JP4191625B2 - Distributed power system - Google Patents

Distributed power system Download PDF

Info

Publication number
JP4191625B2
JP4191625B2 JP2004029217A JP2004029217A JP4191625B2 JP 4191625 B2 JP4191625 B2 JP 4191625B2 JP 2004029217 A JP2004029217 A JP 2004029217A JP 2004029217 A JP2004029217 A JP 2004029217A JP 4191625 B2 JP4191625 B2 JP 4191625B2
Authority
JP
Japan
Prior art keywords
voltage
power supply
power
bus
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004029217A
Other languages
Japanese (ja)
Other versions
JP2005224009A (en
Inventor
洋一 伊東
Original Assignee
マイウェイ技研株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マイウェイ技研株式会社 filed Critical マイウェイ技研株式会社
Priority to JP2004029217A priority Critical patent/JP4191625B2/en
Publication of JP2005224009A publication Critical patent/JP2005224009A/en
Application granted granted Critical
Publication of JP4191625B2 publication Critical patent/JP4191625B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Direct Current Feeding And Distribution (AREA)

Description

本発明は、複数の分散電源ユニットを有する分散電源システムに関する。   The present invention relates to a distributed power supply system having a plurality of distributed power supply units.

従来の分散電源システムにおいて、各ユニットが直流バス電圧のみを検出し自律運転するために、図2に示すように各ユニットは直流電圧により動作モードを決めていた(例えば、特許文献1参照。)。
特開2003−339118号公報(第4−8頁、図1−18)
In the conventional distributed power supply system, in order for each unit to detect only the DC bus voltage and autonomously operate, each unit determines an operation mode based on the DC voltage as shown in FIG. 2 (see, for example, Patent Document 1). .
Japanese Unexamined Patent Publication No. 2003-339118 (page 4-8, FIG. 1-18)

ところで、上述した分散電源の制御法では、連系ユニットや電力貯蔵ユニットが複数あった場合、柔軟に対応できないという問題がある。追加される毎に、各ユニットが協調して動作するように直流電圧に対する動作モードを調整する手順を構築するという課題がある。また、異容量のユニットを接続するための手法を明らかにするという課題がある。   By the way, in the distributed power supply control method described above, there is a problem that when there are a plurality of interconnection units and power storage units, it cannot be flexibly handled. There is a problem of constructing a procedure for adjusting an operation mode for a DC voltage so that each unit operates in cooperation with each addition. There is also a problem of clarifying a method for connecting units of different capacities.

本発明は、上記問題点を解決するためのものであり、その目的は、複数の分散電源ユニットが自律的に協調運転するとともに、装置容量に依存せずに、簡単にユニットを追加することを可能にするシステムを提供することにある。   The present invention is for solving the above-described problems, and its purpose is to allow a plurality of distributed power supply units to autonomously perform cooperative operation and to easily add units without depending on the device capacity. It is to provide a system that makes it possible.

所定範囲内での電圧変動が許容された直流バスと、前記直流バスに接続され、前記直流バスとの間で電力の授受が行われるとともに、前記直流バス電圧に基づいて電力の授受の量を自律的に決める電源ユニット複数台と備える分散電源システムにおいて、電力の授受の量を自律的に決めるために、ユニットから直流バスへ入出力する電力または電流に従い、直流電圧指令値を変更する機能または直流電圧の制御性を変更させる機能をユニットに持たせることにより、容易にユニットを追加することが可能となる。   A DC bus that is allowed to vary in voltage within a predetermined range, and is connected to the DC bus, and power is exchanged with the DC bus, and the amount of power exchange is determined based on the DC bus voltage. In a distributed power supply system with multiple power supply units determined autonomously, in order to autonomously determine the amount of power exchange, the function to change the DC voltage command value according to the power or current input / output from the unit to the DC bus or By providing the unit with a function of changing the controllability of the DC voltage, it becomes possible to easily add the unit.

指令値を変更する機能は、直流電圧指令値を変更するために、直流電流のゲイン倍した値を直流電圧指令値から減算する機能と、さらに、前記ゲインが直流電圧により変化する機能により実現される。   The function of changing the command value is realized by a function of subtracting a value obtained by multiplying a DC current gain from the DC voltage command value in order to change the DC voltage command value, and a function of changing the gain according to the DC voltage. The

本発明によれば、所定範囲内での電圧変動が許容された直流バスと、前記直流バスに接続され、前記直流バスとの間で電力の授受が行われるとともに、前記直流バス電圧に基づいて電力の授受の量を自律的に決める電源ユニット複数台とを備える分散電源システムにおいて、複数の分散電源ユニットが自律的に協調運転するとともに、装置容量に依存せずに、簡単にユニットを追加することを可能にするシステムを提供することができる。   According to the present invention, a DC bus that is allowed to vary in voltage within a predetermined range, and the DC bus are connected to and receive power from the DC bus, and based on the DC bus voltage. In a distributed power supply system with multiple power supply units that autonomously determine the amount of power exchange, multiple distributed power supply units operate autonomously and add units easily without depending on the device capacity It is possible to provide a system that makes it possible.

従って、システムの拡張性、保守性が向上し分散電源システムの普及に貢献することができる。   Therefore, the expandability and maintainability of the system can be improved and it can contribute to the spread of the distributed power supply system.

図1の分散電源システム構成において、以下実施形態を説明する。   In the distributed power supply system configuration of FIG. 1, an embodiment will be described below.

1. 連系・電力貯蔵ユニットの制御法
電力貯蔵ユニットにおいて、直流電圧制御器は、直流電圧Vdcがその指令値Vdc* となるような電流指令値Ibt* を発生させる。電流制御器はバッテリの電流IbtがIbt* となるようにチョッパをPWM操作する。バッテリ充放電器は、バッテリが満充電または、放電終止となった場合、Ibt* を零にする。一方、連系ユニットにおいて、直流電圧制御器は、直流電圧Vdcがその指令値Vdc* となるような電流指令値Iac* を発生させる。電流制御器は系統電流IacがIac* となるようにコンバータをPWM操作する。
1. Control Method of Interconnection / Power Storage Unit In the power storage unit, the DC voltage controller generates a current command value Ibt * such that the DC voltage Vdc becomes the command value Vdc * . The current controller PWM-operates the chopper so that the battery current Ibt becomes Ibt * . The battery charger / discharger sets Ibt * to zero when the battery is fully charged or discharged. On the other hand, in the interconnection unit, the DC voltage controller generates a current command value Iac * such that the DC voltage Vdc becomes the command value Vdc * . The current controller performs PWM operation of the converter so that the system current Iac becomes Iac * .

電力貯蔵ユニットと連系ユニットは、上述したように直流電圧制御系を構成している。ユニットの直流出力は電圧源となり、ユニットは互いに電圧制御の誤差があると横流が生じる。これを簡単に抑制するためには、出力にインピーダンスを挿入すればよいが、損失が発生することや、コストアップになることから現実的ではない。図3(a)参照。   The power storage unit and the interconnection unit constitute a DC voltage control system as described above. The direct current output of the unit becomes a voltage source, and if there is an error in voltage control between the units, cross current occurs. In order to suppress this easily, it is sufficient to insert an impedance into the output, but this is not realistic because loss occurs and costs increase. Refer to FIG.

そこで、図3(b)のように直流電圧制御系において、ユニットの直流電流Idcを検出しゲインKを乗じて直流電圧指令値Vdc* から減算するパスを追加する。
直流電圧VdcがVdc* に追従するとすると、
Vdc=Vdc0−K・Idc
となり、K・Idcは電圧降下を表し、Kは等価的なインピーダンスとなる。したがって、実際にインピーダンスを挿入しなくても、K・Idcのパスを追加することにより横流を抑制できる。
Therefore, as shown in FIG. 3B, in the DC voltage control system, a path for detecting the DC current Idc of the unit and multiplying by the gain K is subtracted from the DC voltage command value Vdc * .
When the DC voltage Vdc follows Vdc * ,
Vdc = Vdc0−K · Idc
K · Idc represents a voltage drop, and K is an equivalent impedance. Therefore, even if no impedance is actually inserted, the cross current can be suppressed by adding the K · Idc path.

Kの設計を考える。等価インピーダンスは抵抗成分のみでいので、Kを定数とする。
直流系統電圧を345V±8V、ユニットの定格を10kWとした場合、Kは次式で決まる。
Consider the design of K. Since the equivalent impedance is only a resistance component, K is a constant.
When the DC system voltage is 345 V ± 8 V and the unit rating is 10 kW, K is determined by the following equation.

K=ΔVdc・Vdcmin/Pu=0.27(Ω) (1)
ただし、ΔVdc:電圧変動量 8V、Vdcmin:直流電圧下限値 337V、Pu:定格電力 10kW。
K = ΔVdc · Vdcmin / Pu = 0.27 (Ω) (1)
However, ΔVdc: voltage fluctuation amount 8V, Vdcmin: DC voltage lower limit value 337V, Pu: rated power 10 kW.

出力電圧Vdcと出力電流Idcの関係は図4のようになる。傾きが等価抵抗、二点差線で囲まれる面積が定格電力となる。   The relationship between the output voltage Vdc and the output current Idc is as shown in FIG. The slope is the equivalent resistance, and the area surrounded by the two-dotted line is the rated power.

異容量のユニットを接続する場合、等価抵抗Kを式¥ref{eq_k}で計算した値にすればよい。5kW定格のユニットでは、K=0.54となる。
図4において、破線は、5kWユニットの出力電圧Vdcと出力電流Idcの関係を示す。5kWのユニットと10kWのユニットを接続し、Vdc=340Vとなった場合、それぞれのユニットから流れ出す電流は
Idc10k=(345−340)/(0.27)=18.5A (図4上 点B)
Idc5k=(345−340)/(0.54)=9.25A (図4上 点A)
ただし、Idc10k:10kWのユニットから流れ出す電流、Idc5k:5kWのユニットから流れ出す電流となり、ユニット容量に比例した電流を流すことができる。
When connecting units of different capacities, the equivalent resistance K may be a value calculated by the equation \ ref {eq_k}. For a unit rated at 5 kW, K = 0.54.
In FIG. 4, the broken line indicates the relationship between the output voltage Vdc and the output current Idc of the 5 kW unit. When a unit of 5 kW and a unit of 10 kW are connected and Vdc = 340V, the current flowing out from each unit is Idc10k = (345-340) / (0.27) = 18.5A (point B in FIG. 4)
Idc5k = (345-340) / (0.54) = 9.25A (point A on FIG. 4)
However, the current flows out from the unit of Idc10k: 10kW, and the current flows out of the unit of Idc5k: 5kW, so that a current proportional to the unit capacity can be passed.

2.発電ユニットの制御
太陽光発電ユニットにおいて、MPPT制御器は、発電電力が最大となるような電流指令Ipv* を生成する。太陽光パネルの電流がこの指令値に追従するように電流制御器は、昇圧チョッパをPWM操作する。発電抑制器は、直流電圧が上昇したとき、Ipv* を適正な値にリミットする。また、風力発電ユニットにおいては、、MPPT制御器は発電電力が最大となるような回転速度指令値ω* を生成する。速度制御器は風車の回転速度ωがω* となるようなトルク分電流指令値Iwgq* を発生する。電流制御器は、Iwgq* がIwgqとなるようにインバータをPWM操作する。太陽光発電ユニット同様、発電抑制器は、直流電圧が上昇したとき、Iwgq* を適正な値にリミットする。
2. Control of Power Generation Unit In the solar power generation unit, the MPPT controller generates a current command Ipv * that maximizes the generated power. The current controller performs PWM operation on the step-up chopper so that the current of the solar panel follows this command value. The power generation suppressor limits Ipv * to an appropriate value when the DC voltage increases. In the wind power generation unit, the MPPT controller generates a rotational speed command value ω * that maximizes the generated power. The speed controller generates a torque current command value Iwgq * such that the rotational speed ω of the windmill becomes ω * . The current controller performs PWM operation on the inverter so that Iwgq * becomes Iwgq. Like the solar power generation unit, the power generation suppressor limits Iwgq * to an appropriate value when the DC voltage increases.

太陽光、風力発電ユニットのような発電ユニットは、図5(a)のように直流系統から見た時、電流源として見えるように制御をする。すなわち、MPPT制御器から与えられる指令値の電流を出力するように電流制御を行う。直流電圧の制御は行わない。電流源として直流系統に接続されるので、発電ユニットと他のユニット間での横流は流れない。直流系統電圧は、直流電圧を制御しているユニットにより決まる。   A power generation unit such as a solar or wind power generation unit is controlled so that it can be seen as a current source when viewed from the DC system as shown in FIG. That is, current control is performed so as to output a current of a command value given from the MPPT controller. DC voltage is not controlled. Since it is connected to the DC system as a current source, no cross current flows between the power generation unit and other units. The DC system voltage is determined by the unit that controls the DC voltage.

たとえば、発電ユニット1台と、連系ユニット1台のみが直流系統に接続されているときの直流系統電圧を考える。図5(a)は等価回路となる。発電ユニットから10Aの電流を出力している場合、連系ユニットの等価抵抗0.27Ωとすれば、直流系統電圧Vdcは、Vdc=345+0.27×10=347.7$Vとなる。   For example, consider the DC system voltage when only one power generation unit and one interconnection unit are connected to the DC system. FIG. 5A shows an equivalent circuit. When a current of 10 A is output from the power generation unit, the DC system voltage Vdc is Vdc = 345 + 0.27 × 10 = 347.7 $ V if the equivalent resistance of the interconnection unit is 0.27Ω.

3.連系ユニットと電力貯蔵ユニットの自律協調制御
電力貯蔵ユニットがある分散電源の場合、発電電力が負荷電力に対し余剰の場合その電力を貯蔵ユニットに蓄え、発電電力が不足した場合、貯蔵ユニットより放出したい。
連系ユニットを介しての交流系統からの電力のやり取りは極力ない方が良い。しかし、
1.節で述べた制御法では、連系ユニットと電力貯蔵ユニットとが均等に電力を分担してしまう。
3. Autonomous coordinated control of interconnection unit and power storage unit In the case of a distributed power source with a power storage unit, if the generated power is surplus with respect to the load power, that power is stored in the storage unit, and if the generated power is insufficient, it is released from the storage unit Want to.
It is better not to exchange power from the AC system via the interconnection unit as much as possible. But,
1. In the control method described in the section, the interconnection unit and the power storage unit share the power equally.

そこで、図6のように連系ユニットと電力貯蔵ユニットの等価抵抗特性を直流電圧の値により可変にする。この図において、345V±6Vの範囲では電力貯蔵ユニットの等価抵抗が連系ユニットの等価抵抗より非常に小さく、±6Vを超えると電力貯蔵ユニットの等価抵抗が連系ユニットの等価抵抗より大きくなる。たとえば、発電電力が16A、直流系統電圧が349Vのとき、電力貯蔵ユニットに15A(点a1)、連系インバータに1A(点a2)の分担で流れ、電力貯蔵を優先的に行う。発電電力が48A、直流系統電圧が352.5Vの場合(電力貯蔵ユニットの定格を超えた場合)、電力貯蔵ユニットに27A(点b1)、連系インバータに21A(点b2)の分担で流れる。   Therefore, as shown in FIG. 6, the equivalent resistance characteristics of the interconnection unit and the power storage unit are made variable according to the value of the DC voltage. In this figure, in the range of 345V ± 6V, the equivalent resistance of the power storage unit is much smaller than the equivalent resistance of the interconnection unit, and when it exceeds ± 6V, the equivalent resistance of the power storage unit becomes larger than the equivalent resistance of the interconnection unit. For example, when the generated power is 16A and the DC system voltage is 349V, the power storage unit 15A (point a1) and the interconnection inverter 1A (point a2) share, and power storage is preferentially performed. When the generated power is 48 A and the DC system voltage is 352.5 V (when the rating of the power storage unit is exceeded), the power storage unit 27A (point b1) and the interconnection inverter 21A (point b2) are shared.

連系ユニットの等価抵抗が小さくなり、電力貯蔵ユニットが吸収できない電力は連系ユニットが吸収し、交流系統へ回生する。   The equivalent resistance of the interconnection unit is reduced, and power that cannot be absorbed by the power storage unit is absorbed by the interconnection unit and regenerated to the AC system.

直流バスに接続された分散電源システムを示す図である。It is a figure which shows the distributed power supply system connected to the direct current bus. 従来方式の直流電圧による制御動作モード切り換えを示す図である。It is a figure which shows control operation mode switching by the direct current voltage of a conventional system. 連系/電力貯蔵ユニットの直流電圧制御系を示す図である。It is a figure which shows the DC voltage control system of a connection / power storage unit. 直流電圧−直流出力電流との関係を示す図である。It is a figure which shows the relationship between DC voltage-DC output current. 発電ユニットの直流出力制御法を示す図である。It is a figure which shows the direct current | flow output control method of an electric power generation unit. 連系ユニットと電力貯蔵ユニットとの電力分担を示す図である。It is a figure which shows the electric power sharing of a connection unit and an electric power storage unit.

Claims (1)

所定範囲内での電圧変動が許容された直流バスと、
前記直流バスに接続され、前記直流バスとの間で電力の授受が行われるとともに、前記直流バス電圧に基づいて電力の授受の量を自律的に決める電源ユニット複数台と、
を備える分散電源システムにおいて、
前記電源ユニットは、電流の入出力が行われる電源が接続された電圧源として動作し、前記直流バスの接続端の電圧が電圧指令値となるように電流指令値を設定する直流電圧制御器と、前記電源との間で入出力される電流が前記電流指令値となるように制御する電流制御器とを備え、
前記直流電圧制御器は、前記直流バスとの間で入出力される電流を検出し、この検出した電流値に所定のゲインを乗じた値を前記電圧指令値から減じることにより前記電圧指令値の補正を行い、
前記電源ユニット複数台の中には第1および第2の電源ユニットが含まれており、前記直流バスの電圧が所定範囲に含まれている場合には前記第1の電源ユニットに対応する前記ゲインの方が前記第2の電源ユニットに対応する前記ゲインよりも小さな値に、前記直流バスの電圧が前記所定範囲よりも高いあるいは低い場合には前記第1の電源ユニットに対応する前記ゲインの方が前記第2の電源ユニットに対応する前記ゲインよりも大きな値に設定され
前記第1の電源ユニットは、前記電源としてバッテリが接続された電力貯蔵ユニットでり、
前記第2の電源ユニットは、前記電源として交流系統が接続された連系ユニットであることを特徴とする分散電源システム。
A DC bus that is allowed to vary in voltage within a predetermined range; and
A plurality of power supply units connected to the DC bus, wherein power is exchanged with the DC bus, and the amount of power exchange autonomously determined based on the DC bus voltage;
In a distributed power system comprising:
The power supply unit operates as a voltage source connected to a power source that inputs and outputs current, and a DC voltage controller that sets a current command value so that a voltage at a connection end of the DC bus becomes a voltage command value. And a current controller for controlling the current input / output to / from the power source to be the current command value,
The DC voltage controller detects a current input / output to / from the DC bus, and subtracts a value obtained by multiplying the detected current value by a predetermined gain from the voltage command value. Make corrections
The plurality of power supply units include first and second power supply units, and the gain corresponding to the first power supply unit when the voltage of the DC bus is included in a predetermined range. When the voltage of the DC bus is higher or lower than the predetermined range, the gain corresponding to the first power supply unit is smaller than the gain corresponding to the second power supply unit. Is set to a value larger than the gain corresponding to the second power supply unit ,
The first power supply unit is a power storage unit to which a battery is connected as the power supply,
The second power supply unit is distributed power supply system, characterized in interconnection unit der Rukoto the AC system is connected as the power source.
JP2004029217A 2004-02-05 2004-02-05 Distributed power system Expired - Lifetime JP4191625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004029217A JP4191625B2 (en) 2004-02-05 2004-02-05 Distributed power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004029217A JP4191625B2 (en) 2004-02-05 2004-02-05 Distributed power system

Publications (2)

Publication Number Publication Date
JP2005224009A JP2005224009A (en) 2005-08-18
JP4191625B2 true JP4191625B2 (en) 2008-12-03

Family

ID=34999219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004029217A Expired - Lifetime JP4191625B2 (en) 2004-02-05 2004-02-05 Distributed power system

Country Status (1)

Country Link
JP (1) JP4191625B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11228247B2 (en) 2017-11-24 2022-01-18 Mitsubishi Electric Corporation Parallel power supply device

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005047686A1 (en) * 2005-09-23 2007-07-12 Siemens Ag Device for redundant power supply of at least one load
GB0816721D0 (en) 2008-09-13 2008-10-22 Daniel Simon R Systems,devices and methods for electricity provision,usage monitoring,analysis and enabling improvements in efficiency
US8008808B2 (en) * 2009-01-16 2011-08-30 Zbb Energy Corporation Method and apparatus for controlling a hybrid power system
JP4770954B2 (en) 2009-03-16 2011-09-14 Tdk株式会社 Multiple power supply integration device, multiple power supply integration system, and multiple power supply integration program
EP2448086A4 (en) * 2009-06-25 2015-09-16 Panasonic Ip Man Co Ltd Power supply apparatus
CN102460337B (en) * 2009-06-25 2014-01-08 松下电工株式会社 Electric-power supplying device
KR101119128B1 (en) * 2010-01-22 2012-03-20 동산엔지니어링 주식회사 Power supply apparatus for light rail transit using utility interactive photovoltaic generation
JP5028517B2 (en) * 2010-10-26 2012-09-19 シャープ株式会社 DC power supply system
JP4932026B1 (en) * 2010-11-12 2012-05-16 シャープ株式会社 DC power supply system
WO2012162570A1 (en) * 2011-05-24 2012-11-29 Cameron D Kevin System and method for integrating and managing demand/response between alternative energy sources, grid power, and loads
JP6024973B2 (en) * 2012-12-28 2016-11-16 オムロン株式会社 Power control apparatus, power control method, program, and energy management system
JP6273708B2 (en) * 2013-01-24 2018-02-07 日本電気株式会社 Electric power network system, electric power router and its management device, operation method and operation program
DE112016001053T5 (en) 2015-04-22 2018-02-15 Murata Manufacturing Co., Ltd. Energy Management System
EP3316439B1 (en) 2015-06-24 2020-07-29 Murata Manufacturing Co., Ltd. Energy management system
WO2017199462A1 (en) * 2016-05-18 2017-11-23 三菱電機株式会社 Current/voltage control system
JP6591064B2 (en) 2016-06-02 2019-10-16 三菱電機株式会社 Power conversion system
US10958068B2 (en) 2017-01-19 2021-03-23 Mitsubishi Electric Corporation DC transmission system and DC/DC converter used in the same
EP3716435A4 (en) * 2017-11-21 2021-04-07 Riken Direct-current bus control system
US11594883B2 (en) 2018-01-23 2023-02-28 Tdk Corporation Direct current power supplying system
JP6458891B1 (en) * 2018-02-19 2019-01-30 サンケン電気株式会社 Power storage system and power storage device
JP7203325B2 (en) * 2019-05-20 2023-01-13 パナソニックIpマネジメント株式会社 power system
JP7291592B2 (en) * 2019-10-01 2023-06-15 日鉄テックスエンジ株式会社 Converter device and its output control method
JP6813713B1 (en) * 2019-11-05 2021-01-13 三菱電機株式会社 Power receiving and distribution system
JP7417088B2 (en) * 2020-03-23 2024-01-18 日新電機株式会社 Control device and output control device
JP2021197766A (en) * 2020-06-10 2021-12-27 古河電気工業株式会社 Power network

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11228247B2 (en) 2017-11-24 2022-01-18 Mitsubishi Electric Corporation Parallel power supply device

Also Published As

Publication number Publication date
JP2005224009A (en) 2005-08-18

Similar Documents

Publication Publication Date Title
JP4191625B2 (en) Distributed power system
Tahri et al. Management of fuel cell power and supercapacitor state-of-charge for electric vehicles
Karimi et al. Decentralized method for load sharing and power management in a PV/battery hybrid source islanded microgrid
CN103081336B (en) AC motor driver apparatus
Bash et al. A medium voltage DC testbed for ship power system research
JP5381026B2 (en) Control circuit for composite power supply
JP2007521583A (en) Alternative energy system control method and apparatus
JP6030755B2 (en) DC / DC power converter control system for power supply protection
JP2003339118A (en) Distributed power supply system
CN103262377B (en) Solar power system and electric power system
JP6475002B2 (en) Distributed power supply system with storage battery
US20140167709A1 (en) Method for controlling a cycloconverter, electronic control device therefor, cycloconverter, and computer program
EP2901544A1 (en) Droop compensation using current feedback
US10449917B2 (en) On-board vehicle electrical system having a converter and high-load consumer
JP4805303B2 (en) DC / DC converter device, electric vehicle, and control method of DC / DC converter
JP6162678B2 (en) Dual power load drive fuel cell system and fuel cell vehicle
CN112787510A (en) Operation mode optimization of an electric propulsion system with a reduced size DC-DC converter
JP6232912B2 (en) Power conditioner for photovoltaic power generation
US10122180B2 (en) Bus conditioner for an aircraft power system
JP2021065008A (en) Self-supporting power supply system, power supply device, and control method of self-supporting power supply system
WO2012063300A1 (en) Fuel cell output control device
JP2007267582A (en) Step-up/step-down chopper device and driving method therefor
JP2018170931A (en) Power conversion apparatus and power conversion system
JP2018032580A (en) Fuel cell system
JP6975719B2 (en) Fuel cell power plant with active and reactive modes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080514

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080918

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4191625

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term