolar nickel-hydrogen battery
KR20080050642A (en) Cylindrical battery of increased capacity
US11855297B2 (en) Battery unit, battery, and electric apparatus
JP2006216358A (en) Sealed battery
JP2003272588A (en) Battery module
KR20150135878A (en) Electrochemical Cell with Gas Permeable Membrane
KR20150135163A (en) Cap-assembly of litium ion battery with high capacity and power
US5882817A (en) Battery cell design for a bipolar rechargeable battery
KR20220162789A (en) Cover assemblies, battery cells, batteries, electrical devices, methods and equipment
JP2001102025A (en) Enclosed electric cell
KR101757527B1 (en) Electro-chemical energy storage having gas permeable membrane disposed within multiple case
CN114981907B (en) Power storage device
WO2023019533A1 (en) Battery cell, battery, power consuming device, and method for manufacturing battery cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080925

R150 Certificate of patent or registration of utility model

Ref document number: 4195306

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees