JP4190366B2 - Method for manufacturing glass reflector for projector - Google Patents

Method for manufacturing glass reflector for projector Download PDF

Info

Publication number
JP4190366B2
JP4190366B2 JP2003285657A JP2003285657A JP4190366B2 JP 4190366 B2 JP4190366 B2 JP 4190366B2 JP 2003285657 A JP2003285657 A JP 2003285657A JP 2003285657 A JP2003285657 A JP 2003285657A JP 4190366 B2 JP4190366 B2 JP 4190366B2
Authority
JP
Japan
Prior art keywords
glass
reflector
projector
etching
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003285657A
Other languages
Japanese (ja)
Other versions
JP2005055633A (en
Inventor
真 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Techno Glass Co Ltd
Original Assignee
AGC Techno Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AGC Techno Glass Co Ltd filed Critical AGC Techno Glass Co Ltd
Priority to JP2003285657A priority Critical patent/JP4190366B2/en
Publication of JP2005055633A publication Critical patent/JP2005055633A/en
Application granted granted Critical
Publication of JP4190366B2 publication Critical patent/JP4190366B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Surface Treatment Of Glass (AREA)

Description

本発明は、高圧水銀放電灯等の光源と共に用いられるガラス製反射鏡とその製造方法に係わり、特に液晶プロジェクターやDLPプロジェクターなどプロジェクターの光源に好適なガラス製反射鏡とその製造方法に関する。   The present invention relates to a glass reflector used together with a light source such as a high-pressure mercury discharge lamp and a manufacturing method thereof, and more particularly to a glass reflector suitable for a light source of a projector such as a liquid crystal projector or a DLP projector and a manufacturing method thereof.

液晶プロジェクターやDLPプロジェクターなど(ここではこれらをまとめてプロジェクターという)の光源として、初期にはハロゲンランプと硼珪酸ガラスなどの耐熱ガラス製の反射鏡との組合せが用いられたが、投射画像の明るさや、より白色に近い光色、ランプ寿命などの点で優れる高圧放電灯がこれに置き換わってきた。この置き換わりには放電灯の小型化、高出力化の進展が貢献している。   As a light source for liquid crystal projectors and DLP projectors (herein, these are collectively referred to as projectors), a combination of a halogen lamp and a heat-resistant glass reflector such as borosilicate glass was initially used. High pressure discharge lamps, which are superior in terms of light color nearer white and lamp life, have been replaced by this. This replacement has contributed to the progress of miniaturization and higher output of discharge lamps.

プロジェクターは、パーソナルコンピュータやDVDなどの映像機器の普及に伴って、業務用プレゼンテーションから家庭用に至るまで、用途が拡大しており、そのためにプロジェクター自体の小型化が進む一方で、明るさを損なわない、即ちランプの出力を落とさない、ニーズが拡大している。ランプ出力の増大はランプからの発熱量の増大を招き、プロジェクター筐体の小型化の影響もあって光源部分の温度上昇は著しく、反射鏡のネック部において600℃を超えることもある。   With the spread of video equipment such as personal computers and DVDs, projectors have been used for a wide range of applications, from business presentations to home use. As a result, the projector itself has become smaller and the brightness has been lost. There is no need to reduce the output of the lamp. An increase in lamp output causes an increase in the amount of heat generated from the lamp, and due to the effect of miniaturization of the projector housing, the temperature rise of the light source portion is significant and may exceed 600 ° C. at the neck portion of the reflector.

従来のプロジェクターでは、ガラス面の最高温度が400〜450℃程度であったが、最近のプロジェクターでは、ガラス面の最高温度が450〜550℃にも上昇している。したがって、プロジェクターの用途では、従来用いられてきた硼珪酸ガラスなどを用いた耐熱ガラス製反射鏡よりも耐熱性に優れる低熱膨張の結晶化ガラス製反射鏡が主流になっている(例えば、特許文献1参照)。   In the conventional projector, the maximum temperature of the glass surface is about 400 to 450 ° C., but in the latest projector, the maximum temperature of the glass surface is increased to 450 to 550 ° C. Therefore, for use in projectors, low thermal expansion crystallized glass reflectors, which are superior in heat resistance to the conventional heat resistant glass reflectors using borosilicate glass or the like, have become the mainstream (for example, patent documents). 1).

これは、反射鏡の上昇温度が、従来用いられていた硼珪酸ガラスの転移点を越える可能性があること、550℃に達する温度では従来の硼珪酸ガラス製反射鏡はクラックや割れを生ずる確率が高いと信じられていたことによる。   This is because the rising temperature of the reflector may exceed the transition point of the conventionally used borosilicate glass, and the probability that a conventional borosilicate glass reflector will crack or break at temperatures reaching 550 ° C. Because it was believed to be expensive.

一方、ガラス製反射鏡は所望の光学設計に基づいて製作された金型を用いて、溶融ガラスをプレス成型して製作される。 On the other hand, a glass reflector is manufactured by press molding molten glass using a mold manufactured based on a desired optical design.

ところで、光源用の反射鏡は反射面の頂部に光源ランプを挿入固定するために開孔部が必要であるので、プレス成型時に反射面の裏面側に反射鏡の光軸に沿って突出するネック部を形成しておき、これを切断または孔開け加工することにより行なっていた。 By the way, since the reflecting mirror for the light source needs an aperture to insert and fix the light source lamp on the top of the reflecting surface, the neck that protrudes along the optical axis of the reflecting mirror on the back surface side of the reflecting surface during press molding. This is done by forming a part and cutting or perforating it.

また、一般に板ガラス製品では、周縁部に傷があると、その傷が微細なものであっても、応力が加わったときに、その傷が伸長して板ガラスの破壊につながることがあるため、周縁部を機械研削によって面取りして、傷の除去や欠けの防止を図ることが行われている。従来は、機械研削によって板ガラス一枚ずつに面取りを実施していたが、この方法では手間がかかるため、エッチングによって複数枚の板ガラスに面取りを同時に施す方法も知られている(特許文献2)。 In general, in a flat glass product, if there is a scratch on the peripheral edge, even if the scratch is fine, when the stress is applied, the scratch may stretch and lead to the destruction of the flat glass. A part is chamfered by mechanical grinding to remove scratches and prevent chipping. Conventionally, chamfering is performed for each sheet glass by mechanical grinding. However, since this method takes time, a method for simultaneously chamfering a plurality of sheet glasses by etching is also known (Patent Document 2).

特公平7−37334号公報Japanese Patent Publication No. 7-37334 特開昭54−25号公報Japanese Patent Laid-Open No. 54-25

上記結晶化ガラス製反射鏡では、ガラスを結晶化させる必要から、母ガラスのガラス転移点以上の温度に再加熱するため、このときのガラスの変形および結晶化時の収縮により、反射面形状が理想曲面から外れ、光源からの光の反射方向が乱れ反射効率が悪化する結果、プロジェクターにおいては投射像の明るさ(照度)が低下する。   In the above-mentioned crystallized glass reflecting mirror, since it is necessary to crystallize the glass, it is reheated to a temperature higher than the glass transition point of the mother glass. As a result of deviating from the ideal curved surface, the reflection direction of the light from the light source is disturbed and the reflection efficiency is deteriorated, the brightness (illuminance) of the projected image is lowered in the projector.

また、この種反射鏡は、反射面に可視光を反射し赤外線を透過する誘電体多層膜を被着し、被照射物の赤外線による加熱を防止する手段が講じられる。したがって、光源が発した赤外線は多層膜を透過し反射鏡基体を通過するが、結晶化ガラスは結晶界面等で赤外線が散乱されるため、プロジェクターなどの筐体内では、反射鏡周辺に熱がこもりやすい。 In addition, in this kind of reflecting mirror, a dielectric multilayer film that reflects visible light and transmits infrared rays is deposited on the reflecting surface, and means for preventing heating of the irradiated object by infrared rays is taken. Therefore, the infrared rays emitted from the light source pass through the multilayer film and pass through the reflector substrate, but since crystallized glass scatters infrared rays at the crystal interface, etc., heat is trapped around the reflector in a projector or other housing. Cheap.

結晶化工程を必要としない非晶質耐熱ガラスを用いた反射鏡は、成型後の再加熱を受けないため、結晶化ガラス製に比べて反射面精度が理想曲面に近く、プロジェクター光源に使用した場合の投射面照度に優れるが、上記のとおり高温の使用環境では破損にいたる危険があるため、比較的低出力光源との組合せに限定使用されているのが現状である。 Reflector using amorphous heat-resistant glass that does not require a crystallization process is not subject to reheating after molding, so its reflection surface accuracy is closer to the ideal curved surface than crystallized glass, and it was used for a projector light source. Although the projection surface illuminance in this case is excellent, there is a risk of damage in a high-temperature use environment as described above, and therefore, the present situation is that it is limited to use in combination with a relatively low output light source.

非晶質ガラス製反射鏡で破損に至ったものを解析した結果、そのほとんどが上記ネック部に設けられた開孔部の切断面または孔開け加工面を起点として亀裂が入っていることが判明した。 As a result of analysis of the amorphous glass reflector that resulted in breakage, it was found that most of them were cracked starting from the cut surface or the drilled surface of the hole provided in the neck did.

上述のように板ガラス製品などでは、周縁部の傷を除去するために面取り加工が行われているが、反射鏡の開孔部はネック部端面または内周面にあるため、面取り加工は困難であり非常に効率が悪い。しかも、面取り加工そのものが機械加工であるため、微細なマイクロクラックまで完全に除去することは難しい。 As described above, chamfering processing is performed on plate glass products to remove scratches on the peripheral edge, but the chamfering processing is difficult because the aperture of the reflector is on the end surface or inner peripheral surface of the neck portion. There is very inefficiency. In addition, since the chamfering process itself is a machining process, it is difficult to completely remove even minute microcracks.

本発明は上述のような、従来のプロジェクター用反射鏡の問題点にかんがみてなされたもので、高出力光源との組合せに耐えうる耐熱性を有し、反射面精度に優れ、かつ安価なガラス製反射鏡とその製造方法を提供することを目的とする。 The present invention has been made in view of the problems of the conventional reflectors for projectors as described above, has heat resistance that can withstand a combination with a high-output light source, has excellent reflection surface accuracy, and is inexpensive. An object of the present invention is to provide a reflecting mirror and a manufacturing method thereof.

上記目的を達成するために、本発明の請求項1によれば、熱膨張係数が30〜45×10 −7 /℃の非晶質ガラスから成り、光源から発せられる光を反射する反射面部と、光源バルブを挿入する開孔部とを有するプロジェクター用ガラス製反射鏡の製造方法であって、溶融ガラスをボトム金型とプランジャとを有する金型により前記反射面部から凹入した位置に開孔予定部をもつ所定の反射鏡形状にプレス成形するプレス成形工程と、この工程により成形された反射鏡の前記開孔部に当たる部位のガラスを除去することにより前記開孔部を形成する開孔部形成工程と、この工程により形成された前記開孔部にエッチングを施してその表面を平滑化することにより加工部の機械的損傷を取り除く表面平滑化工程と、を有することを特徴とするプロジェクター用ガラス製反射鏡の製造方法を提供する。 In order to achieve the above object, according to claim 1 of the present invention, the reflecting surface portion is made of amorphous glass having a thermal expansion coefficient of 30 to 45 × 10 −7 / ° C. and reflects light emitted from a light source. and opening for inserting the light source bulb, a manufacturing method of a projector for a glass reflector having open at a position recessed from said reflecting surface portion by a mold having a bottom mold and a plunger of molten glass A press molding step for press molding into a predetermined reflector shape having a predetermined hole portion, and an opening for forming the aperture portion by removing the glass at the portion corresponding to the aperture portion of the reflector formed by this step And a surface smoothing step that removes mechanical damage of the processed portion by etching the apertures formed by this step and smoothing the surface thereof. A method for producing a glass reflector for a projector is provided.

ここで、熱膨張係数が30×10−7/℃より低いと、成形性が悪くなり精密な反射面を要する反射鏡では歩留が低下し、45×10−7/℃を越えると、耐熱性が十分でなく高出力光源との組合せに耐えない。好ましくは40×10−7/℃までである。 Here, when the thermal expansion coefficient is lower than 30 × 10 −7 / ° C., the moldability is deteriorated, and the yield of the reflector requiring a precise reflecting surface is lowered. When the thermal expansion coefficient exceeds 45 × 10 −7 / ° C., the heat resistance is decreased. Insufficient performance to withstand the combination with a high output light source. Preferably, it is up to 40 × 10 −7 / ° C.

また、加工部の機械的損傷が取り除かれているとは、機械的加工による欠け、表面荒れや表面に存在する数μmのマイクロクラックが存在しない状態であることを意味し、反射鏡破損の起点となる機械的損傷が取り除かれていることにより、ガラス面の温度が非常に高くなるような反射鏡でも破損の発生を抑えることができる。   The removal of mechanical damage in the processed part means that there is no chipping due to mechanical processing, surface roughness, or micro-cracks of several μm existing on the surface, and the origin of reflector breakage. Since the mechanical damage is removed, the occurrence of breakage can be suppressed even in a reflecting mirror in which the temperature of the glass surface becomes very high.

本発明によれば、前記反射面部が回転楕円面又は回転放物面の形状を有し、前記開孔部近傍における反射面精度が、理想曲面に対して±20μm以内であることが好ましい。 According to the present invention , it is preferable that the reflection surface portion has a shape of a spheroidal surface or a rotation paraboloid, and the reflection surface accuracy in the vicinity of the aperture is within ± 20 μm with respect to an ideal curved surface .

この場合の開孔部近傍とは、ネック部開孔端部から半径方向に20mm程度までの範囲を意味し、開孔部近傍における面精度は理想曲面に対して±20μm以内であればよい。反射鏡からの投射光の明るさにもっとも影響の有るのがネック部周辺の精度であるため、特にこの部分の反射面精度を良好にすることが効果的である。   The vicinity of the opening in this case means a range from the neck opening end to about 20 mm in the radial direction, and the surface accuracy in the vicinity of the opening may be within ± 20 μm with respect to the ideal curved surface. Since the accuracy around the neck portion has the most influence on the brightness of the projection light from the reflecting mirror, it is particularly effective to improve the accuracy of the reflecting surface in this portion.

本発明の請求項によれば、前記エッチング処理により除去される前記開孔部加工面のエッチング量が、30μm以上であることを特徴とする請求項記載のプロジェクター用ガラス製反射鏡の製造方法を提供する。 According to claim 2 of the present invention, the etching amount of the opening processing surface which is removed by the etching process, producing a projector glass reflector according to claim 1, wherein a is 30μm or more Provide a method.

後述するように機械加工により孔開けされた開孔部加工面は、微細な凹凸やクラックが多数存在する状態にあり、その影響をなくすためには、30μm以上のエッチング量が必要である。   As will be described later, the processed surface of the hole portion that has been drilled by machining is in a state in which many fine irregularities and cracks exist, and an etching amount of 30 μm or more is required to eliminate the influence.

なお、前記開孔部形成工程は、前記反射面の側からドリルにより前記開孔部を形成してもよいし、前記開孔部に当たる部位をカッターにより切断して前記開孔部を形成してもよい。ドリルによる開孔部形成を反射面側からドリルを入れて行なうのは、切削くずやガラス片を反射面に付着させずに落下させるためである。 In the step of forming the opening portion, the opening portion may be formed by a drill from the reflective surface side, or a portion corresponding to the opening portion is cut by a cutter to form the opening portion. Also good. The reason why the hole is formed by the drill by inserting the drill from the reflecting surface side is to drop the cutting waste and the glass piece without attaching to the reflecting surface.

本発明によれば、耐熱性が高く反射精度が優れ廉価なプロジェクター用に好適なガラス反射鏡及びその製造方法が得られる。 ADVANTAGE OF THE INVENTION According to this invention, the glass reflective mirror suitable for projectors with high heat resistance, excellent reflective accuracy, and low price, and its manufacturing method are obtained.

以下、本発明の実施形態について図面を用いて説明する。実施例及び比較例の反射鏡のガラスとして次に示す成分などを有する2種類のガラス(A)、(B)を用いた。%はいずれも質量%である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Two types of glass (A) and (B) having the following components and the like were used as the reflector glass of the examples and comparative examples. % Is mass%.

(A)SiO80.9%、Al2.3%、NaO 4%、B12.7%、熱膨張係数(0〜300℃):32.5×10−7/℃。 (A) SiO 2 80.9%, Al 2 O 3 2.3%, Na 2 O 4%, B 2 O 3 12.7%, thermal expansion coefficient (0 to 300 ° C.): 32.5 × 10 − 7 / ° C.

(B)SiO78%、Al2.1%、NaO 5.2%、B14.5%、熱膨張係数(0〜300℃):38×10−7/℃。 (B) SiO 2 78%, Al 2 O 3 2.1%, Na 2 O 5.2%, B 2 O 3 14.5%, coefficient of thermal expansion (0 to 300 ° C.): 38 × 10 −7 / ° C.

また実施例及び比較例のサンプルは、光軸方向から見て外形寸法が縦50mm、横50mmであり、焦点距離Fが6mmの回転楕円面を有する変形反射鏡である。ネック部の長さは、反射面との境目から5mm、焦点付近における肉厚は4.5mm、ネック部内径(開孔面径)φ10mm、開孔径φ9mmの寸法のものを用いた。 Further, the sample of the example and the comparative example is a deformed reflecting mirror having a spheroid with an outer dimension of 50 mm and a width of 50 mm when viewed from the optical axis direction and a focal length F of 6 mm. The length of the neck portion was 5 mm from the boundary with the reflecting surface, the thickness in the vicinity of the focal point was 4.5 mm, the neck portion inner diameter (opening surface diameter) φ10 mm, and the opening diameter φ9 mm.

<実施例1>
実施例1として、上記ガラス組成となるように原料を調合し、約1600℃で溶融した後、所定重量のガラスゴブを、図4に示すようなボトム金型41に落とし、その上方からプランジャ42などで押圧して、上記の寸法の反射鏡4の形状にプレス加工する(なお、ここまでは、以下に述べる実施例2及び比較例1でも同様である)。このプレス加工を行なう際、ガラス温度が約800℃以下になるまで押圧すると、反射面となるプランジャ形状の転写精度がよく、反射面の精度を良好にすることができる。
<Example 1>
As Example 1, the raw materials were prepared so as to have the above glass composition, melted at about 1600 ° C., and then a glass gob having a predetermined weight was dropped into a bottom mold 41 as shown in FIG. And is pressed into the shape of the reflecting mirror 4 having the above dimensions (the same applies to Example 2 and Comparative Example 1 described below). When this pressing is performed, if the glass temperature is pressed to about 800 ° C. or less, the transfer accuracy of the plunger shape serving as the reflection surface is good, and the accuracy of the reflection surface can be improved.

上記のようにプレス成型した反射鏡1を、図1(A)に示す。実施例1では、プレス加工するとき、開孔予定部11の肉厚dを孔開け加工に支障をきたさない範囲で、できるだけ薄く設定することが好ましい。この部分の肉厚dは、金型間の空隙によって定まるが、例えばこの厚さを1.5〜3mmとする。   A reflector 1 press-molded as described above is shown in FIG. In Example 1, when pressing, it is preferable to set the thickness d of the planned opening portion 11 as thin as possible within a range that does not hinder the drilling process. The thickness d of this portion is determined by the gap between the molds. For example, the thickness is 1.5 to 3 mm.

なお、開孔予定部11の肉厚が厚いと孔開け加工及び該加工面のエッチングに時間がかかり、薄すぎると、孔開け加工時にエッチングで除去できない大きさのクラックを生ずることがあるので好ましくない。また、この種のガラスでは、溶融ガラスをプレスする際、ガラスは金型との接触によって肉厚が薄くなる程急速に熱を奪われ固化するので、実際には通常肉厚1mm程度が成型の限界である。   In addition, if the thickness of the planned opening portion 11 is thick, it takes time for drilling and etching of the processed surface, and if it is too thin, cracks of a size that cannot be removed by etching at the time of drilling may occur. Absent. In addition, in this type of glass, when the molten glass is pressed, the glass is rapidly deprived of heat and solidified as the thickness decreases due to contact with the mold. It is a limit.

また、前記開孔予定部11は、反射面13から凹入したできるだけ反射面から遠い位置に設けておくことが望ましい。この部分は、孔開け加工後にエッチングされるため、開孔面と反射面13とに距離を設けることにより、ネック部12のみをエッチング液に浸漬する場合、エッチング液による反射面13への影響を小さくできる。 Further, it is desirable that the planned opening portion 11 is provided at a position as far as possible from the reflecting surface that is recessed from the reflecting surface 13. Since this portion is etched after the drilling process, if only the neck portion 12 is immersed in the etching solution by providing a distance between the opening surface and the reflecting surface 13, the influence of the etching solution on the reflecting surface 13 is affected. Can be small.

次に、この反射鏡1をダイス14の上に載置し、反射面側からドリル、例えばダイヤモンドコアドリル15を当てて矢印16方向に回転させることにより、開孔予定部11に孔をあけ開孔部17を形成する(図1(B))。 Next, the reflecting mirror 1 is placed on the die 14, and a hole such as a diamond core drill 15 is applied from the reflecting surface side and rotated in the direction of the arrow 16 to open a hole in the planned opening portion 11. A portion 17 is formed (FIG. 1B).

この状態で、開孔部内周面を観察すると、その表面はすりガラス状の細かな凹凸が存在し、表面粗さはRaで1μm程度、最大で17〜18μmの凹凸を有する粗面であった。   When the inner peripheral surface of the aperture was observed in this state, the surface had fine ground glass-like irregularities, and the surface roughness was a rough surface with irregularities of Ra of about 1 μm and a maximum of 17-18 μm.

開孔部17を形成された反射鏡1は、図1(C)に示すように、ネック部側をエッチング液20に浸し、エッチング処理する。すなわち、保持装置18によって反射面開口端を保持された反射鏡1は、耐蝕性の液槽19に張られたエッチング液20に開孔部加工面が浸かるまで液面の上下に浸したり引き上げたりを適宜繰り返した。エッチング液20は、重量濃度5%のフッ酸を使用し、液温25℃で実施した。   As shown in FIG. 1C, the reflecting mirror 1 in which the opening 17 is formed is immersed in an etching solution 20 and etched. That is, the reflecting mirror 1 whose opening end of the reflecting surface is held by the holding device 18 is immersed or pulled up and down the liquid surface until the processed surface of the opening portion is immersed in the etching solution 20 stretched in the corrosion-resistant liquid tank 19. Was repeated as appropriate. As the etching solution 20, hydrofluoric acid having a weight concentration of 5% was used and the solution temperature was 25 ° C.

エッチング処理の際、エッチング液が反射面に付着すると、しみ様の跡が残り、その後の反射膜形成や反射特性に悪影響を及ぼすことが考えられるため、あらかじめ反射面に熱軟化性ワックスなどを塗布し反射面を保護してもよい。この場合には、反射鏡基体全体をエッチング液に浸漬することも可能である。反射面に塗布した熱軟化性ワックスは、エッチング処理終了後、加熱軟化させて反射鏡基体から分離し、付着分を洗剤で洗浄除去する。   During etching, if the etchant adheres to the reflective surface, a stain-like mark remains, which may adversely affect the subsequent reflective film formation and reflection characteristics. Apply heat softening wax to the reflective surface in advance. The reflective surface may be protected. In this case, it is possible to immerse the entire reflecting mirror substrate in the etching solution. The heat-softening wax applied to the reflecting surface is softened by heating after the etching process is finished and separated from the reflector substrate, and the adhering matter is removed by washing with a detergent.

エッチング処理した反射鏡は、充分に洗浄、乾燥させてサンプル基体とした。   The etched reflecting mirror was sufficiently washed and dried to obtain a sample substrate.

<実施例2>
第2の実施例では、上記実施例1よりもネック部31を長めに設定した金型を用いて、ネック部後端32を閉塞状態にした反射鏡3をプレス加工により造る(図2(A))。次に、この反射鏡3を徐冷した後、ネック部31の後端を、残存するネック部の長さが上記実施例1と同じ位置の、光軸に直交する面33でカッター34により、ネック部後端を切断除去する(図2(B))。
<Example 2>
In the second embodiment, the reflector 3 having the neck portion rear end 32 in a closed state is formed by press working using a mold in which the neck portion 31 is set longer than in the first embodiment (FIG. 2 (A). )). Next, after slowly cooling the reflecting mirror 3, the rear end of the neck portion 31 is left with the cutter 34 on the surface 33 perpendicular to the optical axis, where the length of the remaining neck portion is the same position as in the first embodiment. The rear end of the neck portion is cut and removed (FIG. 2B).

次にこの切断面33を、図2(C)に示すように、上記実施例1と同様にしてエッチング処理し、洗浄、乾燥を経てサンプル基体とした(図2(D))。   Next, as shown in FIG. 2C, the cut surface 33 was etched in the same manner as in Example 1, washed, and dried to obtain a sample substrate (FIG. 2D).

<比較例1>
比較例1は、硼珪酸ガラスを用いプレス成型して反射鏡を製造し徐冷を経た後、上記実施例1と同様にコアドリルにより孔開けして開孔部を設けるが、その後エッチング処理していないものである。
<Comparative Example 1>
In Comparative Example 1, a reflector was manufactured by press molding using borosilicate glass, and after slow cooling, a hole was formed by a core drill in the same manner as in Example 1 above. There is nothing.

<比較例2>
比較例2は、硼珪酸ガラスを用い上記実施例2のように、ネック部後端を閉塞状態にした反射鏡をプレス加工により製造して徐冷を経た後、ネック部後端を切除して孔開け加工するが、その後その加工面をエッチング処理しないものである。
<Comparative example 2>
In Comparative Example 2, a borosilicate glass was used to manufacture a reflecting mirror in which the neck end rear end was closed as in Example 2 described above by press working, and after slow cooling, the neck end rear end was excised. The hole is processed, but the processed surface is not etched after that.

<比較例3>
比較例3は、結晶化ガラスを用いた例であり、特公昭7−37334号公報の実施例(1)に準ずる結晶化ガラス製のもので、上記実施例3の場合と同様に成型後、ネック部後端を光軸に直交する面で切断除去するが、その後の切断面のエッチングを行なわないものである。
<Comparative Example 3>
Comparative Example 3 is an example using crystallized glass, made of crystallized glass according to Example (1) of Japanese Patent Publication No. 7-37334, and after molding in the same manner as in Example 3 above, The rear end of the neck portion is cut and removed by a plane orthogonal to the optical axis, but the subsequent cut plane is not etched.

この比較例3は具体的には、SiO 60%、AlO3 21%、LiO 5.5%、TiO+ZrO 4%、P 5%、B 2.5%、ZnO+MgO 4%、KO+NaO 1.5%の組成になるように原料を調合し、1500℃で溶融してガラス化しこれをプレス法により反射鏡の基材形状に成形した。このガラス成形体を570℃に1時間保持した後、毎分3℃の昇温速度で770℃に昇温し。この温度で1時間保持してから冷却した。熱処理前には透明であった成形体は乳白色となり、β−スポジュウメン固溶体から成る。熱膨張係数は6×10−7/℃の結晶化ガラスである。 Specifically, in Comparative Example 3, SiO 2 60%, Al 2 O 3 21%, Li 2 O 5.5%, TiO 2 + ZrO 2 4%, P 2 O 5 5%, B 2 O 3 2.5 %, ZnO + MgO 4%, K 2 O + Na 2 O 1.5%, and the raw materials were mixed, melted at 1500 ° C. and vitrified, and formed into the shape of a reflector substrate by a press method. The glass molded body was held at 570 ° C. for 1 hour, and then heated to 770 ° C. at a rate of 3 ° C. per minute. After holding at this temperature for 1 hour, it was cooled. The molded product that was transparent before the heat treatment turned milky white and consisted of a β-spodumene solid solution. It is a crystallized glass having a thermal expansion coefficient of 6 × 10 −7 / ° C.

したがって、実施例1、比較例1により作成された反射鏡のネック部内周には図1(D)に示すような環状の突起21が残るが、実施例2、比較例2,3により作成された反射鏡のネック部内周には突起はない。   Accordingly, an annular protrusion 21 as shown in FIG. 1 (D) remains on the inner periphery of the neck portion of the reflector produced in Example 1 and Comparative Example 1, but is produced in Example 2 and Comparative Examples 2 and 3. There is no protrusion on the inner periphery of the neck of the reflecting mirror.

以上述べたように実施例、比較例により作成した反射鏡基体の反射面に、真空蒸着によってTiO膜とSiO膜とを交互に30層から成る反射膜を積層して、反射鏡サンプルとした。 As described above, a reflective film comprising 30 layers of TiO 2 films and SiO 2 films alternately laminated by vacuum deposition on the reflective surface of the reflective mirror substrate prepared in the examples and comparative examples, did.

<実施例、比較例の評価結果>
これらの実施例及び比較例についての評価結果を、各サンプル10個の平均値で図4に示す。なお表中の相対照度の欄は、比較例3の投射面平均照度に対する各実施例、比較例の投射面平均照度の比を示す。
<Evaluation results of Examples and Comparative Examples>
The evaluation results for these Examples and Comparative Examples are shown in FIG. 4 as the average value of 10 samples. In addition, the column of relative illuminance in the table indicates the ratio of the projection surface average illuminance of each example and the comparative example to the projection surface average illuminance of Comparative Example 3.

(1)加工部の機械的損傷の有無
まず、目視で加工部の傷、欠け、表面荒れを観察した。上記実施例の反射鏡はいずれも傷、欠けが認められず、開孔端のエッジが取れた滑らかな表面状態であった。これに対して、上記各比較例の加工面は機械加工の痕跡が認められ、すりガラス状の粗面であり、開孔部のエッジに細かな欠けが認められた。次に、加工部表面にレーザー光を入射させ、散乱光を観察した。実施例の反射鏡はいずれもクラックに起因する光の散乱は認められず、加工部の機械的損傷が取り除かれていると判断した。
(1) Presence / absence of mechanical damage in the processed part First, scratches, chips and surface roughness of the processed part were visually observed. All of the reflectors of the above examples were in a smooth surface state in which no scratches or chips were observed and the edge of the open end was removed. On the other hand, the machined surface of each of the above comparative examples was found to have a trace of machining, was a ground glass-like rough surface, and a fine chip was observed at the edge of the aperture. Next, a laser beam was incident on the surface of the processed part, and the scattered light was observed. In any of the reflectors of the examples, no light scattering due to cracks was observed, and it was determined that mechanical damage of the processed part was removed.

また、エッチング液への浸漬時間を変えることにより、エッチング量をそれぞれおよそ10μm、20μm、30μm、50μm、100μmとしたサンプルの加工部表面状態を比較した。エッチング量10μmでは、まだ表面の凹凸が残っている状態であり、20μmでは、表面の凹凸はほぼ取り除かれ平滑な表面状態になっているもののレーザー光を入射させて散乱光を観察すると、微小クラックによると思われる光の散乱が散見された。これに対し、30μm以上では、レーザー光の散乱もほとんど観測されなかったため、エッチング量30μm以上のものを以下の評価に使用した。 In addition, by changing the immersion time in the etching solution, the surface states of the processed parts of the samples with the etching amounts of about 10 μm, 20 μm, 30 μm, 50 μm, and 100 μm were compared. When the etching amount is 10 μm, the surface unevenness still remains, and at 20 μm, the surface unevenness is almost removed and the surface is in a smooth state. Scattering of light that seems to be due to was observed. On the other hand, since laser light scattering was hardly observed at 30 μm or more, an etching amount of 30 μm or more was used for the following evaluation.

したがって、加工部の機械的損傷を取り除くために必要なエッチング量は、少なくとも30μm以上であることが好ましく、機械加工治具の損耗等による加工精度の影響を考慮して50μm以上とすることがより好ましく、エッチング処理時間や他の部位の精度等を考慮して100μm程度までとすることが望ましい。 Therefore, it is preferable that the etching amount necessary for removing the mechanical damage of the processed part is at least 30 μm or more, and more preferably 50 μm or more in consideration of the influence of processing accuracy due to wear of the machining jig. It is preferable that the thickness is about 100 μm in consideration of the etching processing time and the accuracy of other parts.

(2)加工部の表面粗さ
触針式表面粗さ計を用い、各サンプルの加工部表面粗さを測定した。実施例1,2、比較例1は、反射鏡を光軸に沿って2分割し、ネック部内周面を露出させて開孔部内周面を光軸方向に1mmに亘って測定、比較例2,3ではネック部端面を切断面に沿って測定した。各実施例は、平均粗さRaで0.03μm程度であったのに対して、各比較例は平均粗さRaで1μm程度、最大で17〜18μmの凹凸を有する粗面であった。
(2) Surface roughness of processed part The surface roughness of the processed part of each sample was measured using a stylus type surface roughness meter. In Examples 1 and 2 and Comparative Example 1, the reflecting mirror was divided into two along the optical axis, the inner peripheral surface of the neck portion was exposed, and the inner peripheral surface of the aperture portion was measured over 1 mm in the optical axis direction, Comparative Example 2 , 3, the end surface of the neck portion was measured along the cut surface. Each example had an average roughness Ra of about 0.03 μm, whereas each comparative example had a rough surface with irregularities having an average roughness Ra of about 1 μm and a maximum of 17-18 μm.

(3)反射面精度
各サンプルの反射面を半径方向に沿って触針式三次元形状測定装置を用いて測定した結果、反射面設計値に対して実施例1,2及び比較例1,2では±10〜15μmの精度であった。これに対して比較例3では、およそ±70μmのずれがあることが確認された。実施例1(A)と比較例3の三次元測定データの測定結果を図5及び図6に示す。これらの図において、測定値は理想曲面(曲線)に対する各測定点の法線方向に拡大して示す。反射面曲線(測定値)は、50倍の拡大表示であり、中心線と上下の線との間隔は、それぞれ50μmを示している。
(3) Reflection surface accuracy As a result of measuring the reflection surface of each sample along the radial direction using a stylus type three-dimensional shape measuring apparatus, Examples 1 and 2 and Comparative Examples 1 and 2 with respect to the reflection surface design value. Then, the accuracy was ± 10 to 15 μm. On the other hand, in Comparative Example 3, it was confirmed that there was a deviation of about ± 70 μm. The measurement results of the three-dimensional measurement data of Example 1 (A) and Comparative Example 3 are shown in FIGS. In these figures, measured values are shown enlarged in the normal direction of each measurement point with respect to an ideal curved surface (curve). The reflection surface curve (measured value) is an enlarged display of 50 times, and the distance between the center line and the upper and lower lines is 50 μm.

(4)点灯評価
各サンプルの反射鏡に150Wの超高圧水銀灯(UHP)を装着し、反射鏡のネック部から10cmの距離に直径10cmの電動ファンを設置し、熱電対で反射鏡ネック部の温度を測定しながら、温度上昇後の温度が設定温度(450℃、550℃)になるようにファンの風量を制御して2.5時間連続点灯し、0.5時間消灯を繰り返す点灯評価を実施した。これをサンプル数、各10個について各実施例、比較例について行なった。
(4) Lighting evaluation A 150 W ultra-high pressure mercury lamp (UHP) is attached to each sample mirror, an electric fan with a diameter of 10 cm is installed at a distance of 10 cm from the neck of the reflector, and the reflector neck of the reflector is mounted with a thermocouple. While measuring the temperature, control the fan's air volume so that the temperature after the temperature rise reaches the set temperature (450 ° C, 550 ° C), and turn it on continuously for 2.5 hours. Carried out. This was performed for each of the examples and comparative examples for the number of samples, 10 pieces each.

この結果、図4の表に示すような結果になった。図4に示す点灯評価において、分子は10サンプルのうちの割れやクラックが生じたサンプル数を意味する。このように、ガラス(A)を用いた実施例及び比較例3では2000時間経過後も反射鏡に割れやクラックは生じなかった。これに対して、比較例1,2では、450℃、1000時間でクラックが発生したものがあり、550℃では50時間でサンプル10個のうち半数にクラックや割れが発生した。これは、本発明の各実施例において、加工部の機械的損傷が取り除かれた結果と考えられる。ここで、加工部の機械的損傷が取り除かれた、とは、機械的加工による欠け、傷や表面に存在する数μm以下の微小クラックが存在しない状態であることを意味する。 As a result, the results shown in the table of FIG. 4 were obtained. In the lighting evaluation shown in FIG. 4, the numerator means the number of samples in which cracks or cracks occur in 10 samples. Thus, in the Example and Comparative Example 3 using glass (A), no cracks or cracks occurred in the reflector even after 2000 hours. On the other hand, in Comparative Examples 1 and 2, cracks occurred at 450 ° C. for 1000 hours, and at 550 ° C., half of the 10 samples were cracked or cracked in 50 hours. This is considered to be a result of removing the mechanical damage of the processed part in each embodiment of the present invention. Here, the removal of the mechanical damage in the processed part means that there are no chips, scratches or micro cracks of several μm or less existing on the surface due to the mechanical processing.

(5)投射面照度(lx)
上記点灯評価で割れ、クラックの発生しなかった実施例1,2及び比較例3の反射鏡に、150Wの超高圧水銀灯(UHP)を装着し、実際の液晶プロジェクターに実装して、投射画面サイズが対角40インチになる距離においてスクリーンに無画像の光を投射し、投射面を3×3列の9区分に等分した各区画の中央に置いた照度計で照度を測定し、明るさを評価した。
(5) Projection surface illumination (lx)
A 150 W ultra high pressure mercury lamp (UHP) was mounted on the reflectors of Examples 1 and 2 and Comparative Example 3 where cracking and cracking did not occur in the above lighting evaluation, and mounted on an actual liquid crystal projector. Measure the illuminance with an illuminometer that projects light of no image on the screen at a distance of 40 inches diagonally, and places the projection surface equally in 9 sections of 3 x 3 rows. Evaluated.

9区画の照度の平均で比較したところ、比較例3の測定値に対して各実施例の測定値はいずれも3〜5%程上回っていた。各実施例の反射鏡を用いたものでは、同一光学系での比較において、中央の区画と周辺区画との照度差が、比較例3の反射鏡を用いた場合に比べて小さくなっており、周辺部までの比較的均一な投射照度が得られた。この結果から、結晶化ガラスを用いていない本発明による反射鏡の方が、反射面精度に優れていると判断できた。   When compared with the average of the illuminance of 9 sections, the measured value of each example exceeded the measured value of Comparative Example 3 by about 3 to 5%. In the case of using the reflecting mirror of each example, in the comparison with the same optical system, the difference in illuminance between the central section and the surrounding section is smaller than when using the reflecting mirror of Comparative Example 3, A relatively uniform projection illuminance up to the periphery was obtained. From this result, it was judged that the reflecting mirror according to the present invention using no crystallized glass was superior in reflecting surface accuracy.

なお、上記実施例では硼珪酸ガラスを用いた例について説明したが、本発明に用いる非晶質ガラスは、熱膨張係数が30〜45×10−7/℃の範囲のものであればよい。熱膨張係数が30×10−7/℃より低いと、成形性が悪くなり、精密な反射面を要する反射鏡では歩留まりが低下する。また、熱膨張係数が45×10−7/℃を超えると、耐熱性が十分でなく高出力光源と組み合わせることができなくなる。本発明における非晶質ガラスとして更に好ましくは熱膨張係数が30〜40×10−7/℃の範囲のものである。具体的には、硼珪酸ガラスの他にアルミノシリケート系ガラスも好適に使用できる。 In addition, although the said Example demonstrated the example using borosilicate glass, the amorphous glass used for this invention should just have a thermal expansion coefficient of the range of 30-45 * 10 < -7 > / degreeC. When the thermal expansion coefficient is lower than 30 × 10 −7 / ° C., the moldability is deteriorated, and the yield is lowered in a reflector that requires a precise reflecting surface. On the other hand, if the thermal expansion coefficient exceeds 45 × 10 −7 / ° C., the heat resistance is not sufficient and it cannot be combined with a high output light source. More preferably, the amorphous glass in the present invention has a thermal expansion coefficient in the range of 30 to 40 × 10 −7 / ° C. Specifically, an aluminosilicate glass can be suitably used in addition to the borosilicate glass.

また、使用するエッチング液はフッ酸に限らず、フッ酸と硫酸との混酸水溶液等でもよく、その濃度やエッチング処理時間は、反射鏡基体のガラス材質やエッチング量に応じて適宜調整すればよい。   The etching solution to be used is not limited to hydrofluoric acid but may be a mixed acid aqueous solution of hydrofluoric acid and sulfuric acid, and the concentration and etching treatment time may be appropriately adjusted according to the glass material of the reflector substrate and the etching amount. .

本発明では、孔開け加工による機械的損傷を取り除いたことにより、非晶質ガラスを用いているが割れやクラックが発生しない高耐熱の反射鏡を得ることができる効果がある。   In the present invention, by removing mechanical damage due to drilling, an amorphous glass is used, but there is an effect that a highly heat-resistant reflecting mirror that does not generate cracks or cracks can be obtained.

また、本発明による反射鏡では、非晶質ガラスを使用しているので、結晶化ガラスにおいて避けられない結晶化工程による変形や収縮がなく、反射面精度を理想局面により近づけることができ、したがって投射照度が明るくかつ中心部と周辺部との照度差が少ない、即ちプロジェクター光源に好適な反射鏡が得られる効果がある。   In addition, since the reflecting mirror according to the present invention uses amorphous glass, there is no deformation or shrinkage caused by the crystallization process that is unavoidable in crystallized glass, and the accuracy of the reflecting surface can be made closer to the ideal phase. The projection illuminance is bright and the difference in illuminance between the central portion and the peripheral portion is small, that is, there is an effect that a reflecting mirror suitable for a projector light source can be obtained.

また、赤外線に対して透明な非晶質ガラスでは、結晶化ガラスと異なり光源が発し多層膜を透過して反射鏡基体に入射した赤外線を散乱せず直線的に透過するため、反射鏡背面で集中的な放熱対策が採りやすい利点がある。   In addition, in the case of amorphous glass that is transparent to infrared rays, unlike crystallized glass, a light source is emitted, passes through the multilayer film, and transmits infrared rays that are incident on the reflector substrate in a straight line without being scattered. There is an advantage that it is easy to take intensive heat dissipation measures.

本発明の実施例1による反射鏡を製造する工程を説明するための図。The figure for demonstrating the process of manufacturing the reflective mirror by Example 1 of this invention. 本発明の実施例2による反射鏡を製造する工程を説明するための図。The figure for demonstrating the process of manufacturing the reflective mirror by Example 2 of this invention. 本発明の実施例などの反射鏡のプレス加工に用いる金型の構造を示す図。The figure which shows the structure of the metal mold | die used for the press work of reflectors, such as the Example of this invention. 本発明の各実施例と比較例の特性の測定結果を示す図。The figure which shows the measurement result of the characteristic of each Example and comparative example of this invention. 本発明の実施例1(A)による反射基体の反射面三次元形状測定の結果を示す図。The figure which shows the result of the reflective surface three-dimensional shape measurement of the reflective base body by Example 1 (A) of this invention. 比較例3による反射基体の反射面三次元形状測定の結果を示す図。The figure which shows the result of the reflective surface three-dimensional shape measurement of the reflective base body by the comparative example 3. FIG.

