JP4194861B2 - Transparent resin penetration cracked glass sphere - Google Patents

Transparent resin penetration cracked glass sphere Download PDF

Info

Publication number
JP4194861B2
JP4194861B2 JP2003055338A JP2003055338A JP4194861B2 JP 4194861 B2 JP4194861 B2 JP 4194861B2 JP 2003055338 A JP2003055338 A JP 2003055338A JP 2003055338 A JP2003055338 A JP 2003055338A JP 4194861 B2 JP4194861 B2 JP 4194861B2
Authority
JP
Japan
Prior art keywords
glass sphere
transparent resin
cracked glass
cracked
sphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003055338A
Other languages
Japanese (ja)
Other versions
JP2004265747A (en
Inventor
文雄 西山
Original Assignee
文雄 西山
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 文雄 西山 filed Critical 文雄 西山
Priority to JP2003055338A priority Critical patent/JP4194861B2/en
Publication of JP2004265747A publication Critical patent/JP2004265747A/en
Application granted granted Critical
Publication of JP4194861B2 publication Critical patent/JP4194861B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ひび割れガラス球のひび割れに透明樹脂を浸透させて、ひび割れの光学的働きを調節するとともに、ガラス球としての凸レンズの働きや透明感を復活させた透明樹脂浸透ひび割れガラス球に関する
【0002】
【従来の技術】
従来、ガラス球の内部を細かくひび割れさせたひび割れガラス球と光源を組み合わせて、光源からの光をひび割れで反射させる装飾的な照明の技術があった(特許公開平6−12902号公報参照)。
【0003】
【発明が解決しようとする課題】
従来のひび割れガラス球(1)と光源を組み合わせた装飾的な照明の技術にあっては、ひび割れガラス球(1)が、図3と図4に示すように、ガラス球の中心から全表面に向かって放射状に広がる沢山のひび割れ(3)を有しているために、図5に示すように、光源(5)からの光が、光源に面した側のひび割れ(3)で全て反射してしまい、光源からの光が、ひび割れガラス球の裏側には到達しないために、光源のある側からしかひび割れガラス球の美しさを観賞できなかった。
【0004】
また、ひび割れガラス球(1)は沢山のひび割れ(3)を有していて、普通のガラス球が持っている凸レンズとしての働きを失っているために、光源からの光をひび割れガラス球の内部で屈折させて、光の進行方向を変化させることができなかった。
【0005】
また、ひび割れガラス球(1)は、球の表面全体を覆う細かなひび割れのために、普通のガラス球が持っている透明感や表面の艶を失っていてガラス球としての美しさに欠けるうえに、空気と接している球の表面の裏側での光の反射による美しさも得られなかった。
【0006】
また、ひび割れガラス球(1)は、球の表面全体を細かな均一のひび割れが覆っているために、光源からの光が、ひび割れで均一に反射されるだけで変化に乏しい美しさしか得られなかった。
【0007】
また、ひび割れガラス球(1)は、球の表面から中心に至るまで内部全体が細かくひび割れているために、衝撃や急激な温度変化などによってひび割れガラス球が完全に割れてしまう可能性があった。
【0008】
商品には輸送中や使用中に大きな衝撃が加わる可能性があり、また、照明器具には光源が付いているので急激な温度変化が加わる可能性があり、ひび割れガラス球(1)が脆くて壊れ易いという欠点は、ひび割れガラス球(1)を使って商品を構成する上での大きな不安材料だった。
【0009】
本発明は、上記のような、従来のひび割れガラス球(1)と光源を組み合わせた装飾的な照明の欠点を解消して、家庭から大規模な商業施設まで広範囲に利用できる装飾的なひび割れガラス球を提供することを目的とする。
【0010】
ひび割れガラス球(1)のひび割れ(3)に透明樹脂(2)を浸透させて、ひび割れの光学的働きを調節するとともに、ひび割れガラス球(1)に凸レンズとしての働きや透明感を復活せさせ、また、ひび割れガラス球(1)のひび割れ(3)を透明樹脂(2)で強固に接着して、ひび割れガラス球(1)に無傷のガラス球に匹敵する強度を持たせる。
【0011】
【課題を解決するための手段】
上記目的を達成するために、本発明の透明樹脂浸透ひび割れガラス球においては、ひび割れガラス球(1)のひび割れ(3)に透明樹脂(2)を浸透させて、ひび割れの光学的働きを調節するとともに、ひび割れガラス球(1)に普通のガラス球が持っている凸レンズとしての働きや透明感や表面の艶を復活せさせ、また、ひび割れガラス球(1)のひび割れ(3)を透明樹脂(2)で強固に接着して、ひび割れガラス球(1)に無傷のガラス球に匹敵する強度を持たせる。
【0012】
また、実験結果から、ひび割れガラス球(1)のひび割れ(3)に透明樹脂液が浸透していく深さは均一ではなく、透明樹脂液の浸透がひび割れガラス球(1)の表面に近い部分にとどまるひび割れもあれば、透明樹脂液の浸透がひび割れガラス球(1)の中心まで到達するひび割れもあるので、その現象を利用して、透明樹脂浸透ひび割れガラス球(6)のひび割れを疎にする。
【0013】
本発明の透明樹脂浸透ひび割れガラス球を使った照明に用いるひび割れガラス球(1)は、ガラス球の中心までガラスでできたガラス球を600度から700度の高温に加熱し、この高温になったガラス球を水中に沈めて急速に冷却することにより得られる。
【0014】
高温に加熱されたガラス球が水中で急速に冷却されて、ひび割れていく様子を観察すると、ごく短時間で進行することではあるが、ガラス球の表面全体から網の目状にひび割れ、このひび割れがガラス球の中心へと進行していくことが観察される。
【0015】
図4は、上記により得られたひび割れガラス球(1)に刃物のノミを沿えて衝撃力を加えて、ひび割れガラス球(1)を二分割した分割面を拡大鏡で目視し、図としたものであり、図に示す割れ目の線に囲まれた一つ一つの部分が、小さな面積の平面状のひび割れであることが目視でき、これにより、ひび割れを入れたガラス球の内部に、多数の小面積の平面状のひび割れが、球の中心から全表面に向かって放射状に広がるように生じていることが分かる。
【0016】
図3は、ひび割れガラス球(1)を拡大鏡で目視し、図としたものである。
【0017】
図1に示すように、ひび割れガラス球(1)のひび割れ(3)に透明樹脂(2)を浸透させて透明樹脂浸透ひび割れガラス球(6)を造る。
【0018】
なお、図1と図2では、図示する都合上、ひび割れガラス球(1)のひび割れ(3)にかなりの隙間があるかのように図示しているが、実際のひび割れガラス球(1)のひび割れ(3)の隙間は限りなくゼロに近く、ひび割れ(3)を指先で触っても隙間を確認できず、また、拡大鏡で見ても隙間を確認できないほど、ごくわずかな隙間しかない。
【0019】
ひび割れガラス球(1)のひび割れ(3)の隙間は極めて小さいので、通常の接着剤をひび割れガラス球(1)に塗布しても、接着剤はひび割れ(3)の隙間に全く入っていかないが、ごく低粘度の二液性の透明性エポキシ樹脂液をひび割れガラス球(1)の表面に塗布すると、毛細管現象や、透明樹脂液とひび割れガラス球(1)の温度変化と温度差によって生じるひび割れ内の空気の負圧によって、透明樹脂液がひび割れの隙間に浸透していき、その透明樹脂液がもっている硬化時間に応じて硬化する。
【0020】
なお、透明性エポキシ樹脂液の代わりにアクリル樹脂液などを用いることもでき、また、主剤と硬化剤を混ぜて使う二液性の樹脂液は、混ぜると化学反応によって発熱した後に徐々に温度が下がっていくので、透明樹脂液とひび割れガラス球(1)の間に温度差が生じる。
【0021】
透明樹脂液をひび割れガラス球(1)の表面に塗布する方法には、刷毛でひび割れガラス球(1)に透明樹脂液を塗る。 吹き付け塗装の要領でひび割れガラス球(1)に透明樹脂液を吹き付ける。必要量のひび割れガラス球(1)と少量の透明樹脂液を容器内で撹拌してひび割れガラス球(1)に透明樹脂液を絡めるなどの方法がある。
【0022】
ひび割れガラス球(1)の表面に塗布した透明樹脂液は、ごく低粘度のために、ひび割れガラス球(1)の表面から流下してしまい、ひび割れガラス球(1)の表面にはほとんど残らず、透明樹脂浸透ひび割れガラス球(6)は普通のガラス球の表面と同じ状態になる。
【0023】
ひび割れガラス球(1)を構成するガラスの屈折率と、透明性エポキシ樹脂の屈折率は近接しているので、図2に示すように透明樹脂(2)が浸透した部分のひび割れは、光学的にはガラスと一体化して目視できず、光線(4)を照射しても光線(4)が透明樹脂(2)を素通りしてひび割れが無いのと同じ状態になる一方で、透明樹脂(2)が浸透していない部分のひび割れ(3)の中には空気が存在し、ガラスの屈折率と空気の屈折率には大きな差があるので、光線(4)を照射すると、ひび割れ(3)と空気の境界面で光が乱反射する。
【0024】
ひび割れガラス球(1)のひび割れ(3)に透明樹脂液を浸透させる深さは、ひび割れガラス球(1)の表面に塗布する透明樹脂液の粘度や塗布する量によって調節でき、また、ひび割れガラス球(1)と透明樹脂液の温度差によっても調節でき、更には、透明樹脂液を塗布したひび割れガラス球(1)を圧力容器内に入れて加圧、あるいは、減圧することによっても調節できる。
【0025】
ひび割れガラス球(1)のひび割れ(3)の隙間は極めて小さいので、ひび割れ(3)の隙間の中で硬化した透明性エポキシ樹脂は強力な接着力を発揮し、無傷のガラス球に匹敵する強度の透明樹脂浸透ひび割れガラス球(6)になる。
【0026】
上記のような工程によって造った透明樹脂浸透ひび割れガラス球(6)と光源(5)を組み合わせて、本発明の透明樹脂浸透ひび割れガラス球を使った照明とする。
【0027】
【発明の実施の形態】
発明の実施の形態を実施例にもとづき図面を参照して説明する。
図8に示される実施例では、板状の支持体(7)に透明樹脂浸透ひび割れガラス球(6)を設け、その面に向かい合う位置に電球や超高輝度LEDなどの光源(5)を配置して透明樹脂浸透ひび割れガラス球を使った照明を構成する。
この実施例において、透明樹脂浸透ひび割れガラス球(6)の代わりに、ひび割れガラス球(1)を板状の支持体(7)の上に配置した後に、そのひび割れガラス球(1)の上から透明樹脂液を塗布してひび割れガラス球(1)を透明樹脂浸透ひび割れガラス球(6)にするとともに、ひび割れガラス球(1)から流下した透明樹脂液によって透明樹脂浸透ひび割れガラス球(6)を支持体(7)に接着することもできる。
【0028】
図9に示される実施例では、板状の支持体(7)に透明樹脂浸透ひび割れガラス球(6)を設け、その透明樹脂浸透ひび割れガラス球(6)の配列の周囲に超高輝度LEDなどの光源(5)を配置して透明樹脂浸透ひび割れガラス球を使った照明を構成する。
この実施例において、透明樹脂浸透ひび割れガラス球(6)の代わりに、ひび割れガラス球(1)を板状の支持体(7)の上に配置した後に、そのひび割れガラス球(1)の上から透明樹脂液を塗布してひび割れガラス球(1)を透明樹脂浸透ひび割れガラス球(6)にするとともに、ひび割れガラス球(1)から流下した透明樹脂液によって透明樹脂浸透ひび割れガラス球(6)を支持体(7)に接着することもできる。
【0029】
図10に示される実施例では、透明なびん(8)の内部の側面に透明樹脂浸透ひび割れガラス球(6)を面状に接着して設け、その透明なびん(8)の外側にスポットライトなどの照明器具(9)を配置して透明樹脂浸透ひび割れガラス球を使った照明を構成する。
この実施例において、透明樹脂浸透ひび割れガラス球(6)の代わりに、必要量のひび割れガラス球(1)と少量の透明樹脂液を容器内で撹拌して、ひび割れガラス球(1)に透明樹脂液を絡めた後に、それを、横に寝かせた透明なびん(8)に入れて、ひび割れガラス球(1)を透明樹脂浸透ひび割れガラス球(6)にするとともに、透明樹脂浸透ひび割れガラス球(6)から流下した透明樹脂液によって、透明樹脂浸透ひび割れガラス球(6)をびん(8)の内部の側面に接着することもできる。
【0030】
図11に示される実施例では、台座(10)の上に直径の大きい透明樹脂浸透ひび割れガラス球(6)を設け、その透明樹脂浸透ひび割れガラス球(6)に相対する位置に、スポットライトなどの照明器具(9)を配置して透明樹脂浸透ひび割れガラス球を使った照明を構成する。
【0031】
上記のような実施例の他にも、透明樹脂浸透ひび割れガラス球(6)が球体であることによって、さまざまな形態にできるので、ネオンサインに類似する照明、電飾看板、店舗の装飾、家電製品の装飾、装飾的な時計などさまざまな装飾的な照明を構成できる。
【0032】
【発明の効果】
本発明は、以上説明したように構成されているので、以下に記載するような効果を奏する。
【0033】
図2に示すように、ひび割れガラス球(1)のひび割れ(3)に透明樹脂(2)を浸透させることによって、透明樹脂が浸透した部分のひび割れは、光学的にはひび割れが無いのと同じ状態にできる。それによって、透明樹脂浸透ひび割れガラス球(6)では、普通のガラス球が持っている凸レンズとしての働きや透明感や表面の艶を復活させることができる。
【0034】
上記の効果より、透明樹脂浸透ひび割れガラス球(6)の表面や内部の表面に近い部分は、光学的に普通のガラス球の働きをせることができるとともに、球の中心に近い部分はひび割れガラス球の働きをせることができる。つまり、透明樹脂浸透ひび割れガラス球(6)には、ひび割れガラス球(1)の働きと普通のガラス球の働きを兼ね備えさせることができる。
【0035】
ひび割れガラス球(1)のひび割れ(3)に透明樹脂(2)を浸透させる度合いは、透明樹脂液の粘度、ひび割れガラス球(1)に塗布する透明樹脂液の量、透明樹脂液とひび割れガラス球(1)の温度差、透明樹脂液を浸透させる作業環境の圧力の調整などによって種々変えられるので、ひび割れガラス球(1)のひび割れ(3)を任意の深さまで光学的に消すことも、ひび割れガラス球(1)の内部のひび割れ(3)の密度を任意の密度まで光学的に疎にすることもできる。
【0036】
ガラス球の表面や表面に近い部分は無傷のままで、ガラス球の内部の中心に近い部分だけにひび割れを生じさせることは技術的に困難であるが、透明樹脂浸透ひび割れガラス球(6)によって、光学的には、ガラス球の表面や内部の表面に近い部分は無傷のままで、ガラス球の内部の中心に近い部分だけにひび割れを生じさせることができる。
【0037】
図6に示すように、透明樹脂浸透ひび割れガラス球(6)では、普通のガラス球が持っている凸レンズとしての働きや透明感や表面の艶が復活しているので、光源(5)から照射した光を以下に記載のように複雑に変化させることができる。
(イ) 光源(5)からの光線(4)を、透明樹脂浸透ひび割れガラス球(6)に入る部分と出る部分で屈折させることができる。
(ロ) 透明樹脂浸透ひび割れガラス球(6)の表面と周りの空気が接する境界面の内面は、ある程度以下の入射角の光に対して鏡の働きをするので、光源(5)からの光線(4)やひび割れ(3)からの反射光を複雑に反射させることができる。
(ハ) 実験結果から、ひび割れガラス球(1)のひび割れ(3)に透明樹脂液が浸透していく深さは均一ではなく、透明樹脂液の浸透がひび割れガラス球(1)の表面に近い部分にとどまるひび割れもあれば、透明樹脂液の浸透がひび割れガラス球(1)の中心まで到達するひび割れもあるので、透明樹脂浸透ひび割れガラス球(6)ではひび割れを間引いて、ひび割れを疎にするとともに、一つ一つの透明樹脂浸透ひび割れガラス球(6)の内部のひび割れに個性を生じさせることができる。
(ニ) (ハ)によって、透明樹脂浸透ひび割れガラス球(6)の内部のひび割れが疎になっているので、光源(5)からの光線(4)の一部をひび割れの間隙をぬって素通りさせることができる。 (ホ) (ハ)によって、一つ一つの透明樹脂浸透ひび割れガラス球(6)の内部のひび割れに個性が生じ、変化に富んだ光り方をさせることができる。
(ヘ) (イ)(ロ)(ハ)(ニ)(ホ)の効果の複合によって、光源(5)に相対する透明樹脂浸透ひび割れガラス球(6)の表側の部分のひび割れだけでなく、透明樹脂浸透ひび割れガラス球(6)の裏側の部分のひび割れまで光を到達させて、透明樹脂浸透ひび割れガラス球(6)全体のひび割れを変化に富んだ光り方で美しく輝かせることができる。
【0038】
上記の(イ)(ロ)(ハ)(ニ)(ホ)(ヘ)の効果の複合によって、図7に示すように、透明樹脂浸透ひび割れガラス球(6a)から、透明樹脂浸透ひび割れガラス球(6b)へ、透明樹脂浸透ひび割れガラス球(6b)から、透明樹脂浸透ひび割れガラス球(6c)へと光源(5)からの光が進んでいくので、一つの光源(5)で直列に並べた複数の透明樹脂浸透ひび割れガラス球(6)のひび割れを変化に富んだ光り方で美しく輝かせることができる。
この効果により、図9に示すような透明樹脂浸透ひび割れガラス球を使った照明を構成した場合、縦、横、斜めと、さまざまな方向から透明樹脂浸透ひび割れガラス球(6)に光が照射されることになり、他の装飾的な照明に類を見ない美しさを実現できる。
【0039】
ひび割れガラス球(1)のひび割れ(3)の隙間は極めて小さいので、ひび割れ(3)の隙間の中で硬化した透明樹脂は強力な接着力を発揮し、透明樹脂浸透ひび割れガラス球(6)を無傷のガラス球に匹敵する強度にすることができる。ガラスに対して強力な接着力を持つ透明性エポキシ樹脂の働きと、接着剤は接着物間の隙間が小さいほど大きな接着力を発揮することにより、透明樹脂浸透ひび割れガラス球(6)を無傷のガラス球に匹敵する強度にすることができる。
【0040】
従来の技術(特許公開平6−12902号公報参照)に、ひび割れガラス球(1)の表面全体を樹脂などの透明材料で覆ってひび割れガラス球(1)を補強する案がある。その案では、ひび割れガラス球(1)を補強するのに、ある程度の厚さの透明樹脂で覆う必要があり、それでは、ひび割れガラス球(1)の表面の透明感や艶が失われるとともに、経年変化によって透明樹脂が黄変して見栄えが悪くなるが、本発明では、ひび割れガラス球(1)のひび割れ(3)の極めて小さい隙間の中だけで透明樹脂が強力な接着力を発揮し、無傷のガラス球に匹敵する強度が得られ、ひび割れ(3)の隙間の中の透明樹脂(2)の厚さは、ごくわずかのために、経年変化による透明樹脂の黄変の影響をほとんど受けないとともに、ひび割れガラス球(1)の表面の透明樹脂液は流下してしまうので、透明樹脂浸透ひび割れガラス球(6)では無傷のガラス球に匹敵する透明感や表面の艶を復活させることができる。
【0041】
透明樹脂(2)に、ひび割れガラス球(1)のひび割れ(3)を光学的に消し去る働きと、透明樹脂浸透ひび割れガラス球(6)を無傷のガラス球に匹敵する強度にする働きの二つの働きをさせることができる。更には、実施例の部分で説明しているように、透明樹脂浸透ひび割れガラス球(6)から流下した透明樹脂液を、透明樹脂浸透ひび割れガラス球(6)を支持体(7)に接着することに利用すれば、透明樹脂(2)に三つの働きをさせることができる。
【図面の簡単な説明】
【図1】ひび割れに透明樹脂を浸透させたひび割れガラス球(1)を拡大した断面図である。
【図2】ひび割れに透明樹脂を浸透させたひび割れガラス球(1)を更に拡大した一部分の断面図である。
【図3】ひび割れガラス球(1)を拡大した正面図である。
【図4】ひび割れガラス球(1)を二分割した破断面を拡大した正面図である。
【図5】ひび割れガラス球(1)を拡大した断面図である(図が複雑になるので断面を表す斜線を省略)。
【図6】透明樹脂浸透ひび割れガラス球(6)を拡大した断面図である(図が複雑になるので断面を表す斜線を省略)。
【図7】透明樹脂浸透ひび割れガラス球(6)を3個並べて拡大した断面図である(図が複雑になるので断面を表す斜線を省略)。
【図8】透明樹脂浸透ひび割れガラス球(6)と光源(5)を組み合わせた照明の実施例(イ)を示す側面図である。
【図9】透明樹脂浸透ひび割れガラス球(6)と光源(5)を組み合わせた照明の実施例(ロ)を示す正面図である。
【図10】透明樹脂浸透ひび割れガラス球(6)と光源(5)を組み合わせた照明の実施例(ハ)を示す断面図である。
【図11】透明樹脂浸透ひび割れガラス球(6)と光源(5)を組み合わせた照明の実施例(ニ)を示す側面図である。
【符号の説明】
1 ひび割れガラス球
2 透明樹脂
3 ひび割れ
4 光線
5 光源
6 透明樹脂浸透ひび割れガラス球
7 支持体
8 びん
9 照明器具
10 台座
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a transparent resin-permeated cracked glass sphere in which a transparent resin is infiltrated into a crack of a cracked glass sphere to adjust the optical action of the crack, and the function and transparency of a convex lens as a glass sphere are restored.
[0002]
[Prior art]
Conventionally, there has been a decorative lighting technique in which light from a light source is reflected by cracking by combining a cracked glass sphere that is finely cracked inside the glass sphere and a light source (see Japanese Patent Application Laid-Open No. 6-12902).
[0003]
[Problems to be solved by the invention]
In the conventional decorative lighting technology combining a cracked glass sphere (1) and a light source, the cracked glass sphere (1) is placed on the entire surface from the center of the glass sphere as shown in FIGS. Since it has many cracks (3) that spread radially, the light from the light source (5) is totally reflected by the cracks (3) facing the light source as shown in FIG. Thus, since the light from the light source does not reach the back side of the cracked glass sphere, the beauty of the cracked glass sphere could be appreciated only from the side where the light source is located.
[0004]
In addition, the cracked glass sphere (1) has many cracks (3) and loses its function as a convex lens that ordinary glass spheres have, so that the light from the light source is inside the cracked glass sphere. It was not possible to change the traveling direction of light.
[0005]
Also, the cracked glass sphere (1) lacks the beauty of a glass sphere because it loses the transparency and gloss of the surface of ordinary glass spheres because of the fine cracks that cover the entire surface of the sphere. Moreover, no beauty was obtained by the reflection of light on the back side of the surface of the sphere in contact with the air.
[0006]
In addition, since the cracked glass sphere (1) covers the entire surface of the sphere with fine uniform cracks, only the light from the light source is reflected uniformly by the cracks, and only a beauty with little change is obtained. There wasn't.
[0007]
Further, the cracked glass sphere (1) is finely cracked from the surface to the center of the sphere, so that there was a possibility that the cracked glass sphere could be completely broken by an impact or a sudden temperature change. .
[0008]
The product may be subjected to a large impact during transportation or use, and the lighting fixture may be subject to sudden temperature changes due to the light source, and the cracked glass bulb (1) is fragile. The disadvantage of being fragile was a major concern when composing products using cracked glass balls (1).
[0009]
The present invention, as described above, the conventional cracking the glass bulb (1) and to eliminate the drawbacks of the decorative lighting that combine light sources, decorative crack glass can widely available household to large commercial facilities The purpose is to provide a sphere .
[0010]
The transparent resin (2) is infiltrated into the crack (3) of the cracked glass sphere (1) to adjust the optical function of the crack, and the cracked glass sphere (1) is restored to its function as a convex lens and transparency. Further, the crack (3) of the cracked glass sphere (1) is firmly bonded with the transparent resin (2), so that the cracked glass sphere (1) has a strength comparable to an intact glass sphere.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, in the transparent resin permeation cracked glass sphere of the present invention, the transparent resin (2) is permeated into the crack (3) of the cracked glass sphere (1) to adjust the optical action of the crack. At the same time, the cracked glass sphere (1) restores its function as a convex lens, transparency and gloss of the surface of ordinary glass spheres, and the cracked glass sphere (1) crack (3) is made of transparent resin ( Adhering firmly in 2), the cracked glass sphere (1) has a strength comparable to an intact glass sphere.
[0012]
Also, from the experimental results, the depth at which the transparent resin liquid penetrates into the crack (3) of the cracked glass sphere (1) is not uniform, and the penetration of the transparent resin liquid is close to the surface of the cracked glass sphere (1). If there is a crack that stays in the crack, the penetration of the transparent resin liquid reaches the center of the cracked glass sphere (1). Using this phenomenon, the crack of the transparent resin penetrating cracked glass sphere (6) is loosened. To do.
[0013]
The cracked glass sphere (1) used for illumination using the transparent resin-penetrated cracked glass sphere according to the present invention heats the glass sphere made of glass to the center of the glass sphere at a high temperature of 600 to 700 degrees, and this temperature is increased. It is obtained by submerging glass spheres in water and rapidly cooling them.
[0014]
When the glass sphere heated to a high temperature is rapidly cooled in water and observed to crack, it progresses in a very short time, but the entire surface of the glass sphere cracks like a mesh, and this crack Is observed to progress to the center of the glass sphere.
[0015]
FIG. 4 is a diagram in which a cracked glass sphere (1) obtained as described above is applied with an impact force along the chisel of the blade and the split surface obtained by dividing the cracked glass sphere (1) into two parts is visually observed with a magnifying glass. It can be visually observed that each part surrounded by the crack line shown in the figure is a flat crack of a small area, so that a large number of cracks can be seen inside the glass sphere with cracks. It can be seen that small area planar cracks occur radially from the center of the sphere toward the entire surface.
[0016]
FIG. 3 is a view of the cracked glass sphere (1) viewed with a magnifying glass.
[0017]
As shown in FIG. 1, the transparent resin (2) is infiltrated into the crack (3) of the cracked glass sphere (1) to produce a transparent resin infiltrated cracked glass sphere (6).
[0018]
In FIGS. 1 and 2, for the sake of illustration, the cracked glass sphere (1) is shown as if there is a considerable gap in the crack (3), but the actual cracked glass sphere (1) The gap of the crack (3) is as close to zero as possible, and even if the crack (3) is touched with a fingertip, the gap cannot be confirmed, and the gap is so small that the gap cannot be confirmed even with a magnifier.
[0019]
Since the crack (3) gap of the cracked glass sphere (1) is extremely small, even if normal adhesive is applied to the cracked glass sphere (1), the adhesive does not enter the crack (3) gap at all. When a very low-viscosity, two-part, transparent epoxy resin liquid is applied to the surface of a cracked glass sphere (1), cracking occurs due to capillarity or temperature changes and temperature differences between the transparent resin liquid and the cracked glass sphere (1). Due to the negative pressure of the air inside, the transparent resin liquid penetrates into the cracks and cures according to the curing time that the transparent resin liquid has.
[0020]
An acrylic resin liquid can be used instead of the transparent epoxy resin liquid. Also, the two-part resin liquid used by mixing the main agent and the curing agent gradually increases the temperature after heat generation due to a chemical reaction. Since it goes down, a temperature difference arises between a transparent resin liquid and a cracked glass bulb | ball (1).
[0021]
In the method of applying the transparent resin liquid to the surface of the cracked glass sphere (1), the transparent resin liquid is applied to the cracked glass sphere (1) with a brush. A transparent resin solution is sprayed onto the cracked glass ball (1) in the manner of spray painting. There is a method in which a necessary amount of cracked glass sphere (1) and a small amount of transparent resin liquid are stirred in a container to entangle the cracked glass sphere (1) with the transparent resin liquid.
[0022]
The transparent resin liquid applied to the surface of the cracked glass sphere (1) flows down from the surface of the cracked glass sphere (1) because of its extremely low viscosity, and hardly remains on the surface of the cracked glass sphere (1). The transparent resin-penetrated cracked glass sphere (6) is in the same state as the surface of a normal glass sphere.
[0023]
Since the refractive index of the glass constituting the cracked glass sphere (1) and the refractive index of the transparent epoxy resin are close to each other, as shown in FIG. However, when the light beam (4) is irradiated with the light beam (4), the light beam (4) passes through the transparent resin (2) and is not cracked. ) Is not permeated in the crack (3), air exists, and there is a large difference between the refractive index of glass and the refractive index of air. The light is diffusely reflected at the interface between air and air.
[0024]
The depth of penetration of the transparent resin liquid into the crack (3) of the cracked glass sphere (1) can be adjusted by the viscosity of the transparent resin liquid applied to the surface of the cracked glass sphere (1) and the amount applied. It can also be adjusted by the temperature difference between the sphere (1) and the transparent resin liquid. Furthermore, it can also be adjusted by putting the cracked glass sphere (1) coated with the transparent resin liquid into a pressure vessel and pressurizing or depressurizing. .
[0025]
Since the crack (3) gap of the cracked glass sphere (1) is extremely small, the transparent epoxy resin cured in the crack (3) exhibits strong adhesion and is comparable in strength to an intact glass sphere. Transparent resin permeation cracked glass sphere (6).
[0026]
The transparent resin-penetrated cracked glass sphere (6) and the light source (5) produced by the above process are combined to provide illumination using the transparent resin-penetrated cracked glass sphere of the present invention.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described based on examples with reference to the drawings.
In the embodiment shown in FIG. 8, a transparent resin-penetrated cracked glass sphere (6) is provided on a plate-like support (7), and a light source (5) such as a light bulb or an ultra-bright LED is arranged at a position facing the surface. Then, the lighting using transparent resin penetration cracked glass sphere is constituted.
In this embodiment, instead of the transparent resin-penetrated cracked glass sphere (6), the cracked glass sphere (1) was placed on the plate-like support (7), and then from above the cracked glass sphere (1). The transparent resin liquid is applied to convert the cracked glass sphere (1) into a transparent resin-penetrated cracked glass sphere (6), and the transparent resin-penetrated cracked glass sphere (6) is removed by the transparent resin liquid flowing down from the cracked glass sphere (1). It can also be adhered to the support (7).
[0028]
In the embodiment shown in FIG. 9, a transparent resin-penetrated cracked glass sphere (6) is provided on a plate-like support (7), and an ultra-high brightness LED or the like is arranged around the array of the transparent resin-penetrated cracked glass sphere (6). The light source (5) is arranged to constitute illumination using a transparent resin-penetrated cracked glass sphere.
In this embodiment, instead of the transparent resin-penetrated cracked glass sphere (6), the cracked glass sphere (1) was placed on the plate-like support (7), and then from above the cracked glass sphere (1). The transparent resin liquid is applied to convert the cracked glass sphere (1) into a transparent resin-penetrated cracked glass sphere (6), and the transparent resin-penetrated cracked glass sphere (6) is removed by the transparent resin liquid flowing down from the cracked glass sphere (1). It can also be adhered to the support (7).
[0029]
In the embodiment shown in FIG. 10, a transparent resin-permeated cracked glass sphere (6) is bonded to the side surface of the transparent bottle (8) in a planar shape, and a spotlight is provided on the outer side of the transparent bottle (8). A lighting fixture (9) such as the above is arranged to constitute lighting using a transparent resin-penetrated cracked glass sphere.
In this embodiment, instead of the transparent resin-permeated cracked glass sphere (6), the required amount of cracked glass sphere (1) and a small amount of transparent resin liquid are stirred in a container, and the cracked glass sphere (1) is transparently resinized. After entangled the liquid, put it in a transparent bottle (8) laid sideways, the cracked glass sphere (1) to the transparent resin penetration cracked glass sphere (6), and transparent resin penetration cracked glass sphere ( The transparent resin penetration cracked glass sphere (6) can be adhered to the inner side surface of the bottle (8) by the transparent resin liquid flowing down from 6).
[0030]
In the embodiment shown in FIG. 11, a transparent resin-penetrated cracked glass sphere (6) having a large diameter is provided on a pedestal (10), and a spotlight or the like is placed at a position facing the transparent resin-penetrated cracked glass sphere (6). The lighting fixture (9) is arranged to constitute lighting using a transparent resin-penetrated cracked glass sphere.
[0031]
In addition to the embodiments described above, the transparent resin-penetrated cracked glass sphere (6) can be made into various forms by being a sphere, so lighting similar to a neon sign, electric signboard, store decoration, home appliance Various decorative lighting such as product decorations and decorative clocks can be configured.
[0032]
【The invention's effect】
Since the present invention is configured as described above, the following effects can be obtained.
[0033]
As shown in FIG. 2, the transparent resin (2) is penetrated into the crack (3) of the cracked glass sphere (1), so that the crack in the portion where the transparent resin has penetrated is optically the same as no crack. Can be in a state. Thereby, in the transparent resin permeation cracked glass sphere (6), the function as a convex lens, the transparency, and the gloss of the surface of the ordinary glass sphere can be restored.
[0034]
From the above effects, the surface of the transparent resin-penetrated cracked glass sphere (6) and the portion close to the inner surface can function as an optically normal glass sphere, and the portion near the center of the sphere is cracked glass. Can work as a sphere. That is, the transparent resin-penetrated cracked glass sphere (6) can have both the function of the cracked glass sphere (1) and the function of a normal glass sphere.
[0035]
The degree of penetration of the transparent resin (2) into the crack (3) of the cracked glass sphere (1) depends on the viscosity of the transparent resin liquid, the amount of the transparent resin liquid applied to the cracked glass sphere (1), the transparent resin liquid and the cracked glass. Since it can be variously changed by adjusting the temperature difference of the sphere (1), the pressure of the working environment infiltrating the transparent resin liquid, etc., it is possible to optically erase the crack (3) of the cracked glass sphere (1) to an arbitrary depth. The density of the cracks (3) inside the cracked glass sphere (1) can also be optically sparse to an arbitrary density.
[0036]
Although the surface of the glass sphere and the part close to the surface remain intact, it is technically difficult to cause cracks only in the part near the center inside the glass sphere, but the transparent resin permeated cracked glass sphere (6) Optically, the surface of the glass sphere and the portion close to the inner surface remain intact, and only the portion close to the center of the glass sphere can be cracked.
[0037]
As shown in FIG. 6, in the transparent resin-penetrated cracked glass sphere (6), the function as a convex lens, the transparency, and the gloss of the surface of the ordinary glass sphere are restored. The light can be changed in a complicated manner as described below.
(A) The light beam (4) from the light source (5) can be refracted at the portion that enters and exits the transparent resin-penetrated cracked glass sphere (6).
(B) The surface of the transparent resin-penetrated cracked glass sphere (6) and the inner surface of the boundary surface where the surrounding air is in contact acts as a mirror for light with an incident angle below a certain level. Reflected light from (4) and cracks (3) can be reflected in a complex manner.
(C) From the experimental results, the depth of penetration of the transparent resin liquid into the crack (3) of the cracked glass sphere (1) is not uniform, and the penetration of the transparent resin liquid is close to the surface of the cracked glass sphere (1) If there is a crack that remains in the part, there is also a crack that penetrates the transparent resin liquid to the center of the cracked glass sphere (1). At the same time, individuality can be generated in the cracks inside each transparent resin-penetrated cracked glass sphere (6).
(D) Because the cracks inside the transparent resin-penetrated cracked glass sphere (6) are sparse due to (c), part of the light beam (4) from the light source (5) is passed through the crack gap and passed. Can be made. (E) By (c), individuality is generated in the cracks inside each transparent resin-penetrated cracked glass sphere (6), and it is possible to give a variety of changes.
(F) (b) (b) (c) (d) (e) By combining the effects of (e), not only the crack on the front side of the transparent resin-penetrated cracked glass sphere (6) facing the light source (5), The light can reach the cracks on the back side of the transparent resin-penetrated cracked glass sphere (6), and the cracks of the entire transparent resin-penetrated cracked glass sphere (6) can be brilliantly brilliant with a variety of lighting methods.
[0038]
As shown in FIG. 7, a combination of the effects (a), (b), (c), (d), (e), and (f), from the transparent resin-penetrated cracked glass sphere (6a) to the transparent resin-penetrated cracked glass sphere, as shown in FIG. To (6b), the light from the light source (5) advances from the transparent resin-penetrated cracked glass sphere (6b) to the transparent resin-penetrated cracked glass sphere (6c). In addition, the cracks of the transparent resin-penetrated cracked glass spheres (6) can be brilliantly brilliant with a variety of lighting methods.
With this effect, when the illumination using a transparent resin-penetrated cracked glass sphere as shown in FIG. 9 is configured, light is irradiated to the transparent resin-penetrated cracked glass sphere (6) from various directions, vertical, horizontal, and diagonal. The result is a beauty that is unmatched by other decorative lighting.
[0039]
Since the gap between the cracks (3) of the cracked glass sphere (1) is extremely small, the transparent resin cured within the crack (3) exhibits a strong adhesive force, and the transparent resin-penetrated cracked glass sphere (6) The strength can be comparable to an intact glass bulb. The action of the transparent epoxy resin with strong adhesion to glass, and the adhesive exhibits greater adhesion as the gap between the adhesives is smaller, thereby damaging the transparent resin-penetrated cracked glass sphere (6). The strength can be comparable to glass spheres.
[0040]
In a conventional technique (see Japanese Patent Publication No. 6-12902), there is a plan to reinforce the cracked glass sphere (1) by covering the entire surface of the cracked glass sphere (1) with a transparent material such as resin. In that plan, to reinforce the cracked glass sphere (1), it is necessary to cover it with a transparent resin of a certain thickness, which will cause the transparency and gloss of the surface of the cracked glass sphere (1) to be lost. The transparent resin turns yellow due to the change and looks bad. However, in the present invention, the transparent resin exhibits a strong adhesive force only in a very small gap of the crack (3) of the cracked glass ball (1), and is intact. The strength comparable to that of glass spheres is obtained, and the thickness of the transparent resin (2) in the crack (3) gap is negligible, so it is hardly affected by the yellowing of the transparent resin due to aging. At the same time, since the transparent resin liquid on the surface of the cracked glass sphere (1) flows down, the transparent resin-permeated cracked glass sphere (6) can restore the transparency and surface gloss comparable to the intact glass sphere. .
[0041]
The function of optically erasing the crack (3) of the cracked glass sphere (1) in the transparent resin (2) and the function of making the transparent resin-penetrated cracked glass sphere (6) comparable in strength to an intact glass sphere. It can make one work. Further, as described in the Example section, the transparent resin liquid flowing down from the transparent resin-penetrated cracked glass sphere (6) is bonded to the support (7) with the transparent resin-penetrated cracked glass sphere (6). If used in particular, the transparent resin (2) can have three functions.
[Brief description of the drawings]
FIG. 1 is an enlarged cross-sectional view of a cracked glass sphere (1) in which a transparent resin is infiltrated into a crack.
FIG. 2 is a cross-sectional view of a part of a further enlarged portion of a cracked glass sphere (1) in which a transparent resin is infiltrated into the crack.
FIG. 3 is an enlarged front view of a cracked glass sphere (1).
FIG. 4 is an enlarged front view of a fractured surface obtained by dividing a cracked glass ball (1) into two parts.
FIG. 5 is an enlarged cross-sectional view of a cracked glass sphere (1) (because the figure becomes complicated, the hatched lines representing the cross-section are omitted).
FIG. 6 is an enlarged cross-sectional view of a transparent resin-penetrated cracked glass sphere (6) (the drawing is complicated, so the hatched lines indicating the cross-section are omitted).
FIG. 7 is a cross-sectional view in which three transparent resin-penetrated cracked glass spheres (6) are arranged side by side and enlarged (the cross section is omitted because the figure is complicated).
FIG. 8 is a side view showing an embodiment (A) of illumination in which a transparent resin-penetrated cracked glass sphere (6) and a light source (5) are combined.
FIG. 9 is a front view showing an embodiment (b) of illumination in which a transparent resin-penetrated cracked glass sphere (6) and a light source (5) are combined.
FIG. 10 is a cross-sectional view showing an embodiment (c) of illumination in which a transparent resin-penetrated cracked glass sphere (6) and a light source (5) are combined.
FIG. 11 is a side view showing an embodiment (d) of illumination in which a transparent resin-penetrated cracked glass sphere (6) and a light source (5) are combined.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Cracked glass sphere 2 Transparent resin 3 Crack 4 Light 5 Light source 6 Transparent resin penetration cracked glass sphere 7 Support body 8 Bottle 9 Lighting fixture
10 pedestal

Claims (1)

ガラス球の表面全体から中心へと進行した網の目状の多数のひび割れに透明樹脂を浸透させた透明樹脂浸透ひび割れガラス球であって、A transparent resin-impregnated cracked glass sphere in which a transparent resin is infiltrated into a large number of mesh-shaped cracks that progress from the entire surface of the glass sphere to the center,
ひび割れガラス球の表面に透明樹脂を塗布して、Apply a transparent resin to the surface of the cracked glass sphere,
該ひび割れガラス球のひび割れ部分に透明樹脂を浸透させた部分と透明樹脂を浸透させない部分とを形成し、Forming a portion in which the transparent resin is infiltrated into the cracked portion of the cracked glass sphere and a portion in which the transparent resin is not infiltrated,
該透明樹脂を浸透させたひび割れガラス球の表面に外部から光線を照射したときに、When light is irradiated from the outside to the surface of the cracked glass sphere infiltrated with the transparent resin,
ひび割れと空気の境界面で光が乱反射するようにしたことを特徴とする透明樹脂浸透ひび割れガラス球。A transparent resin-penetrated cracked glass sphere characterized by diffused reflection of light at the interface between the crack and air.
JP2003055338A 2003-03-03 2003-03-03 Transparent resin penetration cracked glass sphere Expired - Fee Related JP4194861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003055338A JP4194861B2 (en) 2003-03-03 2003-03-03 Transparent resin penetration cracked glass sphere

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003055338A JP4194861B2 (en) 2003-03-03 2003-03-03 Transparent resin penetration cracked glass sphere

Publications (2)

Publication Number Publication Date
JP2004265747A JP2004265747A (en) 2004-09-24
JP4194861B2 true JP4194861B2 (en) 2008-12-10

Family

ID=33119378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003055338A Expired - Fee Related JP4194861B2 (en) 2003-03-03 2003-03-03 Transparent resin penetration cracked glass sphere

Country Status (1)

Country Link
JP (1) JP4194861B2 (en)

Also Published As

Publication number Publication date
JP2004265747A (en) 2004-09-24

Similar Documents

Publication Publication Date Title
KR102671594B1 (en) Optical members and their manufacturing methods
CN109407187A (en) A kind of multilayered structure optical diffusion sheet
TW200642834A (en) Method of manufacturing composite optical body containing inorganic fibers
CN108474878A (en) Diffraction optical element and light irradiation device
WO2015170546A1 (en) Lipophilic laminate, manufacturing method therefor, and article
JP4194861B2 (en) Transparent resin penetration cracked glass sphere
CN109788830B (en) Watch glass and method for producing watch glass
TW202233403A (en) Optical member, manufacturing method for same, and light distribution element
CN114100998A (en) Method for preparing micro-nano structure on surface of substrate, substrate with micro-nano structure on surface and application of substrate
TW202121702A (en) Production method for stereoscopic-image-forming device, and stereoscopic-image-forming device
JP2006248044A (en) Ornament, clock, electronic equipment and manufacturing method of ornament
TW200907250A (en) Optical fiber, luminaire using the same, and production method therefor
JP2019533198A (en) Optical deflection device, method for manufacturing optical deflection device, and illumination device
WO2021066185A2 (en) Decorative body, decorative body manufacturing apparatus, and decorative body manufacturing method
US20130155718A1 (en) Light-transmitting decorative glass, decorative glass, and method and apparatus for manufacturing decorative glass
CN104628243B (en) A kind of manufacturing method of drawing stress on surface glass
CN207636807U (en) A kind of glass light guide plate and backlight module
KR101925350B1 (en) Method for drawing a picture on a glass and picture product using the same
JPH06118247A (en) Manufacture of edge light guide boy
US3402066A (en) Methods of making decorative articles
JP3194598U (en) Decoration and lighting equipment
JP6997841B1 (en) Decorative body, decorative body manufacturing equipment and decorative body manufacturing method
JP4464578B2 (en) Reflector for backlight
KR200348855Y1 (en) Colored etching glass with illuminating effect
TW201719209A (en) Light guide film, backlight module and display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080728

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080924

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees