JP4190673B2 - Aluminum-based alloy sheet material excellent in strength and formability and method for producing the same - Google Patents

Aluminum-based alloy sheet material excellent in strength and formability and method for producing the same Download PDF

Info

Publication number
JP4190673B2
JP4190673B2 JP26859999A JP26859999A JP4190673B2 JP 4190673 B2 JP4190673 B2 JP 4190673B2 JP 26859999 A JP26859999 A JP 26859999A JP 26859999 A JP26859999 A JP 26859999A JP 4190673 B2 JP4190673 B2 JP 4190673B2
Authority
JP
Japan
Prior art keywords
less
exceeding
aluminum
formability
based alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26859999A
Other languages
Japanese (ja)
Other versions
JP2000169928A (en
Inventor
昭男 新倉
洋一郎 戸次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Nippon Light Metal Co Ltd
Furukawa Sky Aluminum Corp
Sumitomo Light Metal Industries Ltd
Original Assignee
Kobe Steel Ltd
Nippon Light Metal Co Ltd
Furukawa Sky Aluminum Corp
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Nippon Light Metal Co Ltd, Furukawa Sky Aluminum Corp, Sumitomo Light Metal Industries Ltd filed Critical Kobe Steel Ltd
Priority to JP26859999A priority Critical patent/JP4190673B2/en
Publication of JP2000169928A publication Critical patent/JP2000169928A/en
Application granted granted Critical
Publication of JP4190673B2 publication Critical patent/JP4190673B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は自動車部品、電気製品部品等に使用される成形加工用アルミニウム板材に関し、特に強度と成形性に優れたアルミニウム基合金板材とその製造方法に関するものである。
【0002】
【従来の技術】
ー般に自動車部品、電気製品部品等のうち、複雑な形状のものには延性の優れた3003合金(Al-0.15wt%Cu-1.1wt%Mn )、5052合金(Al-2.6wt%Mg-0.21wt%Cr )、5182合金(Al-4.5wt%Mg-0.35wt%Mn )等の軟質材(O材)が使用される場合が多いが、形状が単純で、強度が必要とされるものに対しては、同じく5052合金、5182合金等の半硬質あるいは、硬質材(H14 〜18、H34 〜38)が使用されている。また形状が複雑でかつ強度が必要な製品に対しては上記の軟質材の板厚を増大させて対応している。
【0003】
【発明が解決しようとする課題】
しかし近年は、自動車部品や電気製品部品の小型・軽量化が望まれており、材料の薄肉化が必要となってきた。それに伴い材料の強度と成形性の両立が重要な課題となってきたが、前述のように強度増大を目的に硬質材を使用すると延性が低く、高い成形性は望めなかった。本発明はこの課題を解決するために強度と成形性を両立させたアルミニウム基合金板材を提供するものである。
【0004】
【課題を解決するための手段】
本発明は上記課題を解決するため種々検討した結果得られたもので、本発明のうち第1の発明のアルミニウム基合金板材は、必須元素としてMg2.0wt%を超え7.0wt%未満、Fe0.1wt%を超え2.0wt%未満、Mn0.05wt%を超え1.0wt%未満を含有し、Cr0.05wt%を超え0.5wt%未満、Zr0.05wt%を超え0.2wt%未満のうち 1 種または2種を含み、残部Alと不可避的不純物からなり、最終の再結晶粒度が5μm以下で、かつ加工硬化指数(n値)が0.25以上であることを特徴とするものである。
【0005】
また、本発明のうち第2の発明のアルミニウム基合金板材の製造方法は、必須元素としてMg2.0wt%を超え7.0wt%未満、Fe0.1wt%を超え2.0wt%未満、Mn0.05wt%を超え1.0wt%未満を含有し、Cr0.05wt%を超え0.5wt%未満、Zr0.05wt%を超え0.2wt%未満のうち 1 種または2種を含み、残部Alと不可避的不純物からなるアルミニウム基合金鋳塊に対して均質化処理、熱間圧延、冷間圧延、焼鈍を施す製造工程において、Fe添加量をF(wt%)、熱間圧延終了温度をT(℃)、熱間圧延終了板厚をt1(mm)、冷間圧延終了板厚をt2(mm)とした時、条件式
t2<300×t1/{T×(16−2×F)}
を満足する冷間圧延をおこない、その後20℃/h以上の昇温速度で250℃〜350℃の温度範囲まで加熱し、その温度範囲で10秒〜3時間保持する焼鈍をおこなうことを特徴とするものである。
【0006】
上記本発明において組成・再結晶粒度、加工硬化指数を規定した理由を以下に示す。
【0007】
Mgは固溶硬化によって強度を増大させるとともに、冷間圧延時の回復を抑制し、最終の再結晶粒度を微細にするために欠かせない元素である。その添加量が2.0wt%未満では固溶硬化が充分でなく、さらに冷延時の回復抑制効果が不足し、再結晶粒度の微細化が困難であるため、最終製品の強度が不足してしまう。一方添加量が7.0wt%を超える場合は鋳造、熱間圧延が困難となり、冷間圧延でのエッジクラックも増大するため、工業的な製造に適さない。
したがってMgの添加量を2.0wt%を超え7.0wt%未満と規定する。
【0008】
Fe、Mn、Cr、Zrはいずれも再結晶粒微細化に有効な元素であり、1種または2種以上を選択的に添加する。
【0009】
このうちFeは比較的粗大な晶出物を形成し、焼純時に再結晶の核サイトとして働くため、再結晶粒の微細化に効果があるが、その添加量が0.1wt%以下の場合は充分な再結晶微細化効果が得られず、2.0wt%以上になると破断の起点となるため成形性は逆に低下する。
したがってFeの添加量は0.1wt%を超え、2.0wt%未満と規定する。
【0010】
Mnは、微細なAl−Mn系析出物を形成することにより、焼鈍時の再結晶粒の成長を抑制する効果があり、結果的には再結晶粒微細化に寄与するが、その添加量が0.05wt%以下の場合は充分な再結晶粒成長抑制効果が得られず、1.0wt%以上となると析出物自体の影響のため成形性が低下してしまう。
したがってMnの添加量は0.05wt%を超え、1.0wt%未満と規定する。
【0011】
Crは微細なAl−Cr系析出物を形成することにより、焼鈍特の再結晶粒の成長を抑制する効果があり、結果的に再結晶粒微細化に寄与するが、その添加量が0.05wt%以下の場合は充分な再結晶粒成長抑制効果が得られず、0.5wt%以上添加してもその効果が飽和するだけでなく、析出物自体によって成形性が低下してしまう。
したがってCrの添加量は0.05wt%を超え、0.5wt%未満と規定する。
【0012】
Zrは微細なAl−Zr系析出物を形成することにより、焼鈍時の再結晶粒の成長を抑制する効果があり、結果的に再結晶粒微細化に寄与するが、その添加量が0.05wt%以下の場合は充分な再結晶粒成長抑制効果が得られず、0.2wt%以上添加すると鋳造時に粗大な晶出物を形成し、成形性を低下させてしまう。したがってZrの添加量は0.05wt%を超え、0.2wt%未満と規定する。
【0013】
また最終の結晶粒度を微細化すると強度が増大することが知られているが、再結晶粒微細化による強度増大は、調質(加工硬化)による強度増大と異なり、延性の低下を抑制できることが、本発明で確認できた。そこで、種々の検討を行った結果、従来のAl−Mg系合金の通常の再結晶粒度である20〜50μm程度から5μm以下に微細化することにより、従来得られなかった強度と延性の両立が可能であることを見出した。さらにこの再結晶粒微細化において、高度な剪断ひずみ付加加工によって微細粒が得られる例が報告されているが、O材調質に匹敵する延性は得られていない。これは転位密度が大きく、加工硬化性が小さいことに起因すると考えられる。したがって、本発明の目的である強度と成形性を両立させるためには微細な再結晶粒度と高い加工硬化性の両立が必須であるといえる。
【0014】
この加工硬化性の指標として加工硬化指数(n値)が使用されているが、本発明では0.25以上のn値(5、10%の2点から計算)があれば、良好な成形性が確保される事を見出した。以上のことにより最終の再結晶粒度は5μm以下で、かつn値は0.25以上と規定した。これは後述する製法による不連続再結晶プロセスによって得られる。
【0015】
次に本発明の製造方法について説明する。
本発明では前述の組成を有するアルミニウム基合金に鋳造、均質化処理、熱間圧延、冷間圧延、焼鈍を施すが、以下に各工程について説明する。
【0016】
鋳造は一般的なDC鋳造をおこなうが、双ロールキャスター等の連続鋳造圧延機を使用してもかまわない。その際はFe系晶出物がより微細に分散されるため、通常のDC鋳造法よりもより微細粒が得られやすい。
【0017】
均質化処理はMgの偏析緩和に加えてMn,Cr,Zrの微細析出を促進させる効果がある。条件的には450℃〜550℃の範囲で1〜24h実施することが望ましい。
【0018】
熱間圧延は常法で実施すれば良いが、終了温度と板厚は最終の板厚までの冷間圧延時の加工度に影響を与える。即ち、同ーの最終板厚の場合熱間圧延終了板厚が厚いほど加工度が高く、また温度が低いほど熱間圧延時に導入されたひずみ(転位密度)が大きいため、実質的な加工度は高くなる。最終板での微細な再結晶を得るためには、高い転位密度による高密度の再結晶核発生が必要なため、熱間圧延終了板厚は大きく、温度は低い方が望ましい。また、再結晶核発生密度を増大させるには前記のようにFe系晶出物密度の増大も有効である。
【0019】
これらの関係について鋭意検討をおこない、ある一定の条件を満たす場合、微細な再結晶粒が得られる事を見出した。
その条件が、Fe添加量をF(wt%)、熱間圧延終了温度をT(℃)、熱間圧延終了板厚をt1(mm)、冷間圧延終了後の板厚をt2(mm)とした時、
t2<300 ×t1/{T×(16−2×F 2 )}
の条件式を満たす冷間圧延を行う事である。そしてこの条件が満たされない場合5μm以下の微細結晶粒を得るための充分な再結晶核発生が得られない。
【0020】
次に焼鈍の昇温速度が遅いと、昇温時に回復が生じ、転位密度が低下するため、微細再結晶粒が得られ難くなる。従って本発明の場合、回復を抑制するMgを添加してあるため、箱形焼鈍炉のような比較的昇温速度の遅い炉でも20℃/h以上の昇温速度があれば微細粒が得られるが、連続焼鈍炉(CAL)による高速昇温がより望ましい。
【0021】
また上記の昇温後は250℃〜350℃の比較的低温で10秒から3時間の範囲で保持することが必要である。この範囲内で微細な再結晶が得られる条件が存在するが、より低温、短時間では再結晶が完了せず、より高温では粒成長により微細再結晶が得られない。また3時間以上の保持は生産性を悪化させるため工業的な生産においては適さない。
【0022】
以上の製造法によって得られたアルミニウム基合金板材は5μm以下の再結晶粒度でかつ0.25以上のn値を有しており、強度と成形性を両立することができた。
【0023】
【実施例】
表1に示す組成を有するアルミニウム基合金を用いて、DC鋳造により厚さ100mmの鋳塊を作製し、500℃、10時間の均質化処理を行った。これらの鋳塊をそれぞれ表2に示す製造方法で板厚0.4mmの薄板とし、機械的特性、再結晶粒度を測定し、成形性の評価を行った。結果を表3に示す。
再結晶粒度は表面をバフ研磨後、陽極酸化して偏光顕微鏡で観察し、400倍の写真から切断法で求めた。
機械的特性はJIS−5号TPを圧延方向に平行に切り出し、インストロン型引張り試験機で測定した。
成形性はφ40、肩R4.5の円筒パンチとφ41、R4.5のダイスを用い、φ84のブランクを絞り、その際の破断高さで評価した。この際しわ押え力は9.8KN、パンチ速度は2mm/sec.、潤滑は2cSt /40℃の低粘度防錆油を使用した。
【0024】
【表1】

Figure 0004190673
【0025】
【表2】
Figure 0004190673
【0026】
【表3】
Figure 0004190673
【0027】
この結果より本発明のアルミニウム合金板材は比較例のアルミニウム基合金板材と比較して、高い強度と共に良好な成形性も得られている事が判る。
【0028】
【発明の効果】
このように本発明によれば、微細な再結晶粒による高い強度と優れた成形性の両立がなされ、薄肉・軽量化を求められている自動車部品や電気機器部品等の用途に最適なアルミニウム基合金が得られるものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aluminum plate material for forming used for automobile parts, electrical product parts, and the like, and more particularly to an aluminum-based alloy plate material excellent in strength and formability and a method for producing the same.
[0002]
[Prior art]
-Generally, automotive parts, electrical product parts, etc. have complex shapes such as 3003 alloy (Al-0.15wt% Cu-1.1wt% Mn) and 5052 alloy (Al-2.6wt% Mg-). 0.21wt% Cr), 5182 alloy (Al-4.5wt% Mg-0.35wt% Mn) and other soft materials (O materials) are often used, but the shape is simple and strength is required Similarly, semi-hard or hard materials (H14 to 18, H34 to 38) such as 5052 alloy and 5182 alloy are used. In addition, products having a complicated shape and requiring strength are dealt with by increasing the thickness of the soft material.
[0003]
[Problems to be solved by the invention]
However, in recent years, it has been desired to reduce the size and weight of automobile parts and electrical product parts, and it has become necessary to reduce the thickness of materials. Along with this, compatibility between the strength of the material and formability has become an important issue. However, as described above, when a hard material is used for the purpose of increasing the strength, the ductility is low and high formability cannot be expected. In order to solve this problem, the present invention provides an aluminum-based alloy plate material having both strength and formability.
[0004]
[Means for Solving the Problems]
The present invention was obtained as a result of various studies to solve the above-mentioned problems. Among the present invention, the aluminum-based alloy plate material of the first invention is Mg more than 2.0 wt% as an essential element, less than 7.0 wt% , Fe0 0.1 wt% and less than 2.0 wt%, Mn 0.05 wt% and less than 1.0 wt%, Cr 0.05 wt% and less than 0.5 wt%, Zr 0.05 wt% and less than 0.2 wt% out it comprises one or two, and the balance Al and inevitable impurities, the final recrystallization grain size of at 5μm or less, and those work hardening coefficient (n value) is equal to or greater than or equal to 0.25 is there.
[0005]
In the present invention, the method for producing an aluminum-based alloy sheet according to the second invention includes Mg as an essential element exceeding 2.0 wt% and less than 7.0 wt%, exceeding Fe 0.1 wt% and less than 2.0 wt%, and Mn 0.05 wt%. %, Less than 1.0 wt%, Cr more than 0.05 wt% and less than 0.5 wt%, Zr more than 0.05 wt% and less than 0.2 wt%, one or two of them , the balance is inevitable with Al In the manufacturing process of homogenizing, hot rolling, cold rolling, and annealing on an aluminum-based alloy ingot made of impurities, the Fe addition amount is F (wt%), and the hot rolling end temperature is T (° C.). Conditional expression t2 <300 × t1 / {T × (16-2 × F 2 )} where t1 (mm) is the thickness of the hot rolled sheet and t2 (mm) is the thickness of the cold rolled sheet.
It is characterized by performing cold rolling that satisfies the following conditions, and then heating to a temperature range of 250 ° C. to 350 ° C. at a temperature rising rate of 20 ° C./h or more, and performing annealing for 10 seconds to 3 hours in that temperature range. To do.
[0006]
The reason why the composition / recrystallized grain size and work hardening index are defined in the present invention will be described below.
[0007]
Mg is an indispensable element for increasing the strength by solid solution hardening, suppressing recovery during cold rolling, and making the final recrystallized grain size fine. If the addition amount is less than 2.0 wt%, the solid solution hardening is not sufficient, and further, the effect of suppressing the recovery during cold rolling is insufficient, and it is difficult to refine the recrystallized grain size, so the strength of the final product is insufficient. . On the other hand, when the addition amount exceeds 7.0 wt%, casting and hot rolling become difficult and edge cracks in cold rolling increase, which is not suitable for industrial production.
Therefore, the addition amount of Mg is specified to be more than 2.0 wt% and less than 7.0 wt%.
[0008]
Fe, Mn, Cr, and Zr are all effective elements for recrystallized grain refinement, and one or more of them are selectively added.
[0009]
Of these, Fe forms a relatively coarse crystallized product and acts as a recrystallization nucleus site during tempering, so it is effective in refining recrystallized grains. However, when the amount added is 0.1 wt% or less However, the sufficient recrystallization refinement effect cannot be obtained, and if it exceeds 2.0 wt%, the starting point of breakage occurs, so that the moldability deteriorates conversely.
Therefore, the addition amount of Fe is specified to be more than 0.1 wt% and less than 2.0 wt%.
[0010]
Mn has the effect of suppressing the growth of recrystallized grains during annealing by forming fine Al-Mn-based precipitates, and as a result, contributes to recrystallized grain refinement. If it is 0.05 wt% or less, a sufficient recrystallized grain growth suppressing effect cannot be obtained, and if it is 1.0 wt% or more, the formability deteriorates due to the influence of the precipitate itself.
Therefore, the amount of Mn added is defined to be more than 0.05 wt% and less than 1.0 wt%.
[0011]
Cr has the effect of suppressing the growth of recrystallized grains specially annealed by forming fine Al—Cr-based precipitates, and consequently contributes to recrystallized grain refinement. If the amount is less than 05 wt%, a sufficient recrystallized grain growth inhibitory effect cannot be obtained, and even if added in an amount of 0.5 wt% or more, the effect is not only saturated, but the formability is lowered by the precipitate itself.
Therefore, the addition amount of Cr is specified to be more than 0.05 wt% and less than 0.5 wt%.
[0012]
Zr has the effect of suppressing the growth of recrystallized grains during annealing by forming fine Al—Zr-based precipitates. As a result, Zr contributes to recrystallized grain refinement. If the amount is less than 05 wt%, a sufficient recrystallized grain growth inhibitory effect cannot be obtained, and if added in an amount of 0.2 wt% or more, a coarse crystallized product is formed at the time of casting and the moldability is lowered. Therefore, the amount of Zr added is specified to be more than 0.05 wt% and less than 0.2 wt%.
[0013]
In addition, it is known that when the final crystal grain size is refined, the strength increases. However, the strength increase by recrystallized grain refinement is different from the strength increase by tempering (work hardening) and can suppress the decrease in ductility. It was confirmed by the present invention. Therefore, as a result of various investigations, the conventional recrystallization grain size of the conventional Al—Mg-based alloy is reduced from about 20 to 50 μm to 5 μm or less, so that both strength and ductility that have not been obtained conventionally can be achieved. I found it possible. Furthermore, in this refinement of recrystallized grains, examples have been reported in which fine grains can be obtained by advanced shear strain addition processing, but ductility comparable to O material tempering has not been obtained. This is considered due to the fact that the dislocation density is large and the work curability is small. Therefore, it can be said that it is essential to satisfy both the fine recrystallized grain size and the high work curability in order to achieve both the strength and formability, which are the objects of the present invention.
[0014]
A work hardening index (n value) is used as an index of this work hardening property. In the present invention, if there is an n value of 0.25 or more (calculated from two points of 5 and 10%), good formability is obtained. It was found that is secured. Based on the above, the final recrystallization grain size was defined as 5 μm or less and the n value was defined as 0.25 or more. This is obtained by a discontinuous recrystallization process by a manufacturing method described later.
[0015]
Next, the manufacturing method of this invention is demonstrated.
In the present invention, the aluminum-based alloy having the above composition is cast, homogenized, hot-rolled, cold-rolled, and annealed. Each step will be described below.
[0016]
Casting is performed by general DC casting, but a continuous casting rolling machine such as a twin roll caster may be used. In that case, since the Fe-based crystallized product is more finely dispersed, finer particles can be obtained more easily than in a normal DC casting method.
[0017]
The homogenization treatment has the effect of promoting fine precipitation of Mn, Cr, and Zr in addition to Mg segregation relaxation. Conditionally, it is desirable to carry out for 1 to 24 hours in the range of 450 ° C to 550 ° C.
[0018]
Hot rolling may be carried out in a conventional manner, but the end temperature and the plate thickness affect the degree of processing during cold rolling up to the final plate thickness. That is, in the case of the same final thickness, the workability is higher as the plate thickness after hot rolling is thicker, and the strain (dislocation density) introduced during hot rolling is larger as the temperature is lower. Becomes higher. In order to obtain fine recrystallization in the final plate, high-temperature recrystallization nuclei must be generated with a high dislocation density, and therefore it is desirable that the hot-rolled plate thickness is large and the temperature is low. Further, as described above, increasing the Fe-based crystallized density is also effective for increasing the recrystallization nucleus generation density.
[0019]
As a result of intensive studies on these relationships, it was found that fine recrystallized grains can be obtained when certain conditions are satisfied.
The conditions are as follows: Fe addition amount F (wt%), hot rolling end temperature T (° C.), hot rolling end plate thickness t1 (mm), cold rolling end plate thickness t2 (mm) When
t2 <300 × t1 / {T × (16−2 × F 2 )}
It is to perform cold rolling that satisfies the following conditional expression. If this condition is not satisfied, sufficient recrystallization nuclei for obtaining fine crystal grains of 5 μm or less cannot be obtained.
[0020]
Next, if the temperature increase rate of annealing is slow, recovery occurs at the time of temperature increase, and the dislocation density decreases, so that it becomes difficult to obtain fine recrystallized grains. Therefore, in the case of the present invention, Mg that suppresses recovery is added, so that even a furnace with a relatively slow temperature increase rate such as a box-type annealing furnace can obtain fine particles if the temperature increase rate is 20 ° C./h or more. However, it is more desirable to increase the temperature rapidly by a continuous annealing furnace (CAL).
[0021]
In addition, after the above temperature increase, it is necessary to maintain the temperature at a relatively low temperature of 250 ° C. to 350 ° C. for 10 seconds to 3 hours. There are conditions under which fine recrystallization is obtained within this range, but recrystallization is not completed at a lower temperature for a shorter time, and fine recrystallization cannot be obtained due to grain growth at a higher temperature. In addition, holding for 3 hours or more is not suitable for industrial production because it deteriorates productivity.
[0022]
The aluminum-based alloy sheet material obtained by the above production method had a recrystallized grain size of 5 μm or less and an n value of 0.25 or more, and was able to achieve both strength and formability.
[0023]
【Example】
Using an aluminum-based alloy having the composition shown in Table 1, an ingot having a thickness of 100 mm was produced by DC casting, and homogenized at 500 ° C. for 10 hours. Each of these ingots was made into a thin plate having a thickness of 0.4 mm by the production method shown in Table 2, and the mechanical properties and recrystallized grain size were measured to evaluate the moldability. The results are shown in Table 3.
The recrystallized particle size was obtained by buffing the surface, anodizing the surface, observing with a polarizing microscope, and cutting from a 400 × photograph.
Mechanical properties were measured by using an Instron type tensile tester after cutting out JIS-5 TP parallel to the rolling direction.
Formability was evaluated by using a cylindrical punch of φ40 and shoulder R4.5 and a die of φ41 and R4.5, drawing a blank of φ84, and breaking height at that time. At this time, a low-viscosity rust preventive oil having a wrinkle pressing force of 9.8 KN, a punching speed of 2 mm / sec., And 2 cSt / 40 ° C. was used for lubrication.
[0024]
[Table 1]
Figure 0004190673
[0025]
[Table 2]
Figure 0004190673
[0026]
[Table 3]
Figure 0004190673
[0027]
From this result, it can be seen that the aluminum alloy sheet of the present invention has high strength and good formability as compared with the aluminum-based alloy sheet of the comparative example.
[0028]
【The invention's effect】
As described above, according to the present invention, both high strength and excellent formability due to fine recrystallized grains are achieved, and an aluminum substrate that is optimal for applications such as automobile parts and electrical equipment parts that are required to be thin and lightweight. An alloy is obtained.

Claims (2)

必須元素としてMg2.0wt%を超え7.0wt%未満、Fe0.1wt%を超え2.0wt%未満、Mn0.05wt%を超え1.0wt%未満を含有し、Cr0.05wt%を超え0.5wt%未満、Zr0.05wt%を超え0.2wt%未満のうち 1 種または2種を含み、残部Alと不可避的不純物からなり、最終の再結晶粒度が5μm以下で、かつ加工硬化指数(n値)が0.25以上であることを特徴とする強度と成形性に優れたアルミニウム基合金板材。Essential elements include Mg exceeding 2.0 wt% and less than 7.0 wt%, Fe exceeding 0.1 wt% and less than 2.0 wt%, Mn exceeding 0.05 wt% and less than 1.0 wt%, and exceeding Cr 0.05 wt% and exceeding 0.0 wt%. It contains one or two of less than 5 wt%, more than Zr0.05 wt% and less than 0.2 wt% , the balance is Al and inevitable impurities, the final recrystallized grain size is 5 μm or less, and the work hardening index (n Value) is 0.25 or more, an aluminum-based alloy sheet having excellent strength and formability. 必須元素としてMg2.0wt%を超え7.0wt%未満、Fe0.1wt%を超え2.0wt%未満、Mn0.05wt%を超え1.0wt%未満を含有し、Cr0.05wt%を超え0.5wt%未満、Zr0.05wt%を超え0.2wt%未満のうち 1 種または2種を含み、残部Alと不可避的不純物からなるアルミニウム基合金鋳塊に対して均質化処理、熱間圧延、冷間圧延、焼鈍を施す製造工程において、Fe添加量をF(wt%)、熱間圧延終了温度をT(℃)、熱間圧延終了板厚をt1(mm)、冷間圧延終了板厚をt2(mm)とした時、条件式
t2<300×t1/{T×(16−2×F)}
を満足する冷間圧延をおこない、その後20℃/h以上の昇温速度で250℃〜350℃の温度範囲まで加熱し、その温度範囲で10秒〜3時間保持する焼鈍をおこなうことを特徴とする強度と成形性に優れたアルミニウム基合金板材の製造方法。
Essential elements include Mg exceeding 2.0 wt% and less than 7.0 wt%, Fe exceeding 0.1 wt% and less than 2.0 wt%, Mn exceeding 0.05 wt% and less than 1.0 wt%, and exceeding Cr 0.05 wt% and exceeding 0.0 wt%. Homogenization treatment, hot rolling, cooling for aluminum-based alloy ingots containing less than 5 wt%, one or two of Zr 0.05 wt% and less than 0.2 wt% , the balance being Al and inevitable impurities In the manufacturing process for hot rolling and annealing, the amount of Fe added is F (wt%), the hot rolling end temperature is T (° C.), the hot rolling end plate thickness is t1 (mm), and the cold rolling end plate thickness is When t2 (mm) is satisfied, the conditional expression t2 <300 × t1 / {T × (16-2 × F 2 )}
It is characterized by performing cold rolling that satisfies the following conditions, and then heating to a temperature range of 250 ° C. to 350 ° C. at a temperature rising rate of 20 ° C./h or more, and performing annealing for 10 seconds to 3 hours in that temperature range. A method for producing an aluminum-based alloy sheet having excellent strength and formability.
JP26859999A 1998-09-29 1999-09-22 Aluminum-based alloy sheet material excellent in strength and formability and method for producing the same Expired - Lifetime JP4190673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26859999A JP4190673B2 (en) 1998-09-29 1999-09-22 Aluminum-based alloy sheet material excellent in strength and formability and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP27447798 1998-09-29
JP10-274477 1998-09-29
JP26859999A JP4190673B2 (en) 1998-09-29 1999-09-22 Aluminum-based alloy sheet material excellent in strength and formability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000169928A JP2000169928A (en) 2000-06-20
JP4190673B2 true JP4190673B2 (en) 2008-12-03

Family

ID=26548387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26859999A Expired - Lifetime JP4190673B2 (en) 1998-09-29 1999-09-22 Aluminum-based alloy sheet material excellent in strength and formability and method for producing the same

Country Status (1)

Country Link
JP (1) JP4190673B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110042283A (en) * 2019-05-08 2019-07-23 烟台南山学院 Strong Alcoa plate preparation method in one kind

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009138247A (en) 2007-12-10 2009-06-25 Kobe Steel Ltd EXTRUDED MATERIAL OF Al-Mg-BASED ALUMINUM ALLOY SUPERIOR IN WORK HARDENING CHARACTERISTICS FOR COLD WORKING

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110042283A (en) * 2019-05-08 2019-07-23 烟台南山学院 Strong Alcoa plate preparation method in one kind

Also Published As

Publication number Publication date
JP2000169928A (en) 2000-06-20

Similar Documents

Publication Publication Date Title
TWI310789B (en) Al-mg alloy sheet with excellent formability at high temperatures and high speeds and method of production of same
JP5233607B2 (en) Aluminum alloy plate excellent in formability and method for producing the same
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
WO2013140826A1 (en) Aluminum alloy sheet having excellent press formability and shape fixability, and method for manufacturing same
WO2009098732A1 (en) Aluminum alloy sheet for motor vehicle and process for producing the same
WO2015155911A1 (en) High-strength aluminum alloy plate having exceptional bendability and shape fixability, and method for manufacturing same
JP4996853B2 (en) Aluminum alloy material for high temperature and high speed forming, method for manufacturing the same, and method for manufacturing aluminum alloy formed product
JP4325126B2 (en) Aluminum alloy plate excellent in warm formability and manufacturing method thereof
JP5059505B2 (en) Aluminum alloy cold-rolled sheet that can be formed with high strength
JP2003239052A (en) Method for producing aluminum foil base material and method for producing aluminum foil
JP6581347B2 (en) Method for producing aluminum alloy plate
JP4190673B2 (en) Aluminum-based alloy sheet material excellent in strength and formability and method for producing the same
JP2004124213A (en) Aluminum alloy sheet for panel forming, and its manufacturing method
JPH0959736A (en) Aluminum alloy sheet excellent in high speed superplastic formability and its formation
JPH0447019B2 (en)
JP4022497B2 (en) Method for manufacturing aluminum alloy panel
JPH07166285A (en) Hardened al alloy sheet by baking and production thereof
JP4190674B2 (en) Aluminum-based alloy sheet having excellent strength and formability and method for producing the same
JPH10259441A (en) Aluminum alloy sheet excellent in high speed superplastic formability and small number of cavity after forming and its production
CN113474479A (en) Method for producing a plate or strip from an aluminium alloy and plate, strip or shaped part produced thereby
JP4164206B2 (en) High-strength, high-formability aluminum alloy sheet with excellent recrystallization grain refinement during high-temperature annealing
JP3983454B2 (en) Method for producing high-strength, high-formability aluminum alloy plate and aluminum alloy plate obtained by the production method
JP2858069B2 (en) Stress corrosion cracking resistant high strength aluminum alloy sheet and method for producing the same
KR960007633B1 (en) Al-mg alloy &amp; the preparation
CN110106406B (en) Medium-strength aluminum-magnesium alloy wire for rivet and preparation method thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060607

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060607

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4190673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term