符号の説明Explanation of symbols

1,3,4・・・・反射鏡、
11・・・開孔予定部、
12・・・ネック部、
14・・・ダイス、
15・・・コアドリル、
17・・・開孔部、
19・・・液槽、
20・・・エッチング液
31・・・ネック部、
32・・・ネック部後端、
34・・・カッター、
4 1 ・・・ボトム金型、
4 2 ・・・プランジャ、
1, 3, 4 ... Reflector,
11 ... planned opening part,
12 ... Neck part,
14 ... Dice,
15 ... Core drill,
17 ... opening part,
19 ... Liquid tank,
20 ... Etching solution 31 ... Neck part,
32 ... rear end of neck,
34 ... Cutter,
4 1 ... Bottom mold,
4 2 ... Plunger,

Claims (2)

熱膨張係数が30〜45×10 −7 /℃の非晶質ガラスから成り、光源から発せられる光を反射する反射面部と、光源バルブを挿入する開孔部とを有するプロジェクター用ガラス製反射鏡の製造方法であって、溶融ガラスをボトム金型とプランジャとを有する金型により前記反射面部から凹入した位置に開孔予定部をもつ所定の反射鏡形状にプレス成形するプレス成形工程と、この工程により成形された反射鏡の前記開孔部に当たる部位のガラスを除去することにより前記開孔部を形成する開孔部形成工程と、この工程により形成された前記開孔部にエッチングを施してその表面を平滑化することにより加工部の機械的損傷を取り除く表面平滑化工程と、を有することを特徴とするプロジェクター用ガラス製反射鏡の製造方法。 Glass projector reflection made of amorphous glass having a thermal expansion coefficient of 30 to 45 × 10 −7 / ° C. , and having a reflective surface portion that reflects light emitted from the light source and an aperture portion into which the light source bulb is inserted. A method for manufacturing a mirror, comprising: pressing a molten glass into a predetermined reflecting mirror shape having a planned opening portion at a position recessed from the reflecting surface portion by a die having a bottom die and a plunger; and The step of forming the hole part by removing the glass at the portion corresponding to the hole part of the reflector formed by this process, and the etching of the hole part formed by this process And a surface smoothing step for removing the mechanical damage of the processed part by smoothing the surface by applying the method. 前記エッチング処理により除去される前記開孔部加工面のエッチング量が、30μm以上であることを特徴とする請求項記載のプロジェクター用ガラス製反射鏡の製造方法。 The etching amount of etching the openings machined surface to be removed by the process of claim 1 Projector glass reflector, wherein a is 30μm or more.
JP2003285657A 2003-08-04 2003-08-04 Method for manufacturing glass reflector for projector Expired - Fee Related JP4190366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003285657A JP4190366B2 (en) 2003-08-04 2003-08-04 Method for manufacturing glass reflector for projector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003285657A JP4190366B2 (en) 2003-08-04 2003-08-04 Method for manufacturing glass reflector for projector

Publications (2)

Publication Number Publication Date
JP2005055633A JP2005055633A (en) 2005-03-03
JP4190366B2 true JP4190366B2 (en) 2008-12-03

Family

ID=34365224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003285657A Expired - Fee Related JP4190366B2 (en) 2003-08-04 2003-08-04 Method for manufacturing glass reflector for projector

Country Status (1)

Country Link
JP (1) JP4190366B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4602224B2 (en) * 2005-10-27 2010-12-22 Agcテクノグラス株式会社 Reflector mirror drilling method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05325893A (en) * 1992-05-21 1993-12-10 Matsushita Electric Ind Co Ltd Metal vapor discharge lamp, manufacture of metal vapor discharge lamp, and projection type display
JPH08124531A (en) * 1994-08-31 1996-05-17 Toshiba Lighting & Technol Corp Short arc type electric discharge lamp, light source device, projector device and liquid crystal projector device
JP2001039737A (en) * 1999-07-26 2001-02-13 Seiko Epson Corp Production of glass substrate having recess, microlens substrate, counter substrate for liquid crystal panel, liquid crystal panel and projection type display device
JP2001160305A (en) * 1999-12-03 2001-06-12 Toyota Motor Corp Lighting fixture
JP4069558B2 (en) * 1999-12-20 2008-04-02 ウシオ電機株式会社 Light source device
JP2002062586A (en) * 2000-08-17 2002-02-28 Iwasaki Electric Co Ltd Short arc discharge lamp with reflecting mirror

Also Published As

Publication number Publication date
JP2005055633A (en) 2005-03-03

Similar Documents

Publication Publication Date Title
US20060044810A1 (en) Glass reflector for projector and manufacturing method for the same
US11161773B2 (en) Methods of fabricating photosensitive substrates suitable for optical coupler
EP1964820B1 (en) Method of glass substrate working and glass part
TWI738655B (en) Glass substrate and multilayer substrate
US7644596B2 (en) Method of manufacturing a glass reflector
JP2008039852A (en) Glass optical element and its manufacturing method
US20170003421A1 (en) Methods of Fabricating Photoactive Substrates for Micro-lenses and Arrays
JP5117678B2 (en) Method for turbidity of glass, especially borosilicate glass, luminescent means with turbidity, glass tube made of glass and flat glass made of glass
US6814453B2 (en) Low-cost reflector with excellent heat resistance
WO2015019989A1 (en) Photosensitive glass molded article and method for manufacturing same
JP4190366B2 (en) Method for manufacturing glass reflector for projector
WO2017187675A1 (en) Circular glass plate and production method for same
JP4886928B2 (en) Method for producing a crystallized glass reflector substrate
JP2006330010A (en) Microlens and microlens array
JP4052224B2 (en) REFLECTOR AND LIGHT SOURCE DEVICE HAVING REFLECTOR
JP2008033345A (en) Reflector
JP3026742B2 (en) Glass reflector
JP4520862B2 (en) Optical fiber drawing method
JP3998231B2 (en) Reflector
JP2020007184A (en) Support substrate for semiconductor
WO2022114060A1 (en) Method for manufacturing glass plate, method for manufacturing glass substrate for magnetic disk, method for manufacturing magnetic disk, and annular glass plate
JP2005049529A (en) Method for manufacturing polarizing glass
JPH0433741B2 (en)
JP2004031301A (en) Reflecting mirror
JP2006036590A (en) Glass article and method and apparatus for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees